Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T12:29:03.086Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 October 2019

Andrei Agrachev
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, Trieste
Davide Barilari
Affiliation:
Université de Paris VII (Denis Diderot)
Ugo Boscain
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AB12] Agrachev, Andrei and Barilari, Davide. Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst., 18(1): 2144, 2012.Google Scholar
[ABB12] Agrachev, Andrei, Barilari, Davide, and Boscain, Ugo. On the Hausdorff volume in sub-Riemannian geometry. Calc. Var. PDEs, 43(3–4): 355388, 2012.Google Scholar
[ABC+10] Agrachev, A., Boscain, U., Charlot, G., Ghezzi, R., and Sigalotti, M.. Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27(3): 793807, 2010.Google Scholar
[ABCK97] Agrachev, A., Bonnard, B., Chyba, M., and Kupka, I.. Sub-Riemannian sphere in Martinet flat case. ESAIM Control Optim. Calc. Var., 2: 377448 (electronic), 1997.Google Scholar
[ABGR09] Agrachev, Andrei, Boscain, Ugo, Jean-Paul Gauthier and Francesco Rossi. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal., 256(8): 26212655, 2009.Google Scholar
[ABR17] Agrachev, Andrei, Barilari, Davide, and Rizzi, Luca. Sub-Riemannian curvature in contact geometry. J. Geom. Anal., 27(1): 366408, 2017.Google Scholar
[ABR18] Agrachev, A., Barilari, D., and Rizzi, L.. Curvature: a variational approach. Mem. AMS, 256(1225): 142, 2018.Google Scholar
[ABS08] Agrachev, Andrei, Boscain, Ugo, and Sigalotti, Mario. A Gauss– Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst., 20(4): 801822, 2008.Google Scholar
[ACEAG98] Agrachev, A. A., Chakir El-A, El-H.., and Gauthier, J. P.. Sub-Riemannian metrics on R3. In Geometric control and non-holonomic mechanics, volume 25 of CMS Conf. Proc., pp, 2978. Amer. Math. Soc., Providence, RI, 1998.Google Scholar
[ACGZ00] Agrachev, A. A., Charlot, G., Gauthier, J. P. A., and Zakalyukin, V. M.. On sub-Riemannian caustics and wave fronts for contact distributions in the three-space. J. Dyn. Control Syst., 6(3): 365395, 2000.CrossRefGoogle Scholar
[AG76] Agrachev, A. A. and Gamkrelidze, R. V.. The principle of second order optimality for time-optimal problems. Mat. Sb. (NS), 100(142)(4): 610643, 648, 1976.Google Scholar
[AG78] Agrachev, A. A. and Gamkrelidze, R. V.. Exponential representation of flows and a chronological enumeration. Mat. Sb. (NS), 107(149)(4): 467532, 639, 1978.Google Scholar
[AG80] Agrachev, A. A. and Gamkrelidze, R. V.. Chronological algebras and non-stationary vector fields. In Problems in geometry, Vol. 11 (in Russian), pp. 135176, 243. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980.Google Scholar
[AG97] Agrachev, A. A. and Gamkrelidze, R. V.. Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J. Dyn. Control Syst., 3(3): 343389, 1997.Google Scholar
[AG98] Agrachev, A. and Gamkrelidze, R.. Symplectic methods for optimization and control. In Geometry of feedback and optimal control, volume 207 of Monogr. Textbooks Pure Appl. Math., pp. 19–77. Dekker, New York, 1998.Google Scholar
[AG99] Agrachev, Andrei A. and Gauthier, Jean-Paul A.. On the Dido problem and plane isoperimetric problems. Acta Appl. Math., 57(3): 287338, 1999.Google Scholar
[AG01a] Agrachev, Andrei and Gauthier, Jean-Paul. On the subanalyticity of Carnot–Caratheodory distances. Ann. Inst. H. Poincaré Anal. Non Linéaire, 18(3): 359382, 2001.Google Scholar
[AG01b] Agrachev, Andrei and Gauthier, Jean-Paul. Subanalyticity of distance and spheres in sub-Riemannian geometry. In Nonlinear control in the year 2000, Vol. 1, volume 258 of Lecture Notes Control Inf. Sci., pp. 18. Springer, London, 2001.Google Scholar
[Agr77] Agrachev, A. A.. A necessary condition for second order optimality in the general nonlinear case. Mat. Sb. (NS), 102(144)(4): 551568, 632, 1977.Google Scholar
[Agr95] Agrachev, A. A.. Methods of control theory in nonholonomic geometry. In Proceedings of the International Congress of Mathematicians, Vols. 1, 2, pp. 14731483, Basel. Birkhäuser, 1995.CrossRefGoogle Scholar
[Agr96] Agrachev, A. A.. Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Syst., 2(3): 321358, 1996.CrossRefGoogle Scholar
[Agr98a] Agrachev, A.. Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino, 56(4): 112 (2001), 1998.Google Scholar
[Agr98b] Agrachev, A. A.. Feedback-invariant optimal control theory and differential geometry. II. Jacobi curves for singular extremals. J. Dyn. Control Syst., 4(4): 583604, 1998.Google Scholar
[Agr98c] Agrachev, A. A.. On the equivalence of different types of local minima in sub-Riemannian problems. In Proc. 37th IEEE Conf. on Decision and Control, volume 2, pp. 22402243, 1998.Google Scholar
[Agr08] Agrachev, A. A.. Geometry of optimal control problems and Hamiltonian systems. In Nonlinear and optimal control theory, volume 1932 of Lecture Notes in Math., pp. 159. Springer, Berlin, 2008.Google Scholar
[Agr09] Agrachev, A. A.. Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk, 424(3): 295298, 2009.Google Scholar
[Agr14] Agrachev, A. A.. Some open problems, pp. 113. Springer International Publishing, Cham, 2014.Google Scholar
[AGS89] Agrachev, A. A., Gamkrelidze, R. V., and Sarychev, A. V.. Local invariants of smooth control systems. Acta Appl. Math., 14(3): 191237, 1989.Google Scholar
[Ahd89] Ahdout, Shahla. Fanning curves of Lagrangian manifolds and geodesic flows. Duke Math. J., 59(2): 537552, 1989.Google Scholar
[AL09] Agrachev, Andrei and Lee, Paul. Optimal transportation under nonholonomic constraints. Trans. Amer. Math. Soc., 361(11): 60196047, 2009.Google Scholar
[AL14] Agrachev, Andrei and Lee, Paul W. Y.. Generalized ricci curvature bounds for three dimensional contact subriemannian manifolds. Math. Ann., 360(1): 209253, 2014.Google Scholar
[AM03] Agrachev, A. and Marigo, A.. Nonholonomic tangent spaces: intrinsic construction and rigid dimensions. Electron. Res. Announc. Amer. Math. Soc., 9: 111120, 2003.Google Scholar
[APD09] Paiva, J. C. Álvarez and Durán, Carlos E.. Geometric invariants of fanning curves. Adv. Appl. Math., 42(3): 290312, 2009.Google Scholar
[Arn89] Arnol’d, V. I.. Mathematical methods of classical mechanics, second edition, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein.Google Scholar
[AS87] Agrachev, A. A. and Sarychev, A. V.. Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems. Dokl. Akad. Nauk SSSR, 295(4): 777781, 1987.Google Scholar
[AS95] Agrachev, A. A. and Sarychev, A. V.. Strong minimality of abnormal geodesics for 2-distributions. J. Dyn. Control Syst., 1(2): 139176, 1995.Google Scholar
[AS04] Agrachev, Andrei A. and Sachkov, Yuri L.. Control theory from the geometric viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences. Springer, Berlin, 2004.CrossRefGoogle Scholar
[Aud94] Audin, Michèle. Courbes algébriques et systèmes intégrables: géodésiques des quadriques. Exposition. Math., 12(3): 193226, 1994.Google Scholar
[AW86] Arthurs, A. M. and Walsh, G. R.. On Hammersley’s minimum problem for a rolling sphere. Math. Proc. Cambridge Phil. Soc., 99(3): 529534, 1986.Google Scholar
[AZ02a] Agrachev, A. and Zelenko, I.. Geometry of Jacobi curves. II. J. Dyn. Control Syst., 8(2): 167215, 2002.CrossRefGoogle Scholar
[AZ02b] Agrachev, A. A. and Zelenko, I.. Geometry of Jacobi curves. I. J. Dyn. Control Syst., 8(1): 93140, 2002.Google Scholar
[BA88] Arous, G. Ben. Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. École Norm. Sup. (4), 21(3): 307331, 1988.Google Scholar
[BA89] Arous, Gérard Ben. Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier (Grenoble), 39(1): 7399, 1989.Google Scholar
[BAL91] Ben Arous, G. and Léandre, R.. Décroissance exponentielle du noyau de la chaleur sur la diagonale. II. Probab. Theory Rel. Fields, 90(3): 377402, 1991.CrossRefGoogle Scholar
[Bao67] Baouendi, Mohamed Salah. Sur une classe d’opérateurs elliptiques dégénérés. Bull. Soc. Math. France, 95: 4587, 1967.CrossRefGoogle Scholar
[Bar13] Barilari, D.. Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry. J. Math. Sci. (NY), 195(3): 391411, 2013. Translation of Sovrem. Mat. Prilozh. No. 82 (2012).Google Scholar
[BB09] Baudoin, Fabrice and Bonnefont, Michel. The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Z., 263(3): 647672, 2009.Google Scholar
[BB18] Barilari, Davide and Boarotto, Francesco. On the set of points of smoothness for the value function of affine optimal control problems. SIAM J. Control Optim., 56(2): 649671, 2018.Google Scholar
[BBCN17] Barilari, Davide, Boscain, Ugo, Charlot, Grégoire, and Neel, Robert W.. On the heat diffusion for generic Riemannian and sub-Riemannian structures. Int. Math. Res. Not., (15): 46394672, 2017.Google Scholar
[BBG12] Barilari, Davide, Boscain, Ugo, and Gauthier, Jean-Paul. On 2-step, corank 2 sub-Riemannian metrics. SIAM J. Control Optim., 50(1): 559582, 2012.Google Scholar
[BBI01] Burago, Dmitri, Burago, Yuri, and Ivanov, Sergei. A course in metric geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.Google Scholar
[BBLss] Barilari, D., Beschastnyi, I., and Lerario, A.. Volume of small balls and sub-Riemannian curvature in 3D contact manifolds. J. Symplectic Geom., 2019, in press.Google Scholar
[BBN12] Barilari, Davide, Boscain, Ugo, and Neel, Robert. Small time asymptotics of the heat kernel at the sub-Riemannian cut locus. J. Differential Geom., 92(3): 373416, 2012.CrossRefGoogle Scholar
[BBNss] Barilari, D., Boscain, U., and Neel, R. W.. Heat kernel asymptotics on sub-Riemannian manifolds with symmetries and applications to the bi-Heisenberg group. Ann. Faculté Sci. Toulouse, 2019, in press.Google Scholar
[BBS16a] Barilari, Davide, Boscain, Ugo, and Sigalotti, Mario, editors. Geometry, analysis and dynamics on sub-Riemannian manifolds, Vol. 1. EMS Series of Lectures in Mathematics. European Mathematical Society, Zürich, 2016.Google Scholar
[BBS16b] Barilari, Davide, Boscain, Ugo, and Sigalotti, Mario, editors. Geometry, analysis and dynamics on sub-Riemannian manifolds, Vol. II. EMS Series of Lectures in Mathematics. European Mathematical Society, Zürich, 2016.Google Scholar
[BC03] Bonnard, Bernard and Chyba, Monique. Singular trajectories and their role in control theory, volume 40 of Mathématiques & Applications. Springer, Berlin, 2003.Google Scholar
[BC14] Bonnard, B. and Caillau, J.-B.. Metrics with equatorial singularities on the sphere. Ann. Mat. Pura Appl. (4), 193(5): 13531382, 2014.Google Scholar
[BCC05] Boscain, Ugo, Chambrion, Thomas, and Charlot, Grégoire. Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy. Discrete Contin. Dyn. Syst. Ser. B, 5(4): 957990 (electronic), 2005.Google Scholar
[BCG02a] Boscain, U., Chambrion, T., and Gauthier, J.-P.. On the K + P problem for a three-level quantum system: optimality implies resonance. J. Dyn. Control Syst., 8(4): 547572, 2002.Google Scholar
[BCG+02b] Boscain, Ugo, Charlot, Grégoire, Gauthier, Jean-Paul, Guérin, Stéphane, and Jauslin, Hans-Rudolf. Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys., 43(5): 21072132, 2002.CrossRefGoogle Scholar
[BCG13] Boscain, U., Charlot, G., and Ghezzi, R.. Normal forms and invariants for 2-dimensional almost-Riemannian structures. Differential Geom. Appl., 31(1): 4162, 2013.Google Scholar
[BCGJ11] Bonnard, B., Charlot, G., Ghezzi, R., and Janin, G.. The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry. J. Dyn. Control Syst., 17(1): 141161, 2011.Google Scholar
[BCGM15] Boscain, Ugo, Charlot, Gregoire, Gaye, Moussa, and Mason, Paolo. Local properties of almost-Riemannian structures in dimension 3. Discrete Contin. Dyn. Syst., 35(9): 41154147, 2015.Google Scholar
[BCGS13] Boscain, U., Charlot, G., Ghezzi, R., and Sigalotti, M.. Lipschitz classification of almost-Riemannian distances on compact oriented surfaces. J. Geom. Anal., 23(1): 438455, 2013.Google Scholar
[BCJ+19] Barilari, D., Chitour, Y., Jean, F., Prandi, D., and Sigalotti, M.. On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures. J. Math. Pures Appl., 2019.Google Scholar
[BdSR18] Silva, André Belotto da and Rifford, Ludovic. The Sard conjecture on Martinet surfaces. Duke Math. J., 167(8): 14331471, 2018.Google Scholar
[Bel96] Bellaïche, André. The tangent space in sub-Riemannian geometry. In Sub-Riemannian geometry, volume 144 of Progress in Mathematics, pp. 178. Birkhäuser, Basel, 1996.CrossRefGoogle Scholar
[Ber88] Berestovskiĭ, V. N.. Homogeneous spaces with an intrinsic metric. Dokl. Akad. Nauk SSSR, 301(2): 268271, 1988.Google Scholar
[Ber03] Berger, Marcel. A panoramic view of Riemannian geometry. Springer-Verlag, Berlin, 2003.Google Scholar
[Bes14] Beschastnyĭ, I. Yu.. On the optimal rolling of a sphere with twisting but without slipping. Mat. Sb., 205(2): 338, 2014.Google Scholar
[BFPR18] Belotto da Silva, A., Figalli, A., Parusiński, A., and Rifford, L.. Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3. ArXiv e-prints, October 2018.Google Scholar
[BG92] Berger, Marcel and Gostiaux, Bernard. Géométrie différentielle: variétés, courbes et surfaces, second edition. Mathématiques. Presses Universitaires de France, Paris 1992.Google Scholar
[BG13] Boscain, Ugo and Gauthier, Jean-Paul. On the spherical Hausdorff measure in step 2 corank 2 sub-Riemannian geometry. SIAM J. Control Optim., 51(6): 44504462, 2013.Google Scholar
[BL13] Boscain, Ugo and Laurent, Camille. The Laplace–Beltrami operator in almost-Riemannian geometry. Ann. Inst. Fourier (Grenoble), 63(5): 17391770, 2013.CrossRefGoogle Scholar
[Blo15] Bloch, A. M.. Nonholonomic mechanics and control, second edition, volume 24 of Interdisciplinary Applied Mathematics. Springer, New York, 2015. With the collaboration of J. Bailieul, P. E. Crouch, J. E. Marsden, and D. Zenkov, with scientific input from P. S. Krishnaprasad and R. M. Murray.CrossRefGoogle Scholar
[BLU07] Bonfiglioli, A., Lanconelli, E., and Uguzzoni, F.. Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.Google Scholar
[BNR17] Boscain, Ugo, Neel, Robert, and Rizzi, Luca. Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry. Adv. Math., 314: 124184, 2017.Google Scholar
[Bon12] Bonnefont, Michel. The subelliptic heat kernels on SL(2, R) and on its universal covering integral representations and some functional inequalities. Potential Anal., 36(2): 275300, 2012.Google Scholar
[Boo86] Boothby, William M.. An introduction to differentiable manifolds and Riemannian geometry, volume 120 of Pure and Applied Mathematics. Academic Press, Orlando, FL, second edition, 1986.Google Scholar
[Bor06] Born, Max. Stabilitat der elastischen Linie in Ebene und Raum. Preisschrift Und Dissertation, 1: 5101, 1906.Google Scholar
[BP05] Boscain, Ugo and Piccoli, Benedetto. A short introduction to optimal control. In Sari, T., editor, Contrôle Non Linéaire et Applications, pp. 19–66. Hermann, Paris, 2005.Google Scholar
[BP07] Bressan, Alberto and Piccoli, Benedetto. Introduction to the mathematical theory of control, volume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences, Springfield, MO, 2007.Google Scholar
[BR86] Barut, Asim O. and Raczka, Ryszard. Theory of group representations and applications, second edition.’World Scientific Publishing, Singapore, 1986.Google Scholar
[BR96] Bellaïche, André and Risler, Jean-Jacques, editors. Sub-Riemannian geometry, volume 144 of Progress in Mathematics. Birkhäuser, Basel, 1996.Google Scholar
[BR08] Boscain, Ugo and Rossi, Francesco. Invariant Carnot–Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim., 47(4): 18511878, 2008.Google Scholar
[BR13] Barilari, Davide and Rizzi, Luca. A formula for Popp’s volume in sub-Riemannian geometry. Anal. Geom. Metr. Spaces, 1: 4257, 2013.Google Scholar
[BR17] Barilari, Davide and Rizzi, Luca. On Jacobi fields and a canonical connection in sub-Riemannian geometry. Arch. Math. (Brno), 53(2): 7792, 2017.Google Scholar
[BR18] Barilari, Davide and Rizzi, Luca. Sharp measure contraction property for generalized H-type carnot groups. Commun. Contemp. Math., 20(6): 1750081, 2018.Google Scholar
[Bra14] Bramanti, Marco. An invitation to hypoelliptic operators and Hörmander’s vector fields. SpringerBriefs in Mathematics. Springer, Cham, 2014.Google Scholar
[Bro73] Brockett, R. W.. Lie theory and control systems defined on spheres. SIAM J. Appl. Math., 25: 213225, 1973.Google Scholar
[Bro82] Brockett, R. W.. Control theory and singular Riemannian geometry. In New directions in applied mathematics, pp. 1127. Springer, New York, 1982.Google Scholar
[Bro84] Brockett, R. W.. Nonlinear control theory and differential geometry. In Pro. International Congress of Mathematicians, Vols. 1, 2 (Warsaw, 1983), pp. 13571368. PWN, Warsaw, 1984.Google Scholar
[Bro99] Brockett, Roger W. Explicitly solvable control problems with nonholonomic constraints. In Decision and control, 1999, Proc. 38th IEEE Conf. on, volume 1, pp. 1316. IEEE, 1999.Google Scholar
[BS90] Bianchini, Rosa Maria and Stefani, Gianna. Graded approximations and controllability along a trajectory. SIAM J. Control Optim., 28(4): 903924, 1990.Google Scholar
[BZ15a] Berestovskiĭ, V. N. and Zubareva, I. A.. Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SO(3). Sibirsk. Mat. Zh., 56(4): 762774, 2015.Google Scholar
[BZ15b] Berestovskiĭ, V. N. and Zubareva, I. A.. Sub-Riemannian distance in the Lie groups SU(2) and SO(3). Mat. Tr., 18(2): 321, 2015.Google Scholar
[BZ16] Berestovskiĭ, V. N. and Zubareva, I. A.. Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SL(2). Sibirsk. Mat. Zh., 57(3): 527542, 2016.Google Scholar
[Car09] Carathéodory, C.. Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann., 67(3): 355386, 1909.Google Scholar
[Car33] Cartan, Élie. Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. Ann. Mat. Pura Appl., 11(1): 1790, 1933.Google Scholar
[Car67] Cartan, Henri. Calcul différentiel. Hermann, Paris, 1967.Google Scholar
[CDPT07] Capogna, Luca, Danielli, Donatella, Pauls, Scott D., and Tyson, Jeremy T.. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.Google Scholar
[CF10] Cass, Thomas and Friz, Peter. Densities for rough differential equations under Hörmander’s condition. Ann. Math. (2), 171(3): 21152141, 2010.Google Scholar
[Cha06] Chavel, Isaac. Riemannian geometry, volume 98 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2006. A modern introduction.Google Scholar
[Che55] Chevalley, Claude. Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, volume 1226 of Actualités Sci. Ind. Hermann & Cie, Paris, 1955.Google Scholar
[CHLT15] Cass, Thomas, Hairer, Martin, Litterer, Christian, and Tindel, Samy. Smoothness of the density for solutions to Gaussian rough differential equations. Ann. Probab., 43(1): 188239, 2015.Google Scholar
[Cho39] Wei-Liang, Chow. Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann., 117: 98105, 1939.Google Scholar
[CJT06] Chitour, Y., Jean, F., and Trélat, E.. Genericity results for singular curves. J. Differential Geom., 73(1): 4573, 2006.Google Scholar
[Cla90] Clarke, F. H.. Optimization and nonsmooth analysis, second edition, volume 5 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.Google Scholar
[CR08] Cannarsa, P. and Rifford, L.. Semiconcavity results for optimal control problems admitting no singular minimizing controls. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25(4): 773802, 2008.CrossRefGoogle Scholar
[CTDL92] Cohen-Tannoudji, C., Diu, B., and Laloe, F.. Quantum Mechanics, Vols. I and II. Wiley, 1992.Google Scholar
[dC76] Carmo, Manfredo P. do. Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs, NJ, 1976. Translated from the Portuguese.Google Scholar
[dC92] do Carmo, Manfredo Perdigão. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser, Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.Google Scholar
[Die60] Dieudonné, J.. Foundations of modern analysis, volume 10 of Pure and Applied Mathematics. Academic Press, New York–London, 1960.Google Scholar
[DZ12] Doubrov, Boris and Zelenko, Igor. On geometry of curves of flags of constant type. Cent. Eur. J. Math., 10(5): 18361871, 2012.Google Scholar
[DZ13] Doubrov, Boris and Zelenko, Igor. Geometry of curves in generalized flag varieties. Transform. Groups, 18(2): 361383, 2013.Google Scholar
[EAGK96] El-Alaoui, El-H. Ch., Gauthier, J.-P., and Kupka, I.. Small sub-Riemannian balls on R3. J. Dyn. Control Syst., 2(3): 359421, 1996.Google Scholar
[Eul] Euler, Leonhard. De Miris Proprietatibvs Cvrvae Elasticae.Google Scholar
[Eva98] Evans, Lawrence C.. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998.Google Scholar
[Fed69] Federer, Herbert. Geometric measure theory, volume 153 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1969.Google Scholar
[FG96] Falbel, Elisha and Gorodski, Claudio. Sub-Riemannian homogeneous spaces in dimensions 3 and 4. Geom. Dedicata, 62(3): 227252, 1996.Google Scholar
[FL83] Franchi, Bruno and Lanconelli, Ermanno. Une métrique associée à une classe d’opérateurs elliptiques dégénérés. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue): 105–114 (1984), 1983.Google Scholar
[Fla70] Flanders, Harley. The Schwarzian as a curvature. J. Differential Geom., 4: 515519, 1970.Google Scholar
[Fol73] Folland, G. B.. A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc., 79: 373376, 1973.Google Scholar
[Fol75] Folland, G. B.. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat., 13(2): 161207, 1975.Google Scholar
[FOT94] Fukushima, Masatoshi, Ōshima, Yōichi, and Takeda, Masayoshi. Dirichlet forms and symmetric Markov processes, volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994.Google Scholar
[FS74] Folland, G. B. and Stein, E. M.. Estimates for the∂̅b complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27: 429522, 1974.Google Scholar
[FSSC15] Franchi, Bruno, Serapioni, Raul Paolo, and Cassano, Francesco Serra. Area formula for centered Hausdorff measures in metric spaces. Nonlinear Anal., 126: 218233, 2015.Google Scholar
[Gaf54] Gaffney, Matthew P.. The heat equation method of Milgram and Rosenbloom for open Riemannian manifolds. Ann. Math. (2), 60: 458466, 1954.Google Scholar
[Gaf55] Gaffney, Matthew P.. Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc., 78: 426444, 1955.Google Scholar
[Gam14] Gamkrelidze, Revaz V.. Differential-geometric and invariance properties of the equations of maximum principle (MP). In Geometric control theory and sub-Riemannian geometry, volume 5 of Springer INdAM Series, pp. 167175. Springer, Cham, 2014.Google Scholar
[Gar16] Garofalo, Nicola. Hypoelliptic operators and some aspects of analysis and geometry of sub-Riemannian spaces. In Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Series of Lectures in Mathematics, pp. 123257. Eur. Math. Soc., Zürich, 2016.Google Scholar
[Gav77] Gaveau, Bernard. Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math., 139(1–2): 95153, 1977.Google Scholar
[GG73] Golubitsky, M. and Guillemin, V.. Stable mappings and their singularities, volume 14 in Graduate Texts in Mathematics. Springer– Verlag, New York–Heidelberg, 1973.Google Scholar
[GHL90] Gallot, Sylvestre, Hulin, Dominique, and Lafontaine, Jacques. Riemannian geometry, second edition. Universitext. Springer-Verlag, Berlin, 1990.Google Scholar
[GJ14] Ghezzi, Roberta and Jean, Frédéric. Hausdorff measure and dimensions in non equiregular sub-Riemannian manifolds. In Geometric control theory and sub-Riemannian geometry, volume 5 of Springer INdAM Series, pp. 201218. Springer, Cham, 2014.Google Scholar
[GJ15] Ghezzi, R. and Jean, F.. Hausdorff volume in non equiregular sub-Riemannian manifolds. Nonlinear Anal., 126: 345377, 2015.Google Scholar
[Goh66] Goh, B. S.. Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control, 4: 716731, 1966.Google Scholar
[Goo76] Goodman, Roe W.. Nilpotent Lie groups: structure and applications to analysis, volume 562 of Lecture Notes in Mathematics. Springer, Berlin–New York, 1976.Google Scholar
[Gro81] Gromov, Mikhael. Structures métriques pour les variétés riemanniennes, Lafontaine, J. and Pansu, P., editors, volume 1 of Textes Mathématiques. CEDIC, Paris, 1981.Google Scholar
[Gro96] Gromov, Mikhael. Carnot–Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progress in Mathematics, pp. 79323. Birkhäuser, Basel, 1996.Google Scholar
[Gru70] Grušin, V. V.. A certain class of hypoelliptic operators. Mat. Sb. (NS), 83 (125): 456473, 1970.Google Scholar
[GV88] Gershkovich, V. and Vershik, A.. Nonholonomic manifolds and nilpotent analysis. J. Geom. Phys., 5(3): 407452, 1988.Google Scholar
[Had98] Hadamard, J.. Les surfaces a courbures opposees et leurs lignes géodésique. J. Math. Pures Appl., 4: 2773, 1898.Google Scholar
[Hai11] Hairer, Martin. On Malliavin’s proof of Hörmander’s theorem. Bull. Sci. Math., 135(6–7): 650666, 2011.Google Scholar
[Ham83] Hammersley, J. M.. Oxford commemoration ball. In Probability, statistics and analysis, volume 79 of London Math. Soc. Lecture Note Series, pp. 112142. Cambridge University Press, Cambridge–New York, 1983.Google Scholar
[Hat02] Hatcher, Allen. Algebraic topology. Cambridge University Press, Cambridge, 2002.Google Scholar
[Hir76] Hirsch, Morris W.. Differential topology. volume 33 of Graduate Texts in Mathematics. Springer, New York–Heidelberg, 1976.CrossRefGoogle Scholar
[HLD16] Hakavuori, Eero and Donne, Enrico Le. Non-minimality of corners in subriemannian geometry. Invent. Math., 206(3): 693704, 2016.Google Scholar
[Hör67] Hörmander, Lars. Hypoelliptic second order differential equations. Acta Math., 119: 147171, 1967.Google Scholar
[HS74] Hirsch, Morris W. and Smale, Stephen. Differential equations, dynamical systems, and linear algebra, volume 60 of Pure and Applied Mathematics., Academic Press, New York-London, 1974.Google Scholar
[Hug95] Hughen, Walker Keener. The sub-Riemannian geometry of three-manifolds. Ph. D. thesis, ProQuest LLC, Ann Arbor, MI, 1995. Duke University.Google Scholar
[Hul76] Hulanicki, A.. The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Math., 56(2): 165173, 1976.Google Scholar
[IK04] Itoh, Jin-ichi and Kiyohara, Kazuyoshi. The cut loci and the conjugate loci on ellipsoids. Manuscripta Math., 114(2): 247264, 2004.Google Scholar
[IV15] Jin-ichi, I and Costin, V. Every graph is a cut locus. J. Math. Soc. Japan, 67(3): 12271238, 2015.Google Scholar
[Jac39] Jacobi, C. G. J.. Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution. J. Reine Angew. Math., 19: 309313, 1839.Google Scholar
[Jac62] Jacobson, Nathan. Lie algebras, volume 10 in Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York–London, 1962.Google Scholar
[Jac99] Jacquet, S.. Subanalyticity of the sub-Riemannian distance. J. Dyn. Control Syst., 5(3): 303328, 1999.Google Scholar
[Jea14] Jean, Frédéric. Control of nonholonomic systems: from sub-Riemannian geometry to motion planning. SpringerBriefs in Mathematics. Springer, Cham, 2014.Google Scholar
[JSC87] Jerison, David and Sánchez-Calle, Antonio. Subelliptic, second order differential operators. In Complex analysis, Vol. III, volume 1277 of Lecture Notes in Math., pp. 4677. Springer, Berlin, 1987.Google Scholar
[Jur93] Jurdjevic, V.. The geometry of the plate–ball problem. Arch. Rational Mech. Anal., 124(4): 305328, 1993.Google Scholar
[Jur97] Jurdjevic, Velimir. Geometric control theory, volume 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.Google Scholar
[Jur99] Jurdjevic, V.. Optimal control, geometry, and mechanics. In Mathematical control theory, pp. 227267. Springer, New York, 1999.Google Scholar
[Jur01] Jurdjevic, V.. Hamiltonian point of view of non-Euclidean geometry and elliptic functions. Systems Control Lett., 43(1): 2541, 2001.Google Scholar
[Jur16] Jurdjevic, Velimir. Optimal control and geometry: integrable systems. Cambridge University Press, Cambridge, 2016.Google Scholar
[K¨15] Kühnel, Wolfgang. Differential geometry, volume 77 of Student Mathematical Library. American Mathematical Society, Providence, RI, 2015.Google Scholar
[Kat95] Kato, Tosio. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.Google Scholar
[Kaw99] Kawski, M.. Chronological algebras: combinatorics and control. In Geometric control theory (in Russian), volume 64 of Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., pp. 144–178. Vseross. Inst. Nauchn. i Tekhn. Inform., Moscow, 1999.Google Scholar
[Kaw02] Kawski, Matthias. The combinatorics of nonlinear controllability and noncommuting flows. In Mathematical control theory, Parts 1, 2 (Trieste, 2001), in volume 8 of ICTP Lecteire Notes, VIII, pp. 223–311. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002.Google Scholar
[Kaw12] Kawski, Matthias. Chronological calculus in systems and control theory. In Mathematics of complexity and dynamical systems. Vols. 1–3, pp. 88101. Springer, New York, 2012.Google Scholar
[KKM67] Kelley, Henry J., Kopp, Richard E., and Moyer, H. Gardner. Singular extremals. In Topics in Optimization, pp. 63101. Academic Press, New York, 1967.Google Scholar
[KL15] Kipka, Robert J. and Ledyaev, Yuri S.. Extension of chronological calculus for dynamical systems on manifolds. J. Differential Equ., 258(5): 17651790, 2015.Google Scholar
[Knö80] Knörrer, Horst. Geodesics on the ellipsoid. Invent. Math., 59(2): 119143, 1980.Google Scholar
[Kre73] Krener, Arthur J.. The high order maximal principle. In Mayne, D. Q. and Brockett, R. W., editors, Geometric Methods in System Theory, pp. 174184. Springer, Dordrecht, 1973.Google Scholar
[Kre77] Krener, Arthur J.. The high order maximal principle and its application to singular extremals. SIAM J. Control Optimi., 15(2): 256293, 1977.Google Scholar
[KS97] Kawski, Matthias and Sussmann, Héctor J.. Noncommutative power series and formal Lie-algebraic techniques in nonlinear control theory. In Operators, systems, and linear algebra (Kaiserslautern, 1997), pp. 111128. Teubner, Stuttgart, 1997.Google Scholar
[L92] Léandre, Rémi. Développement asymptotique de la densité d’une diffusion dégénérée. Forum Math., 4(1): 4575, 1992.Google Scholar
[Law89] Lawden, Derek F.. Elliptic functions and applications, volume 80 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989.Google Scholar
[LDMO+16] Le Donne, Enrico, Montgomery, Richard, Ottazzi, Alessandro, Pansu, Pierre, and Vittone, Davide. Sard property for the endpoint map on some Carnot groups. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(6): 16391666, 2016.Google Scholar
[Lee97] Lee, John M.. Riemannian manifolds, volume 176 of Graduate Texts in Mathematics. Springer, New York, 1997. An introduction to curvature.Google Scholar
[Lee13] Lee, John M.. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.Google Scholar
[LM08] Leonardi, Gian Paolo and Monti, Roberto. End-point equations and regularity of sub-Riemannian geodesics. Geom. Funct. Anal., 18(2): 552582, 2008.Google Scholar
[LS95] Liu, Wensheng and Sussman, Héctor J.. Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc., 118(564): x+104, 1995.Google Scholar
[M76] Métivier, Guy. Fonction spectrale et valeurs propres d’une classe d’opérateurs non elliptiques. Comm. Partial Differential Equ., 1(5): 467519, 1976.Google Scholar
[Mey12] Meyers, Robert A., editor. Mathematics of complexity and dynamical systems, Vols. 1–3. Springer, New York, 2012.Google Scholar
[Mit85] Mitchell, John. On Carnot–Carathéodory metrics. J. Differential Geom., 21(1): 3545, 1985.Google Scholar
[MM95] Margulis, G. A. and Mostow, G. D.. The differential of a quasi-conformal mapping of a Carnot–Carathéodory space. Geom. Funct. Anal., 5(2): 402433, 1995.Google Scholar
[MM00] Margulis, G. A. and Mostow, G. D.. Some remarks on the definition of tangent cones in a Carnot–Carathéodory space. J. Anal. Math., 80: 299317, 2000.Google Scholar
[MM17] Montanari, Annamaria and Morbidelli, Daniele. On the subRiemannian cut locus in a model of free two-step Carnot group. Calc. Var. Partial Differential Equ., 56(2)(36): 26, 2017.Google Scholar
[Mol75] Molčanov, S. A.. Diffusion processes, and Riemannian geometry. Uspehi Mat. Nauk, 30(1)(181): 359, 1975.Google Scholar
[Mon94] Montgomery, Richard. Abnormal minimizers. SIAM J. Control Optim., 32(6): 16051620, 1994.Google Scholar
[Mon96] Montgomery, Richard. Survey of singular geodesics. In Sub-Riemannian geometry, volume 144 of Progress in Mathematics, pp. 325339. Birkhäuser, Basel, 1996.Google Scholar
[Mon02] Montgomery, Richard. A tour of subriemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.Google Scholar
[Mon14] Monti, Roberto. Regularity results for sub-riemannian geodesics. Calc. Var. Partial Differential Equations, 49(1): 549582, 2014.Google Scholar
[Mos80a] Moser, J.. Geometry of quadrics and spectral theory. In Proc. Chern Symp. 1979, pp. 147188. Springer, New York-Berlin, 1980.Google Scholar
[Mos80b] Moser, J.. Various aspects of integrable Hamiltonian systems. In Dynamical systems, volume 8 of Progress in Mathematics, pp. 233289. Birkhäuser, Boston, MA, 1980.Google Scholar
[MPAM06] Monroy-Pérez, F. and Anzaldo-Meneses, A.. The step-2 nilpotent (n, n(n + 1)/2) sub-Riemannian geometry. J. Dyn. Control Syst., 12(2): 185216, 2006.Google Scholar
[MS10] Moiseev, Igor and Sachkov, Yuri L.. Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var., 16: 380399, 2010.Google Scholar
[MS15] Mashtakov, A. P. and Sachkov, Yu. L.. Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups. Differential Equ., 51(11): 14761483, 2015. Translation of Differ. Uravn. 51 (2015), no. 11, 1482–1488.Google Scholar
[Mya02] Myasnichenko, O.. Nilpotent (3, 6) sub-Riemannian problem. J. Dyn. Control Syst., 8(4): 573597, 2002.Google Scholar
[Mya06] Myasnichenko, Oleg. Nilpotent (n, n(n + 1)/2) sub-Riemannian problem. J. Dyn. Control Syst., 12(1): 8795, 2006.Google Scholar
[Mye36] Sumner Byron Myers. Connections between differential geometry and topology II. Closed surfaces. Duke Math. J., 2(1): 95102, 1936.Google Scholar
[Nac82] Nachman, Adrian I.. The wave equation on the Heisenberg group. Comm. Partial Differential Equations, 7(6): 675714, 1982.Google Scholar
[Nag66] Nagano, Tadashi. Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Japan, 18: 398404, 1966.Google Scholar
[NSW85] Nagel, Alexander, Stein, Elias M., and Wainger, Stephen. Balls and metrics defined by vector fields. I. Basic properties. Acta Math., 155(1–2): 103147, 1985.Google Scholar
[OV17] Ottazzi, A. and Vittone, D.. On the codimension of the abnormal set in step two Carnot groups. ArXiv e-prints, September 2017.Google Scholar
[Ovs89] Ovsienko, V. Yu.. A Lagrangian Schwarzian derivative. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (6): 4245, 98, 1989.Google Scholar
[Ovs93] Ovsienko, Valentin. Lagrange Schwarzian derivative and symplectic Sturm theory. Ann. Fac. Sci. Toulouse Math. (6), 2(1): 7396, 1993.Google Scholar
[Pan89] Pansu, Pierre. Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. (2), 129(1): 160, 1989.Google Scholar
[PBGM62] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F.. The mathematical theory of optimal processes. Translated from the Russian by Trirogoff, K. N.; edited by Neustadt, L. W.. Interscience Publishers John Wiley & Sons, New York–London, 1962.Google Scholar
[Pet16] Petersen, Peter. Riemannian geometry, third edition, volume 171 of Graduate Texts in Mathematics. Springer, Cham, 2016.Google Scholar
[Poi05] Poincaré, Henri. Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc., 6(3): 237274, 1905.Google Scholar
[Ras38] Rashevskii, P. K.. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. Liebknechta, 2: 8384, 1938.Google Scholar
[Rif04] Rifford, Ludovic. A Morse–Sard theorem for the distance function on Riemannian manifolds. Manuscripta Math., 113(2): 251265, 2004.Google Scholar
[Rif06] Rifford, L.. À propos des sphères sous-riemanniennes. Bull. Belg. Math. Soc. Simon Stevin, 13(3): 521526, 2006.Google Scholar
[Rif14] Rifford, Ludovic. Sub-Riemannian geometry and Optimal Transport. SpringerBriefs in Mathematics, 2014.Google Scholar
[Ros97] Rosenberg, Steven. The Laplacian on a Riemannian manifold, volume 31 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997.Google Scholar
[RS76] Rothschild, Linda Preiss and Stein, E. M.. Hypoelliptic differential operators and nilpotent groups. Acta Math., 137(3–4): 247320, 1976.Google Scholar
[RS07] Rampazzo, Franco and Sussmann, Héctor J.. Commutators of flow maps of nonsmooth vector fields. J. Differential Equ., 232(1): 134175, 2007.Google Scholar
[RS17] Rizzi, Luca and Serres, Ulysse. On the cut locus of free, step two Carnot groups. Proc. Amer. Math. Soc., 145(12): 53415357, 2017.Google Scholar
[RT05] Rifford, L. and Trélat, E.. Morse–Sard type results in sub-Riemannian geometry. Math. Ann., 332(1): 145159, 2005.CrossRefGoogle Scholar
[Rud87] Rudin, Walter. Real and complex analysis, third edition, McGraw-Hill, New York, 1987.Google Scholar
[Sac08a] Sachkov, Yu. L.. Conjugate points in the Euler elastic problem. J. Dyn. Control Syst., 14(3): 409439, 2008.Google Scholar
[Sac08b] Sachkov, Yu. L.. Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst., 14(2): 169234, 2008.Google Scholar
[Sac10] Sachkov, Yuri L.. Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var., 16: 10181039, 2010.Google Scholar
[Sac11] Sachkov, Yuri L.. Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var., 17(2): 293321, 2011.Google Scholar
[Sar04] Sarychev, A. V.. Lie extensions of nonlinear control systems. Sovrem. Mat. Prilozh., 106–133, 2004.Google Scholar
[Sim83] Simon, Leon. Lectures on geometric measure theory, volume 3 of Proc. Centre for Mathematical Analysis. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.Google Scholar
[Spi79] Spivak, Michael. A comprehensive introduction to differential geometry, second edition Vol. I. Publish or Perish, Inc., Wilmington, DE, 1979.Google Scholar
[SS14] Sachkov, Yu. L. and Sachkova, E. F.. Exponential mapping in Euler’s elastic problem. J. Dyn. Control Syst., 20(4): 443464, 2014.Google Scholar
[Str86] Strichartz, Robert S.. Sub-Riemannian geometry. J. Differential Geom., 24(2): 221263, 1986.Google Scholar
[Str89] Strichartz, Robert S.. Corrections to: “Sub-Riemannian geometry” J. Differential Geom., 30(2): 595596, 1989.Google Scholar
[Sus73] Sussmann, Héctor J.. Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc., 180: 171188, 1973.Google Scholar
[Sus74] Sussmann, Héctor J.. An extension of a theorem of Nagano on transitive Lie algebras. Proc. Amer. Math. Soc., 45: 349356, 1974.Google Scholar
[Sus83] Sussmann, H. J.. Lie brackets, real analyticity and geometric control. In Differential geometric control theory, volume 27 of Progr. Math., pp. 1–116. Birkhäuser, Boston, MA, 1983.Google Scholar
[Sus96] Sussmann, Héctor J.. A cornucopia of four-dimensional abnormal sub-Riemannian minimizers. In Sub-Riemannian geometry, volume 144 of Progr. Math., pp. 341364. Birkhäuser, Basel, 1996.Google Scholar
[Sus08] Sussmann, Hector J.. Smooth distributions are globally finitely spanned. In Analysis and design of nonlinear control systems, pp. 38. Springer, Berlin, 2008.Google Scholar
[Tay96] Taylor, Michael E.. Partial differential equations. I, volume 115 of Applied Mathematical Sciences. Springer, New York, 1996.Google Scholar
[Tré00] Trélat, E.. Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control Syst., 6(4): 511541, 2000.Google Scholar
[VG87] Vershik, A. M. and Ya, V.. Gershkovich. Nonholonomic dynamical systems. Geometry of distributions and variational problems. In Current problems in mathematics. Fundamental directions (in Russian), volume 16 of Itogi Nauki i Tekhniki, pp. 585, 307. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.Google Scholar
[Vin76] Vinberg, È. B.. The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser. Mat., 40(3): 488526, 709, 1976.Google Scholar
[Whi35] Whitehead, J. H. C.. On the covering of a complete space by the geodesics through a point. Ann. Math., 36(3): 679704, 1935.Google Scholar
[Whi55] Whitney, Hassler. On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. (2), 62: 374410, 1955.Google Scholar
[Zel00] Zelikin, M. I.. Control theory and optimization. I, volume 86 of Encyclopaedia of Mathematical Sciences. Springer, Berlin, 2000.Google Scholar
[Zel06] Zelenko, Igor. On variational approach to differential invariants of rank two distributions. Differential Geom. Appl., 24(3): 235259, 2006.Google Scholar
[ZL07] Zelenko, Igor and Li, Chengbo. Parametrized curves in Lagrange Grassmannians. C.R. Math. Acad. Sci. Paris, 345(11): 647652, 2007.Google Scholar
[ZL09] Zelenko, Igor and Li, Chengbo. Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differential Geom. Appl., 27(6): 723742, 2009.Google Scholar
[ZZ95] Zelenko, I. and Zhitomirskiĭ, M.. Rigid paths of generic 2-distributions on 3-manifolds. Duke Math. J., 79(2): 281307, 1995.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andrei Agrachev, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Davide Barilari, Université de Paris VII (Denis Diderot), Ugo Boscain, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: A Comprehensive Introduction to Sub-Riemannian Geometry
  • Online publication: 28 October 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andrei Agrachev, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Davide Barilari, Université de Paris VII (Denis Diderot), Ugo Boscain, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: A Comprehensive Introduction to Sub-Riemannian Geometry
  • Online publication: 28 October 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andrei Agrachev, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Davide Barilari, Université de Paris VII (Denis Diderot), Ugo Boscain, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: A Comprehensive Introduction to Sub-Riemannian Geometry
  • Online publication: 28 October 2019
Available formats
×