Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:26:25.461Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 October 2023

John W. Schwieter
Affiliation:
Wilfrid Laurier University, Ontario
Julia Festman
Affiliation:
University College of Teacher Education Tyrol
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo, M., Senoo, A., Watanabe, S., Miyano, S., Doseki, K., Sasaki, N., … & Yonemoto, K. (2004). Language-related brain function during word repetition in post-stroke aphasics. NeuroReport, 15, 18911894.CrossRefGoogle ScholarPubMed
Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128(3), 466478.CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.CrossRefGoogle Scholar
Abutalebi, J., & Green, D. (2008). Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23, 557582.Google Scholar
Abutalebi, J., & Green, D. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(4), 689698.CrossRefGoogle Scholar
Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35(9), 21262133.CrossRefGoogle ScholarPubMed
Abutalebi, J., Cappa, S., & Perani, D. (2001). The bilingual brain as revealed by functional neuroimaging. Bilingualism: Language and Cognition, 4(2), 179290.CrossRefGoogle Scholar
Abutalebi, J., Cappa, S., & Perani, D. (2005). What can functional neuroimaging tell us about the bilingual brain? In Kroll, J. & de Groot, A. (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 497515). Oxford University Press.Google Scholar
Abutalebi, J., Della Rosa, P., Ding, G., Weekes, B., Costa, A., & Green, D. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49(3), 905911.CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P., Green, D. W., Hernandez, M., Scifo, P., Keim, R., … & Costa, A. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 20762086.CrossRefGoogle ScholarPubMed
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P. A., Parris, B. A., & Weekes, B. S. (2015). Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201210.CrossRefGoogle ScholarPubMed
Abutalebi, J., Miozzo, A., & Cappa, S. F. (2000). Do subcortical structures control ‘language selection’ in polyglots? Evidence from pathological language mixing. Neurocase, 6, 5156.Google Scholar
Abutalebi, J., Rosa, P., Tettamanti, M., Green, D., & Cappa, S. (2009). Bilingual aphasia and language control: A follow-up fMRI and intrinsic connectivity study. Brain and Language, 109, 141156.CrossRefGoogle ScholarPubMed
Agustín-Llach, M. (2019). The impact of bilingualism on the acquisition of an additional language: Evidence from lexical knowledge, lexical fluency, and (lexical) cross-linguistic influence. International Journal of Bilingualism, 23(5), 888900.CrossRefGoogle Scholar
Albert, M., & Obler, L. (1978). The bilingual brain: Neuropsychological and neurolinguistic aspects of bilingualism. Academic Press.Google Scholar
Al-Hoorie, A. H., & MacIntyre, P. D. (Eds.). (2019). Contemporary language motivation theory: 60 years since Gardner and Lambert (1959). Multilingual Matters.Google Scholar
Alladi, S., Bak, T. H., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A. K., et al. (2013). Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology, 81, 22.CrossRefGoogle ScholarPubMed
Alladi, S., Bak, T., Mekala, S., Rajan, A., Chaudhuri, J., Mioshi, E., … & Duggirala, V. (2015). Impact of bilingualism on cognitive outcome after stroke. Stroke, 47(1), 258261.CrossRefGoogle ScholarPubMed
Alladi, S., Bak, T. H., Shailaja, M., Gollahallo, D., Rajan, A., Surampudi, B., et al. (2017). Bilingualism delays the onset of behavioral but not aphasic forms of frontotemporal dementia. Neuropsychologia, 99, 207212.CrossRefGoogle Scholar
Amengual, M. (2016). Cross-linguistic influence in the bilingual mental lexicon: Evidence of cognate effects in the phonetic production and processing of a vowel contrast. Frontiers in Psychology, 7(617), 117.CrossRefGoogle ScholarPubMed
Amengual, M., & Chamorro, P. (2015). The effects of language dominance in the perception and production of the Galician mid vowel contrasts. Phonetica, 72, 207236.CrossRefGoogle ScholarPubMed
Amengual, M., & Simonet, M. (2020). Language dominance does not always predict cross-linguistic interactions in bilingual speech production. Linguistic Approaches to Bilingualism, 10(6), 847872.CrossRefGoogle Scholar
Anderson, J. A., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. Neuroimage, 167, 143150.Google Scholar
Anderson, J. A., Mak, L., Keyvani Chahi, A., & Bialystok, E. (2018). The language and social background questionnaire: Assessing degree of bilingualism in a diverse population. Behavior Research Methods, 50(1), 250263.CrossRefGoogle Scholar
Anderson, N. J., Graham, S. A., Prime, H., Jenkins, J. M., & Madigan, S. (2021). Linking quality and quantity of parental linguistic input to child language skills: A meta-analysis. Child Development, 92(2), 484501.CrossRefGoogle ScholarPubMed
Andrews, E. (2019). Cognitive neuroscience and multilingualism. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 1947). Wiley.CrossRefGoogle Scholar
Andric, M., & Small, S. L. (2015). fMRI methods for studying the neurobiology of language under naturalistic conditions. In Willems, R. M. (Ed.), Cognitive neuroscience of natural language use (pp. 828). Cambridge University Press.CrossRefGoogle Scholar
Angelovska, T., & Hahn, A. (Eds.). (2017). L3 syntactic transfer: Models, new developments, and implications. Benjamins.CrossRefGoogle Scholar
Ansaldo, A., & Saidi, L. (2014). Aphasia therapy in the age of globalization: Crosslinguistic therapy effects in bilingual aphasia. Behavioral Neurology, 2014(603085), 110.Google Scholar
Ansaldo, A. I., Ghazi-Saidi, L., & Adrover-Roig, D. (2015). Interference control in elderly bilinguals: Appearances can be misleading. Journal of Clinical and Experimental Neuropsychology, 37(5), 455470.CrossRefGoogle ScholarPubMed
Ansaldo, A., Ghazi Saidi, L., & Ruiz, A. (2009). Model-driven intervention in bilingual aphasia: Evidence from a case of pathological switching. Aphasiology, 9, 116.Google Scholar
Ansaldo, A., Marcotte, K., Scherer, L., & Raboyeau, G. (2008). Language therapy and bilingual aphasia: Clinical implications of psycholinguistic and neuroimaging research. Journal of Neurolinguistics, 21(6), 539557.Google Scholar
Antón, E., Carreiras, M., & Duñabeitia, J. A. (2019). The impact of bilingualism on executive functions and working memory in young adults. PloS One, 14(2), e0206770.CrossRefGoogle ScholarPubMed
Antón, E., Duñabeitia, J. A., Estévez, A., Hernández, J. A., Castillo, A., Fuentes, L. J., … & Carreiras, M. (2014). Is there a bilingual advantage in the ANT task? Evidence from children. Frontiers in Psychology, 5, 398.Google Scholar
Antoniou, M. (2019). The advantages of bilingualism debate. Annual Review of Linguistics, 5, 395415.Google Scholar
Antovich, D. M., & Graf Estes, K. (2018). Learning across languages: Bilingual experience supports dual language statistical word segmentation. Developmental Science, 21(2), e12548.CrossRefGoogle ScholarPubMed
Aoyama, K. (2003). Perception of syllable-initial and syllable-final nasals in English by Korean and Japanese speakers. Second Language Research, 19, 251265.CrossRefGoogle Scholar
Archila-Suerte, P., Woods, E. A., Chiarello, C., & Hernandez, A. E. (2018). Neuroanatomical profiles of bilingual children. Developmental Science, 21(5), e12654CrossRefGoogle ScholarPubMed
Argyri, E., & Sorace, A. (2007). Crosslinguistic influence and language dominance in older bilingual children. Bilingualism: Language and Cognition, 10(1), 7999.CrossRefGoogle Scholar
Arjmandi, M. K., Houston, D., & Dilley, L. C. (2022). Variability in quantity and quality of early linguistic experience in children with cochlear implants: Evidence from analysis of natural auditory environments. Ear and Hearing, 43(2), 685698.Google Scholar
Arredondo, M. M., Aslin, R. N., & Werker, J. F. (2022). Bilingualism alters infants’ cortical organization for attentional orienting mechanisms. Developmental Science, 25(2), e13172.CrossRefGoogle ScholarPubMed
Arredondo, M. M., Hu, X. S., Satterfield, T., & Kovelman, I. (2017). Bilingualism alters children’s frontal lobe functioning for attentional control. Developmental Science, 20(3), e12377.CrossRefGoogle ScholarPubMed
Athanasopoulos, P. (2009). Cognitive representation of color in bilinguals: The case of Greek blues. Bilingualism: Language and Cognition, 12(1), 8395.CrossRefGoogle Scholar
Athanasopoulos, P. (2011). Cognitive restructuring in bilingualism. In Pavlenko, A. (Ed.), Thinking and speaking in two languages (pp. 2965). Multilingual Matters.Google Scholar
Athanasopoulos, P. (2015). Conceptual representation in bilinguals. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 275292). Cambridge University Press.Google Scholar
Athanasopoulos, P., & Kasai, C. (2008). Language and thought in bilinguals: The case of grammatical number and nonverbal classification preferences. Applied Psycholinguistics, 29(1), 105121.CrossRefGoogle Scholar
Babcock, L., & Vallesi, A. (2017). Are simultaneous interpreters expert bilinguals, unique bilinguals, or both? Bilingualism: Language and Cognition, 20(2), 403417.CrossRefGoogle Scholar
Baddeley, A. D. (1986). Working memory. Oxford University Press.Google ScholarPubMed
Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. Nature Neuroscience, 20(3), 327339.Google Scholar
Bajo, M. T., Padilla, F., & Padilla, P. (2000). Comprehension processes in simultaneous interpreting. In Chesterman, A., Gallardo San Salvador, N., & Gambier, Y. (Eds.), Translation in context (pp. 127142). Benjamins.CrossRefGoogle Scholar
Bak, T. H., & Alladi, S. (2014). Can being bilingual affect the onset of dementia? Future Neurology, 9, 101103.CrossRefGoogle Scholar
Bak, T. H., Vega-Mendoza, M., & Sorace, A. (2014). Never too late? An advantage on tests of auditory attention extends to late bilinguals. Frontiers in Psychology, 5, 485.CrossRefGoogle ScholarPubMed
Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2015). Tracking lexical consolidation with ERPs: Lexical and semantic-priming effects on N400 and LPC responses to newly-learned words. Neuropsychologia, 79, 3341.CrossRefGoogle ScholarPubMed
Banich, M. T., & Compton, R. J. (2018). Cognitive neuroscience (4th ed.). Cambridge University Press.CrossRefGoogle Scholar
Barac, R., & Bialystok, E. (2012). Bilingual effects on cognitive and linguistic development: Role of language, cultural background, and education. Child Development, 83(2), 413422.Google Scholar
Barbu, C. A., Gillet, S., & Poncelet, M. (2020). Investigating the effects of language-switching frequency on attentional and executive functioning in proficient bilinguals. Frontiers in Psychology, 11, 1078.Google Scholar
Bardel, C., & Falk, Y. (2007). The role of the second language in third language acquisition: The case of Germanic syntax. Second Language Research, 23(4), 459484.Google Scholar
Basnight-Brown, D. (2014). Models of lexical access and bilingualism. In Heredia, R. & Altarriba, J. (Eds.), Foundations of bilingual memory (pp. 85107). Springer.CrossRefGoogle Scholar
Basnight-Brown, D., & Altarriba, J. (2007). Differences in semantic and translation priming across languages: The role of language direction and language dominance. Memory & Cognition, 35, 953965.CrossRefGoogle ScholarPubMed
Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8(7), 333344.CrossRefGoogle ScholarPubMed
Basso, A., Capitani, E., & Moraschini, S. (1982). Sex differences in recovery from aphasia. Cortex, 18(3), 469475.CrossRefGoogle ScholarPubMed
Bates, E., & MacWhinney, B. (1989). Functionalism and the Competition Model. In MacWhinney, B. & Bates, E. (Eds.), The crosslinguistic study of sentence processing (pp. 373). Cambridge University Press.Google Scholar
Beatens Beardsmore, H. (1986). Bilingualism: Basic principles (Vol. 1). Multilingual Matters.CrossRefGoogle Scholar
Beatty-Martínez, A., & Dussias, P. (2017). Bilingual experience shapes language processing: Evidence from codeswitching. Journal of Memory and Language, 95, 173189.CrossRefGoogle Scholar
Beatty-Martínez, A. L., & Titone, D. A. (2021). The quest for signals in noise: Leveraging experiential variation to identify bilingual phenotypes. Languages, 6(4), 168.CrossRefGoogle ScholarPubMed
Becker, M., Schubert, T., Strobach, T., Gallinat, J., & Kühn, S. (2016). Simultaneous interpreters vs. professional multilingual controls: Group differences in cognitive control as well as brain structure and function. Neuroimage, 134, 250260.CrossRefGoogle ScholarPubMed
Benati, A., & Schwieter, J. W. (2017). Input processing and processing instruction: Pedagogical and cognitive considerations for L3 acquisition. In Angelovska, T. & Hahn, A. (Eds.), L3 syntactic transfer: Models, new developments, and implications (pp. 253275). Benjamins.Google Scholar
Ben-Zeev, S. (1977). The influence of bilingualism on cognitive strategy and cognitive development. Child Development, 48(3), 10091018.Google Scholar
Bergelson, E., Soderstrom, M., Schwarz, I. C., Rowland, C. F., Ramirez-Esparza, N., … & Cristia, A. (2022). Everyday language input and production in 1001 children from 6 continents. PNAS. https://doi.org/10.31234/osf.io/fjr5q.Google Scholar
Berk, L. (2015). Child development. Pearson Higher Education AU.Google Scholar
Berken, J. A., Gracco, V. L., Chen, J. K., & Klein, D. (2016). The timing of language learning shapes brain structure associated with articulation. Brain Structure and Function, 221(7), 35913600.Google Scholar
Best, C. C., & McRoberts, G. W. (2003). Infant perception of non-native consonant contrasts that adults assimilate in different ways. Language and Speech, 46(2–3), 183216.Google Scholar
Bialystok, E. (1999). Cognitive complexity and attentional control in the bilingual mind. Child Development, 70(3), 636644.Google Scholar
Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233262.CrossRefGoogle ScholarPubMed
Bialystok, E. (2018a). Bilingualism and executive function: What’s the connection? In Miller, D., Bayram, F., Rothman, J., & Serratrice, L. (Eds.), Bilingual cognition and language: The state of the science across its subfields (pp. 283305). Benjamins.Google Scholar
Bialystok, E. (2018b). Bilingual education for young children: Review of the effects and consequences. International Journal of Bilingual Education and Bilingualism, 21(6), 666679.CrossRefGoogle ScholarPubMed
Bialystok, E. (2021). Bilingualism: Pathway to cognitive reserve. Trends in Cognitive Sciences, 25(5), 355364.CrossRefGoogle ScholarPubMed
Bialystok, E., & Craik, F. (2015). Cognitive consequences of bilingualism: Executive control and cognitive reserve. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 571585). Cambridge University Press.CrossRefGoogle Scholar
Bialystok, E., & Martin, M. M. (2004). Attention and inhibition in bilingual children: Evidence from the dimensional change card sort task. Developmental Science, 7(3), 325339.Google Scholar
Bialystok, E., Craik, F. I., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45(2), 459464.CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240250.CrossRefGoogle ScholarPubMed
Bialystok, E., Luk, G., & Kwan, E. (2005). Bilingualism, biliteracy, and learning to read: Interactions among languages and writing systems. Scientific Studies of Reading, 9(1), 4361.CrossRefGoogle Scholar
Bialystok, E., Poarch, G., Luo, L., & Craik, F. (2014). Effects of bilingualism and aging on executive function and working memory. Psychology and Aging, 29, 696705.CrossRefGoogle ScholarPubMed
Bice, K., Yamasaki, B. L., & Prat, C. S. (2020). Bilingual language experience shapes resting-state brain rhythms. Neurobiology of Language, 1(3), 288318.Google Scholar
Bijeljac-Babic, R., Nassurally, K., Havy, M., & Nazzi, T. (2009). Infants can rapidly learn words in a foreign language. Infant Behavior and Development, 32(4), 476480.CrossRefGoogle Scholar
Black, S., & Behrmann, M. (1994). Localization in alexia. In Kertesz, A. (Ed.), Localization and neuroimaging in neuropsychology (pp. 331376). Academic Press.Google Scholar
Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3–4), 296312.Google Scholar
Blakemore, S. J., & Frith, U. (2005). The learning brain: Lessons for education. Blackwell.Google ScholarPubMed
Blanco-Elorrieta, E., & Caramazza, A. (2021). On the need for theoretically guided approaches to possible bilingual advantages: An evaluation of the potential loci in the language and executive control systems. Neurobiology of Language, 2(4), 452463.Google Scholar
Blanco-Elorrieta, E., & Pylkkänen, L. (2017). Bilingual language switching in the lab vs. in the wild: The spatio-temporal dynamics of adaptive language control. Journal of Neuroscience, 37, 90229036.Google Scholar
Blanco-Elorrieta, E., & Pylkkänen, L. (2018). Ecological validity in bilingualism research and the bilingual advantage. Trends in Cognitive Sciences, 22(12), 11171126.CrossRefGoogle ScholarPubMed
Blanco-Elorrieta, E., Emmorey, K., & Pylkkänen, L. (2018). Language switching decomposed through MEG and evidence from bimodal bilinguals. Proceedings of the National Academy of Sciences, 115(39), 201809779.CrossRefGoogle ScholarPubMed
Bloomfield, L. (1933). Language. Holt, Rinehart, & Winston.Google Scholar
Bongartz, C. (2002). Noun combination in interlanguage: Typology effects in complex determiner phrases. Niemeyer.Google Scholar
Bornstein, M. H., Hahn, C. S., & Putnick, D. L. (2016). Long-term stability of core language skill in children with contrasting language skills. Developmental Psychology, 52(5), 704716.CrossRefGoogle ScholarPubMed
Bosch, L., & Sebastián-Gallés, N. (1997). Native-language recognition abilities in 4-month-old infants from monolingual and bilingual environments. Cognition, 65(1), 3369.CrossRefGoogle ScholarPubMed
Botes, E., Dewaele, J. M., & Greiff, S. (2020). The foreign language classroom anxiety scale and academic achievement: An overview of the prevailing literature and a meta-analysis. Journal for the Psychology of Language Learning, 2(1), 2656.Google Scholar
Böttger, H. (2016). Neurodidaktik des frühen Sprachenlernens: Wo die Sprache zuhause ist (Vol. 4654). utb.CrossRefGoogle Scholar
Böttger, H., & Sambanis, M. (2017). Sprachen Lernen in der Pubertät. Narr.Google Scholar
Brady, M., Kelly, H., Godwin, J., Enderby, P., & Campbell, P. (2016). Speech and language therapy for aphasia following stroke. Cochrane Database of Systematic Reviews, 6, CD000425.Google Scholar
Brauer, J., Anwander, A., Perani, D., & Friederici, A. D. (2013). Dorsal and ventral pathways in language development. Brain and Language, 127(2), 289295.Google Scholar
Breitenstein, C., Jansen, A., Deppe, M., Foerster, A. F., Sommer, J., Wolbers, T., & Knecht, S. (2005). Hippocampus activity differentiates good from poor learners of a novel lexicon. Neuroimage, 25(3), 958968.Google Scholar
Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Making memories: Brain activity that predicts how well visual experience will be remembered. Science, 281(5380), 11851187.CrossRefGoogle Scholar
Bridges, K., & Hoff, E. (2014). Older sibling influences on the language environment and language development of toddlers in bilingual homes. Applied Psycholinguistics, 35(2), 225241.CrossRefGoogle ScholarPubMed
Bright, P., Ouzia, J., & Filippi, R. (2019). Multilingualism and metacognitive processing. In Schwieter, J. (Ed.), The handbook of the neuroscience of multilingualism (pp. 355371). Wiley-Blackwell.Google Scholar
Broca, P. (1861). Perte de la parole. Ramollissement chronique en destruction partielle de lobe antérieur gauche de cerveau. Bulletin de la Société d’ Anthropologie, 2, 235238.Google Scholar
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig.Google Scholar
Brody, G. H. (2004). Siblings’ direct and indirect contributions to child development. Current Directions in Psychological Science, 13(3), 124126.CrossRefGoogle Scholar
Brooks, R., & Meltzoff, A. N. (2005). The development of gaze following and its relation to language. Developmental Science, 8(6), 535543.Google Scholar
Bruhn, A. C., Genzer, M., Thies, L., Koch, M. J., & Kersten, K. (2023). The interplay of young learners’ verbal self-concept and linguistic competences over time in monolingual and bilingual institutions. In Böttger, H., & Schlüter, N. (Eds.), Fortschritte im frühen Fremdsprachenlernen. Konferenzband zur 5. Tagung im Dezember 2021 (pp. 94124). Schriftbild.Google Scholar
Bruhn, A. C., Miller, L., Mähler, C., Ponto, K., & Kersten, K. (2022). Can type of schooling compensate for low SES? Investigating effects of instruction and SES on cognitive skills. In Kersten, K., & Winsler, A. (Eds.), Understanding variability in second language acquisition, bilingualism, and cognition: A multi-layered perspective (pp. 292–320). Routledge.Google Scholar
Brysbaert, M., & Duyck, W. (2010). Is it time to leave behind the Revised Hierarchical Model of bilingual language processing after fifteen years of service? Bilingualism: Language and Cognition, 13, 359371.CrossRefGoogle Scholar
Brysbaert, M., & Mitchell, D. (1996). Modifier attachment in sentence processing: Evidence from Dutch. The Quarterly Journal of Experimental Psychology, 49A, 664695.CrossRefGoogle Scholar
Brysbaert, M., Mandera, P., & Keuleers, E. (2018). The word frequency effect in word processing: An updated review. Current Directions in Psychological Science, 27, 4550.Google Scholar
Buchweitz, A., & Prat, C. (2013). The bilingual brain: Flexibility and control in the human cortex. Physics of Life Reviews, 10(4), 428443.CrossRefGoogle ScholarPubMed
Buchweitz, A., Shinkareva, S. V., Mason, R. A., Mitchell, T. M., & Just, M. A. (2012). Identifying bilingual semantic neural representations across languages. Brain and Language, 120(3), 282289.Google Scholar
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21(1), 149186.Google Scholar
Burchinal, M., Howes, C., Pianta, R., Bryant, D., Early, D., Clifford, R., & Barbarin, O. (2008). Predicting child outcomes at the end of kindergarten from the quality of pre-kindergarten teacher–child interactions and instruction. Applied Development Science, 12(3), 140153.CrossRefGoogle Scholar
Burchinal, M., Vandergrift, N., Pianta, R., & Mashburn, A. (2010). Threshold analysis of association between child care quality and child outcomes for low-income children in pre-kindergarten programs. Early Childhood Research Quarterly, 25(2), 166176.Google Scholar
Burgess, P. W. (2004). Theory and methodology in executive function research. In Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 87121). Routledge.Google Scholar
Burgess, P. W., Alderman, N., Evans, J. O. N., Emslie, H., & Wilson, B. A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4(6), 547558.CrossRefGoogle ScholarPubMed
Byers-Heinlein, K. (2015). Methods for studying infant bilingualism. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 133154). Cambridge University Press.Google Scholar
Byers-Heinlein, K., & Lew-Williams, C. (2013). Bilingualism in the early years: What the science says. LEARNing Landscapes, 7(1), 95112.Google Scholar
Byers-Heinlein, K., & Werker, J. F. (2013). Lexicon structure and the disambiguation of novel words: Evidence from bilingual infants. Cognition, 128(3), 407416.CrossRefGoogle ScholarPubMed
Calabria, M., Costa, A., Green, D. W., & Abutalebi, J. (2018). Neural basis of bilingual language control. Annals of the New York Academy of Sciences, 1426(1), 221235.CrossRefGoogle Scholar
Caramazza, A., Miceli, G., Silveri, M. C., & Laudanna, A. (1985). Reading mechanisms and the organisation of the lexicon: Evidence from acquired dyslexia. Cognitive Neuropsychology, 2(1), 81114.CrossRefGoogle Scholar
Cappa, S., Cavallotti, G., & Vignolo, L. (1981). Phonemic and lexical errors in fluent aphasia: Correlation with lesion site. Neuropsychologia, 19(2), 171177.Google Scholar
Cargnelutti, E., Tomasino, B., & Fabbro, F. (2019a). Language brain representation in bilinguals with different age of appropriation and proficiency of the second language: A meta-analysis of functional imaging studies. Frontiers in Human Neuroscience, 13, 154.Google Scholar
Cargnelutti, E., Tomasino, B. & Fabbro, F. (2019b). Aphasia in the multilingual population. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 533552). Wiley-Blackwell.Google Scholar
Carrasco-Ortiz, H., Amengual, M., & Gries, S. Th. (2021). Cross-language effects of phonological and orthographic similarity in cognate word recognition: The role of language dominance. Linguistic Approaches to Bilingualism, 11(3), 389417.Google Scholar
Casey, B. J. (2013). The teenage brain: An overview. Current Directions in Psychological Science, 22(2), 8081.Google Scholar
Casey, B. J., & Caudle, K. (2013). The teenage brain: Self control. Current Directions in Psychological Science, 22(2), 8287.Google Scholar
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9(3), 104110.CrossRefGoogle ScholarPubMed
Cattan, S., Fitzsimons, E., Goodman, A., Phimister, A., Ploubidis, G., & Wertz, J. (2022). Early childhood inequalities. Institute for Fiscal Studies, 1–5.Google Scholar
Champoux-Larsson, M. F., & Dylman, A. S. (2021). Different measurements of bilingualism and their effect on performance on a Simon task. Applied Psycholinguistics, 42(2), 505526.Google Scholar
Chaouch-Orozco, A., Alonso, J., & Rothman, J. (2019). Word frequency and the elusiveness of the L2-L1 (masked) translation priming effect. Paper presented at The 32nd CUNY Conference on Human Sentence Processing, University of Colorado Boulder, United States.Google Scholar
Chaouch-Orozco, A., Alonso, J., & Rothman, J. (2021). Individual differences in bilingual word recognition: The role of experiential factors and word frequency in cross-language lexical priming. Applied Psycholinguistics, 42(2), 447474.Google Scholar
Chee, M., Caplan, D., Soon, C., Sriram, N., Tan, E., … & Weekes, B. (1999). Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron, 23(1), 127137.Google Scholar
Chee, M., Tan, E., & Thiel, T. (1999). Mandarin and English single word processing studied with functional magnetic resonance imaging. The Journal of Neuroscience, 19, 30503056.CrossRefGoogle ScholarPubMed
Chen, B., Zhou, H., Gao, Y., & Dunlap, S. (2014). Cross-language translation priming asymmetry with Chinese-English bilinguals: A test of the sense model. Journal of Psycholinguist Research, 43, 225240.Google Scholar
Chen, X., & Schwartz, M. (Eds.). (2018). Morphological awareness and literacy in second language learners: A cross-language perspective [Special issue]. Reading and Writing, 31(8), 16851694.Google Scholar
Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Näätänen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1, 351353.Google Scholar
Chin, N. B., & Wigglesworth, G. (2007). Bilingualism: An advanced resource book. Routledge.Google Scholar
Christoffels, I., de Groot, A., & Kroll, J. (2006). Memory and language skills in simultaneous interpreters: The role of expertise and language proficiency. Journal of Memory and Language, 54(3), 324345.Google Scholar
Chung, S., Chen, X., & Geva, E. (2019). Deconstructing and reconstructing cross-language transfer. Journal of Neurolinguistics, 50, 149161.Google Scholar
Claussenius-Kalman, H. L., & Hernandez, A. E. (2019). Neurocognitive effects of multilingualism throughout the lifespan: A developmental perspective. In J. W. Schwieter (Ed.), The handbook of the neuroscience of multilingualism (pp. 655684). Wiley-Blackwell.CrossRefGoogle Scholar
Claussenius-Kalman, H., Hernandez, A. E., & Li, P. (2021). Expertise, ecosystem, and emergentism: Dynamic developmental bilingualism. Brain and Language, 222, 105013.CrossRefGoogle ScholarPubMed
Claussenius-Kalman, H., Vaughn, K. A., Archila-Suerte, P., & Hernandez, A. E. (2020). Age of acquisition impacts the brain differently depending on neuroanatomical metric. Human Brain Mapping, 41(2), 484502.Google Scholar
Coffey, J. R., Shafto, C. L., Geren, J. C., & Snedeker, J. (2022). The effects of maternal input on language in the absence of genetic confounds: Vocabulary development in internationally adopted children. Child Development, 93(1), 237253.Google Scholar
Cohen, D., & Cuffin, B. N. (1983). Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 56(1), 3851.CrossRefGoogle ScholarPubMed
Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210(4466), 207210.CrossRefGoogle ScholarPubMed
Colomé, A. (2001). Lexical activation in bilinguals’ speech production: Language-specific or language-independent? Journal of Memory and Language, 45, 721736.CrossRefGoogle Scholar
Colver, A., & Longwell, S. (2013). New understanding of adolescent brain development: Relevance to transitional healthcare for young people with long term conditions. Archives of Disease in Childhood, 98(11), 902907.CrossRefGoogle ScholarPubMed
Comesaña, M., Ferré, P., Romero, J., Guasch, M., Soares, A., & García-Chico, T. (2015). Facilitative effect of cognate words vanishes when reducing the orthographic overlap: The role of stimuli list composition. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(3), 614635.CrossRefGoogle ScholarPubMed
Conner, P., Goral, M., Anema, I., Borodkin, K., Haendler, Y., Knoph, M., … & Moeyaert, M. (2018). The role of language proficiency and linguistic similarity in crosslinguistic treatment effects in aphasia. Clinical Linguistics & Phonetics, 32, 739757.Google Scholar
Connor, L., Obler, L., Tocco, M., Fitzpatrick, P., & Albert, M. (2001). Effect of socioeconomic status on aphasia severity and recovery. Brain and Language, 78, 254257.Google Scholar
Consonni, M., Cafiero, R., Marin, D., Tettamanti, M., Iadanza, A., Fabbro, F., & Perani, D. (2013). Neural convergence for language comprehension and grammatical class production in highly proficient bilinguals is independent of age of acquisition. Cortex, 49(5), 12521258.Google Scholar
Cook, V. (Ed.) (2002). Portraits of the L2 user. Multilingual Matters.Google Scholar
Cook, V., Bassetti, B., Kasai, C., Sasaki, M., & Takahashi, J. (2006). Do bilinguals have different concepts? The case of shape and material in Japanese L2 users of English. International Journal of Bilingualism, 10(2), 137152.Google Scholar
Cook, V., Iarossi, E., Stellakis, N., & Tokumaru, Y. (2003). Effects of the L2 on the syntactic processing of the L1. In Cook, V. (Ed.), Effects of the second language on the first (pp. 193213). Multilingual Matters.Google Scholar
Costa, A., & Santesteban, M. (2004). Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language, 50(4), 491511.CrossRefGoogle Scholar
Costa, A., & Sebastián-Gallés, N. (2014). How does the bilingual experience sculpt the brain? Nature Reviews Neuroscience, 15(5), 336.Google Scholar
Costa, A., Caramazza, A., & Sebastián-Gallés, N. (2000). The cognate facilitation effect: Implications for models of lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 12831296.Google Scholar
Costa, A., Colomé, À., & Caramazza, A. (2000). Lexical access in speech production: The bilingual case. Psicologica, 21(2), 403437.Google Scholar
Costa, A., Colomé, A., Gómez, O., & Sebastián-Gallés, N. (2003). Another look at cross-language competition in bilingual speech production: Lexical and phonological factors. Bilingualism: Language and Cognition, 6, 167179.Google Scholar
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N. (2009). On the bilingual advantage in conflict processing: Now you see it, now you don’t. Cognition, 113(2), 135149.Google Scholar
Costa, A., Hernández, M., & Sebastián-Gallés, N. (2008). Bilingualism aids conflict resolution: Evidence from the ANT task. Cognition, 106(1), 5986.Google Scholar
Costa, A., Santesteban, M., & Ivanova, I. (2006). How do highly proficient bilinguals control their lexicalization process?: Inhibitory and language-specific selection mechanisms are both functional. Journal of Experimental Psychology Learning Memory and Cognition, 32(5), 10571074.Google Scholar
Costumero, V., Rodríguez-Pujadas, A., Fuentes-Claramonte, P., & Avila, C. (2015). How bilingualism shapes the functional architecture of the brain: A study on executive control in early bilinguals and monolinguals. Human Brain Mapping, 36(12), 51015112.Google Scholar
Crews, F., He, J., & Hodge, C. (2007). Adolescent cortical development: A critical period of vulnerability for addiction. Pharmacology Biochemistry and Behavior, 86(2), 189199.Google Scholar
Croft, S., Marshall, J., Pring, T., & Hardwick, M. (2010). Therapy for naming difficulties in bilingual aphasia: Which language benefits? International Journal of Language and Communication Disorders, 46(1), 4862.Google Scholar
Csizér, K., & Magid, M. (Eds.). (2014). The impact of self-concept on language learning. Multilingual Matters.Google Scholar
Curtiss, S. (1977). Genie: A psycholinguistic study of a modern day “wild child”. Academic Press.Google Scholar
Czapka, S., & Festman, J. (2021). Wisconsin Card Sorting Test reveals a monitoring advantage but not a switching advantage in multilingual children. Journal of Experimental Child Psychology, 204, 105038.CrossRefGoogle Scholar
D’Souza, D., & D’Souza, H. (2021). Bilingual adaptations in early development. Trends in Cognitive Sciences, 25(9), 727729.Google Scholar
D’Souza, D., Brady, D., Haensel, J. X., & D’Souza, H. (2020). Is mere exposure enough? The effects of bilingual environments on infant cognitive development. Royal Society Open Science, 7(2), 180191.Google Scholar
Dąbrowska, E. (2012). Different speakers, different grammars: Individual differences in native language attainment. Linguistic Approaches to Bilingualism, 2(3), 219253.Google Scholar
Dailey, S., & Bergelson, E. (2022). Language input to infants of different socioeconomic statuses: A quantitative meta-analysis. Developmental Science, 25(3), e13192.Google Scholar
Dal Ben, R., Killam, H., Pour Iliaei, S., & Byers-Heinlein, K. (2022). Bilingualism affects infant cognition: Insights from new and open data. Open Mind, 6, 88117.Google Scholar
Damasio, H., Tranel, A., Grabowski, T., Adolphs, R., & Damasio, A. (2004). Neural systems behind word and concept retrieval. Cognition, 92, 179229.Google Scholar
Dash, T., Joanette, Y., & Ansaldo, A. I. (2022). Multifactorial approaches to study bilingualism in the aging population: Past, present, future. Frontiers in Psychology, 13, 917959.Google Scholar
De Angelis, G., & Selinker, L. (2001). Interlanguage transfer and competing linguistic systems in the multilingual mind. In Cenoz, J., Hufeisen, B., & Jessner, U. (Eds.), Crosslinguistic influence in third language acquisition: Psycholinguistic perspectives (pp. 4258). Multilingual Matters.Google Scholar
De Baene, W., Duyck, W., Brass, M., & Carreiras, M. (2015). Brain circuit for cognitive control is shared by task and language switching. Journal of Cognitive Neuroscience, 27(9), 17521765.Google Scholar
de Bot, K. (2004). The multilingual lexicon: Modelling selection and control. International Journal of Multilingualism, 1(1), 1732.Google Scholar
de Bot, K. (2008). Review article: The imaging of what in the multilingual mind? Second Language Research, 24(1), 111133.Google Scholar
de Bot, K. (2009). Multilingualism and aging. In Bhatia, T. & Ritchie, W. (Eds.), The new handbook of second language acquisition (pp. 425442). Emerald Group.Google Scholar
de Bot, K. (2019). Defining and assessing multilingualism. In J. W. Schwieter (Ed.), The handbook of the neuroscience of multilingualism (pp. 318). Wiley-Blackwell.Google Scholar
de Bruin, A., Dick, A. S., & Carreiras, M. (2021). Clear theories are needed to interpret differences: Perspectives on the bilingual advantage debate. Neurobiology of Language, 2(4), 433451.Google Scholar
de Bruin, A., Treccani, B., & Della Sala, S. (2015). Cognitive advantage in bilingualism: An example of publication bias? Psychological Science, 26(1), 99107.Google Scholar
De Cat, C. (2021). Socioeconomic status as a proxy for input quality in bilingual children? Applied Psycholinguistics, 42(2), 301324.Google Scholar
De Groot, A. (1992). Bilingual lexical representation: A closer look at conceptual representations. In Frost, R. & Katz, L. (Eds.), Orthography, phonology, morphology, and meaning (pp. 389412). Elsevier.Google Scholar
De Groot, A. (1993). Word-type effects in bilingual processing tasks: Support for a mixed representational system. In Schreuder, R. & Weltens, B. (Eds.), The bilingual lexicon (pp. 2751). Benjamins.Google Scholar
de Groot, A. (2011). Language and cognition in bilinguals and multilinguals: An introduction. Routledge.Google Scholar
de Groot, A., & Starreveld, P. (2015). Parallel language activation in bilingual’s word production and its modulating factors: A review and computer simulations. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 389415). Cambridge University Press.Google Scholar
de Groot, A., Dannenburg, L., & Van Hell, J. (1994). Forward and backward word translation by bilinguals. Journal of Memory and Language, 33, 600629.CrossRefGoogle Scholar
De Houwer, A. (1990). The acquisition of two languages from birth: A case study. Cambridge University Press.Google Scholar
De Houwer, A. (1995). Bilingual language acquisition. In Fletcher, P. & MacWhinney, B. (Eds.), The handbook of child language (pp. 219250). Blackwell.Google Scholar
De Houwer, A. (2009). Bilingual first language acquisition. Multilingual Matters.Google Scholar
De Houwer, A. (2011). Language input environments and language development in bilingual acquisition. Applied Linguistics Review, 2, 221240.Google Scholar
De Houwer, A. (2021). Bilingual development in childhood. Cambridge University Press.CrossRefGoogle Scholar
de Leon, J., Grasso, S. M., Welch, A., Miller, Z., Shwe, W., Rabinovici, G. D., … & Gorno-Tempini, M. L. (2020). Effects of bilingualism on age at onset in two clinical Alzheimer’s disease variants. Alzheimer’s & Dementia, 16(12), 17041713.Google Scholar
Degani, T., & Tokowicz, N. (2010). Ambiguous words are harder to learn. Bilingualism: Language and Cognition, 13, 299314.Google Scholar
Degani, T., Prior, A., & Tokowicz, N. (2011). Bidirectional transfer: The effect of sharing a translation. European Journal of Cognitive Psychology, 23, 1828.Google Scholar
Degirmenci, M. G., Grossmann, J. A., Meyer, P., & Teichmann, B. (2022). The role of bilingualism in executive functions in healthy older adults: A systematic review. International Journal of Bilingualism, 13670069211051291.Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., … & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. NeuroReport, 8(17), 38093815.Google Scholar
Del Maschio, N., & Abutalebi, J. (2019). Language organization in the bilingual and multilingual brain. In J. Schwieter, (Ed.), The handbook of the neuroscience of multilingualism (pp. 197213). Wiley-Blackwell.Google Scholar
Del Maschio, N., Sulpizio, S., Gallo, F., Fedeli, D., Weekes, B. S., & Abutalebi, J. (2018). Neuroplasticity across the lifespan and aging effects in bilinguals and monolinguals. Brain and Cognition, 125, 118126.CrossRefGoogle ScholarPubMed
DeLuca, V., & Voits, T. (2022). Bilingual experience affects white matter integrity across the lifespan. Neuropsychologia, 169, 108191.Google Scholar
DeLuca, V., Rothman, J., & Pliatsikas, C. (2019). Linguistic immersion and structural effects on the bilingual brain: A longitudinal study. Bilingualism: Language and Cognition, 22(5), 11601175.Google Scholar
DeLuca, V., Miller, D., Pliatsikas, C., & Rothman, J. (2019a). Brain adaptations and neurological indices of processing in adult second language acquisition: Challenges for the critical period hypothesis. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 170196). Wiley-Blackwell.Google Scholar
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2019b). Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116(15), 75657574.Google Scholar
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2020). Duration and extent of bilingual experience modulate neurocognitive outcomes. NeuroImage, 204, 116222.Google Scholar
DeLuca, V., Segaert, K., Mazaheri, A., & Krott, A. (2020). Understanding bilingual brain function and structure changes? U bet! A unified bilingual experience trajectory model. Journal of Neurolinguistics, 56, 100930.Google Scholar
Desmet, T., & Duyck, W. (2007). Bilingual language processing. Language and Linguistics Compass, 1(3), 168194.Google Scholar
Dewaele, J. M. (2010). Emotions in multiple languages. Palgrave Macmillan.Google Scholar
Dewaele, J. M. (2015). Bilingualism and multilingualism. In Tracy, K., Illie, C. & Sandel, T. (Eds.), The International encyclopedia of language and social interaction (pp. 111). Wiley.Google Scholar
Dewaele, J. M., & Li, C. (2020). Emotions in second language acquisition: A critical review and research agenda. Foreign Language World, 196(1), 3449.Google Scholar
Diamond, A. (2007). Interrelated and interdependent. Developmental Science, 10(1), 152158.Google Scholar
Diamond, B., & Shreve, G. (2019). Translation, interpreting, and the bilingual brain: Implications for executive control and neuroplasticity. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 485507). Wiley-Blackwell.Google Scholar
Dick, A. S., Garcia, N. L., Pruden, S. M., Thompson, W. K., Hawes, S. W., Sutherland, M. T., … & Gonzalez, R. (2019). No evidence for a bilingual executive function advantage in the ABCD study. Nature Human Behaviour, 3(7), 692701.Google Scholar
Diebold, A. R. (1961). Incipient bilingualism. Language, 37(1), 97112.CrossRefGoogle Scholar
Dijkstra, T. (1998). From tag to task: Coming to grips with bilingual control issues. Bilingualism: Language and Cognition, 1, 5166.Google Scholar
Dijkstra, T., van Geffen, A., Hieselaar, W., & Peeters, D. (submitted). Multilink+: A computational model for printed word retrieval in different language, participant groups, and tasks.Google Scholar
Dijkstra, A., & Van Heuven, W. (1998). The BIA model and bilingual word recognition. In Grainger, J. & Jacobs, A. (Eds.), Localist connectionist approaches to human cognition (pp. 189225). Erlbaum.Google Scholar
Dijkstra, T., & Van Heuven, W. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5, 175197.CrossRefGoogle Scholar
Dijkstra, T., & Rekké, S. (2010). Towards a localist-connectionist model of word translation. The Mental Lexicon, 5, 403422.Google Scholar
Dijkstra, T., Grainger, J., & Van Heuven, W. (1999). Recognition of cognates and interlingual homographs: The neglected role of phonology. Journal of Memory and Language, 41, 496518.Google Scholar
Dijkstra, T., Haga, F., Bijsterveld, A., & Sprinkhuizen-Kuyper, I. (2011). Lexical competition in localist and distributed connectionist models of L2 acquisition. In Altarriba, J. & Isurin, L. (Eds.), Memory, language, and bilingualism: Theoretical and applied approaches (pp. 4873). Cambridge University Press.Google Scholar
Dijkstra, T., Miwa, K., Brummelhuis, B., Sappelli, M., & Baayen, H. (2010). How cross-language similarity and task demands affect cognate recognition. Journal of Memory and Language, 62(3), 284301.Google Scholar
Dijkstra, T., Wahl, A., Buytenhuijs, F., Van Halem, N., Al-Jibouri, Z., De Korte, M., & Rekké, S. (2019). Multilink: A computational model for bilingual word recognition and word translation. Bilingualism: Language and Cognition, 22(4), 657679.Google Scholar
Dong, Y., Gui, S., & MacWhinney, B. (2005). Shared and separate meanings in the bilingual lexical memory. Bilingualism: Language and Cognition, 8, 221238.CrossRefGoogle Scholar
Dong, Y., & Li, P. (2015). The cognitive science of bilingualism. Language and Linguistics Compass, 9(1), 113.Google Scholar
Dörnyei, Z. (2005). The psychology of the language learner: Individual differences in second language acquisition. Erlbaum.Google Scholar
Dörnyei, Z. (2009). The psychology of second language acquisition. Oxford University Press.Google Scholar
Dörnyei, Z. (2019). From integrative motivation to directed motivational currents: The evolution of the understanding of L2 motivation over three decades. In Lamb, M., Cizér, K., & Ryan, S. (Eds.), The Palgrave handbook of motivation for language learning (pp. 3969). Palgrave Macmillan.Google Scholar
Dörnyei, Z., & Ryan, S. (2015). The psychology of the language learner revisited. Routledge.Google Scholar
Dow-Edwards, D., MacMaster, F. P., Peterson, B. S., Niesink, R., Andersen, S., & Braams, B. R. (2019). Experience during adolescence shapes brain development: From synapses and networks to normal and pathological behavior. Neurotoxicology and Teratology, 76, 106834.Google Scholar
Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008). Changes in gray matter induced by learning – Revisited. PloS One, 3(7), e2669.Google Scholar
Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 2032.CrossRefGoogle ScholarPubMed
Duncan, T. S., & Paradis, J. (2020). Home language environment and children’s second language acquisition: The special status of input from older siblings. Journal of Child Language, 47(5), 9821005.Google Scholar
Dussias, P. (2004). Parsing a first language like a second: The erosion of L1 parsing strategies in Spanish-English bilinguals. International Journal of Bilingualism, 8, 355371.Google Scholar
Duyck, W. (2005). Translation and associative priming with cross-lingual pseudohomophones: Evidence for nonselective phonological activation in bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 13401359.Google Scholar
Duyck, W., & Brysbaert, M. (2004). Forward and backward number translation requires conceptual mediation both in balanced and unbalanced bilinguals. Journal of Experimental Psychology: Human Perception and Performance, 30, 889906.Google Scholar
Duyck, W., & Brysbaert, M. (2008). Semantic access in number word translation: The role of cross-lingual lexical similarity. Experimental Psychology, 55, 7381.CrossRefGoogle Scholar
Duyck, W., Van Assche, E., Drieghe, D., & Hartsuiker, R. (2007). Visual word recognition by bilinguals in a sentence context: evidence for nonselective lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 663679.Google Scholar
Edmonds, L., & Kiran, S. (2006). Effect of semantic naming treatment on crosslinguistic generalization in bilingual aphasia. Journal of Speech, Language and Hearing Research, 49, 729748.Google Scholar
Edwards, D., & Christophersen, H. (1988). Bilingualism, literacy, and meta-linguistic awareness in preschool children. British Journal of Developmental Psychology, 6(3), 235244.Google Scholar
Edwards, J. (2004). Foundations of bilingualism. In Bhatia, T. & Ritchie, W. (Eds.), The handbook of bilingualism (pp. 731). Blackwell.Google Scholar
El Hachioui, H., Visch-Brink, E., de Lau, L., van de Sandt-Koenderman, M., Nouwens, F., … & Dippel, W. (2017). Screening tests for aphasia in patients with stroke: A systematic review. Journal of Neurology, 264(2), 211220.Google Scholar
Elmer, S., Hänggi, J., & Jäncke, L. (2014). Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex, 54, 179189.Google Scholar
Elmer, S., Meyer, M., & Jäncke, L. (2010). Simultaneous interpreters as a model for neuronal adaptation in the domain of language processing. Brain and Research, 1317, 147156.Google Scholar
Elston-Güttler, K., Gunter, T., & Kotz, S. (2005). Zooming into L2: Global language context and adjustment affect processing of interlingual homographs in sentences. Cognitive Brain Research, 25, 5770.Google Scholar
Enderby, P., Wood, V., Wade, D., & Hewer, R. (1987). The Frenchay Aphasia Screening Test: A short, simple test for aphasia appropriate for non-specialists. International Rehabilitation Medicine, 8, 166170.Google Scholar
Erdocia, K., & Laka, I. (2018). Negative transfer effects on L2 word order processing. Frontiers in Psychology, 9, 337.Google Scholar
Escudero, P., & Boersma, P. (2004). Bridging the gap between L2 speech perception research and phonological theory. Studies in Second Language Acquisition, 26, 551585.Google Scholar
Eubank, L. (1993). On the transfer of parametric values in L2 development. Language Acquisition, 3(3), 183208.Google Scholar
Eubank, L., Bischof, J., Huffstutler, A., Leek, P., & West, C. (1997). “Tom eats slowly cooked eggs”: Thematic-verb raising in L2 knowledge. Language Acquisition, 6, 171199.Google Scholar
Evans, G. (2020). Bilingual semantics: Intra- and inter-sense mapping in the case of two languages. Unpublished doctoral dissertation, Bangor University, Wales.Google Scholar
Fabbro, F. (1999). The neurolinguistics of bilingualism: An introduction. Psychology Press.Google Scholar
Fabbro, F. (2001). The bilingual brain: Cerebral representation of languages. Brain and Language, 79(2), 211222.Google Scholar
Fabbro, F., & Cargnelutti, E. (2018). Neuroscienze del Bilinguismo (Neuroscience of Bilingualism). Astrolabio.Google Scholar
Fabbro, F., Gran, B., & Gran, L. (1991). Hemispheric specialization for semantic and syntactic components of language in simultaneous interpreters. Brain and Language, 41, 142.Google Scholar
Fabbro, F., Moretti, R., & Bava, A. (2000). Language impairments in patients with cerebellar lesions. Journal of Neurolinguistics, 13, 173188.Google Scholar
Fabbro, G., Skrap, M., & Aglioti, S. (2000). Pathological switching between languages after frontal lesions in a bilingual patient. Journal of Neurology, Neurosurgery, & Psychiatry, 68, 650652.Google Scholar
Fabiano-Smith, L., & Goldstein, B. (2010). Phonological cross-linguistic effects in bilingual Spanish – English speaking children. Journal of Multilingual Communication Disorders, 3(1), 5663.Google Scholar
Farah, M. J. (2018). Socioeconomic status and the brain: Prospects for neuroscience-informed policy. Nature Reviews Neuroscience, 19(7), 428438.Google Scholar
Faroqi, Y., & Chengappa, S. (1996). Trace deletion hypothesis and its implications for intervention with a multilingual agrammatic aphasic patient. Osmania Papers in Linguistics, 22–23, 79106.Google Scholar
Faroqi-Shah, Y., Frymark, T., Mullen, R., & Wang, B. (2010). Effect of treatment for bilingual individuals with aphasia: A systematic review of the evidence. Journal of Neurolinguistics, 23, 319341Google Scholar
Fecher, N., & Johnson, E. K. (2019). Bilingual infants excel at foreign-language talker recognition. Developmental Science, 22(4), e12778Google Scholar
Fecher, N., & Johnson, E. K. (2022). Revisiting the talker recognition advantage in bilingual infants. Journal of Experimental Child Psychology, 214, 105276.Google Scholar
Fennell, C., & Byers-Heinlein, K. (2014). You sound like Mommy: Bilingual and monolingual infants learn words best from speakers typical of their language environments. International Journal of Behavioral Development, 38(4), 309316.Google Scholar
Fernald, A., & Simon, T. (1984). Expanded intonation contours in mothers’ speech to newborns. Developmental Psychology, 20(1), 104113.Google Scholar
Fernald, A., & Weisleder, A. (2015). Twenty years after “meaningful differences,” it’s time to reframe the “deficit” debate about the importance of children’s early language experience. Human Development, 58(1), 14.Google Scholar
Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differences in language processing skill and vocabulary are evident at 18 months. Developmental Science, 16(2), 234248.Google Scholar
Fernandez, B., Cardebat, D., Demonet, J., Joseph, P., Mazaux, J., … & Allard, M. (2004). Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke, 35, 21712176.Google Scholar
Fernández-Coello, A., Havas, V., Juncadella, M., Sierpowska, J., Rodríguez-Fornells, A., & Gabarrós, A. (2016). Age of language acquisition and cortical language organization in multilingual patients undergoing awake brain mapping. Journal of Neurosurgery, 126(6), 19121923.Google Scholar
Fernández-López, M., & Perea, M. (2019). The bilingualism wars: Is the bilingual advantage out of (executive) control? Psicológica, 40(1), 2633.Google Scholar
Ferré, P., Sánchez-Casas, R., & García, J. (2000). Conexiones léxicas y conceptuales en la adquisición de una segunda lengua: Datos del castellano y del alemán. Cognitiva, 13, 131152.Google Scholar
Ferreira, A., Schwieter, J. W., & Festman, J. (2020). Cognitive and neurocognitive effects from the unique bilingual experiences of interpreters. Frontiers in Psychology, 11, 548755.Google Scholar
Festman, J. (2012). Language control abilities of late bilinguals. Bilingualism: Language and Cognition, 15(3), 580593.Google Scholar
Festman, J. (2013). The complexity-cost factor in bilingualism. Behavioral and Brain Sciences, 36(4), 355.Google Scholar
Festman, J. (2021). Learning and processing multiple languages: The more the easier? Language Learning, 71(S1), 121162.Google Scholar
Festman, J., & Clahsen, H. (2016). How Germans prepare for the English past tense: Silent production of inflected words during EEG. Applied Psycholinguistics, 37(2), 487506.Google Scholar
Festman, J., & Mosca, M. (2016). Influence of preparation time on language control. In Schwieter, J. W. (Ed.), Cognitive control and consequences in the multilingual mind (pp. 145171). Benjamins.Google Scholar
Festman, J., & Münte, T. F. (2012). Cognitive control in Russian–German bilinguals. Frontiers in Psychology, 3, 115.Google Scholar
Festman, J., & Schwieter, J. W. (2019). Self-concepts in reading and spelling among mono-and multilingual children: Extending the bilingual advantage. Behavioral Sciences, 9(4), 39.Google Scholar
Festman, J., Czapka, S., & Winsler, A. (2023). How many moderators does is take till we know… that too many bilingual advantage effects have died. In K. Kersten & A. Winsler (Eds.), Understanding variability in second language acquisition, bilingualism, and cognition: A multi-layered perspective (pp. 80127). Routledge.Google Scholar
Festman, J., Poarch, G. J., & Dewaele, J. M. (2017). Raising multilingual children. Multilingual Matters.Google Scholar
Festman, J., Rodriguez-Fornells, A., & Münte, T. F. (2010). Individual differences in control of language interference in late bilinguals are mainly related to general executive abilities. Behavioral and Brain Functions, 6(1), 112.Google Scholar
Filippa, M., Della Casa, E., D’amico, R., Picciolini, O., Lunardi, C., Sansavini, A., & Ferrari, F. (2021). Effects of early vocal contact in the neonatal intensive care unit: Study protocol for a multi-centre, randomised clinical trial. International Journal of Environmental Research and Public Health, 18(8), 115.Google Scholar
Filippi, R., & Bright, P. (2023). A cross-sectional developmental approach to bilingualism: Exploring neurocognitive effects across the lifespan. Ampersand, 10, 100097.Google Scholar
Filippi, R., Ceccolini, A., Periche-Tomas, E., Papageorgiou, A., & Bright, P. (2020). Developmental trajectories of control of verbal and non-verbal interference in speech comprehension in monolingual and multilingual children. Cognition, 200, 104252.Google Scholar
Filippi, R., D’Souza, D., & Bright, P. (2019). A developmental approach to bilingual research: The effects of multi-language experience from early infancy to old age. International Journal of Bilingualism, 23(5), 11951207.Google Scholar
Finkbeiner, M. (2005). Task-dependent L2-L1 translation priming: An investigation of the separate memory systems account. In Cohen, J., McAlister, K. T., Rolstad, K., & MacSwan, J. (Eds.), Proceedings of the 4th International symposium on bilingualism (pp. 741750). Cascadilla.Google Scholar
Finkbeiner, M., Forster, K., Nicol, J., & Nakamura, K. (2004). The role of polysemy in masked semantic and translation priming. Journal of Memory and Language, 51, 122.Google Scholar
Flamand-Roze, C., Falissard, B., Roze, E., Maintigneux, L., Beziz, J., Chacon, A, … & Denier, C. (2011). Validation of a new language screening tool for patients with acute stroke: The Language Screening Test (LAST). Stroke, 42, 12241229.Google Scholar
Flege, J., Bohn, O.-S., & Jang, S. (1997). Effects of experience on non-native speakers’ production and perception of English vowels. Journal of Phonetics, 25, 437470.Google Scholar
Folke, T., Ouzia, J., Bright, P., De Martino, B., & Filippi, R. (2016). A bilingual disadvantage in metacognitive processing. Cognition, 150, 119132.Google Scholar
Försterling, M., Hainke, L., Redkina, A., & Sauseng, P. (2023). Influence of bilingualism on behavioral and electrophysiological parameters of cognitive control: No clear effects of immersion, stimulus language, and word similarity. Journal of Psychophysiology, 37(2), 88100.Google Scholar
Foulkes, D., Meier, B., Strauch, I., Ken, N., Bradley, L., & Hollifield, M. (1993). Linguistic phenomena and language selection in the REM dreams of German-English bilinguals. International Journal of Psychology, 28(6), 871.Google Scholar
Friedman, N. P. (2016). Research on individual differences in executive functions: Implications for the bilingual advantage hypothesis. Linguistic Approaches to Bilingualism, 6(5), 535548.Google Scholar
Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 541870.Google Scholar
Galvez, A. & Hinckley, J. (2003). Transfer patterns of naming treatment in a case of bilingual aphasia. Brain and Language, 87(1), 173174.Google Scholar
Gapany, D., Murukun, M., Goveas, J., Dhurrkay, J., Burarrwanga, V., & Page, J. (2022). Empowering aboriginal families as their children’s first teachers of cultural knowledge, languages, and identity at Galiwin’ku FaFT Playgroup. Australasian Journal of Early Childhood, 47(1), 2031.Google Scholar
Garbin, G., Sanjuan, A., Forn, C., Bustamante, J. C., Rodríguez-Pujadas, A., Belloch, V., … & Ávila, C. (2010). Bridging language and attention: Brain basis of the impact of bilingualism on cognitive control. NeuroImage, 53(4), 12721278.Google Scholar
García, A. (2019). The neurocognition of translation and interpreting. Benjamins.Google Scholar
Garcia-Alvarado, S., Arreguin, M. G., & Ruiz-Escalante, J. A. (2022). Mexican-American preschoolers as co-creators of zones of proximal development during retellings of culturally relevant stories: A participatory study. Journal of Early Childhood Literacy, 22(2), 232253.Google Scholar
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 92409245.Google Scholar
Gerard, L., & Scarborough, D. (1989). Language-specific lexical access of homographs by bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 305315.Google Scholar
Gil, M., & Goral, M. (2004). Nonparallel recovery in bilingual aphasia: Effects of language choice, language proficiency, and treatment. International Journal of Bilingualism, 8, 191219.Google Scholar
Gillet, S., Barbu, C. A., & Poncelet, M. (2020). Exploration of attentional and executive abilities in French-Speaking children immersed in Dutch since 1, 2, 3, and 6 years. Frontiers in Psychology, 11, 587574.Google Scholar
Goertz, R., Wahl, A., & Dijkstra, T. (in preparation). Translating interlingual homographs: Empirical and simulation data.Google Scholar
Golberg, H., Paradis, J., & Crago, M. (2008). Lexical acquisition over time in minority first language children learning English as a second language. Applied Psycholinguistics, 29(1), 4165.Google Scholar
Gold, B. T., Johnson, N. F., & Powell, D. K. (2013). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia, 51(13), 28412846.Google Scholar
Goldrick, M., Putnam, M., & Schwartz, L. (2016). Coactivation in bilingual grammars: A computational account of code mixing. Bilingualism: Language and Cognition, 19(5), 857876.Google Scholar
Golinkoff, R. M., Hoff, E., Rowe, M. L., Tamis-LeMonda, C. S., & Hirsh-Pasek, K. (2019). Language matters: Denying the existence of the 30-million-word gap has serious consequences. Child Development, 90(3), 985992.Google Scholar
Gollan, T. H., & Acenas, L. A. R. (2004). What is a TOT? Cognate and translation effects on tip-of-the-tongue states in Spanish-English and Tagalog-English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 246.Google Scholar
Gollan, T. H., & Brown, A. S. (2006). From tip-of-the-tongue (TOT) data to theoretical implications in two steps: When more TOTs means better retrieval. Journal of Experimental Psychology: General, 135(3), 462.Google Scholar
Gollan, T. H., & Silverberg, N. B. (2001). Tip-of-the-tongue states in Hebrew–English bilinguals. Bilingualism: Language and Cognition, 4(1), 6383.Google Scholar
Gollan, T. H., Fennema-Notestine, C., Montoya, R. I., & Jernigan, T. L. (2007). The bilingual effect on Boston Naming Test performance. Journal of the International Neuropsychological Society, 13(2), 197208.Google Scholar
Gollan, T., Forster, K., & Frost, R. (1997). Translation priming with different scripts: Masked priming with cognates and noncognates in Hebrew-English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 11221139.Google Scholar
Gollan, T., Montoya, R., Fennema-Notestine, C., & Morris, S. (2005). Bilingualism affects picture naming but not picture classification. Memory & Cognition, 33, 12201234.Google Scholar
Gómez-Ruiz, I., & Aguilar-Alonso, Á. (2011). Capacity of the Catalan and Spanish versions of the bilingual aphasia test to distinguish between healthy aging, mild cognitive impairment and Alzheimer’s disease. Clinical Linguistics & Phonetics, 25, 444463.Google Scholar
Goral, G., Levy, E., & Kastl, R. (2009). Cross-language treatment generalization: A case of trilingual aphasia. Brain and Language, 103, 118.Google Scholar
Goral, M. (2019). Acquired reading disorders in bilingualism. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 592–607). Wiley-Blackwell.Google Scholar
Goral, M., Naghibolhosseini, M., & Conner, P. (2013). Asymmetric inhibitory treatment effects in multilingual aphasia. Cognitive Neuropsychology, 30, 564577.Google Scholar
Goral, M., Rosas, J., Conner, P., Maul, K., & Obler, L. (2012). Effects of language proficiency and language of the environment on aphasia therapy in a multilingual. Journal of Neurolinguistics, 25, 538551.Google Scholar
Gorno-Tempini, M., Dronkers, N., Rankin, K., Ogar, J., Phengrasamy, L., Rosen, H., … & Miller, B. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335346.Google Scholar
Gorno-Tempini, M., Hillis, A., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S., … & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.Google Scholar
Goswami, U. (2008). Principles of learning, implications for teaching: A cognitive neuroscience perspective. Journal of Philosophy of Education, 42(3–4), 381399.Google Scholar
Grainger, J., & Frenck-Mestre, C. (1998). Masked priming by translation equivalents in proficient bilinguals. Language and Cognitive Processes, 13, 601623.Google Scholar
Grainger, J., Midgley, K., & Holcomb, P. (2010). Re-thinking the bilingual interactive-activation model from a developmental perspective (BIA-d). In Kail, M. & Hickmann, M. (Eds.), Language acquisition across linguistic and cognitive systems (pp. 267284). Benjamins.Google Scholar
Green, D. (1986). Control, activation, and resource: A framework and a model for the control of speech in bilinguals. Brain and Language, 27, 210223.Google Scholar
Green, D. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1(2), 6781.Google Scholar
Green, D. (2003). The neural basis of the lexicon and the grammar in L2 acquisition. In van Hout, R., Hulk, A., Kuiken, F. & Towell, R.. (Eds.), The interface between syntax and the lexicon in second language acquisition (pp. 197208). Benjamins.Google Scholar
Green, D. (2018). Language control and code-switching. Languages, 3(2), Article 8.Google Scholar
Green, D., & Abutalebi, J. (2008). Understanding the link between bilingual aphasia and language control. Journal of Neurolinguistics, 21, 558–576.Google Scholar
Green, D., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25(5), 515530.Google Scholar
Green, D., & Abutalebi, J. (2016). Language control and the neuroanatomy of bilingualism: In praise of variety. Language, Cognition and Neuroscience, 31(3), 340344.Google Scholar
Green, D., & Wei, L. (2014). A control process model of code-switching. Language, Cognition and Neuroscience, 29, 499511.Google Scholar
Green, D., & Wei, L. (2016). Codeswitching and language control. Bilingualism: Language and Cognition, 19(5), 883884.Google Scholar
Green, D., Crinion, J., & Price, C. J. (2006). Convergence, degeneracy, and control. Language Learning, 56, 99125.Google Scholar
Gregersen, T., & Mercer, S. (Eds.). (2022). The Routledge handbook of the psychology of language learning and teaching. Routledge.Google Scholar
Greve, W., Koch, M., Rasche, V., & Kersten, K. (2021). Extending the scope of the “cognitive advantage” hypothesis: Multilingual individuals show higher flexibility of goal adjustment. Journal of Multilingual and Multicultural Development, 117.Google Scholar
Grosjean, F. (1989). Neurolinguists, beware! The bilingual is not two monolinguals in one person. Brain and Language, 36(1), 315.Google Scholar
Grosjean, F. (1998). Studying bilinguals: Methodological and conceptual issues. Bilingualism: Language and Cognition, 1, 131149.Google Scholar
Grosjean, F. (2001). The bilingual’s language modes. In Nicol, J. (Ed.), One mind, two languages: Bilingual language processing (pp. 122). Wiley-Blackwell.Google Scholar
Grosjean, F. (2010). Bilingual life and reality. Harvard University Press.Google Scholar
Grosjean, F. (2013). Bilingual and monolingual language modes. In C. A. Chapelle (Ed.), The Encyclopedia of Applied Linguistics, (pp. 489493). Blackwell.Google Scholar
Grossman, M. (2010). Primary progressive aphasia: Clinicopathological correlations. Nature Reviews: Neurology, 6(2), 8897.Google Scholar
Grote, K. S., Russell, E. E., Bates, O., & Gonzalez, R. (2021). Bilingual cognition and growth mindset: A review of cognitive flexibility and its implications for dual-language education. Current Issues in Education, 22(2).Google Scholar
Grote, K. S., Scott, R. M., & Gilger, J. (2021). Bilingual advantages in executive functioning: Evidence from a low-income sample. First Language, 41(6), 677700.Google Scholar
Grundy, J. G. (2020). The effects of bilingualism on executive functions: An updated quantitative analysis. Journal of Cultural Cognitive Science, 4(2), 177199.Google Scholar
Grundy, J. G., & Timmer, K. (2016). Bilingualism and working memory capacity: A comprehensive meta-analysis. Second Language Research, 3, 325340.Google Scholar
Grundy, J. G., Anderson, J. A., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201.Google Scholar
Grundy, J. G., Pavlenko, E., & Bialystok, E. (2020). Bilingualism modifies disengagement of attention networks across the scalp: A multivariate ERP investigation of the IOR paradigm. Journal of Neurolinguistics, 56, 100933.Google Scholar
Guion, S., Flege, J., Liu, S., & Yeni-Komshian, G. (2000). Age of learning effects on the duration of sentences produced in a second language. Applied Psycholinguistics, 21, 205228.Google Scholar
Gullberg, M. (2012). Bilingualism and gesture. In Bhatia, T. K. & Ritchie, W. C. (Eds.), The handbook of bilingualism and multilingualism (pp. 417437). Wiley-Blackwell.Google Scholar
Gullifer, J. W., & Titone, D. (2020). Characterizing the social diversity of bilingualism using language entropy. Bilingualism: Language and Cognition, 23(2), 283294.Google Scholar
Guzmán-Vélez, E., & Tranel, D. (2015). Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives. Neuropsychology, 29, 139150.Google Scholar
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 6573.Google Scholar
Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography – Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413.Google Scholar
Hämäläinen, S., Sairanen, V., Leminen, A., & Lehtonen, M. (2017). Bilingualism modulates the white matter structure of language-related pathways. NeuroImage, 152, 249257.Google Scholar
Hartanto, A., Toh, W. X., & Yang, H. (2019). Bilingualism narrows socioeconomic disparities in executive functions and self-regulatory behaviors during early childhood: Evidence from the early childhood longitudinal study. Child Development, 90(4), 12151235.Google Scholar
Hasselgren, A. (1994). Lexical teddy bears and advanced learners: A study into the ways Norwegian students cope with English vocabulary. International Journal of Applied Linguistics, 4, 237260.Google Scholar
Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.Google Scholar
Haugen, E. (1953). The Norwegian language in America, a study in bilingual behavior (Vol. 1). University of Pennsylvania Press.Google Scholar
Haugen, E. (1973). Bilingualism, language contact and immigrant language in the United States: A research report 1956–1970. In Sebeok, T. (Ed.), Current trends in linguistics (Vol. 10, pp. 505591). Mouton.Google Scholar
Hauser-Grüdl, N., Guerra, L., Witzmann, F., Leray, E., & Müller, N. (2010). Cross-linguistic influence in bilingual children: Can input frequency account for it? Lingua, 120(11), 26382650.Google Scholar
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 24252430.Google Scholar
Hayakawa, S., & Marian, V. (2019). Consequences of multilingualism for neural architecture. Behavioral and Brain Functions, 15(1), 124.Google Scholar
Hebb, D. O. (1949). Organization of behavior. Wiley.Google Scholar
Heller, A. S., & Casey, B. J. (2016). The neurodynamics of emotion: Delineating typical and atypical emotional processes during adolescence. Developmental Science, 19(1), 318.Google Scholar
Heredia, R. R. (1997). Bilingual memory and hierarchical models: A case for language dominance. Current Directions in Psychological Science, 6, 3439.Google Scholar
Heredia, R. R., Blackburn, A. M., & Vega, L. V. (2020). Moderation-mediation effects in bilingualism and cognitive reserve. Frontiers in Psychology, 11, 572555.Google Scholar
Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486502.Google Scholar
Hermans, D., Bongaerts, T., de Bot, K., & Schreuder, R. (1998). Producing words in a foreign language: Can speakers prevent interference from their first language? Bilingualism: Language and Cognition, 1, 213229.Google Scholar
Hernandez, A. E. (2013). The bilingual brain. Oxford University Press.Google Scholar
Hernandez, A. E., & Li, P. (2007). Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133(4), 638.Google Scholar
Hernandez, A. E., Dapretto, M., Mazziotta, J., & Bookheimer, S. (2001). Language switching and language representation in Spanish–English bilinguals: An fMRI study. NeuroImage, 14(2), 510520.Google Scholar
Hernandez, A. E., Martinez, A., & Kohnert, K. (2000). In search of the language switch: An fMRI study of picture naming in Spanish–English bilinguals. Brain and Language, 73(3), 421431.Google Scholar
Hervais-Adelman, A., Moser-Mercer, B., & Golestani, N. (2015). Brain functional plasticity associated with the emergence of expertise in extreme language control. NeuroImage, 114, 264274.Google Scholar
Hervais-Adelman, A., Moser-Mercer, B., Michel, C., & Golestani, N. (2014). fMRI of simultaneous interpretation reveals the neural basis of extreme language control. Cerebral Cortex, 25, 47274739.Google Scholar
Hervais-Adelman, A., Moser-Mercer, B., Murray, M., & Golestani, N. (2017). Cortical thickness increases after simultaneous interpretation training. Neuropsychologia, 98, 212219.Google Scholar
Heynick, F. (1983). Theoretical and empirical investigation into verbal aspects of the Freudian model of dream generation. Unpublished doctoral dissertation, University of Groningen, The Netherlands.Google Scholar
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 6799.Google Scholar
Hicks, N. S. (2021). Exploring systematic orthographic crosslinguistic similarities to enhance foreign language vocabulary learning. Language Teaching Research, 13621688211047353.Google Scholar
Higby, E., Kim, J., & Obler, L. K. (2013). Multilingualism and the brain. Annual Review of Applied Linguistics, 33, 68101.Google Scholar
Hillis, A., Wityk, R., & Tuffiash, E. (2001). Hypoperfusion of Wernicke‘s area predicts severity of semantic deficit in acute stroke. Annals of Neurology, 50, 561566.Google Scholar
Hinckley, J. (2003). Picture naming treatment in aphasia yields greater improvement in L1. Brain and Language, 87(1), 171172.Google Scholar
Hinton, C., Miyamoto, K., & Della-Chiesa, B. (2008). Brain research, learning, and emotions: Implications for education research, policy, and practice. European Journal of Education, 43(1), 87103Google Scholar
Hirosh, Z., & Degani, T. (2018). Direct and indirect effects of multilingualism on novel language learning: An integrative review. Psychonomic Bulletin & Review, 25(3), 892916.Google Scholar
Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A., Yust, P. K. S., & Suma, K. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26(7), 10711083.Google Scholar
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 13681378.Google Scholar
Hoff, E. (2015). Language development in bilingual children. In Bavin, E. L. & Naigles, L. R. (Eds.), The Cambridge handbook of child language (pp. 483503). Cambridge University Press.Google Scholar
Hoff, E. (2018). Bilingual development in children of immigrant families. Child Development Perspectives, 12(2), 8086.Google Scholar
Hoff, E., & Core, C. (2013). Input and language development in bilingually developing children. Seminars in Speech and Language, 34(4), 215226.Google Scholar
Hoff, E., Core, C., & Shanks, K. F. (2020). The quality of child-directed speech depends on the speaker’s language proficiency. Journal of Child Language, 47(1), 132145.Google Scholar
Hoff, E., Core, C., Place, S., Rumiche, R., Señor, M., & Parra, M. (2012). Dual language exposure and early bilingual development. Journal of Child Language, 39(1), 127.Google Scholar
Hohenstein, J., Eisenberg, A., & Naigles, L. (2006). Is he floating across or crossing afloat? Cross-influence of L1 and L2 in Spanish-English bilingual adults. Bilingualism: Language and Cognition, 9, 249261.Google Scholar
Höhle, B., Bijeljac-Babic, R., & Nazzi, T. (2020). Variability and stability in early language acquisition: Comparing monolingual and bilingual infants’ speech perception and word recognition. Bilingualism: Language and Cognition, 23, 5671.Google Scholar
Holland, A, Greenhouse, J., Fromm, D., & Swindell, C. (2014). Predictors of language restitution following stroke: A multivariate analysis. Journal of Speech and Hearing Research, 32, 232238.Google Scholar
Holleman, G. A., Hooge, I. T., Kemner, C., & Hessels, R. S. (2020). The ‘real-world approach’ and its problems: A critique of the term ecological validity. Frontiers in Psychology, 11, 721.Google Scholar
Holtzheimer, P., Fawaz, W., Wilson, C., & Avery, D. (2005). Repetitive transcranial magnetic stimulation may induce language switching in bilingual patients. Brain and Language, 94(3), 274277.Google Scholar
Hörder, S. (2018), The correlation of early multilingualism and language aptitude. In Reiterer, S. M. (Ed.). Exploring language aptitude: Views from psychology, the language sciences, and cognitive neuroscience (pp. 277304). Springer.Google Scholar
Hoshino, N., & Kroll, J. (2008). Cognate effects in picture naming: Does cross-language activation survive a change of script? Cognition, 106, 501511.Google Scholar
Hu, R. (2016). The age factor in second language learning. Theory and Practice in Language Studies, 6(11), 21642168.Google Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sinauer Associates.Google Scholar
Hull, R., & Vaid, J. (2006). Laterality and language experience. Laterality, 11, 436464.Google Scholar
Huston, A. C., & Bentley, A. C. (2010). Human development in societal context. Annual Review of Psychology, 61, 411437.Google Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Research, 163(2), 195205.Google Scholar
Huttenlocher, P. R. (2009). Neural plasticity: The effects of environment on the development of the cerebral cortex. Harvard University Press.Google Scholar
iLanguages.org (2023). Multilingual people. Retrieved on May 8, 2023 from https://ilanguages.org/bilingual.php.Google Scholar
Illes, J., Francis, W., Desmond, J., Gabrieli, J., Glover, G., Poldrack, R., Lee, C., & Wagner, A. (1999). Convergent cortical representation of semantic processing in bilinguals. Brain and Language, 70(3), 347363.Google Scholar
Indefrey, P. (2006). A meta-analysis of hemodynamic studies on first and second language processing: Which suggested differences can we trust and what do they mean? Language Learning, 56, 279304.Google Scholar
Isel, F., Baumgaertner, A., Thrän, J., Meisel, J. M., & Büchel, C. (2010). Neural circuitry of the bilingual mental lexicon: Effect of age of second language acquisition. Brain and Cognition, 72(2), 169180.Google Scholar
Itakura, H. (2002). Gender and pragmatic transfer in topic development. Language, Culture, and Curriculum, 15, 161183.Google Scholar
Ivanova, I., & Costa, A. (2008). Does bilingualism hamper lexical access in speech production? Acta Psychologica, 127(2), 277288.Google Scholar
Iyer, G. K., Alladi, S., Bak, T. H., Shailaja, M., Mamidipudi, A., Rajan, A., … & Kaul, S. (2014). Dementia in developing countries: Does education play the same role in India as in the West? Dementia & Neuropsychologia, 8, 132140.Google Scholar
Jacobs, B., Schall, M., & Scheibel, A. (1993). A quantitative dendritic analysis of Wernicke’s area in humans. II. Gender, hemispheric, and environmental factors. Journal of Comparative Neurology, 327(1), 97111.Google Scholar
Jared, D., Pei Yun Poh, R., & Paivio, A. (2013). L1 and L2 picture naming in Mandarin-English bilinguals: A test of bilingual dual coding theory. Bilingualism: Language and Cognition, 16, 383396.Google Scholar
Jarvis, S. (2002). Topic continuity in L2 English article use. Studies in Second Language Acquisition, 24, 387418.Google Scholar
Jarvis, S. (2003). Probing the effects of the L2 on the L1: A case study. In Cook, V. (Ed.), Effects of the second language on the first (pp. 81102). Multilingual Matters.Google Scholar
Jarvis, S., & Pavlenko, A. (2008). Crosslinguistic influence in language and cognition. Routledge.Google Scholar
Jasińska, K. K., & Petitto, L. A. (2014). Development of neural systems for reading in the monolingual and bilingual brain: New insights from functional near infrared spectroscopy neuroimaging. Developmental Neuropsychology, 39(6), 421439.Google Scholar
Jiang, N. (1999). Testing processing explanations for the asymmetry in masked cross-language priming. Bilingualism: Language and Cognition, 2, 5975.Google Scholar
Jiang, N. (2002). Form-meaning mapping in vocabulary acquisition in a second language. Studies in Second Language Acquisition, 24, 617637.Google Scholar
Jiang, N., & Forster, K. (2001). Cross-language priming asymmetries in lexical decision and episodic recognition. Journal of Memory and Language, 4, 3251.Google Scholar
Jiménez, T. C., Filippini, A. L., & Gerber, M. M. (2006). Shared reading within Latino families: An analysis of reading interactions and language use. Bilingual Research Journal, 30(2), 431452.Google Scholar
Johnson, A., Valachovic, A., & George, K. (1998). Speech-language pathology practice in the acute care setting: A consultative approach. In Johnson, F. & Jacobson, B. (Eds.), Medical speech-language pathology: A practitioner’s guide (pp. 96130). Thieme.Google Scholar
Johnson, J., & Newport, E. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21(1), 6099.Google Scholar
Jones, G., & Rowland, C. F. (2017). Diversity not quantity in caregiver speech: Using computational modeling to isolate the effects of the quantity and the diversity of the input on vocabulary growth. Cognitive Psychology, 98, 121.Google Scholar
Jones, P. E. (1995). Contradictions and unanswered questions in the Genie case: A fresh look at the linguistic evidence. Language & Communication, 15(3), 261280.Google Scholar
Jung, J. (2005). Issues in acquisitional pragmatics. Working Papers in TESOL and Applied Linguistics, 2(3), 1–34.Google Scholar
Junqué, C., Vendrell, P., & Vendrell-Brucet, J. (1989). Differential recovery in naming in bilingual aphasics. Brain and Language, 36, 1622.Google Scholar
Jylkkä, J., Soveri, A., Laine, M., & Lehtonen, M. (2020). Assessing bilingual language switching behavior with Ecological Momentary Assessment. Bilingualism: Language and Cognition, 23(2), 309322.Google Scholar
Kałamała, P., Szewczyk, J., Chuderski, A., Senderecka, M., & Wodniecka, Z. (2020). Patterns of bilingual language use and response inhibition: A test of the adaptive control hypothesis. Cognition, 204, 104373.Google Scholar
Kaplan, R. (1966). Cultural thought patterns in inter-cultural education. Language Learning, 16, 120.Google Scholar
Karbe, H., Thiel, A., Weber-Luxenburger, G., Herholz, K., Kessler, J., & Heiss, W. (1998). Brain plasticity in poststroke aphasia: What is the contribution of the right hemisphere? Brain and Language, 64, 215230.Google Scholar
Karim, K., & Nassaji, H. (2013). First language transfer in second language writing: An examination of current research. Iranian Journal of Language Teaching Research, 1(1), 117134.Google Scholar
Keels, M. (2009). Ethnic group differences in early head start parents’ parenting beliefs and practices and links to children’s early cognitive development. Early Childhood Research Quarterly, 24(4), 381397.Google Scholar
Kellerman, E. (1995). Crosslinguistic influence: Transfer to nowhere? Annual Review of Applied Linguistics, 15, 125150.Google Scholar
Kellerman, E., & Sharwood Smith, M. (Eds.). (1986). Crosslinguistic influence in second language acquisition. Pergamon.Google Scholar
Kelly, A. C., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., Marguliesm, D. S., Castellanos, F. X., & Milham, M. P. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3), 640657.Google Scholar
Kersten, K., & Winsler, A. (Eds.). (2022). Understanding variability in second language acquisition, bilingualism, and cognition: A multi-layered perspective. Taylor & Francis.Google Scholar
Keys, K. (2002). First language influence on the spoken English of Brazilian students of EFL. ELT Journal, 56, 4146.Google Scholar
Khachatryan, E., Vanhoof, G., Beyens, H., Goeleven, A., Thijs, V., & Van Hulle, M. (2016). Language processing in bilingual aphasia: A new insight into the problem. Wiley Interdisciplinary Reviews: Cognitive Science, 7, 180196.Google Scholar
Khamis, R., Venkert-Olenik, D., & Gil, M. (1996). Bilingualism in aphasia: The effect of L2 treatment on language performance in L1. Journal of Speech, Language and Hearing Research, 19, 7382.Google Scholar
Kheder, S., & Kaan, E. (2021). Cognitive control in bilinguals: Proficiency and code-switching both matter. Cognition, 209, 104575.Google Scholar
Kidd, E., Donnelly, S., & Christiansen, M. H. (2018). Individual differences in language acquisition and processing. Trends in Cognitive Sciences, 22(2), 154169.Google Scholar
Kim, K., Relkin, N., Lee, K., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388(6638), 171174.Google Scholar
Kim, S., Jeon, S. G., Nam, Y., Kim, H. S., Yoo, D., Moon, M. (2019). Bilingualism for dementia: Neurological mechanisms associated with functional and structural changes in the brain. Frontiers in Neuroscience, 13, 1224.Google Scholar
Kiran, S., & Iakupova, R. (2011). Understanding the relationship between language proficiency, language impairment and rehabilitation: Evidence from a case study. Clinical Linguistics & Phonetics, 25(6–7), 565583.Google Scholar
Kiran, S., & Roberts, P. (2010). Semantic feature analysis treatment in Spanish-English and French-English bilingual aphasia. Aphasiology, 24(2), 231261.Google Scholar
Kiran, S., & Thompson, C. (2019). Neuroplasticity of language networks in aphasia: Advances, updates, and future challenges. Frontiers in Neurology, 10, 295.Google Scholar
Kiran, S., Sandberg, C., Gray, T., Ascenso, E., & Kester, E. (2013). Rehabilitation in bilingual aphasia: Evidence for within- and between-language generalization. American Journal of Speech-Language Pathology, 22(2), 298309.Google Scholar
Kirsch, C., & Duarte, J. (Eds.). (2020). Multilingual approaches for teaching and learning: From acknowledging to capitalising on multilingualism in European mainstream education. Routledge.Google Scholar
Kirsner, K., Brown, H., Abrol, S., Chadha, N., & Sharma, N. (1980). Bilingualism and lexical representation. Quarterly Journal of Experimental Psychology, 32(4), 585594.Google Scholar
Kishiyama, M. M., Boyce, W. T., Jimenez, A. M., Perry, L. M., & Knight, R. T. (2009). Socioeconomic disparities affect prefrontal function in children. Journal of Cognitive Neuroscience, 21(6), 11061115.Google Scholar
Klein, D., Milner, B., Zatorre, R., Meyer, E., & Evans, A. (1995). The neural substrates underlying word generation: A bilingual functional-imaging study. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 28992903.Google Scholar
Klein, D., Milner, B., Zatorre, R., Zhao, V., & Nikelski, J. (1999). Cerebral organization in bilinguals: A PET study of Chinese–English verb generation. NeuroReport, 10, 28412846.Google Scholar
Klein, D., Zatorre, R., Milner, B., Meyer, E., & Evans, A. (1994). Left putaminal activation when speaking a second language: Evidence from PET. NeuroReport, 5(17), 22952297.Google Scholar
Knoph, M. (2013). Language intervention in Arabic-English bilingual aphasia: A case study. Aphasiology, 27, 14401458.Google Scholar
Knoph, M., Simonsen, H., & Lind, M. (2017). Cross-linguistic transfer effects of verb-production therapy in two cases of multilingual aphasia. Aphasiology, 31(12), 14821509.Google Scholar
Koda, K. (2005). Learning to read across writing systems: Transfer, metalinguistic awareness, and second language reading development. In Cook, V. (Ed.), Second language writing systems (pp. 311334). Multilingual Matters.Google Scholar
Koda, K. (2008). Impacts of prior literacy experience on learning to read in a second language. In Koda, K. & Zehler, A. (Eds.), Learning to read across languages: Cross-linguistic relationships in first- and second-language literacy development (pp. 6896). Routledge.Google Scholar
Kohnert, K. (2004). Cognitive and cognate-based treatments for bilingual aphasia: A case study. Brain and Language, 91(3), 294302.Google Scholar
Kohnert, K. (2009). Cross-language generalization following treatment in bilingual speakers with aphasia: A review. Seminars in Speech and Language, 30(3), 174186.Google Scholar
Köpke, B. (2002). Activation thresholds and non-pathological first language attrition. In Fabbro, F. (Ed.), Advances in the neurolinguistics of bilingualism (pp. 119142). Forum.Google Scholar
Köpke, B., & Nespoulous, J.-L. (2006). Working memory performance in expert and novice interpreters. Interpreting, 8(1), 123.Google Scholar
Korenar, M., Treffers-Daller, J., & Pliatsikas, C. (2022). Two languages in one mind: Insights into cognitive effects of bilingualism from usage-based approaches. Naše Řeč, 106(1), 2446.Google Scholar
Kovács, Á. M., & Mehler, J. (2009). Flexible learning of multiple speech structures in bilingual infants. Science, 325(5940), 611612.Google Scholar
Kovelman, I., Shalinsky, M. H., Berens, M. S., & Petitto, L. A. (2008). Shining new light on the brain’s “bilingual signature”: A functional near infrared spectroscopy investigation of semantic processing. Neuroimage, 39(3), 14571471.Google Scholar
Krashen, S. D. (1976). Formal and informal linguistic environments in language acquisition and language learning. Tesol Quarterly, 10(2), 157168.Google Scholar
Kreiner, H., & Degani, T. (2015). Tip-of-the-tongue in a second language: The effects of brief first-language exposure and long-term use. Cognition, 137, 106114.Google Scholar
Kremin, L. V., & Byers-Heinlein, K. (2021). Why not both? Rethinking categorical and continuous approaches to bilingualism. International Journal of Bilingualism, 25(6), 15601575.Google Scholar
Kroll, J. (2008). Juggling two languages in one mind. Psychological Science Agenda, American Psychological Association, 22(1).Google Scholar
Kroll, J. (2017). The bilingual lexicon: A window into language dynamics and cognition. In Libben, M., Goral, M., & Libben, G. (Eds.), Bilingualism: A framework for understanding the mental lexicon (pp. 2748). Benjamins.Google Scholar
Kroll, J., & de Groot, A. (1997). Lexical and conceptual memory in the bilingual: Mapping form to meaning in two languages. In de Groot, A. & Kroll, J. (Eds.), Tutorials in bilingualism: Psycholinguistic perspectives (pp. 169199). Erlbaum.Google Scholar
Kroll, J., & Mendoza, G. A. (2022). Bilingualism: A cognitive and neural view of dual language experience. In Oxford research encyclopedias of psychology, (pp. 1–21). Oxford University Press.Google Scholar
Kroll, J., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33, 149174.Google Scholar
Kroll, J., & Tokowicz, N. (2005). Models of bilingual representation and processing: Looking back and to the future. Oxford University Press.Google Scholar
Kroll, J. F., Bobb, S. C., Misra, M., & Guo, T. (2008). Language selection in bilingual speech: Evidence for inhibitory processes. Acta Psychologica, 128(3), 416430.Google Scholar
Kroll, J., Dussias, P. E., Bice, K., & Perrotti, L. (2015). Bilingualism, mind, and brain. Annual Review of Linguistics, 1, 377.Google Scholar
Kroll, J., Dussias, P. E., Bogulski, C. A., & Kroff, J. R. V. (2012). Juggling two languages in one mind: What bilinguals tell us about language processing and its consequences for cognition. Psychology of Learning and Motivation, 56, 229262.Google Scholar
Kroll, J., Michael, E., Tokowicz, N., & Dufour, R. (2002). The development of lexical fluency in a second language. Second Language Research, 18, 137171.Google Scholar
Kroll, J., van Hell, J., Tokowicz, N., & Green, D. (2010). The Revised Hierarchical Model: A critical review and assessment. Bilingualism: Language and Cognition, 13, 373381.Google Scholar
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713727.Google Scholar
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, 100(15), 90969101.Google Scholar
Kuhlen, A. K., Allefeld, C., Anders, S., & Haynes, J.-D. (2015). Towards a multi-brain perspective on communication in dialogue. In Willems, R. M. (Ed.), Cognitive neuroscience of natural language use (pp. 182200). Cambridge University Press.Google Scholar
Kuo, L.-J., & Anderson, R. (2006). Morphological awareness and learning to read: A cross-language perspective. Educational Psychologist, 41, 161180.Google Scholar
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP). Annual Review of Psychology, 62, 621647.Google Scholar
Kutas, M., Moreno, E., & Wicha, N. (2009). Code-switching and the brain. In B. Bullock & A. Toribio (Eds.), The Cambridge handbook of linguistics code-switching (pp. 289306). Cambridge University Press.Google Scholar
Kuzmina, E., Goral, M., Norvik, M., & Weekes, B. (2019). What influences language impairment in bilingual aphasia? A meta-analytic review. Frontiers in Psychology, 10, 445.Google Scholar
La Heij, W., Hooglander, A., Kerling, R., & van der Velden, E. (1996). Nonverbal context effects in forward and backward word translation: Evidence for concept mediation. Journal of Memory and Language, 35, 648665.Google Scholar
Lado, B., Bowden, H. W., Stafford, C., & Sanz, C. (2017). Two birds, one stone, or how learning a foreign language makes you a better language learner. Hispania, 100(3), 361378.Google Scholar
Lado, R. (1957). Linguistics across cultures: Applied linguistics for language teachers. University of Michigan Press.Google Scholar
Laganaro, M., Di Pietro, M., & Schnider, A. (2003). Computerised treatment of anomia in chronic and acute aphasia: An exploratory study. Aphasiology, 17, 709721.Google Scholar
Lai, G., & O’Brien, B. A. (2020). Examining language switching and cognitive control through the adaptive control hypothesis. Frontiers in Psychology, 11, 1171.Google Scholar
Lambert, W. E. (1975). Culture and language as factors in learning and education. In Wolfgang, A. (Ed.), Education of immigrant students: Issues and answers (pp. 5583). Ontario Institute for Studies in Education.Google Scholar
Lambert, W. E. (1980). The social psychology of language: A perspective for the 1980s. In H. Giles, W. Robinson, & P. Smith (Eds.), Language: Social psychological perspectives(pp. 415424). Pergamon.Google Scholar
Lambert, W. E. (1985). Some cognitive and sociocultural consequences of being bilingual. In Alatis, J. E. & Staczek, J. J. (Eds.), Perspectives on bilingualism and bilingual education. Georgetown University Press.Google Scholar
LaPointe, L. (Ed.). (2011). Handbook of aphasia and brain-based cognitive-language disorders. Thieme.Google Scholar
Laska, A., Hellblom, A., Murray, V., Kahan, T., & Von Arbin, M. (2001). Aphasia in acute stroke and relation to outcome. Journal of Internal Medicine, 249(5), 413422.Google Scholar
Laufer, B., & Eliasson, S. (1993). What causes avoidance in L2 learning: L1-L2 differences, L1-L2 similarity, or L2 complexity? Studies in Second Language Acquisition, 15, 3548.Google Scholar
Lauro, J., Core, C., & Hoff, E. (2020). Explaining individual differences in trajectories of simultaneous bilingual development: Contributions of child and environmental factors. Child Development, 91(6), 20632082.Google Scholar
Lazar, R., Speizer, A., Festa, J., Krakauer, J., & Marshall, R. (2008). Variability in language recovery after first-time stroke. Journal of Neurology, Neurosurgery, & Psychiatry, 79, 530534.Google Scholar
Lee, C. (2007). Does horse activate mother? Processing lexical tone in form priming. Language and Speech, 50(1), 101123.Google Scholar
Lee, J. (2000). Analysis of pragmatic speech styles among Korean learners of English: A focus on complaint-apology speech act sequences. Dissertation Abstracts International, 61, 535A.Google Scholar
Lee, Y. Y. (2022). Bilingualism, dementia, and the neurological mechanisms in between: The need for a more critical look into dementia subtypes. Frontiers in Aging Neuroscience, 14, 872508.Google Scholar
Lee, Y. Y., Jang, E., & Choi, W. (2018). L2-L1 translation priming effects in a lexical decision task: Evidence from low proficient Korean-English bilinguals. Frontiers in Psychology, 9, 267.Google Scholar
Legacy, J., Zesiger, P., Friend, M., & Poulin-Dubois, D. (2018). Vocabulary size and speed of word recognition in very young French–English bilinguals: A longitudinal study. Bilingualism: Language and Cognition, 21(1), 137149.Google Scholar
Legault, J., Grant, A., Fang, S. Y., & Li, P. (2019). A longitudinal investigation of structural brain changes during second language learning. Brain and Language, 197, 104661.Google Scholar
Lehtonen, M., Laine, M., Niemi, J., Thomsen, T., Vorobyev, V., & Hugdahl, K. (2005). Brain correlates of sentence translation in Finnish-Norwegian bilinguals. Neuroreport, 16(6), 607610.Google Scholar
Lei, M., Akama, H., & Murphy, B. (2014). Neural basis of language switching in the brain: fMRI evidence from Korean–Chinese early bilinguals. Brain & Language, 138, 1218.Google Scholar
Leivada, E., Westergaard, M., Duñabeitia, J. A., & Rothman, J. (2021). On the phantom-like appearance of bilingualism effects on neurocognition: (How) should we proceed? Bilingualism: Language and Cognition, 24(1), 197210.Google Scholar
Leminen, A., Kimppa, L., Leminen, M. M., Lehtonen, M., Mäkelä, J. P., & Shtyrov, Y. (2016). Acquisition and consolidation of novel morphology in human neocortex: A neuromagnetic study. Cortex, 83, 116.Google Scholar
Lenneberg, E. H. (1967). Biological foundations of language. Wiley.Google Scholar
Levelt, W. J. (1993). Speaking: From intention to articulation. MIT.Google Scholar
Levelt, W. J., Praamsma, P., Meyer, A., Helenius, P., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10, 553557.Google Scholar
Li, P., & Grant, A. (2016). Second language learning success revealed by brain networks. Bilingualism: Language and Cognition, 19(4), 657664.Google Scholar
Li, P., Legault, J., & Litcofsky, K. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324.Google Scholar
Li, P., Zhang, F., Yu, A., & Zhao, X. (2020). Language History Questionnaire (LHQ3): An enhanced tool for assessing multilingual experience. Bilingualism: Language and Cognition, 23(5), 938944.Google Scholar
Liao, C., & Chan, S. (2016). Direction matters: Event-related brain potentials reflect extra processing costs in switching from the dominant to the less dominant language. Journal of Neurolinguistics, 40, 7997.Google Scholar
Libben, G., & Schwieter, J. W. (2019). Lexical organization and reorganization in the multilingual mind. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 297312). Wiley-Blackwell.Google Scholar
Libben, G., Goral, M., & Baayen, H. (2017b). Dynamicity and compound processing in bilinguals. In Libben, M., Goral, M., & Libben, G. (Eds.), Bilingualism: A framework for understanding the mental lexicon (pp. 199218). Benjamins.Google Scholar
Libben, M., & Titone, D. (2009). Bilingual lexical access in context: Evidence from eye movements during reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 381390.Google Scholar
Libben, M., Goral, M., & Libben, G. (2017a). The dynamic lexicon: Complex words in bilingual minds. In Libben, M., Goral, M., & Libben, G. (Eds.), Bilingualism: A framework for understanding the mental lexicon (pp. 17). Benjamins.Google Scholar
Lichtheim, L. (1885). On aphasia. Brain, 7, 433484.Google Scholar
Liégeois, F., Baldeweg, T., Connelly, A., Gadian, D., Mishkin, M., & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6, 12301237.Google Scholar
Linck, J. A., Kroll, J. F., & Sunderman, G. (2009). Losing access to the native language while immersed in a second language: Evidence for the role of inhibition in second-language learning. Psychological Science, 20(12), 15071515.Google Scholar
Lindell, A. K. (2006). In your right mind: Right hemisphere contributions to language processing and production. Neuropsychology Review, 16(3), 131148.Google Scholar
Liu, C., de Bruin, A., Jiao, L., Li, Z., & Wang, R. (2021a). Second language learning tunes the language control network: A longitudinal fMRI study. Language, Cognition and Neuroscience, 36(4), 462473.Google Scholar
Liu, C., Jiao, L., Li, Z., Timmer, K., & Wang, R. (2021b). Language control network adapts to second language learning: A longitudinal rs-fMRI study. Neuropsychologia, 150, 107688.Google Scholar
Liu, C., Jiao, L., Timmer, K., & Wang, R. (2021c). Structural brain changes with second language learning: A longitudinal voxel-based morphometry study. Brain and Language, 222, 105015.Google Scholar
Liu, C., Yang, C. L., Jiao, L., Schwieter, J. W., Sun, X., & Wang, R. (2019). Training in language switching facilitates bilinguals’ monitoring and inhibitory control. Frontiers in Psychology, 10, 1839.Google Scholar
Liu, H., & Cao, F. (2016). L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain and Language, 159, 6073.Google Scholar
Long, M. R., Vega-Mendoza, M., Rohde, H., Sorace, A., & Bak, T. H. (2020). Understudied factors contributing to variability in cognitive performance related to language learning. Bilingualism: Language and Cognition, 23(4), 801811.Google Scholar
Lorenzen, B., & Murray, L. (2008). Bilingual aphasia: A theoretical and clinical review. The American Journal of Speech-Language Pathology, 17, 299317.Google Scholar
Lowie, W., & Verspoor, M. (2004). Input versus transfer?: The role of frequency and similarity in the acquisition of L2 prepositions. In Achard, M. & Niemeier, S. (Eds.), Cognitive linguistics, second language acquisition, and foreign language teaching (pp. 7794). de Gruyter.Google Scholar
Lucas, T., McKhann, G., & Ojemann, G. (2004). Functional separation of languages in the bilingual brain: A comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. Journal of Neurosurgery, 101, 449457.Google Scholar
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.Google Scholar
Luk, G., & Bialystok, E. (2013). Bilingualism is not a categorical variable: Interaction between language proficiency and usage. Journal of Cognitive Psychology, 25(5), 605621.Google Scholar
Luk, G., & Grundy, J. G. (2023). The importance of recognizing social contexts in research on bilingualism. Bilingualism: Language and Cognition, 26(1), 25–27.Google Scholar
Luk, G., & Rothman, J. (2022). Experience-based individual differences modulate language, mind, and brain outcomes in multilinguals. Brain and Language, 228, 105107.Google Scholar
Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74(3), 347357.Google Scholar
Luk, G., Bialystok, E., Craik, F. I., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 16808–16813.Google Scholar
Luk, G., Green, D., Abutalebi, J., & Grady, C. (2012). Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27(10), 14791488.Google Scholar
Luo, X., Cheung, H., Bel, D., Li, L., Chen, L., & Mo, L. (2013). The roles of semantic sense and form-meaning connection in translation priming. Psychological Record, 63, 193208.Google Scholar
MacDonald, M. (1999). Distributional information in language comprehension, production, and acquisition: Three puzzles and a moral. In MacWhinney, B. (Ed.), The emergence of language (pp. 177196). Erlbaum.Google Scholar
MacDonald, M. (2013). How language production shapes language form and comprehension. Frontiers in Psychology, 4(226), 116.Google Scholar
Macnamara, J., & Kushnir, S. (1971). Linguistic independence of bilinguals: The input switch. Journal of Verbal Learning and Verbal Behavior, 10(5), 480487.Google Scholar
MacWhinney, B., Bates, E., & Kliegl, R. (1984). Cue validity and sentence interpretation in English, German, and Italian. Journal of Verbal Learning and Verbal Behavior, 23, 127150.Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 43984403.Google Scholar
Malcolm, T., Lerman, A., Korytkowska, M., Vonk, J., & Obler, L. (2019). Primary progressive aphasia in bilinguals and multilinguals. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 572591). Wiley-Blackwell.Google Scholar
Malins, J., & Joanisse, M. (2010). The roles of tonal and segmental information in Mandarin spoken word recognition: An eyetracking study. Journal of Memory and Language, 62(4), 407420.Google Scholar
Mamiya, P. C., Richards, T. L., Coe, B. P., Eichler, E. E., & Kuhl, P. K. (2016). Brain white matter structure and COMT gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences, 113(26), 72497254.Google Scholar
Maragnolo, P., Rizzi, C., Peran, P., Piras, F., & Sabatini, U. (2009). Parallel recovery in a bilingual aphasic: A neurolinguistic and fMRI study. Neuropsychology, 23, 405409.Google Scholar
Marian, V. (2008). Bilingual research methods. In Altarriba, J. & Heredia, R. R. (Eds.), An introduction to bilingualism. Principles and processes (pp. 1337). Erlbaum.Google Scholar
Marian, V., & Hayakawa, S. (2021). Measuring bilingualism: The quest for a “bilingualism quotient”. Applied Psycholinguistics, 42(2), 527548.Google Scholar
Marian, V., & Spivey, M. (2003). Competing activation in bilingual language processing: Within-and between-language competition. Bilingualism: Language and Cognition, 6(2), 97115.Google Scholar
Mariën, P., Abutalebi, J., Engelborghs, S., & De Deyn, P. P. (2005). Pathophysiology of language switching and mixing in an early bilingual child with subcortical aphasia. Neurocase, 11, 385398.Google Scholar
Markiewicz, R., Mazaheri, A., & Krott, A. (2023). Bilingualism can cause enhanced monitoring and occasional delayed responses in a Flanker task. European Journal of Neuroscience, 57(1), 129–147.Google Scholar
Martin-Rhee, M. M., & Bialystok, E. (2008). The development of two types of inhibitory control in monolingual and bilingual children. Bilingualism: Language and Cognition, 11(1), 8193.Google Scholar
Masek, L. R., McMillan, B. T., Paterson, S. J., Tamis-LeMonda, C. S., Golinkoff, R. M., & Hirsh-Pasek, K. (2021). Where language meets attention: How contingent interactions promote learning. Developmental Review, 60, 112.Google Scholar
Matusevych, Y., Beekhuizen, B., & Stevenson, S. (2018). Crosslinguistic transfer as category adjustment: Modeling conceptual color shift in bilingualism. Proceedings of the Annual Meeting of the Cognitive Science Society, 40, 744749.Google Scholar
McCabe, A., Tamis-LeMonda, C. S., Bornstein, M. H., Brockmeyer Cates, C., Golinkoff, R., Wishard Guerra, A., … & Song, L. (2013). Multilingual children beyond myths and toward best practices. Society for Research in Child Development, 27(4), 136.Google Scholar
McCrory, E., Frith, U., Brunswick, N., & Price, C. (2000). Abnormal functional activation during a simple word repetition task: A PET study of adult dyslexics. Journal of Cognitive Neuroscience, 12, 753762.Google Scholar
McDermott, K. B., Buckner, R. L., Petersen, S. E., Kelley, W. M., & Sanders, A. L. (1999). Set-and code-specific activation in the frontal cortex: An fMRI study of encoding and retrieval of faces and words. Journal of Cognitive Neuroscience, 11(6), 631640.Google Scholar
McLaughlin, B. (1984). Second language acquisition in childhood (Vol. 1). Erlbaum.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Neurolinguistics: Structural plasticity in the bilingual brain. Nature, 431(7010), 757.Google Scholar
Meinzer, M., Obleser, J., Flaisch, T., Eulitz, C., & Rockstroh, B. (2007). Recovery from aphasia as a function of language therapy in an early bilingual patient demonstrated by fMRI. Neuropsychologia, 45(6), 12471256.Google Scholar
Meisel, J. (1989). Early differentiation of languages in bilingual children. In Hyltenstam, K. & Obler, L. (Eds.), Bilingualism across the lifespan: Aspects of acquisition, maturity and loss (pp. 1340). Cambridge University Press.Google Scholar
Meisel, J. (2011). First and second language acquisition: Parallels and differences. Cambridge University Press.Google Scholar
Melby-Lervag, M., & Lervag, A. (2011). Cross-linguistic transfer of oral language, decoding, phonological awareness and reading comprehension: A meta-analysis of the correlational evidence. Journal of Research in Reading, 34(1), 114135.Google Scholar
Melo-Pfeifer, S. (2020). Intercomprehension in the mainstream language classroom at secondary school level: How online multilingual interaction fosters foreign language learning. In C. Kirsch & J. Duarte (Eds.), Multilingual approaches for teaching and learning (pp. 94113). Routledge.Google Scholar
Meltzoff, A. N., Kuhl, P. K., Movellan, J., & Sejnowski, T. J. (2009). Foundations for a new science of learning. Science, 325(5938), 284288.Google Scholar
Merkx, M., Rastle, K., & Davis, M. H. (2011). The acquisition of morphological knowledge investigated through artificial language learning. The Quarterly Journal of Experimental Psychology, 64(6), 12001220.Google Scholar
Mesulam, M., Rogalski, E., Wieneke, C., Hurley, R., Geula, C., … & Weintraub, S. (2014). Primary progressive aphasia and the evolving neurology of the language network. Nature Reviews: Neurology, 10(10), 554569.Google Scholar
Meuter, R., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40(1), 2540.Google Scholar
Meznah, A. (2018). Investigating the negative impact of pragmatic transfer on the acquisition of English pragmatic as perceived by L2 Learners: A review. International Journal of English and Literature, 9(3), 1824.Google Scholar
Michael, E. B., & Gollan, T. H. (2005). Being and becoming bilingual. In J. Kroll & A. de Groot (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 389–407). Oxford University Press.Google Scholar
Miertsch, B., Meisel, J., & Isel, F. (2009). Non-treated languages in aphasia therapy of polyglots benefit from improvement in the treated language. Journal of Neurolinguistics, 22, 135150.Google Scholar
Miikkulainen, R., & Kiran, S. (2009). Modeling the bilingual lexicon of an individual subject. In Princípe, J. & Miikkulainen, R. (Eds.), Proceedings of the 7th international workshop on advances in self-organizing maps (pp. 191199). Springer-Verlag.Google Scholar
Miller Amberber, A. (2012). Language intervention in French-English bilingual aphasia: Evidence of limited therapy transfer. Journal of Neurolinguistics, 25(6), 588614.Google Scholar
Mion, M., Patterson, K., Acosta-Cabronero, J., Pengas, G., Izquierdo-Garcia, D., Hong, Y., … & Nestor, P. (2010). What the left and right anterior fusiform gyri tell us about semantic memory. Brain, 133(11), 32563268.Google Scholar
Mishra, M., & Abutalebi, J. (Eds.). (2020). Cognitive consequences of bilingualism [Special issue]. Journal of Cultural Cognitive Science, 4(2), 123291.Google Scholar
Mishra, R. K. (2015). Let’s not forget about language proficiency and cultural variations while linking bilingualism to executive control. Bilingualism: Language and Cognition, 18(1), 3940.Google Scholar
Mitchell, D., Cuetos, F., & Corley, M. (1992). Statistical versus linguistic determinants of parsing bias: Cross-linguistic evidence. Paper presented at the Fifth Annual CUNY conference on Human Sentence Processing, New York, NY.Google Scholar
Mitchell, D., Cuetos, F., Corley, M., & Brysbaert, M. (1995). Exposure-based models of human parsing: Evidence for the use of coarse-grained (non-lexical) statistical records. Journal of Psycholinguistic Research, 24, 469488.Google Scholar
Miura, K., Nakamura, Y., Miura, F., Yamada, I., Takahashi, R., … & Mizobata, T. (1999). Functional magnetic resonance imaging to word generation task in a patient with Broca’s aphasia. Journal of Neurolinguistics, 246, 939942.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100.Google Scholar
Mohades, S. G., Van Schuerbeek, P., Rosseel, Y., Van De Craen, P., Luypaert, R., & Baeken, C. (2015). White-matter development is different in bilingual and monolingual children: A longitudinal DTI study. PLoS One, 10(2), e0117968.Google Scholar
Monnier, C., Boiché, J., Armandon, P., Baudoin, S., & Bellocchi, S. (2022). Is bilingualism associated with better working memory capacity? A meta-analysis. International Journal of Bilingual Education and Bilingualism, 25(6), 22292255.Google Scholar
Montanari, S. (2019). Facilitated language learning in multilinguals. In Montanari, S. & Quay, S. (Eds.), Multidisciplinary perspectives on multilingualism: The fundamentals (pp. 302324). De Gruyter.Google Scholar
Morales, J., Padilla, F., Gómez-Ariza, C., & Bajo, M. T. (2015). Simultaneous interpretation selectively influences working memory and attentional networks. Acta Psychologica, 155, 8291.Google Scholar
Moreno, E. M., Federmeier, K. D., & Kutas, M. (2002). Switching languages, switching palabras (words): An electrophysiological study of code switching. Brain and Language, 80, 188207.Google Scholar
Mosca, M., & de Bot, K. (2017). Bilingual language switching: Production vs. recognition. Frontiers in Psychology, 8(934), 118.Google Scholar
Mouthon, M., Annoni, J. M., & Khateb, A. (2013). The bilingual brain. Swiss Archives of Neurology and Psychiatry, 164(8), 266273.Google Scholar
Mukadam, N., Jichi, F., Green, D., & Livingston, G. (2018). The relationship of bilingualism to cognitive decline: The Australian longitudinal study of ageing. International Journal of Geriatric Psychiatry, 33(2), e249–e256.Google Scholar
Muysken, P. (2000). Bilingual speech: A typology of code-mixing. Cambridge University Press.Google Scholar
Naatanen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Livonen, A., … & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385, 432434.Google Scholar
Nacar Garcia, L., Guerrero-Mosquera, C., Colomer, M., & Sebastian-Galles, N. (2018). Evoked and oscillatory EEG activity differentiates language discrimination in young monolingual and bilingual infants. Scientific Reports, 8(1), 19.Google Scholar
Nadesan, M. H. (2002). Engineering the entrepreneurial infant: Brain science, infant development toys, and governmentality. Cultural Studies, 16(3), 401432.Google Scholar
Naeem, K., Filippi, R., Periche-Tomas, E., Papageorgiou, A., & Bright, P. (2018). The importance of socioeconomic status as a modulator of the bilingual advantage in cognitive ability. Frontiers in Psychology, 9, 1818.Google Scholar
Nakayama, M., Ida, K., & Lupker, S. (2016). Cross-script L2-L1 noncognate translation priming in lexical decision depends on L2 proficiency: Evidence from Japanese-English bilinguals. Bilingualism: Language and Cognition, 19(5), 10011022.Google Scholar
Nakayama, M., Lupker, S., & Itaguchi, Y. (2018). An examination of L2-L1 noncognate translation priming in the lexical decision task: Insights from distributional and frequency-based analyses. Bilingualism: Language and Cognition, 21(2), 265277.Google Scholar
National Aphasia Association. (2020). 2020 aphasia awareness survey. Retrieved on May 19, 2020 from www.aphasia.org/2020-aphasia-awareness-survey.Google Scholar
National Institute on Deafness and Other Communication Disorders. (2015). NIDCD fact sheet: Aphasia. Retrieved on May 19, 2020 from www.nidcd.nih.gov/sites/default/files/Documents/health/voice/Aphasia6-1-16.pdf.Google Scholar
Navarro-Torres, C. A., Beatty-Martínez, A. L., Kroll, J. F., & Green, D. W. (2021). Research on bilingualism as discovery science. Brain and Language, 222, 105014.Google Scholar
Nichols, E., & Joanisse, M. F. (2016). Functional activity and white matter microstructure reveal the independent effects of age of acquisition and proficiency on second-language learning. NeuroImage, 143, 1525.Google Scholar
Nicoladis, E. (2008). Bilingual and language cognitive development. In Altarriba, J. & Heredia, R. R. (Eds.), An introduction to bilingualism. Principles and processes (pp. 167181). Erlbaum.Google Scholar
Nicoladis, E., & Smithson, L. (2022). Gesture in bilingual language acquisition. In Morgenstern, A. & Goldin-Meadow, S. (Eds.), Gesture in language: Development across the lifespan (pp. 297315). De Gruyter Mouton.Google Scholar
Nicoladis, E., Hui, D., & Wiebe, S. A. (2018). Language dominance and cognitive flexibility in French–English bilingual children. Frontiers in Psychology, 9, 1697.Google Scholar
Nielsen, M., & Haun, D. (2016). Why developmental psychology is incomplete without comparative and cross-cultural perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 17.Google Scholar
Noble, K. G., Houston, S. M., Kan, E., & Sowell, E. R. (2012). Neural correlates of socioeconomic status in the developing human brain. Developmental Science, 15(4), 516527.Google Scholar
Ochs, E., & Schieffelin, B. B. (2011). The theory of language socialization. In Duranti, A., Ochs, E., & Schieffelin, B. B. (Eds.), The handbook of language socialization (pp. 121). Blackwell.Google Scholar
Odlin, T. (1989). Language transfer: Cross-linguistic influence in language learning. Cambridge University Press.Google Scholar
Odlin, T., & Jarvis, S. (2004). Same source, different outcomes: A study of Swedish influence on the acquisition of English in Finland. International Journal of Multilingualism, 1, 123140.Google Scholar
Ojemann, G., & Whitaker, H. (1978) The bilingual brain. Archives of Neurology, 35, 409–412.Google Scholar
Olson, D. J. (2022). The Bilingual Code-Switching Profile (BCSP): Assessing the reliability and validity of the BCSP questionnaire. Linguistic Approaches to Bilingualism. https://doi.org/10.1075/lab.21039.ols.Google Scholar
Ortega, L. (2019). SLA and the study of equitable multilingualism. The Modern Language Journal, 103, 2338.Google Scholar
Ortega, L. (2020). The study of heritage language development from a bilingualism and social justice perspective. Language Learning, 70, 1553.Google Scholar
Osterhout, L., McLaughlin, J., Pitkänen, I., Frenck-Mestre, C., & Molinaro, N. (2006). Novice learners, longitudinal designs, and event-related potentials: A means for exploring the neurocognition of second language processing. Language Learning, 56, 199230.Google Scholar
Ouzia, J., & Filippi, R. (2016). The bilingual advantage in the auditory domain. In Schwieter, J. W. (Ed.), Cognitive control and consequences of multilingualism (pp. 299322). Benjamins.Google Scholar
Paap, K. (2023). The bilingual advantage in executive functioning hypothesis: How the debate provides insight into psychology’s replication crisis. Routledge.Google Scholar
Paap, K. R., & Greenberg, Z. I. (2013). There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66(2), 232258.Google Scholar
Paap, K. R., & Sawi, O. (2014). Bilingual advantages in executive functioning: Problems in convergent validity, discriminant validity, and the identification of the theoretical constructs. Frontiers in Psychology, 5, 962.Google Scholar
Paap, K. R., & Sawi, O. (2016). The role of test-retest reliability in measuring individual and group differences in executive functioning. Journal of Neuroscience Methods, 274, 8193.Google Scholar
Paap, K. R., Anders-Jefferson, R., Mason, L., Alvarado, K., & Zimiga, B. (2018). Bilingual advantages in inhibition or selective attention: More challenges. Frontiers in Psychology, 9, 1409.Google Scholar
Paap, K. R., Darrow, J., Dalibar, C., & Johnson, H. A. (2015a). Effects of script similarity on bilingual advantages in executive control are likely to be negligible or null. Frontiers in Psychology, 5, 1539.Google Scholar
Paap, K. R., Johnson, H. A., & Sawi, O. (2015b). Bilingual advantages in executive functioning either do not exist or are restricted to very specific and undetermined circumstances. Cortex, 69, 265278.Google Scholar
Paap, K. R., Johnson, H. A., & Sawi, O. (2016). Should the search for bilingual advantages in executive functioning continue. Cortex, 74(4), 305314.Google Scholar
Paivio, A. (1986). Mental representations: A dual coding approach. Oxford University Press.Google Scholar
Paivio, A. (2010). Dual coding theory and the mental lexicon. The Mental Lexicon, 5, 205230.Google Scholar
Pallier, C., Dehaene, S., Poline, J. B., LeBihan, D., Argenti, A. M., Dupoux, E., & Mehler, J. (2003). Brain imaging of language plasticity in adopted adults: Can a second language replace the first? Cerebral Cortex, 13(2), 155161.Google Scholar
Palomar-García, M. Á., Bueichekú, E., Avila, C., Sanjuán, A., Strijkers, K., Ventura-Campos, N., & Costa, A. (2015). Do bilinguals show neural differences with monolinguals when processing their native language? Brain and Language, 142, 3644.Google Scholar
Papageorgiou, A., Bright, P., Periche Tomas, E., & Filippi, R. (2019). Evidence against a cognitive advantage in the older bilingual population. Quarterly Journal of Experimental Psychology, 72(6), 13541363.Google Scholar
Paquot, M. (2017). L1 frequency in foreign language acquisition: Recurrent word combinations in French and Spanish EFL learner writing. Second Language Research, 33(1), 1332.Google Scholar
Paradis, J. (2001). Do bilingual two-year-olds have separate phonological systems? The International Journal of Bilingualism, 5(1), 1938.Google Scholar
Paradis, J. (2011). Individual differences in child English second language acquisition: Comparing child-internal and child-external factors. Linguistic Approaches to Bilingualism, 1(3), 213237.Google Scholar
Paradis, J. (2016). The development of English as a second language with and without specific language impairment: Clinical implications. Journal of Speech, Language, and Hearing Research, 59(1), 171182.Google Scholar
Paradis, J. (2019). English second language acquisition from early childhood to adulthood: The role of age, first language, cognitive, and input factors. Proceedings of the BUCLD, 43, 1126.Google Scholar
Paradis, J., & Navarro, S. (2003). Subject realization and crosslinguistic interference in the bilingual acquisition of Spanish and English: What is the role of the input? Journal of Child Language, 30, 371393.Google Scholar
Paradis, J., Rusk, B., Duncan, T. S., & Govindarajan, K. (2017). Children’s second language acquisition of English complex syntax: The role of age, input, and cognitive factors. Annual Review of Applied Linguistics, 37, 148167.Google Scholar
Paradis, M. (1977). Bilingualism and aphasia. In Whitaker, H. & Whitaker, H. (Eds.), Studies in neurolinguistics, vol. 3 (pp. 65121). Academic Press.Google Scholar
Paradis, M. (1987). Bilingual aphasia test. Erlbaum.Google Scholar
Paradis, M. (1990). Language lateralization in bilinguals: Enough already! Brain and Language, 39, 576586.Google Scholar
Paradis, M. (2000). Prerequisites for a study of neurolinguistic processes involved in simultaneous interpreting. A synopsis. In Englund Dimitrova, B. & Hyltenstam, K. (Eds.), Language processing and simultaneous interpreting: Interdisciplinary perspectives (pp. 1724). Benjamins.Google Scholar
Paradis, M. (2001). Bilingual and polyglot aphasia. In Berndt, R. (Ed.), Handbook of neuropsychology (2nd ed.) (pp. 6991). Elsevier.Google Scholar
Paradis, M. (2003). The bilingual Loch Ness Monster raises its non-asymmetric head again – Or, why bother with such cumbersome notions as validity and reliability? Comments on Evans et al. (2002). Brain and Language, 87, 441448.Google Scholar
Paradis, M. (2004). A neurolinguistic theory of bilingualism (Vol. 18). Benjamins.Google Scholar
Paradis, M. (2011). Principles underlying the Bilingual Aphasia Test (BAT) and its uses. Clinical Linguistics & Phonetics, 25(6–7), 427443.Google Scholar
Paradis, M., & Libben, G. (1987). The assessment of bilingual aphasia. Erlbaum.Google Scholar
Parker Jones, Ō., Green, D. W., Grogan, A., Pliatsikas, C., Filippopolitis, K., Ali, N., … & Price, C. J. (2012). Where, when, and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cerebral Cortex, 22(4), 892902.Google Scholar
Parkinson, B., Raymer, A., Chang, Y-L., Fitzgerald, D., & Crosson, B. (2009). Lesion characteristics related to treatment improvement in object and action naming for patients with chronic aphasia. Brain and Language, 110(2), 6170.Google Scholar
Pavlenko, A. (2009). Conceptual representation in the bilingual lexicon and second language vocabulary learning. In Pavlenko, A. (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 125160). Multilingualism Matters.Google Scholar
Pavlenko, A., & Driagina, V. (2007). Russian emotion vocabulary in American learners’ narratives. Modern Language Journal, 91, 213234.Google Scholar
Pavlenko, A., & Jarvis, S. (2002). Bidirectional transfer. Applied Linguistics, 23, 190214.Google Scholar
Pavlenko, A., & Malt, B. C. (2011). Kitchen Russian: Cross-linguistic differences and first-language object naming by Russian–English bilinguals. Bilingualism: Language and Cognition, 14(1), 1945.Google Scholar
Pavlenko, A., Jarvis, S., Melnyk, S., & Sorokina, A. (2017). Communicative relevance: Color references in bilingual and trilingual speakers. Bilingualism: Language and Cognition, 20, 853866.Google Scholar
Pedersen, P., Jørgensen, H., Nakayama, H., Raaschou, H., & Olsen, T. (1995). Aphasia in acute stroke: Incidence, determinants, and recovery. Annals of Neurology, 38(4), 659666.Google Scholar
Peñaloza, C., & Kiran, S. (2019). Recovery and rehabilitation patterns in bilingual and multilingual aphasia. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 553571). Wiley-Blackwell.Google Scholar
Peñaloza, C., Barrett, K., & Kiran, S. (2020). The influence of pre-stroke proficiency on post-stroke lexical-semantic performance in bilingual aphasia. Aphasiology, 34(10), 12231240.Google Scholar
Penfield, W., & Roberts, L. (1959). Speech and brain mechanisms. Princeton University Press.Google Scholar
Perani, D., & Abutalebi, J. (2015). Bilingualism, dementia, cognitive and neural reserve. Current Opinion in Neurology, 28, 618625.Google Scholar
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15, 202206.Google Scholar
Perani, D., Abutalebi, J., Paulesu, E., Brambati, S., Scifo, P., Cappa, S. F., & Fazio, F. (2003). The role of age of acquisition and language usage in early, high-proficient bilinguals: An fMRI study during verbal fluency. Human Brain Mapping, 19(3), 170182.Google Scholar
Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, E., … & Mehler, J. (1996). Brain processing of native and foreign languages. NeuroReport-International Journal for Rapid Communications of Research in Neuroscience, 7(15), 24392444Google Scholar
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., … & Abutalebi, J. (2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Sciences, 114(7), 16901695.Google Scholar
Perani, D., Paulesu, E., Sebastián-Gallés, N., Dupoux, E., Dehaene, S., Bertinatti, V., Cappa, S., Fazio, F., & Mehler, J. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.CrossRefGoogle ScholarPubMed
Peristeri, E., & Tsapkini, K. (2011). A comparison of the BAT and BDAE-SF batteries in determining the linguistic ability in Greek-speaking patients with Broca’s aphasia. Clinical Linguistics & Phonetics, 25(6–7), 464479.Google Scholar
Peyer, E., Kaiser, I., & Berthele, R. (2010). The multilingual reader: Advantages in understanding and decoding German sentence structure when reading German as an L3. International Journal of Multilingualism, 7(3), 225239.Google Scholar
Pfenninger, S., Festman, J., & Singleton, D. (2023). Second language acquisition and lifelong learning: An introduction and methodological guide. Routledge.Google Scholar
Pham, G., Donovan, D., Dam, Q., & Contant, A. (2018). Learning words and definitions in two languages: What promotes cross-language transfer? Language Learning, 68(1), 206223.Google Scholar
Pika, S., Nicoladis, E., & Marentette, P. F. (2006). A cross-cultural study on the use of gestures: Evidence for cross-linguistic transfer? Bilingualism: Language and Cognition, 9(3), 319327.Google Scholar
Pinker, S. (1994). The language instinct: The new science of language and mind. Penguin.Google Scholar
Pisoni, D., Aslin, R., Perey, A., & Hennessy, B. (1982). Some effects of laboratory training on identification and discrimination of voicing contrasts in stop consonants. Journal of Experimental Psychology: Human Perception and Performance, 8, 297314.Google Scholar
Pitres, A. (1895a). Aphasia in polyglots. In Paradis, M. (Ed.) (1983), Readings on aphasia in bilinguals and polyglots (pp. 2649). Marcel-Dieder.Google Scholar
Pitres, A. (1895b). Étude sur l’aphasie chez les polyglottes. Revue de médicine, 15, 873899.Google Scholar
Pizzamiglio, L., Mammucari, A., & Razzano, C. (1985). Evidence for sex differences in brain organization in recovery in aphasia. Brain and Language, 25(2), 213223.Google Scholar
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The dynamic restructuring model. Bilingualism: Language and Cognition, 23(2), 459471.Google Scholar
Pliatsikas, C., DeLuca, V., & Voits, T. (2020). The many shades of bilingualism: Language experiences modulate adaptations in brain structure. Language Learning, 70(S2), 133149.Google Scholar
Pliatsikas, C., DeLuca, V., Moschopoulou, E., & Saddy, J. D. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222(4), 17851795.Google Scholar
Pliatsikas, C., Meteyard, L., Veríssimo, J., DeLuca, V., & Shattuck, K. (2020). The effect of bilingualism on brain development from early childhood to young adulthood. Brain Structure and Function, 225, 21312152.Google Scholar
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. Proceedings of the National Academy of Sciences, 112(5), 13341337.Google Scholar
Pliatsikas, C., Pereira Soares, S. M., Voits, T., DeLuca, V., & Rothman, J. (2021). Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain. Scientific Reports, 11(1), 112.CrossRefGoogle ScholarPubMed
Poarch, G. J., & Krott, A. (2019). A bilingual advantage? An appeal for a change in perspective and recommendations for future research. Behavioral Sciences, 9(9), 95.Google Scholar
Poarch, G. J., & van Hell, J. G. (2012a). Executive functions and inhibitory control in multilingual children: Evidence from second-language learners, bilinguals, and trilinguals. Journal of Experimental Child Psychology, 113(4), 535551.Google Scholar
Poarch, G., & van Hell, J. (2012b). Cross-language activation in children’s speech production: Evidence from second language learners, bilinguals, and trilinguals. Journal of Experimental Child Psychology, 111, 419438.Google Scholar
Polyn, S. M., Natu, V. S., Cohen, J. D., & Norman, K. A. (2005). Category-specific cortical activity precedes retrieval during memory search. Science, 310(5756), 19631966.Google Scholar
Postman-Caucheteux, W., Birn, R., Pursley, R., Butman, J., Solomon, J., … & Braun, A. (2010). Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. Journal of Cognitive Neuroscience, 22, 12991318.Google Scholar
Potter, C., So, Q-F, von Eckart, B., & Feldman, L. (1984). Lexical and conceptual representation in beginning and proficient bilinguals. Journal of Verbal Learning and Verbal Behaviour, 23, 2338.Google Scholar
Poulin-Dubois, D., Neumann, C., Masoud, S., & Gazith, A. (2022). Effect of bilingualism on infants’ cognitive flexibility. Bilingualism: Language and Cognition, 25(3), 484497.Google Scholar
Poulisse, N. (1999). Slips of the tongue: Speech errors in first and second language production. Benjamins.CrossRefGoogle Scholar
Poulisse, N., & Bongaerts, T. (1994). First language use in second language production. Applied Linguistics, 15(1), 3657.Google Scholar
Poulisse, N., Bongaerts, T., & Kellerman, E. (1984). On the use of compensatory strategies in second language performance. Interlanguage Studies Bulletin, 70105.Google Scholar
Price, C. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335359.Google Scholar
Price, C., Green, D., & von Studnitz, R. (1999). Functional imaging study of translation and language switching. Brain, 122, 22212235.Google Scholar
Pruijn, L., Peacock, J., & Dijkstra, T. (in press). Mechanisms of word translation production: Empirical and simulation data.Google Scholar
Pulvermüller, F. (1999). Words in the brain’s language. Behavioral and Brain Sciences, 22, 253279.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (2003). The neuroscience of language: On brain circuits of word and serial order. Cambridge University Press.Google Scholar
Quaresima, V., Ferrari, M., van der Sluijs, M., Menssen, J., & Colier, W. (2002). Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive near-infrared multi-point measurements. Brain Research Bulletin, 59(3), 235243.Google Scholar
Radman, N., Spierer, L., Laganaro, M., Annoni, J., & Colombo, F. (2016). Language specificity of lexical-phonological therapy in bilingual aphasia: A clinical and electrophysiological study. Neuropsychological Rehabilitation, 26(4), 532557.Google Scholar
Raichle, M. E. (2001). Functional neuroimaging: A historical and physiological perspective. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of functional neuroimaging of cognition (pp. 326). MIT Press.Google Scholar
Raviv, T., Kessenich, M., & Morrison, F. J. (2004). A mediational model of the association between socioeconomic status and three-year-old language abilities: The role of parenting factors. Early Childhood Research Quarterly, 19(4), 528547.Google Scholar
Rekké, S. (2010). Multilink: A model for multilingual processing. Bachelor’s thesis, Radboud University Nijmegen, The Netherlands. Retrieved on March 19, 2021 from https://kuifvlinder.uci.ru.nl/bitstream/handle/123456789/64/Rekk%c3%a9%2c_S.T._1.pdf?sequence=1.Google Scholar
Renninger, K. A., & Hidi, S. E. (Eds.). (2019). The Cambridge handbook of motivation and learning. Cambridge University Press.Google Scholar
Ribot, T. (1882). Diseases of memory: An essay in the positive psychology. Appleton.Google Scholar
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426428.Google Scholar
Riney, T., Takada, M., & Ota, M. (2000). Segmentals and global foreign accent: The Japanese flap in EFL. TESOL Quarterly, 34, 711738.Google Scholar
Ringbom, H. (1987). The role of the first language in foreign language learning. Multilingual Matters.Google Scholar
Ringbom, H. (2001). Lexical transfer in L3 production. In Cenoz, J., Hufeisen, B., & Jessner, U. (Eds.), Cross-linguistic influence in third language acquisition: Psycholinguistic perspectives (pp. 5968). Multilingual Matters.Google Scholar
Ringbom, H. (2007). The importance of cross-linguistic similarity in foreign language learning: Comprehension, learning, and production. Multilingual Matters.Google Scholar
Rivera-Gaxiola, M., Silva-Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non-native speech contrasts in 7-and 11-month-old American infants. Developmental Science, 8(2), 162172.Google Scholar
Rodriguez-Fornells, A., Krämer, U. M., Lorenzo-Seva, U., Festman, J., & Münte, T. F. (2012). Self-assessment of individual differences in language switching. Frontiers in Psychology, 2, 388.Google Scholar
Rodriguez-Fornells, A., Lugt, A. V. D., Rotte, M., Britti, B., Heinze, H. J., & Münte, T. F. (2005). Second language interferes with word production in fluent bilinguals: Brain potential and functional imaging evidence. Journal of Cognitive Neuroscience, 17(3), 422433.Google Scholar
Rodriguez-Fornells, A., Rotte, M., Heinze, H., Nösselt, T., & Münte, T. (2002). Brain potential and functional MRI evidence for how to handle two languages with one brain. Nature, 415(6875), 10261029.CrossRefGoogle ScholarPubMed
Rodríguez-Fornells, A., Van der Lugt, A., Rotte, M., Britti, B., Heinze, H.-J., & Münte, T. (2005). Second language interferes with word production in fluent bilinguals: Brain potential and functional imaging evidence. Journal of Cognitive Neuroscience, 17, 422433.Google Scholar
Rogalski, E., Cobia, D., Harrison, T., Wieneke, C., Weintraub, S., & Mesulam, M. (2011). Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology, 76(21), 1804.Google Scholar
Rohde, A., Worrall, L., Godecke, E., O’Halloran, R., Farrell, A., & Massey, M. (2018). Diagnosis of aphasia in stroke populations: A systematic review of language tests. PloS One, 13(3), e0194143.Google Scholar
Rösler, F. (2011). Psychophysiologie der Kognition: eine Einführung in die kognitive Neurowissenschaft. Springer-Verlag.CrossRefGoogle Scholar
Rossi, E., Cheng, H., Kroll, J. F., Diaz, M. T., & Newman, S. D. (2017). Changes in white-matter connectivity in late second language learners: Evidence from diffusion tensor imaging. Frontiers in Psychology, 8, 2040.Google Scholar
Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83(5), 17621774.Google Scholar
Rumlich, D. (2020). Bilingual education in monolingual contexts: A comparative perspective. The Language Learning Journal, 48(1), 115119.Google Scholar
Sala, A., Malpetti, M., Farsad, M., Lubian, F., Magnani, G., Frasca Polara, G., … & Perani, D. (2022). Lifelong bilingualism and mechanisms of neuroprotection in Alzheimer dementia. Human Brain Mapping, 43(2), 581592.Google Scholar
Sá-Leite, A. R., Fraga, I., & Comesaña, M. (2019). Grammatical gender processing in bilinguals: An analytic review. Psychonomic Bulletin & Review, 26(4), 11481173.Google Scholar
Salomé, F., Casalis, S., & Commissaire, E. (2022). Bilingual advantage in L3 vocabulary acquisition: Evidence of a generalized learning benefit among classroom-immersion children. Bilingualism: Language and Cognition, 25(2), 242255.CrossRefGoogle Scholar
Sánchez-Casas, R., & García-Albea, J. (2005). The representation of cognate and noncognate words in bilingual memory: Can cognate status be characterized as a special kind of morphological relation? In Kroll, J. & de Groot, A. (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 226250). Oxford University Press.Google Scholar
Santilli, M., Gonzalez, M., Mikulan, E., Martorell, M., Muñoz, E., Sedeño, L., & García, A. (2019). Bilingual memory, to the extreme: Lexical processing in simultaneous interpreters. Bilingualism: Language and Cognition, 22(2), 331348.Google Scholar
Scarborough, D., Gerard, L., & Cortese, C. (1984). Independence of lexical access in bilingual word recognition. Journal of Verbal Learning and Verbal Behavior, 23, 8499.Google Scholar
Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(3), 501518.Google Scholar
Schirmer, A., Tang, S., Penney, T., Gunter, T., & Chen, H. (2005). Brain responses to segmentally and tonally induced semantic violations in Cantonese. Journal of Cognitive Neuroscience, 17(1), 112.Google Scholar
Schlaug, G., Norton, A., Overy, K., & Winner, E. (2005). Effects of music training on the child’s brain and cognitive development. Annals of the New York Academy of Sciences, 1060(1), 219230.Google Scholar
Schlegel, A. A., Rudelson, J. J., & Tse, P. U. (2012). White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience, 24(8), 16641670.Google Scholar
Schmid, M. (2010). Languages at play: The relevance of L1 attrition to the study of bilingualism. Bilingualism: Language and Cognition, 13, 17.Google Scholar
Schmidtke, J. (2018). Pupillometry in linguistic research: An introduction and review for second language researchers. Studies in Second Language Acquisition, 40(3), 529549.Google Scholar
Schoenberg, M., &, Scott, J. (2011). Aphasia syndromes. In Schoenberg, M. & Scott, J. (Eds.), The little black book of neuropsychology (pp. 267292). Springer.Google Scholar
Schoonbaert, S., Duyck, W., Brysbaert, M., & Hartsuiker, R. (2009). Semantic and translation priming from a first language to a second and back: Making sense of the findings. Memory & Cognition, 37, 569586.Google Scholar
Schrauf, R. (2009). English use among older bilingual immigrants in linguistically concentrated neighborhoods: Social proficiency and internal speech as intracultural variation. Journal of Cross-Cultural Gerontology, 24(2), 157179.Google Scholar
Schulz, P., & Grimm, A. (2019). The age factor revisited: Timing in acquisition interacts with age of onset in bilingual acquisition. Frontiers in Psychology, 9, 118.Google Scholar
Schulz, P., & Tracy, R. (2011). LiSe-DaZ: Linguistische Sprachstandserhebung-Deutsch als Zweitsprache. Hogrefe Vorschultests.Google Scholar
Schwanenflugel, P., & LaCount, K. (1988). Semantic relatedness and the scope of facilitation for upcoming words in sentences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 344354.Google Scholar
Schwartz, A., & Kroll, J. (2006). Bilingual lexical activation in sentence context. Journal of Memory and Language, 55, 197212.Google Scholar
Schwieter, J. W. (Ed.). (2016). Cognitive control and consequences of multilingualism. Benjamins.Google Scholar
Schwieter, J. W. (Ed.). (2019). The handbook of the neuroscience of multilingualism. Wiley-Blackwell.Google Scholar
Schwieter, J. W., & Ferreira, A. (2013). Language selection, control, and conceptual-lexical development in bilinguals and multilinguals. In J. W. Schwieter (Ed.), Innovative research and practices in second language acquisition and bilingualism (pp. 241–266). Benjamins.CrossRefGoogle Scholar
Schwieter, J. W., & Sunderman, G. (2008). Language switching in bilingual speech production: In search of the language-specific selection mechanism. The Mental Lexicon, 3(2), 214238.Google Scholar
Schwieter, J. W., & Sunderman, G. (2009). Concept selection and developmental effects in bilingual speech production. Language Learning, 59, 897927.Google Scholar
Scoresby-Jackson, R. (1867). Case of aphasia with right hemiplegia. Edinburgh Medical Journal, 12, 696706.Google Scholar
Sebastian, R. (2010). Neural activation patterns in chronic stroke patients with aphasia: The role of lesion site, lesion size, and task difficulty. Unpublished doctoral dissertation. University of Texas at Austin.Google Scholar
Sebastian, R., Laird, A., & Kiran, S. (2011). Meta-analysis of the neural representation of first language and second language. Applied Linguistics, 32(4), 799819.Google Scholar
Sebastián-Gallés, N., Albareda-Castellot, B., Weikum, W. M., & Werker, J. F. (2012). A bilingual advantage in visual language discrimination in infancy. Psychological Science, 23(9), 994999.Google Scholar
Selinker, L. (1969). Language transfer. General Linguistics, 9, 6792.Google Scholar
Seniów, J., Litwin, M., & Leśniak, M. (2009). The relationship between non-linguistic cognitive deficits and language recovery in patients with aphasia. Journal of the Neurological Sciences, 283(1–2), 9194.Google Scholar
Serafini, S., Grant, G., Haglund, M., et al. (2013). Reorganization and stability for motor and language areas using cortical stimulation. Brain Sciences, 3(4), 15971614.Google Scholar
Sheridan, M. A., & McLaughlin, K. A. (2014). Dimensions of early experience and neural development: Deprivation and threat. Trends in Cognitive Sciences, 18(11), 580585.Google Scholar
Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson III, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences, 109(32), 12927–12932.Google Scholar
Shi, L. (2002). How Western-trained Chinese TESOL professionals publish in their home environment. TESOL Quarterly, 36, 625634.Google Scholar
Shook, A., & Marian, V. (2016). The influence of native-language tones on lexical access in the second language. Journal of Acoustic Society of America, 139(6), 31023109.Google Scholar
Shulman, E. P., Harden, K. P., Chein, J. M., & Steinberg, L. (2016). The development of impulse control and sensation-seeking in adolescence: Independent or interdependent processes?. Journal of Research on Adolescence, 26(1), 3744.Google Scholar
Sicard, J., & de Bot, K. (2013). Multilingual dreaming. International Journal of Multilingualism, 10(3), 331354.Google Scholar
Signorelli, T., Haarmann, H., & Obler, L. (2012). Working memory in simultaneous interpreters: Effects of task and age. International Journal of Bilingualism, 16(2), 198212.Google Scholar
Silver, A. H., & Zimmerman, J. E. (1965). Quantum transitions and loss in multiply connected supercondutors. Physical Review Letters, 15, 369385.Google Scholar
Silveri, M., Di Betta, A., Filippini, V., Leggio, M., & Molinari, M. (1998). Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain, 121, 21752187.Google Scholar
Singh, N., & Mishra, R. K. (2013). Second language proficiency modulates conflict-monitoring in an oculomotor Stroop task: Evidence from Hindi-English bilinguals. Frontiers in Psychology, 4, 322.Google Scholar
Singleton, D., & Leśniewska, J. (2021). The critical period hypothesis for L2 acquisition: An unfalsifiable embarrassment? Languages, 6(3), 115.Google Scholar
Sinnatamby, R., Antoun, N., Freer, C., Miles, K., & Hodges, J. (1996). Neuroradiological findings in primary progressive aphasia: CT, fMRI, and cerebral perfusion SPECT. Neuroradiology, 38(3), 232238.Google Scholar
Sjöholm, K. (1995). The influence of crosslinguistic, semantic, and input factors on the acquisition of English phrasal verbs: A comparison between Finnish and Swedish learners at an intermediate and advanced level. Åbo Akademi University Press.Google Scholar
Skeide, M. A. (2019). A neural blueprint of language acquisition. In Rowland, C. & Kidd, E. (Eds.), Human language: From genes and brains to behavior (pp. 147–161). MIT Press.Google Scholar
Smit, D. J., Boersma, M., Schnack, H. G., Micheloyannis, S., Boomsma, D. I., Hulshoff Pol, H. E., Stam, C. J., & de Geus, E. J. (2012). The brain matures with stronger functional connectivity and decreased randomness of its network. PLoS One, 7(5), 111.Google Scholar
Smolensky, P., Goldrick, M., & Mathis, D. (2014). Optimization and quantization in gradient symbol systems: A framework for integrating the continuous and the discrete in cognition. Cognitive Science, 38, 11021138.Google Scholar
Soares, S. M. P., Kubota, M., Rossi, E., & Rothman, J. (2021). Determinants of bilingualism predict dynamic changes in resting state EEG oscillations. Brain and Language, 223, 105030.Google Scholar
Somerville, L. H. (2013). The teenage brain: Sensitivity to social evaluation. Current Directions in Psychological Science, 22(2), 121127.Google Scholar
Soveri, A., Laine, M., Hämäläinen, H., & Hugdahl, K. (2011). Bilingual advantage in attentional control: Evidence from the forced-attention dichotic listening paradigm. Bilingualism: Language and Cognition, 14(3), 371378.Google Scholar
Soveri, A., Lehtonen, M., Karlsson, L. C., Lukasik, K., Antfolk, J., & Laine, M. (2018). Test–retest reliability of five frequently used executive tasks in healthy adults. Applied Neuropsychology: Adult, 25(2), 155165.Google Scholar
Sperry, D. E., Sperry, L. L., & Miller, P. J. (2019). Reexamining the verbal environments of children from different socioeconomic backgrounds. Child Development, 90(4), 13031318.Google Scholar
Spivey, M., & Cardon, S. (2015). Methods for studying adult bilingualism. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 108132). Cambridge University Press.Google Scholar
Spreen, O., & Risser, A. (Eds.). (2003). Assessment of aphasia. Oxford University Press.Google Scholar
Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279306.Google Scholar
Starreveld, P., de Groot, A., Rossmark, B., & van Hell, J. (2014). Parallel language activation during word processing in bilinguals: Evidence from word production in sentence context. Bilingualism: Language and Cognition, 17(2), 258276.Google Scholar
Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., … & Dierks, T. (2012). Structural plasticity in the language system related to increased second language proficiency. Cortex, 48(4), 458465.Google Scholar
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9(2), 6974.Google Scholar
Stocco, A., & Prat, C. S. (2014). Bilingualism trains specific brain circuits involved in flexible rule selection and application. Brain and Language, 137, 5061.Google Scholar
Stocco, A., Lebiere, C., O’Reilly, R. C., & Anderson, J. R. (2012). Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks. Cognitive, Affective, & Behavioral Neuroscience, 12(4), 611628.Google Scholar
Su, I. (2001). Transfer of sentence processing strategies: A comparison of L2 learners of Chinese and English. Applied Psycholinguistics, 22, 83112.Google Scholar
Sugiura, L., Ojima, S., Matsuba-Kurita, H., Dan, I., Tsuzuki, D., … & Hagiwara, Hiroko. (2011). Sound to language: Different cortical processing for first and second languages in elementary school children as revealed by a large-scale study using fNIRS. Cerebral Cortex, 21(10), 23742393.Google Scholar
Sulpizio, S., Del Maschio, N., Del Mauro, G., Fedeli, D., & Abutalebi, J. (2020). Bilingualism as a gradient measure modulates functional connectivity of language and control networks. NeuroImage, 205, 116306.Google Scholar
Surrain, S., & Luk, G. (2019). Describing bilinguals: A systematic review of labels and descriptions used in the literature between 2005–2015. Bilingualism: Language and Cognition, 22(2), 401415.Google Scholar
Swain, M. (1976). Bilingual first-language acquisition. In von Raffler-Engel, W. & Lebrun, Y. (Eds.), Baby talk and infant speech (pp. 277280). Swets & Zeitlinger.Google Scholar
Takahashi, S. (1996). Pragmatic transferability. Studies in Second Language Acquisition, 18, 189223.Google Scholar
Takashima, A., Bakker-Marshall, I., Van Hell, J. G., McQueen, J. M., & Janzen, G. (2019). Neural correlates of word learning in children. Developmental Cognitive Neuroscience, 37, 100649.Google Scholar
Tao, L., Wang, G., Zhu, M., & Cai, Q. (2021). Bilingualism and domain-general cognitive functions from a neural perspective: A systematic review. Neuroscience & Biobehavioral Reviews, 125, 264295.Google Scholar
Teicher, M. H., & Samson, J. A. (2016). Annual research review: Enduring neurobiological effects of childhood abuse and neglect. Journal of Child Psychology and Psychiatry, 57(3), 241266.Google Scholar
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function, and connectivity. Nature Reviews Neuroscience, 17(10), 652666.Google Scholar
Teubner-Rhodes, S. E., Mishler, A., Corbett, R., Andreu, L., Sanz-Torrent, M., Trueswell, J. C., & Novick, J. M. (2016). The effects of bilingualism on conflict monitoring, cognitive control, and garden-path recovery. Cognition, 150, 213231.Google Scholar
Thatcher, B. (2000). L2 professional writing in a US and South American context. Journal of Second Language Writing, 9, 4169.Google Scholar
Thierry, G., & Wu, Y. J. (2007). Brain potentials reveal unconscious translation during foreign-language comprehension. Proceedings of the National Academy of Sciences, 104(30), 12530–12535.Google Scholar
Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. (2009). Unconscious effects of language-specific terminology on pre-attentive color perception. Proceedings of the National Academy of Sciences, 106(11), 45674570.Google Scholar
Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190193.Google Scholar
Thompson-Schill, S., Swick, D., Farah, M., D’Epositos, M., Kan, I., & Knight, R. (1998). Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proceedings of the National Academy of Science of the United States of America, 95, 15855–15860.Google Scholar
Thulborn, K., Carpenter, P., & Just, M. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke, 30, 749754.Google Scholar
Timmer, K., Costa, A., & Wodniecka, Z. (2021). The source of attention modulations in bilingual language contexts. Brain and Language, 223, 105040.Google Scholar
Timmer, K., Wodniecka, Z., & Costa, A. (2021). Rapid attentional adaptations due to language (monolingual vs bilingual) context. Neuropsychologia, 159, 107946.Google Scholar
Titone, D., Libben, M., Mercier, J., Whitford, V., & Pivneva, I. (2011). Bilingual lexical access during L1 sentence reading: The effects of L2 knowledge, semantic constraint, and L1-L2 intermixing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 14121431.Google Scholar
Tomé Lourido, G., & Evans, B. (2019). The effects of language dominance switch in bilinguals: Galician new speakers’ speech production and perception. Bilingualism: Language and Cognition, 22(3), 637654.Google Scholar
Tran, C. D., Arredondo, M. M., & Yoshida, H. (2019). Early executive function: The influence of culture and bilingualism. Bilingualism: Language and Cognition, 22(4), 714732.Google Scholar
Trebits, A., Koch, M. J., Ponto, K., Bruhn, A. C., Adler, M., & Kersten, K. (2022). Cognitive gains and socioeconomic status in early second language acquisition in immersion and EFL learning settings. International Journal of Bilingual Education and Bilingualism, 24(7), 114.Google Scholar
Treffers-Daller, J., & Sakel, J. (2012). Why transfer is a key aspect of language use and processing in bilinguals and L2-users. International Journal of Bilingualism, 16(1), 310.Google Scholar
Tsinivits, D., & Unsworth, S. (2021). The impact of older siblings on the language environment and language development of bilingual toddlers. Applied Psycholinguistics, 42(2), 325344.CrossRefGoogle Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of memory (pp. 381403). Academic Press.Google Scholar
Tytus, A. (2014). Can psycholinguistics inform second language learning? Educational implications arising from the Shared Asymmetrical Model. Cambridge Open-Review Educational Research e-Journal, 1(1), 7487.Google Scholar
Unsworth, S. (2013). Assessing the role of current and cumulative exposure in simultaneous bilingual acquisition: The case of Dutch gender. Bilingualism: Language and Cognition, 16(1), 86110.Google Scholar
Unsworth, S. (2016). Quantity and quality of language input in bilingual language development. In Nicoladis, E. & Montanari, S. (Eds.), Bilingualism across the lifespan: Factors moderating language proficiency (pp. 103121). American Psychological Association.Google Scholar
Ursache, A., & Noble, K. G. (2016). Neurocognitive development in socioeconomic context: Multiple mechanisms and implications for measuring socioeconomic status. Psychophysiology, 53(1), 7182.Google Scholar
Vaid, J., & Hall, D. (1991). Neuropsychological perspectives on bilingualism: Right, left, and center. In Reynolds, A. (Ed.), Bilingualism, multiculturalism, and second language learning: The McGill conference in honor of Wallace E. Lambert (pp. 81112). Erlbaum.Google Scholar
Vaid, J., & Menon, G. (2000). Correlates of bilinguals’ preferred language for mental computations. Spanish Applied Linguistics, 4(2), 325342.Google Scholar
Vaid, J., & Meuter, R. (2017). Languages without borders: Reframing the study of the bilingual mental lexicon. In Libben, M., Goral, M., & Libben, G. (Eds.), Bilingualism: A framework for understanding the mental lexicon (pp. 839). Benjamins.Google Scholar
Valian, V. (2016). Putting together bilingualism and executive function. Linguistic Approaches to Bilingualism, 6, 565574.Google Scholar
Van Assche, E., Drieghe, D., Duyck, W., Welvaert, M., & Hartsuiker, R. (2011). The influence of semantic constraints on bilingual word recognition during sentence reading. Journal of Memory and Language, 64, 88107.Google Scholar
Van Assche, E., Duyck, W., & Hartsuiker, R. (2012). Bilingual word recognition in a sentence context. Frontiers in Psychology, 3(174), 18.Google Scholar
Van Assche, E., Duyck, W., Hartsuiker, R. J., & Diependaele, K. (2009). Does bilingualism change native-language reading? Cognate effects in a sentence context. Psychological Science, 20, 923927.Google Scholar
van de Putte, E., De Baene, W., García-Pentón, L., Woumans, E., Dijkgraaf, A., & Duyck, W. (2018). Anatomical and functional changes in the brain after simultaneous interpreting training: A longitudinal study. Cortex, 99, 243257.Google Scholar
Van den Noort, M., Bosch, P., & Struys, E. (Eds.). (2020). Individual variation and the bilingual advantage: Factors that modulate the effect of bilingualism on cognitive control and cognitive reserve [Special issue]. Behavioral Sciences, 9(12).Google Scholar
Van Hell, J., & de Groot, A. (1998). Conceptual representation in bilingual memory: Effects of concreteness and cognate status in word association. Bilingualism: Language and Cognition, 1, 193211.Google Scholar
Van Hell, J., & de Groot, A. (2008). Sentence context modulates visual word recognition and translation in bilinguals. Acta Psychologica, 128, 431451.Google Scholar
Van Hell, J., & Dijkstra, T. (2002). Foreign language knowledge can influence native language performance in exclusively native contexts. Psychonomic Bulletin & Review, 9, 780789.Google Scholar
Van Hell, J., & Tanner, D. (2012). Second language proficiency and cross-language lexical activation. Language Learning, 62, 148171.Google Scholar
van Hell, J., Litcofsky, K., & Ting, C. (2015). Intra-sentential code-switching: Cognitive and neural approaches. In Schwieter (Ed.), J. W., The Cambridge handbook of bilingual processing (pp. 459482). Cambridge University Press.Google Scholar
Van Heuven, W., Dijkstra, T., & Grainger, J. (1998). Orthographic neighborhood effects in bilingual word recognition. Journal of Memory and Language, 39, 458483.Google Scholar
Vanlangendonck, F., Peeters, D., Rueschemeyer, S., & Dijkstra, T. (2020). Mixing the stimulus list in bilingual lexical decision turns cognate facilitation effects into mirrored inhibition effects. Bilingualism: Language and Cognition, 23(4), 836844.Google Scholar
Vaughn, K. A., & Hernandez, A. E. (2018). Becoming a balanced, proficient bilingual: Predictions from age of acquisition & genetic background. Journal of Neurolinguistics, 46, 6977.Google Scholar
Vaughn, K. A., Nguyen, M. V., Ronderos, J., & Hernandez, A. E. (2021). Cortical Thickness in bilingual and monolingual children: Relationships to language use and language skill. NeuroImage, 243, 118560.Google Scholar
Vega-Mendoza, M., Alladi, S., & Bak, T. H. (2019). Dementia and multilingualism. In J. W. Schwieter (Ed.), The handbook of the neuroscience of multilingualism (pp. 608–624). Wiley-Blackwell.Google Scholar
Vildomec, V. (1963). Multilingualism. Sythoff.Google Scholar
Vīnerte, S., & Sabourin, L. (2019). Reviewing the bilingual cognitive control literature: Can a brain-based approach resolve the debate? Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 73(2), 118.Google Scholar
Vingerhoets, G., Van Borsel, J., Tesink, C., van den Noort, M., Deblaere, K., Seurinck, R., Vandemaele, P., & Achten, E. (2003). Multilingualism: An fMRI study. Neuroimage, 20(4), 21812196.Google Scholar
Vogel, A., Maruff, P., & Morgan, A. (2010). Evaluation of communication assessment practices during the acute stages post stroke. Journal of Evaluation in Clinical Practice, 16, 11831188.Google Scholar
Voits, T., Pliatsikas, C., Robson, H., & Rothman, J. (2020). Beyond Alzheimer’s disease: Can bilingualism be a more generalized protective factor in neurodegeneration?. Neuropsychologia, 147, 107593.Google Scholar
Vygotsky, L. S. (1962). Thought and language. MIT Press.Google Scholar
Wallisch, A., Little, L. M., Dean, E., & Dunn, W. (2018). Executive function measures for children: A scoping review of ecological validity. OTJR: Occupation, Participation and Health, 38(1), 614.Google Scholar
Wang, X., & Forster, K. (2010). Masked translation priming with semantic categorization: Testing the Sense Model. Bilingualism: Language and Cognition, 13(3), 327340.Google Scholar
Wang, X., Hui, B., & Chen, S. (2020). Language selective or non-selective in bilingual lexical access? It depends on lexical tones! PLoS ONE, 15(3), e0230412.Google Scholar
Wang, X., Wang, J., & Malins, J. (2017). Do you hear “feather” when listening to “rain”? Lexical tone activation during unconscious translation: Evidence from Mandarin-English bilinguals. Cognition, 169, 1524.Google Scholar
Wang, Y., Xue, G., Chen, C., Xue, F., & Dong, Q. (2007). Neural bases of asymmetric language switching in second-language learners: An ER-fMRI study. Neuroimage, 35(2), 862870.Google Scholar
Wartenburger, I., Heekeren, H., Abutalebi, J., Cappa, S., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159170.Google Scholar
Watanabe, E., Maki, A., Kawaguchi, F., Takashiro, K., Yamashita, Y., Koizumi, H., & Mayanagi, Y. (1998). Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neuroscience Letters, 256(1), 4952.Google Scholar
Watila, M., & Balarabe, S. (2015). Factors predicting post-stroke aphasia recovery. Journal of the Neurological Sciences, 352, 1218.Google Scholar
Wattendorf, E., Festman, J., Westermann, B., Keil, U., Zappatore, D., Franceschini, R., … & Neville, H. (1996). Maturational constraints on functional specialization for language processing: ERP and behavioral evidence in bilingual speakers. Journal of Cognitive Neuroscience, 8, 231256.Google Scholar
Wattendorf, E., Festman, J., Westermann, B., Keil, U., Zappatore, D., Franceschini, R., … & Nitsch, C. (2014). Early bilingualism influences early and subsequently later acquired languages in cortical regions representing control functions. International Journal of Bilingualism, 18(1), 4866.Google Scholar
Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Muller, S., & Bier, D. (1995). Recovery from Wernicke’s aphasia: A positron emission tomographic study. Annals of Neurology, 37, 723732.Google Scholar
Weinreich, U. (1953). Languages in contact: Findings and problems. Linguistic Circle of New York.Google Scholar
Weissberg, R., Durlak, J., Domitrovich, C., & Gullotta, T. (2015). Social and emotional learning: Past, present, and future. In Durlak, J., Domitrovich, C., Weissberg, R., & Gullotta, T. (Eds.), Handbook of social and emotional learning (pp. 319). Guilford Press.Google Scholar
Werker, J. (2012). Perceptual foundations of bilingual acquisition in infancy. Annals of the New York Academy of Sciences, 1251(1), 5061.Google Scholar
Wermelinger, S., Gampe, A., Helbling, N., & Daum, M. M. (2020). Do you understand what I want to tell you? Early sensitivity in bilinguals’ iconic gesture perception and production. Developmental Science, 23(5), e12943.Google Scholar
Wernicke, C. (1874). Der aphasische Symptomen-complex. Eine psychologische Studie auf anatomischer Basis. Cohn und Weigert.Google Scholar
Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences, 97(20), 11125–11129.Google Scholar
Wicha, N. Y. Y., Moreno, E. M., & Carrasco-Ortíz, H. (2019). Real-time measures of the multilingual brain. In Schwieter, J. W. (Ed.), The handbook of the neuroscience of multilingualism (pp. 100120). Wiley.Google Scholar
Witney, J., & Dewaele, J. M. (2018). Learning two or more languages. In Burns, A. & Richards, J. C. (Eds.), The Cambridge guide to learning English as a second language (pp. 4352). Cambridge.Google Scholar
Woumans, E., & Duyck, W. (2015). The bilingual advantage debate: Moving toward different methods for verifying its existence. Cortex, 73, 356357.Google Scholar
Woumans, E. V. Y., Santens, P., Sieben, A., Versijpt, J. A. N., Stevens, M., & Duyck, W. (2015). Bilingualism delays clinical manifestation of Alzheimer’s disease. Bilingualism: Language and Cognition, 18(3), 568574.Google Scholar
Wright, W. E., Boun, S., & García, O. (2017). The handbook of bilingual and multilingual education. Wiley.Google Scholar
Wu, Y. J., & Thierry, G. (2010). Investigating bilingual processing: The neglected role of language processing contexts. Frontiers in Psychology, 1, 178.Google Scholar
Wu, Y. J., & Thierry, G. (2013). Fast modulation of executive function by language context in bilinguals. Journal of Neuroscience, 33(33), 13533–13537.Google Scholar
Xia, V., & Andrews, S. (2015). Masked translation priming asymmetry in Chinese-English bilinguals: Making sense of the Sense Model. Quarterly Journal of Experimental Psychology, 68(2), 294325.Google Scholar
Xu, M., Baldauf, D., Chang, C. Q., Desimone, R., & Tan, L. H. (2017). Distinct distributed patterns of neural activity are associated with two languages in the bilingual brain. Science Advances, 3(7), e1603309.Google Scholar
Xue, G., Dong, Q., Jin, Z., Zhang, L., & Wang, Y. (2004). An fMRI study with semantic access in low proficiency second language learners. NeuroReport, 15(5), 791796.Google Scholar
Yan, S., & Nicoladis, E. (2009). Finding le mot juste: Differences between bilingual and monolingual children’s lexical access in comprehension and production. Bilingualism: Language and Cognition, 12(3), 323335.Google Scholar
Yang, M., Cooc, N., & Sheng, L. (2017). An investigation of cross-linguistic transfer between Chinese and English: A meta-analysis. Asian-Pacific Journal of Second and Foreign Language Education, 2(15), 121.Google Scholar
Ye, Z., & Zhou, X. (2009). Executive control in language processing. Neuroscience & Biobehavioral Reviews, 33(8), 11681177.Google Scholar
Yelland, G. W., Pollard, J., & Mercuri, A. (1993). The metalinguistic benefits of limited contact with a second language. Applied Psycholinguistics, 14(4), 423444.Google Scholar
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165.Google Scholar
Yim, O., & Clément, R. (2021). Acculturation and attitudes toward code-switching: A bidimensional framework. International Journal of Bilingualism, 25(5), 13691388.Google Scholar
Yu, C. L., Kovelman, I., & Wellman, H. M. (2021). How bilingualism informs theory of mind development. Child Development Perspectives, 15(3), 154159.Google Scholar
Yu, M.-C. (2004). Interlinguistic variation and similarity in second language speech act behavior. The Modern Language Journal, 88, 102119.Google Scholar
Yudes, C., Macizo, P., & Bajo, M. T. (2011). The influence of expertise in simultaneous interpreting on non-verbal executive processes. Frontiers in Psychology, 2, 309.Google Scholar
Yudes, C., Macizo, P., Morales, L., & Bajo, M. T. (2013). Comprehension and error monitoring in simultaneous interpreters. Applied Psycholinguistics, 34, 10391057.Google Scholar
Yue, J., Bastiaanse, R., & Alter, K. (2014). Cortical plasticity induced by rapid Hebbian learning of novel tonal word-forms: Evidence from mismatch negativity. Brain and Language, 139, 1022.Google Scholar
Yusuf, H. O., & Enesi, A. O. (2012). Using sound in teaching reading in early childhood education. Journal of Language Teaching & Research, 3(4), 660666.Google Scholar
Zahn, R., Drews, E., Specht, K., Kemeny, S., Reith, W., Willmes, K., … & Huber, W. (2004). Recovery of semantic word processing in global aphasia: A functional MRI study. Cognitive Brain Research, 18, 322336.Google Scholar
Zatorre, R. (1989). On the representation of multiple languages in the brain: Old problems and new directions. Brain and Language, 36, 127147.Google Scholar
Zeller, J. (2020). Code-switching does not equal code-switching: An event-related potentials study on switching from L2 German to L1 Russian at prepositions and nouns. Frontiers in Psychology, 11(1387), 113.Google Scholar
Zhang, D. (2013). Linguistic distance effect on cross-linguistic transfer of morphological awareness. Applied Psycholinguistics, 34, 917942.Google Scholar
Zhang, H., Diaz, M. T., Guo, T., & Kroll, J. F. (2021). Language immersion and language training: Two paths to enhanced language regulation and cognitive control. Brain and Language, 223, 105043.Google Scholar
Zhang, J., Anderson, R., Li, H., Dong, Q., Wu, X., & Zhang, Y. (2010). Cross-language transfer of insight into the structure of compound words. Reading and Writing, 23, 311336.Google Scholar
Zhang, T., Van Heuven, W., & Conklin, K. (2011). Fast automatic translation and morphological decomposition in Chinese-English bilinguals. Psychological Science, 22(10), 12371242.Google Scholar
Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an unsupervised neural network model. International Journal of Bilingual Education and Bilingualism, 13, 505524.Google Scholar
Zhu, J., Seymour, R., Szakay, A., & Sowman, P. (2020). Neuro-dynamics of executive control in bilingual language switching: An MEG study. Cognition, 199, 104247.Google Scholar
Zobl, H. (1992). Prior linguistic knowledge and the conservatism of the learning procedure: Grammaticality judgments of unilingual and multilingual learners. In Gass, S. & Selinker, L. (Eds.), Language transfer in language learning (pp. 176196). Benjamins.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×