Published online by Cambridge University Press: 27 June 2025
One of the main activities during the 1993-94 special year in differential geometry at MSRI was focused on the subject baptized “Comparison Geometry” during the planning phase of the workshops.
Although a name has been lacking for this beautiful and most geometric branch of riemannian geometry, its history can be traced back to the nineteenth century. It did not take root, however, until the 1930's, through the work of H. Hopf, Morse and Schoenberg, Myers, and Synge. The real breakthrough came in the 1950's with the pioneering work of Rauch and the foundational work of Alexandrov, Toponogov and Bishop. Since then, the simple idea of comparing the geometry of an arbitrary riemannian manifold with the geometries of constant curvature spaces has seen a tremendous evolution: first in conjunction with Morse theory and convexity, then with critical point theory for distance functions, and most recently with the Gromov-Hausdorff topology on spaces of riemannian manifolds, and the geometry of singular spaces. As a result, our understanding of relations between the geometry and topology of riemannian manifolds has gained tremendous breadth and consists no longer of just a short string of pearls.
At the outset it is worth mentioning that the flavor and character of problems and techniques related to upper rather than lower curvature bounds to a large extent are remarkably different. This volume is an up-to-date reflection of the above mentioned development regarding spaces with lower, or two-sided, curvature bounds. The subject of manifolds with negative or nonpositive curvature, with its ramifications to dynamics and number theory, is not represented here.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.