A Stochastic Closure for Coarse-Grained Simulation
from Part I - Paradigms and Tools
Published online by Cambridge University Press: 31 January 2025
An overview is presented of the filtered density function (FDF) methodology as a closure for large eddy simulation (LES) of turbulent reacting flows. The theoretical basis and the solution strategy of LES/FDF are briefly discussed, with the focus on some of the closure issues. Some of the recent applications of LES/FDF are reviewed, along with some speculations about future prospects for such simulations.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.