Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:42:17.891Z Has data issue: false hasContentIssue false

Chapter 11 - Changes in Motor Programming with Aging

Published online by Cambridge University Press:  30 November 2019

Kenneth M. Heilman
Affiliation:
University of Florida
Stephen E. Nadeau
Affiliation:
University of Florida
Get access

Summary

The human brain’s motor system, including the motor cortex and corticospinal system, the premotor cortex, basal ganglia, and cerebellum, together with input from sensory and polymodal association cortex, can program almost an infinite number of actions. Therefore, to successfully interact with the environment and ourselves we need the guidance provided by motor programs. There are two major forms of programs, action-intentional (the “when” system) and motor-praxic (the “how” system). The action-intentional system programs when to initiate an action, persist at an action, and terminate an action, or when not to act. The motor-praxic system programs the postures and joint movements required for correct interactions, as well as the speed, force, and sequence of these actions. This chapter describes how different elements of these two major forms of motor programs change with aging as well as the influence of aging on motor learning. The mechanisms that induce the aging-related changes in motor programming, motor skill learning, and motor performance are not fully known; however, in this chapter we discuss the various types of aging-related changes, their possible mechanisms, and how some of the changes can be limited and/or treated.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Desrosiers, J, Hébert, R, Bravo, G, Rochette, A. Age-related changes in upper extremity performance of elderly people: a longitudinal study. Exp Gerontol. 1999 Jun;34(3):393405.CrossRefGoogle ScholarPubMed
Ranganathan, VK, Siemionow, V, Sahgal, V, Yue, GH. Effects of aging on hand function. J Am Geriatr Soc. 2001 Nov;49(11):1478–84.CrossRefGoogle ScholarPubMed
Liepmann, H. Apraxia. Ergbn Ges Med. 1920, 1:516–43.Google Scholar
Jiménez-Jiménez, FJ, Calleja, M, Alonso-Navarro, H, Rubio, L, Navacerrada, F, Pilo-de-la-Fuente, B, Plaza-Nieto, JF, Arroyo-Solera, M, García-Ruiz, PJ, García-Martín, E, Agúndez, JA. Influence of age and gender in motor performance in healthy subjects. J Neurol Sci. 2011 Mar 15;302(1–2):7280. doi: 10.1016/j.jns.2010.11.021.Google Scholar
Seidler, RD, Bernard, JA, Burutolu, TB, Fling, BW, Gordon, MT, Gwin, JT, Kwak, Y, Lipps, DB. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010 Apr;34(5):721–33. doi: 10.1016/j.neubiorev.2009.10.005.CrossRefGoogle ScholarPubMed
Carmeli, E, Patish, H, Coleman, R. The aging hand. J Gerontol A Biol Sci Med Sci. 2003 Feb;58(2):146–52.CrossRefGoogle ScholarPubMed
Good, CD, Johnsrude, IS, Ashburner, J, Henson, RN, Friston, KJ, Frackowiak, RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001 Jul;14(1 Pt 1):2136.CrossRefGoogle ScholarPubMed
Ruff, RM, Parker, SB. Gender- and age-specific changes in motor speed and eye-hand coordination in adults: normative values for the Finger Tapping and Grooved Pegboard Tests. Percept Mot Skills. 1993 Jun;76(3 Pt 2):1219–30.Google Scholar
Van Gerven, PWM, Hurks, PPM, Adam, JJ. Both facilitatory and inhibitory impairments underlie age-related differences of proactive cognitive control across the adult lifespan Acta Psychol (Amst). 2017 Sep;179:7888. doi: 10.1016/j.actpsy.2017.07.005. n;76(3 Pt 2):1219–30.CrossRefGoogle ScholarPubMed
Arnold, P, Vantieghem, S, Gorus, E, Lauwers, E, Fierens, Y, Pool-Goudzwaard, A, Bautmans, I. Age-related differences in muscle recruitment and reaction-time performance. Exp Gerontol. 2015 Oct;70:125–30. doi: 10.1016/j.exger.2015.08.005.Google Scholar
Yordanova, J, Kolev, V, Hohnsbein, J, Falkenstein, M. Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: evidence from high-resolution event-related potentials. Brain. 2004 Feb;127(Pt 2):351–62.CrossRefGoogle ScholarPubMed
Hoffstaedter, F, Grefkes, C, Roski, C, Caspers, S, Zilles, K, Eickhoff, SB. Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Struct Funct. 2015 Mar;220(2):9991012. doi: 10.1007/s00429-013-0696-2.CrossRefGoogle Scholar
Koppelmans, V, Hirsiger, S, Mérillat, S, Jäncke, L, Seidler, RD. Cerebellar gray and white matter volume and their relation with age and manual motor performance in healthy older adults. Hum Brain Mapp. 2015 Jun;36(6):2352–63. doi: 10.1002/hbm.22775.Google Scholar
Ross, GW, Petrovitch, H, Abbott, RD, Nelson, J, Markesbery, W, Davis, D, Hardman, J, Launer, L, Masaki, K, Tanner, CM, White, LR. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol. 2004 Oct;56(4):532–9.CrossRefGoogle ScholarPubMed
Lamb, DG, Correa, LN, Seider, TR, Mosquera, DM, Rodriguez, JA Jr, Salazar, L, Schwartz, ZJ, Cohen, RA, Falchook, AD, Heilman, KM. The aging brain: movement speed and spatial control. Brain Cogn. 2016 Nov;109:105–11. doi: 10.1016/j.bandc.2016.07.009.CrossRefGoogle ScholarPubMed
Poston, B, Van Gemmert, AW, Barduson, B, Stelmach, GE. Movement structure in young and elderly adults during goal-directed movements of the left and right arm. Brain Cogn. 2009 Feb;69(1):30–8. doi: 10.1016/j.bandc.2008.05.002.CrossRefGoogle Scholar
Wright, ML, Adamo, DE, Brown, SH. Age-related declines in the detection of passive wrist movement. Neurosci Lett. 2011 Aug 15;500(2):108–12. doi: 10.1016/j.neulet.2011.06.015.CrossRefGoogle ScholarPubMed
Van Halewyck, F, Lavrysen, A, Levin, O, Elliott, D, Helsen, WF. The impact of age and physical activity level on manual aiming performance. J Aging Phys Act. 2015 Apr;23(2):169–79. doi: 10.1123/japa.2013-0104.Google ScholarPubMed
Hanna-Pladdy, B, Mendoza, JE, Apostolos, GT, Heilman, KM. Lateralised motor control: hemispheric damage and the loss of deftness. J Neurol Neurosurg Psychiatry. 2002 Nov;73(5):574–7.CrossRefGoogle ScholarPubMed
Thornbury, JM, Mistretta, CM. Tactile sensitivity as a function of age. J Gerontol. 1981 Jan;36(1):34–9.Google Scholar
Hill, BD, Barkemeyer, CA, Jones, GN, Santa Maria, MP, Minor, KS, Browndyke, JN. Validation of the coin rotation test: a simple, inexpensive, and convenient screening tool for impaired psychomotor processing speed. Neurologist. 2010 Jul;16(4):249–53. doi: 10.1097/NRL.0b013e3181b1d5b0.Google Scholar
Heilman, KM, Meador, KJ, Loring, DW. Hemispheric asymmetries of limb-kinetic apraxia: a loss of deftness. Neurology. 2000 Aug 22;55(4):523–6.CrossRefGoogle ScholarPubMed
Acosta, LM, Bennett, JA, Heilman, KM. Callosal disconnection and limb-kinetic apraxia. Neurocase. 2014;20(6):599605.CrossRefGoogle ScholarPubMed
Mitrushina, M, Fogel, T, D’Elia, L, Uchiyama, C, Satz, P. Performance on motor tasks as an indication of increased behavioral asymmetry with advancing age. Neuropsychologia. 1995 Mar;33(3):359–64.CrossRefGoogle ScholarPubMed
Dolcos, F, Rice, HJ, Cabeza, R. Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci Biobehav Rev. 2002 Nov;26(7):819–25.Google Scholar
Reuter-Lorenz, PA, Stanczak, L. Differential effects of aging on the functions of the corpus callosum. Dev Neuropsychol. 2000;18(1):113–37.CrossRefGoogle ScholarPubMed
Hou, J, Pakkenberg, B. Age-related degeneration of corpus callosum in the 90+ years measured with stereology. Neurobiol Aging. 2012 May;33(5):1009.e1–9. doi: 10.1016/j.neurobiolaging.20.Google Scholar
Bangert, AS, Reuter-Lorenz, PA, Walsh, CM, Schachter, AB, Seidler, RD. Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia. 2010;48:1165–70.CrossRefGoogle ScholarPubMed
Fling, BW, Walsh, CM, Bangert, AS, Reuter-Lorenz, PA, Welsh, RC, Seidler, RD. Differential callosal contributions to bimanual control in young and older adults. J Cogn Neurosci. 2011 Sep;23(9):2171–85. doi: 10.1162/jocn.2010.21600.CrossRefGoogle ScholarPubMed
Ni, Z, Gunraj, C, Nelson, AJ, Yeh, IJ, Castillo, G, Hoque, T, Chen, R. Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Percept Mot Skills. 1993 Jun;76(3 Pt 2):1219–30.Google Scholar
Grefkes, C, Eickhoff, SB, Nowak, DA, Dafotakis, M, Fink, GR Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage. 2008 Jul 15;41(4):1382–94. doi: 10.1016/j.neuroimage.2008.03.048.CrossRefGoogle ScholarPubMed
Diermayr, G, McIsaac, TL, Gordon, AM. Finger force coordination underlying object manipulation in the elderly – a mini-review. Gerontology. 2011;57(3):217–27. doi: 10.1159/000295921.Google Scholar
Ameli, M, Dafotakis, M, Fink, GR, Nowak, DA. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight. Neuropsychologia. 2008;46(9):2383–8. doi: 10.1016/j.neuropsychologia.2008.03.011.CrossRefGoogle ScholarPubMed
Thorpe, WH. The learning of song patterns with especial references to the song of the chaffinch, Fringilla coelebs. Ibis 1958;100:535–70.Google Scholar
Bottjer, SW, Johnson, F. Circuits, hormones, and learning: vocal behavior in songbirds. J Neurobiol. 1997 Nov;33(5):602–18. Review.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Asher, JJ, Garcia, RC. The optimal age to learn a foreign language. Modern Language Journal. 1969;53:334–41.CrossRefGoogle Scholar
Scoville, WB, Milner, B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:1121.Google Scholar
Corkin, S. Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia. 1968;6:255–65.Google Scholar
Saint-Cyr, JA, Taylor, AE, Lang, AE. Procedural learning and neostriatal dysfunction in man. Brain. 1988 Aug;111 (Pt 4):941–59.CrossRefGoogle ScholarPubMed
Harrington, DL, Haaland, KY, Yeo, RA, Marder, E. Procedural memory in Parkinson’s disease: impaired motor but not visuoperceptual learning. J Clin Exp Neuropsychol. 1990 Mar;12(2):323–39.Google Scholar
Rodrigue, KM, Kennedy, KM, Raz, N. Aging and longitudinal change in perceptual-motor skill acquisition in healthy adults. J Gerontol B Psychol Sci Soc Sci. 2005 Jul;60(4):P174P181.CrossRefGoogle ScholarPubMed
Kennedy, KM, Raz, N. Age, sex and regional brain volumes predict perceptual-motor skill acquisition. Cortex. 2005 Aug; 41(4):560–9.CrossRefGoogle ScholarPubMed
Bennett, IJ, Madden, DJ, Vaidya, CJ, Howard, JH Jr, Howard, DV. White matter integrity correlates of implicit sequence learning in healthy aging. Neurobiol Aging. 2011 Dec;32(12):2317.e1–12. doi: 10.1016/j.neurobiolaging.2010.03.017.CrossRefGoogle ScholarPubMed
Woods, DL, Wyma, JM, Yund, EW, Herron, TJ, Reed, B. Factors influencing the latency of simple reaction time. Front Hum Neurosci. 2015; 23;9:193. doi: 10.3389/fnhum.2015.00193.9: 131.Google Scholar
Lewis, RD, Brown, JM. Influence of muscle activation dynamics on reaction time in the elderly. Eur J Appl Physiol Occup Physiol. 1994;69(4):344–9.CrossRefGoogle ScholarPubMed
Serbruyns, L, Leunissen, I, van Ruitenbeek, P, Pauwels, L, Caeyenberghs, K, Solesio-Jofre, E, Geurts, M, Cuypers, K, Meesen, RL, Sunaert, S, Leemans, A, Swinnen, SP. Alterations in brain white matter contributing to age-related slowing of task switching performance. Brain Mapp. 2016 Nov;37(11):4084–98. doi: 10.1002/hbm.23297.Google Scholar
Howes, D, Boller, F. Evidence for focal impairment from lesions of the right hemisphere. Brain. 1975;98:317–32.CrossRefGoogle ScholarPubMed
Heilman, KM, Van Den Abell, T. Right hemispheric dominance for mediating cerebral activation. Neuropsychologia. 1979;17(3–4):315–21.CrossRefGoogle ScholarPubMed
Hurtz, S, Woo, E, Kebets, V, Green, AE, Zoumalan, C, Wang, B, Ringman, JM, Thompson, PM, Apostolova, LG. Age effects on cortical thickness in cognitively normal elderly individuals. Dement Geriatr Cogn Dis Extra. 2014 Jul 1;4(2):221–7. doi: 10.1159/000362872.CrossRefGoogle ScholarPubMed
Krehbiel, LM, Kang, N, Cauraugh, JH. Age-related differences in bimanual movements: a systematic review and meta-analysis. Exp Gerontol. 2017 Nov;98:199206. doi: 10.1016/j.exger.2017.09.001.Google Scholar
Leinen, P, Vieluf, S, Kennedy, D, Aschersleben, G, Shea, CH, Panzer, S. Life span changes: performing a continuous 1:2 bimanual coordination task. Hum Mov Sci. 2016 Apr;46:209–20. doi: 10.1016/j.humov.2016.01.004.CrossRefGoogle Scholar
Langan, J, Peltier, SJ, Bo, J, Fling, BW, Welsh, RC, Seidler, RD. Functional implications of age differences in motor system connectivity. Front Syst Neurosci. 2010 Jun 7;4:17. doi: 10.3389/fnsys.2010.00017.Google Scholar
Kertesz, A, Nicholson, I, Cancelliere, A, Kassa, K, Black, SE. Motor impersistence: a right-hemisphere syndrome. Neurology. 1985 May;35(5):662–6.CrossRefGoogle ScholarPubMed
Sandson, J, Albert, ML. Perseveration in behavioral neurology. Neurology. 1987 Nov;37(11):1736–41.Google Scholar
Suchy, Y, Lee, JN, Marchand, WR. Aberrant cortico-subcortical functional connectivity among women with poor motor control: toward uncovering the substrate of hyperkinetic perseveration. Neuropsychologia. 2013 Sep;51(11):2130–41.CrossRefGoogle ScholarPubMed
Head, D, Kennedy, KM, Rodrigue, KM, Raz, N. Age differences in perseveration: cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia. 2009 Mar;47(4):1200–3. doi: 016/j.neuropsychologia.2009.01.003.Google Scholar
Niermeyer, MA, Suchy, Y, Ziemnik, RE. Motor sequencing in older adulthood: relationships with executive functioning and effects of complexity. Clin Neuropsychol. 2017 Apr;31(3):598618. doi: 10.1080/13854046.2016.1257071.CrossRefGoogle ScholarPubMed
Rey-Mermet, A, Gade, M. Inhibition in aging: what is preserved? what declines? a meta-analysis. Psychon Bull Rev. 2017 Oct 10. doi: 10.3758/s13423-017-1384-7.CrossRefGoogle Scholar
Shoraka, AR, Otzel, DM, M Zilli, E, Finney, GR, Doty, L, Falchook, AD, Heilman, KM. Effects of aging on action-intentional programming. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2018 Mar;25(2):244–58. doi: 10.1080/13825585.2017.1287854.Google Scholar
Denny-Brown, D, Chambers, RA. The parietal lobe and behaviour. Res Publ Assoc Res Nerv Ment Dis. 1958; 36:35117.Google Scholar
Denny-Brown, D. The nature of apraxia. J Nerv Ment Dis. 1958;126:932.CrossRefGoogle ScholarPubMed
Lhermitte, F. “Utilization behaviour” and its relation to lesions of the frontal lobes. Brain. 1983;106:237–55.CrossRefGoogle ScholarPubMed
Eslinger, PJ, Warner, GC, Grattan, LM, Easton, JD. “Frontal lobe” utilization behavior associated with paramedian thalamic infarction. Neurology. 1991 Mar;41(3):450–2.CrossRefGoogle ScholarPubMed
Coslett, HB, Bowers, D, Heilman, KM. Reduction in cerebral activation after right hemisphere stroke. Neurology. 1987 Jun;37(6):957–62.Google Scholar
Heilman, KM, Bowers, D, Coslett, HB, Whelan, H, Watson, RT. Directional hypokinesia: prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology. 1985 Jun;35(6):855–9.CrossRefGoogle ScholarPubMed
Brodaty, H, Sachdev, PS, Withall, A, Altendorf, A, Valenzuela, MJ, Lorentz, L Frequency and clinical, neuropsychological and neuroimaging correlates of apathy following stroke – the Sydney Stroke Study. Psychol Med. 2005 Dec;35(12):1707–16.Google Scholar
Devinsky, O, Morrell, MJ, Vogt, BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118: 279306.CrossRefGoogle ScholarPubMed
Joyce, MKP, Barbas, H. Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory. Journal of Neuroscience. 2018; 38:1677–98.Google Scholar
Nadeau, SE, McCoy, KJM, Crucian, GP, Greer, RA, Rossi, F, Bowers, D, et al. Cerebral blood flow changes in depressed patients after treatment with repetitive transcranial magnetic stimulation. Evidence of individual variability. Neuropsychiatry, Neuropsychol Behav Neurol. 2002;15:159–75.Google Scholar
Yan, H, Zuo, XN, Wang, D, Wang, J, Zhu, C, Milham, MP, Zhang, D, Zang, Y. Hemispheric asymmetry in cognitive division of anterior cingulate cortex: a resting-state functional connectivity study. Neuroimage. 2009 Oct 1;47(4):1579–89. doi: 10.1016/j.neuroimage.2009.05.080.71.Google Scholar
Kryscio, RJ, Abner, EL, Nelson, PT, Benbnett, D, Schneider, J, Yu, L, et al. The effect of vascular neuropathology on late-life cognition: results from the SMART Project. J Prev Alzheimers Dis. 2016 3:8591.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×