Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T04:57:16.313Z Has data issue: false hasContentIssue false

12 - Planetesimals

Leftover Planetary Building Blocks

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Classification, physical properties, orbits, evolution of asteroids, comets, and KBOs

Type
Chapter
Information
Cosmochemistry , pp. 298 - 322
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

The University of Arizona Press has published a number of books on asteroids, and these two are the most current. Each is a wonderful resource on the properties, evolution, and exploration of asteroids.

Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R. P., editors (2002) Asteroids III. University of Arizona Press, Tucson, 785 pp.Google Scholar
Michel, P., Demeo, F. E., and Bottke, W. F., editors (2015) Asteroids IV. University of Arizona Press, Tucson, 895 pp.Google Scholar
Bradley, J. P. (2014) Early solar nebula particles - interplanetary dust particles. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 287308, Elsevier, Oxford. This review provides an excellent summary of the voluminous literature that describes and interprets IDPs.Google Scholar
Brearley, A. J. (2006) The action of water. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 587624, University of Arizona Press, Tucson. The best available review of aqueous alteration processes and materials in chondritic meteorites.Google Scholar
Brownlee, D. E. (2014) Comets. In Treatise on Geochemistry, 2nd edition, Vol. 2. Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 335363, Elsevier, Oxford. A comprehensive and thoughtful review of what is known about the composition and structure of comets and the bodies within the belts that supply comets.Google Scholar
Asphaug, E., Agnor, C. B., and Williams, Q. (2006) Hit-and-run planetary collisions. Nature, 439, 155160.CrossRefGoogle ScholarPubMed
Bottke, W. F., Nesvorny, D., Grimm, R. E., et al. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F., Broz, M., O’Brien, D. P., et al. (2015) The collisional evolution of the Main asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 701724, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Brown, M. E. (2002) The compositions of Kuiper Belt objects. Annual Review of Earth and Planetary Sciences, 40, 467494.CrossRefGoogle Scholar
Browning, L. B., McSween, H. Y., and Zolensky, M. E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 26212633.CrossRefGoogle Scholar
Brownlee, D., and 181 coauthors (2006) Comet 81P/Wild2 under a microscope. Science, 314, 17111716.Google Scholar
Brownlee, D., Joswiak, D., and Matrajt, G. (2012) Overview of the rocky component of Wild2 comet samples: Insights into the early solar system, relationship with meteoritic materials and the differences between comets and asteroids. Meteoritics & Planetary Science, 47, 453470.CrossRefGoogle Scholar
Bus, S. J., Vilas, F., and Barrucci, M. A. (2002) Visible-wavelength spectroscopy of asteroids. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R. P., editors, pp. 169182, University of Arizona Press, Tucson.Google Scholar
Carry, B. (2012) Density of asteroids. Planetary & Space Science, 73, 98118.Google Scholar
Castillo-Rogez, J. C., and McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Ciesla, F. J. (2007) Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.Google Scholar
Clark, B. E., Hapke, B., Pieters, C., and Britt, D. (2002) Asteroid space weathering and regolith evolution. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P. and Binzel, R. P., editors, pp. 585602, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth & Planetary Science Letters, 67, 151166.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Crovisier, J., et al. (2000) The thermal infrared spectra of comets Hale-Bopp and 103P/Hartley 2 observed with the Infrared Space Observatory. In Thermal Emission Spectroscopy and Analysis of Dust, Disks, and Regoliths, ASP Conference 196, Sitko, M. L., Sprague, A. L., and Lynch, D. K., editors, pp. 109117, Astronomical Society of the Pacific, San Francisco.Google Scholar
DeMeo, F. E., Binzel, R. P., Silvan, S. M., and Bus, S. J. (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F. E., Alexander, C. M. O’D., Walsh, K. J., et al. (2015) The compositional structure of the asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 1342, University of Arizona Press, Tucson.Google Scholar
De Sanctis, M. C., Ammannito, E., Marchi, S., et al. (2015) Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature, 528, 241245.CrossRefGoogle ScholarPubMed
Dunn, T. L., Cressey, G., McSween, H. Y., and McCoy, T. J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science, 45, 123134.Google Scholar
Flynn, G. J., Consolmagno, G. J., Brown, P., and Macke, R. J. (2018) Physical properties of the stone meteorites: Implications for the properties of their parent bodies. Chemie der Erde, 78, 269298.Google Scholar
Fornasier, S., Lantz, C., Barucci, M. A., and Lazzarin, M. (2014) Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy. Icarus, 233, 163178.Google Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y., and Rubin, A. (2006) Asteroid heating and thermal stratification of the asteroid belt. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 555566, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Gounelle, M., Spurny, P., and Bland, P. A. (2006) The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteoritics & Planetary Science, 41, 135150.CrossRefGoogle Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F., and Franchi, I. A. (2017) Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie der Erde, 77, 143.CrossRefGoogle Scholar
Grimm, R. E., and McSween, H. Y. (1989) Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus, 82, 244280.Google Scholar
Grimm, R. E., and McSween, H. Y. (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653655.CrossRefGoogle Scholar
Grundy, W. M., Bird, M. K., Britt, D. T., et al. (2020) Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 367, 999.Google Scholar
Haack, H., Rasmussen, K. L., and Warren, P. H. (1990) Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids. Journal of Geophysical Research, 95, 51115124.CrossRefGoogle Scholar
Hanner, M. S., and Bradley, J. P. (2003) Composition and mineralogy of comet dust. In Comets II, Festou, M., Keller, H. U., and Weaver, H. A., editors, pp. 555564, University of Arizona Press, Tucson.Google Scholar
Herbert, F., and Sonnett, C. P. (1980) Electromagnetic inductive heating of the asteroids and moon as evidence bearing on the primordial solar wind. In The Ancient Sun, Pepin, R. O., Eddy, J. A., and Merrill, R. B., editors, pp. 563576, Pergamon, New York.Google Scholar
Howard, K. T., Alexander, C. M. O’D., Schrader, D. L., and Dyl, K. A. (2015) Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-SRD modal mineralogy and planetesimal environments. Geochimica et Cosmochimica Acta, 149, 206222.Google Scholar
Hughes, A. L. H., and Armitage, P. J. (2010) Particle transport in evolving protoplanetary disks: Implications for results from Stardust. Astrophysical Journal, 719, 16331653.CrossRefGoogle Scholar
Ishii, H. A., Bradley, J. P., Dai, Z. R., et al. (2008) Comparison of comet 81P/Wild2 dust with interplanetary dust from comets. Science, 319, 447450.Google Scholar
Jones, T. D., Lebofsky, L. A., Lewis, J. S., and Marley, M. S. (1990) The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt. Icarus, 88, 172192.Google Scholar
Joswiak, D. J., Brownlee, D. E., Matrajt, G., et al. (2009) Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteoritics & Planetary Science, 44, 15611588.CrossRefGoogle Scholar
Keil, K., Stoffler, D., Love, S. G., and Scott, E. R. D. (1997) Constraints on the role of impact heating and melting in asteroids. Meteoritics and Planetary Science, 32, 349363.Google Scholar
King, A. J., Schofield, P. E., Howard, K. T., and Russell, S. S. (2015) Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochimica et Cosmochimica Acta, 165, 148160.CrossRefGoogle Scholar
Lauretta, D. S., Bartels, A. E., Barucci, M. A., et al. (2014) The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics & Planetary Science, 50, 834849.CrossRefGoogle Scholar
Lucas, M. P., Dygert, N., Ren, J., et al. (2020) Evidence for early fragmentation-reassembly of ordinary chondrite (H, L, and LL) parent bodies from REE-in-two-pyroxene thermometry. Geochimica et Cosmochimica Acta, 290, 366390.CrossRefGoogle Scholar
Mandler, B. E., and Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.CrossRefGoogle Scholar
Marty, B., Palma, R. L., Pepin, R. O., et al. (2008) Helium and neon abundances and compositions in cometary matter. Science, 319, 7578.CrossRefGoogle ScholarPubMed
McKeegan, K. D., plus 45 coauthors (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.CrossRefGoogle ScholarPubMed
McSween, H. Y., and Labotka, T. C. (1993) Oxidation during metamorphism of the ordinary chondrites. Geochimica et Cosmochimica Acta, 57, 11051114.Google Scholar
McSween, H. Y., Ghosh, A., Grimm, R. E., et al. (2003) Thermal evolution models of asteroids. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P. and Binzel, R. P., editors, pp. 559571, University of Arizona Press, Tucson.Google Scholar
Metzler, K., Bischoff, A., and Stoffler, D. (1992) Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochimica et Cosmochimica Acta, 56, 28732897.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., and Bottke, W. F. (2015) The dynamical evolution of the asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 493507, University of Arizona Press, Tucson.Google Scholar
Mothe-Diniz, T., Carvano, J. M., and Lazzaro, D. (2003) Distribution of taxonomic classes in the main belt of asteroids. Icarus, 162, 1021.Google Scholar
Nakamura, T., Nakato, A., Ishida, H., et al. (2014) Mineral chemistry of MUSES-C Regio inferred from analysis of dust particles collected from the first- and second-touchdown sites on asteroid Itokawa. Meteoritics & Planetary Science, 49, 215227.Google Scholar
Nesvorny, D., Broz, M., and Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 297322, University of Arizona Press, Tucson.Google Scholar
Pieters, C. M., and McFadden, L. A. (1994) Meteorite and asteroid reflectance spectroscopy: Clues to early solar system processes. Annual Review of Earth & Planetary Sciences, 22, 457497.CrossRefGoogle Scholar
Pieters, C. M., and Noble, S. K. (2016) Space weathering on airless bodies. Journal of Geophysical Research, Planets, 121, 18651884.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, aah6765, doi:10.1126/science.aah6765.Google Scholar
Reddy, V., Dunne, T. L., Thomas, C. A., et al. (2015) Mineralogy and surface composition of asteroids. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 4364, University of Arizona Press, Tucson.Google Scholar
Rivkin, A. S., Campins, H., Emery, J. P., et al. (2015) Astronomical observations of volatiles on asteroids. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 6588, University of Arizona Press, Tucson.Google Scholar
Rubin, A. E., Trigo-Rodriguez, J. M., Huber, H., and Wasson, J. T. (2007) Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 71, 23612382.Google Scholar
Schaller, E. L. (2010) Atmospheres and surfaces of small bodies and dwarf planets in the Kuiper Belt. EPJ Web of Conferences, 9, 267276, doi:10.105/epjconf/201009021.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 15451552.Google Scholar
Slater-Reynolds, V., and McSween, H. Y. (2005) Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry. Meteoritics & Planetary Science, 40, 745754.Google Scholar
Spencer, J. R., Stern, S. A., Moore, J. M., et al. (2020) The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 367, eaay3999.Google Scholar
Tholen, D. J., and Barucci, M. A. (1989) Asteroid taxonomy. In Asteroids II, Binzel, R. P., Gehrels, T., and Matthews, M. S.., editors, pp. 298315, University of Arizona Press, Tucson.Google Scholar
Treiloff, M., Jesberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 442, 502506.Google Scholar
Tsou, P., plus 19 coauthors (2004) Stardust encounters comet 81P/Wind 2. Journal of Geophysical Research, 109, E12S01, doi:10.1029/2004JE002317.Google Scholar
Vilas, F., Jarvis, K. S., and Gaffey, M. J. (1994) Iron alteration minerals in the visible and near-infrared spectra of low-albedo asteroids. Icarus, 109, 274283.Google Scholar
Westphal, A. J., Snead, C., Butterworth, A., et al. (2004) Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel collectors. Meteoritics & Planetary Science, 39, 13751386.Google Scholar
Westphal, A. J., Fakra, S. C., Gainsforth, Z., et al. (2009) Mixing fraction of inner solar system material in come 81P/Wild2. Astrophysical Journal, 694, 1828.Google Scholar
Westphal, A. J., Bridges, J. C., Brownlee, D. E., et al. (2017) The future of Stardust science. Meteoritics & Planetary Science, 52, 18591898.Google Scholar
Williams, C. V., Rubin, A. E., Keil, K., and San, Miguel A. (1985) Petrology of the Cangas de Onis and Nulles regolith breccias: Implications for parent body history. Meteoritics, 20, 331345.Google Scholar
Wong, I., and Brown, M. E. (2017) The bimodal color distribution of small Kuiper belt objects. Astronomical Journal, 153, 145.Google Scholar
Yang, J., and Goldstein, J. I. (2005) The formation of the Widmanstätten structure in meteorites. Meteoritics & Planetary Science, 40, 239253.Google Scholar
Young, E. D. (2001) The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosophical Transactions of the Royal Society of London, A359 , 20952109.Google Scholar
Zolensky, M. E., and 74 coauthors (2006) Mineralogy and petrology of comet 81P/Wild2 nucleus samples. Science, 314, 17351739.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B., and Williams, Q. (2006) Hit-and-run planetary collisions. Nature, 439, 155160.CrossRefGoogle ScholarPubMed
Bottke, W. F., Nesvorny, D., Grimm, R. E., et al. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F., Broz, M., O’Brien, D. P., et al. (2015) The collisional evolution of the Main asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 701724, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Brown, M. E. (2002) The compositions of Kuiper Belt objects. Annual Review of Earth and Planetary Sciences, 40, 467494.CrossRefGoogle Scholar
Browning, L. B., McSween, H. Y., and Zolensky, M. E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 26212633.CrossRefGoogle Scholar
Brownlee, D., and 181 coauthors (2006) Comet 81P/Wild2 under a microscope. Science, 314, 17111716.Google Scholar
Brownlee, D., Joswiak, D., and Matrajt, G. (2012) Overview of the rocky component of Wild2 comet samples: Insights into the early solar system, relationship with meteoritic materials and the differences between comets and asteroids. Meteoritics & Planetary Science, 47, 453470.CrossRefGoogle Scholar
Bus, S. J., Vilas, F., and Barrucci, M. A. (2002) Visible-wavelength spectroscopy of asteroids. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R. P., editors, pp. 169182, University of Arizona Press, Tucson.Google Scholar
Carry, B. (2012) Density of asteroids. Planetary & Space Science, 73, 98118.Google Scholar
Castillo-Rogez, J. C., and McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Ciesla, F. J. (2007) Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.Google Scholar
Clark, B. E., Hapke, B., Pieters, C., and Britt, D. (2002) Asteroid space weathering and regolith evolution. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P. and Binzel, R. P., editors, pp. 585602, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth & Planetary Science Letters, 67, 151166.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Crovisier, J., et al. (2000) The thermal infrared spectra of comets Hale-Bopp and 103P/Hartley 2 observed with the Infrared Space Observatory. In Thermal Emission Spectroscopy and Analysis of Dust, Disks, and Regoliths, ASP Conference 196, Sitko, M. L., Sprague, A. L., and Lynch, D. K., editors, pp. 109117, Astronomical Society of the Pacific, San Francisco.Google Scholar
DeMeo, F. E., Binzel, R. P., Silvan, S. M., and Bus, S. J. (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F. E., Alexander, C. M. O’D., Walsh, K. J., et al. (2015) The compositional structure of the asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 1342, University of Arizona Press, Tucson.Google Scholar
De Sanctis, M. C., Ammannito, E., Marchi, S., et al. (2015) Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature, 528, 241245.CrossRefGoogle ScholarPubMed
Dunn, T. L., Cressey, G., McSween, H. Y., and McCoy, T. J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science, 45, 123134.Google Scholar
Flynn, G. J., Consolmagno, G. J., Brown, P., and Macke, R. J. (2018) Physical properties of the stone meteorites: Implications for the properties of their parent bodies. Chemie der Erde, 78, 269298.Google Scholar
Fornasier, S., Lantz, C., Barucci, M. A., and Lazzarin, M. (2014) Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy. Icarus, 233, 163178.Google Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y., and Rubin, A. (2006) Asteroid heating and thermal stratification of the asteroid belt. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 555566, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Gounelle, M., Spurny, P., and Bland, P. A. (2006) The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteoritics & Planetary Science, 41, 135150.CrossRefGoogle Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F., and Franchi, I. A. (2017) Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie der Erde, 77, 143.CrossRefGoogle Scholar
Grimm, R. E., and McSween, H. Y. (1989) Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus, 82, 244280.Google Scholar
Grimm, R. E., and McSween, H. Y. (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653655.CrossRefGoogle Scholar
Grundy, W. M., Bird, M. K., Britt, D. T., et al. (2020) Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 367, 999.Google Scholar
Haack, H., Rasmussen, K. L., and Warren, P. H. (1990) Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids. Journal of Geophysical Research, 95, 51115124.CrossRefGoogle Scholar
Hanner, M. S., and Bradley, J. P. (2003) Composition and mineralogy of comet dust. In Comets II, Festou, M., Keller, H. U., and Weaver, H. A., editors, pp. 555564, University of Arizona Press, Tucson.Google Scholar
Herbert, F., and Sonnett, C. P. (1980) Electromagnetic inductive heating of the asteroids and moon as evidence bearing on the primordial solar wind. In The Ancient Sun, Pepin, R. O., Eddy, J. A., and Merrill, R. B., editors, pp. 563576, Pergamon, New York.Google Scholar
Howard, K. T., Alexander, C. M. O’D., Schrader, D. L., and Dyl, K. A. (2015) Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-SRD modal mineralogy and planetesimal environments. Geochimica et Cosmochimica Acta, 149, 206222.Google Scholar
Hughes, A. L. H., and Armitage, P. J. (2010) Particle transport in evolving protoplanetary disks: Implications for results from Stardust. Astrophysical Journal, 719, 16331653.CrossRefGoogle Scholar
Ishii, H. A., Bradley, J. P., Dai, Z. R., et al. (2008) Comparison of comet 81P/Wild2 dust with interplanetary dust from comets. Science, 319, 447450.Google Scholar
Jones, T. D., Lebofsky, L. A., Lewis, J. S., and Marley, M. S. (1990) The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt. Icarus, 88, 172192.Google Scholar
Joswiak, D. J., Brownlee, D. E., Matrajt, G., et al. (2009) Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteoritics & Planetary Science, 44, 15611588.CrossRefGoogle Scholar
Keil, K., Stoffler, D., Love, S. G., and Scott, E. R. D. (1997) Constraints on the role of impact heating and melting in asteroids. Meteoritics and Planetary Science, 32, 349363.Google Scholar
King, A. J., Schofield, P. E., Howard, K. T., and Russell, S. S. (2015) Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochimica et Cosmochimica Acta, 165, 148160.CrossRefGoogle Scholar
Lauretta, D. S., Bartels, A. E., Barucci, M. A., et al. (2014) The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics & Planetary Science, 50, 834849.CrossRefGoogle Scholar
Lucas, M. P., Dygert, N., Ren, J., et al. (2020) Evidence for early fragmentation-reassembly of ordinary chondrite (H, L, and LL) parent bodies from REE-in-two-pyroxene thermometry. Geochimica et Cosmochimica Acta, 290, 366390.CrossRefGoogle Scholar
Mandler, B. E., and Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.CrossRefGoogle Scholar
Marty, B., Palma, R. L., Pepin, R. O., et al. (2008) Helium and neon abundances and compositions in cometary matter. Science, 319, 7578.CrossRefGoogle ScholarPubMed
McKeegan, K. D., plus 45 coauthors (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.CrossRefGoogle ScholarPubMed
McSween, H. Y., and Labotka, T. C. (1993) Oxidation during metamorphism of the ordinary chondrites. Geochimica et Cosmochimica Acta, 57, 11051114.Google Scholar
McSween, H. Y., Ghosh, A., Grimm, R. E., et al. (2003) Thermal evolution models of asteroids. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P. and Binzel, R. P., editors, pp. 559571, University of Arizona Press, Tucson.Google Scholar
Metzler, K., Bischoff, A., and Stoffler, D. (1992) Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochimica et Cosmochimica Acta, 56, 28732897.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., and Bottke, W. F. (2015) The dynamical evolution of the asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 493507, University of Arizona Press, Tucson.Google Scholar
Mothe-Diniz, T., Carvano, J. M., and Lazzaro, D. (2003) Distribution of taxonomic classes in the main belt of asteroids. Icarus, 162, 1021.Google Scholar
Nakamura, T., Nakato, A., Ishida, H., et al. (2014) Mineral chemistry of MUSES-C Regio inferred from analysis of dust particles collected from the first- and second-touchdown sites on asteroid Itokawa. Meteoritics & Planetary Science, 49, 215227.Google Scholar
Nesvorny, D., Broz, M., and Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 297322, University of Arizona Press, Tucson.Google Scholar
Pieters, C. M., and McFadden, L. A. (1994) Meteorite and asteroid reflectance spectroscopy: Clues to early solar system processes. Annual Review of Earth & Planetary Sciences, 22, 457497.CrossRefGoogle Scholar
Pieters, C. M., and Noble, S. K. (2016) Space weathering on airless bodies. Journal of Geophysical Research, Planets, 121, 18651884.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, aah6765, doi:10.1126/science.aah6765.Google Scholar
Reddy, V., Dunne, T. L., Thomas, C. A., et al. (2015) Mineralogy and surface composition of asteroids. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 4364, University of Arizona Press, Tucson.Google Scholar
Rivkin, A. S., Campins, H., Emery, J. P., et al. (2015) Astronomical observations of volatiles on asteroids. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 6588, University of Arizona Press, Tucson.Google Scholar
Rubin, A. E., Trigo-Rodriguez, J. M., Huber, H., and Wasson, J. T. (2007) Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 71, 23612382.Google Scholar
Schaller, E. L. (2010) Atmospheres and surfaces of small bodies and dwarf planets in the Kuiper Belt. EPJ Web of Conferences, 9, 267276, doi:10.105/epjconf/201009021.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 15451552.Google Scholar
Slater-Reynolds, V., and McSween, H. Y. (2005) Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry. Meteoritics & Planetary Science, 40, 745754.Google Scholar
Spencer, J. R., Stern, S. A., Moore, J. M., et al. (2020) The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 367, eaay3999.Google Scholar
Tholen, D. J., and Barucci, M. A. (1989) Asteroid taxonomy. In Asteroids II, Binzel, R. P., Gehrels, T., and Matthews, M. S.., editors, pp. 298315, University of Arizona Press, Tucson.Google Scholar
Treiloff, M., Jesberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 442, 502506.Google Scholar
Tsou, P., plus 19 coauthors (2004) Stardust encounters comet 81P/Wind 2. Journal of Geophysical Research, 109, E12S01, doi:10.1029/2004JE002317.Google Scholar
Vilas, F., Jarvis, K. S., and Gaffey, M. J. (1994) Iron alteration minerals in the visible and near-infrared spectra of low-albedo asteroids. Icarus, 109, 274283.Google Scholar
Westphal, A. J., Snead, C., Butterworth, A., et al. (2004) Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel collectors. Meteoritics & Planetary Science, 39, 13751386.Google Scholar
Westphal, A. J., Fakra, S. C., Gainsforth, Z., et al. (2009) Mixing fraction of inner solar system material in come 81P/Wild2. Astrophysical Journal, 694, 1828.Google Scholar
Westphal, A. J., Bridges, J. C., Brownlee, D. E., et al. (2017) The future of Stardust science. Meteoritics & Planetary Science, 52, 18591898.Google Scholar
Williams, C. V., Rubin, A. E., Keil, K., and San, Miguel A. (1985) Petrology of the Cangas de Onis and Nulles regolith breccias: Implications for parent body history. Meteoritics, 20, 331345.Google Scholar
Wong, I., and Brown, M. E. (2017) The bimodal color distribution of small Kuiper belt objects. Astronomical Journal, 153, 145.Google Scholar
Yang, J., and Goldstein, J. I. (2005) The formation of the Widmanstätten structure in meteorites. Meteoritics & Planetary Science, 40, 239253.Google Scholar
Young, E. D. (2001) The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosophical Transactions of the Royal Society of London, A359 , 20952109.Google Scholar
Zolensky, M. E., and 74 coauthors (2006) Mineralogy and petrology of comet 81P/Wild2 nucleus samples. Science, 314, 17351739.CrossRefGoogle Scholar

Other References

Asphaug, E., Agnor, C. B., and Williams, Q. (2006) Hit-and-run planetary collisions. Nature, 439, 155160.CrossRefGoogle ScholarPubMed
Bottke, W. F., Nesvorny, D., Grimm, R. E., et al. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F., Broz, M., O’Brien, D. P., et al. (2015) The collisional evolution of the Main asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 701724, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Brown, M. E. (2002) The compositions of Kuiper Belt objects. Annual Review of Earth and Planetary Sciences, 40, 467494.CrossRefGoogle Scholar
Browning, L. B., McSween, H. Y., and Zolensky, M. E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 26212633.CrossRefGoogle Scholar
Brownlee, D., and 181 coauthors (2006) Comet 81P/Wild2 under a microscope. Science, 314, 17111716.Google Scholar
Brownlee, D., Joswiak, D., and Matrajt, G. (2012) Overview of the rocky component of Wild2 comet samples: Insights into the early solar system, relationship with meteoritic materials and the differences between comets and asteroids. Meteoritics & Planetary Science, 47, 453470.CrossRefGoogle Scholar
Bus, S. J., Vilas, F., and Barrucci, M. A. (2002) Visible-wavelength spectroscopy of asteroids. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R. P., editors, pp. 169182, University of Arizona Press, Tucson.Google Scholar
Carry, B. (2012) Density of asteroids. Planetary & Space Science, 73, 98118.Google Scholar
Castillo-Rogez, J. C., and McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Ciesla, F. J. (2007) Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.Google Scholar
Clark, B. E., Hapke, B., Pieters, C., and Britt, D. (2002) Asteroid space weathering and regolith evolution. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P. and Binzel, R. P., editors, pp. 585602, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth & Planetary Science Letters, 67, 151166.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Crovisier, J., et al. (2000) The thermal infrared spectra of comets Hale-Bopp and 103P/Hartley 2 observed with the Infrared Space Observatory. In Thermal Emission Spectroscopy and Analysis of Dust, Disks, and Regoliths, ASP Conference 196, Sitko, M. L., Sprague, A. L., and Lynch, D. K., editors, pp. 109117, Astronomical Society of the Pacific, San Francisco.Google Scholar
DeMeo, F. E., Binzel, R. P., Silvan, S. M., and Bus, S. J. (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F. E., Alexander, C. M. O’D., Walsh, K. J., et al. (2015) The compositional structure of the asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 1342, University of Arizona Press, Tucson.Google Scholar
De Sanctis, M. C., Ammannito, E., Marchi, S., et al. (2015) Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature, 528, 241245.CrossRefGoogle ScholarPubMed
Dunn, T. L., Cressey, G., McSween, H. Y., and McCoy, T. J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science, 45, 123134.Google Scholar
Flynn, G. J., Consolmagno, G. J., Brown, P., and Macke, R. J. (2018) Physical properties of the stone meteorites: Implications for the properties of their parent bodies. Chemie der Erde, 78, 269298.Google Scholar
Fornasier, S., Lantz, C., Barucci, M. A., and Lazzarin, M. (2014) Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy. Icarus, 233, 163178.Google Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y., and Rubin, A. (2006) Asteroid heating and thermal stratification of the asteroid belt. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 555566, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Gounelle, M., Spurny, P., and Bland, P. A. (2006) The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteoritics & Planetary Science, 41, 135150.CrossRefGoogle Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F., and Franchi, I. A. (2017) Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie der Erde, 77, 143.CrossRefGoogle Scholar
Grimm, R. E., and McSween, H. Y. (1989) Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus, 82, 244280.Google Scholar
Grimm, R. E., and McSween, H. Y. (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653655.CrossRefGoogle Scholar
Grundy, W. M., Bird, M. K., Britt, D. T., et al. (2020) Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 367, 999.Google Scholar
Haack, H., Rasmussen, K. L., and Warren, P. H. (1990) Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids. Journal of Geophysical Research, 95, 51115124.CrossRefGoogle Scholar
Hanner, M. S., and Bradley, J. P. (2003) Composition and mineralogy of comet dust. In Comets II, Festou, M., Keller, H. U., and Weaver, H. A., editors, pp. 555564, University of Arizona Press, Tucson.Google Scholar
Herbert, F., and Sonnett, C. P. (1980) Electromagnetic inductive heating of the asteroids and moon as evidence bearing on the primordial solar wind. In The Ancient Sun, Pepin, R. O., Eddy, J. A., and Merrill, R. B., editors, pp. 563576, Pergamon, New York.Google Scholar
Howard, K. T., Alexander, C. M. O’D., Schrader, D. L., and Dyl, K. A. (2015) Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-SRD modal mineralogy and planetesimal environments. Geochimica et Cosmochimica Acta, 149, 206222.Google Scholar
Hughes, A. L. H., and Armitage, P. J. (2010) Particle transport in evolving protoplanetary disks: Implications for results from Stardust. Astrophysical Journal, 719, 16331653.CrossRefGoogle Scholar
Ishii, H. A., Bradley, J. P., Dai, Z. R., et al. (2008) Comparison of comet 81P/Wild2 dust with interplanetary dust from comets. Science, 319, 447450.Google Scholar
Jones, T. D., Lebofsky, L. A., Lewis, J. S., and Marley, M. S. (1990) The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt. Icarus, 88, 172192.Google Scholar
Joswiak, D. J., Brownlee, D. E., Matrajt, G., et al. (2009) Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteoritics & Planetary Science, 44, 15611588.CrossRefGoogle Scholar
Keil, K., Stoffler, D., Love, S. G., and Scott, E. R. D. (1997) Constraints on the role of impact heating and melting in asteroids. Meteoritics and Planetary Science, 32, 349363.Google Scholar
King, A. J., Schofield, P. E., Howard, K. T., and Russell, S. S. (2015) Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochimica et Cosmochimica Acta, 165, 148160.CrossRefGoogle Scholar
Lauretta, D. S., Bartels, A. E., Barucci, M. A., et al. (2014) The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics & Planetary Science, 50, 834849.CrossRefGoogle Scholar
Lucas, M. P., Dygert, N., Ren, J., et al. (2020) Evidence for early fragmentation-reassembly of ordinary chondrite (H, L, and LL) parent bodies from REE-in-two-pyroxene thermometry. Geochimica et Cosmochimica Acta, 290, 366390.CrossRefGoogle Scholar
Mandler, B. E., and Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.CrossRefGoogle Scholar
Marty, B., Palma, R. L., Pepin, R. O., et al. (2008) Helium and neon abundances and compositions in cometary matter. Science, 319, 7578.CrossRefGoogle ScholarPubMed
McKeegan, K. D., plus 45 coauthors (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.CrossRefGoogle ScholarPubMed
McSween, H. Y., and Labotka, T. C. (1993) Oxidation during metamorphism of the ordinary chondrites. Geochimica et Cosmochimica Acta, 57, 11051114.Google Scholar
McSween, H. Y., Ghosh, A., Grimm, R. E., et al. (2003) Thermal evolution models of asteroids. In Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P. and Binzel, R. P., editors, pp. 559571, University of Arizona Press, Tucson.Google Scholar
Metzler, K., Bischoff, A., and Stoffler, D. (1992) Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochimica et Cosmochimica Acta, 56, 28732897.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., and Bottke, W. F. (2015) The dynamical evolution of the asteroid belt. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 493507, University of Arizona Press, Tucson.Google Scholar
Mothe-Diniz, T., Carvano, J. M., and Lazzaro, D. (2003) Distribution of taxonomic classes in the main belt of asteroids. Icarus, 162, 1021.Google Scholar
Nakamura, T., Nakato, A., Ishida, H., et al. (2014) Mineral chemistry of MUSES-C Regio inferred from analysis of dust particles collected from the first- and second-touchdown sites on asteroid Itokawa. Meteoritics & Planetary Science, 49, 215227.Google Scholar
Nesvorny, D., Broz, M., and Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 297322, University of Arizona Press, Tucson.Google Scholar
Pieters, C. M., and McFadden, L. A. (1994) Meteorite and asteroid reflectance spectroscopy: Clues to early solar system processes. Annual Review of Earth & Planetary Sciences, 22, 457497.CrossRefGoogle Scholar
Pieters, C. M., and Noble, S. K. (2016) Space weathering on airless bodies. Journal of Geophysical Research, Planets, 121, 18651884.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, aah6765, doi:10.1126/science.aah6765.Google Scholar
Reddy, V., Dunne, T. L., Thomas, C. A., et al. (2015) Mineralogy and surface composition of asteroids. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 4364, University of Arizona Press, Tucson.Google Scholar
Rivkin, A. S., Campins, H., Emery, J. P., et al. (2015) Astronomical observations of volatiles on asteroids. In Asteroids IV, Michel, P., Demeo, F. E., and Bottke, W. F., editors, pp. 6588, University of Arizona Press, Tucson.Google Scholar
Rubin, A. E., Trigo-Rodriguez, J. M., Huber, H., and Wasson, J. T. (2007) Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 71, 23612382.Google Scholar
Schaller, E. L. (2010) Atmospheres and surfaces of small bodies and dwarf planets in the Kuiper Belt. EPJ Web of Conferences, 9, 267276, doi:10.105/epjconf/201009021.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 15451552.Google Scholar
Slater-Reynolds, V., and McSween, H. Y. (2005) Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry. Meteoritics & Planetary Science, 40, 745754.Google Scholar
Spencer, J. R., Stern, S. A., Moore, J. M., et al. (2020) The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 367, eaay3999.Google Scholar
Tholen, D. J., and Barucci, M. A. (1989) Asteroid taxonomy. In Asteroids II, Binzel, R. P., Gehrels, T., and Matthews, M. S.., editors, pp. 298315, University of Arizona Press, Tucson.Google Scholar
Treiloff, M., Jesberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 442, 502506.Google Scholar
Tsou, P., plus 19 coauthors (2004) Stardust encounters comet 81P/Wind 2. Journal of Geophysical Research, 109, E12S01, doi:10.1029/2004JE002317.Google Scholar
Vilas, F., Jarvis, K. S., and Gaffey, M. J. (1994) Iron alteration minerals in the visible and near-infrared spectra of low-albedo asteroids. Icarus, 109, 274283.Google Scholar
Westphal, A. J., Snead, C., Butterworth, A., et al. (2004) Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel collectors. Meteoritics & Planetary Science, 39, 13751386.Google Scholar
Westphal, A. J., Fakra, S. C., Gainsforth, Z., et al. (2009) Mixing fraction of inner solar system material in come 81P/Wild2. Astrophysical Journal, 694, 1828.Google Scholar
Westphal, A. J., Bridges, J. C., Brownlee, D. E., et al. (2017) The future of Stardust science. Meteoritics & Planetary Science, 52, 18591898.Google Scholar
Williams, C. V., Rubin, A. E., Keil, K., and San, Miguel A. (1985) Petrology of the Cangas de Onis and Nulles regolith breccias: Implications for parent body history. Meteoritics, 20, 331345.Google Scholar
Wong, I., and Brown, M. E. (2017) The bimodal color distribution of small Kuiper belt objects. Astronomical Journal, 153, 145.Google Scholar
Yang, J., and Goldstein, J. I. (2005) The formation of the Widmanstätten structure in meteorites. Meteoritics & Planetary Science, 40, 239253.Google Scholar
Young, E. D. (2001) The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosophical Transactions of the Royal Society of London, A359 , 20952109.Google Scholar
Zolensky, M. E., and 74 coauthors (2006) Mineralogy and petrology of comet 81P/Wild2 nucleus samples. Science, 314, 17351739.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Planetesimals
  • Harry McSween, Jr, University of Tennessee, Knoxville, Gary Huss, University of Hawaii, Manoa
  • Book: Cosmochemistry
  • Online publication: 10 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108885263.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Planetesimals
  • Harry McSween, Jr, University of Tennessee, Knoxville, Gary Huss, University of Hawaii, Manoa
  • Book: Cosmochemistry
  • Online publication: 10 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108885263.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Planetesimals
  • Harry McSween, Jr, University of Tennessee, Knoxville, Gary Huss, University of Hawaii, Manoa
  • Book: Cosmochemistry
  • Online publication: 10 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108885263.013
Available formats
×