Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T22:05:51.510Z Has data issue: false hasContentIssue false

Part III - Sustainable Water Management under Future Uncertainty

Published online by Cambridge University Press:  17 March 2022

Qiuhong Tang
Affiliation:
Chinese Academy of Sciences, Beijing
Guoyong Leng
Affiliation:
Oxford University Centre for the Environment
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aerts, J. C., Botzen, W. J., Clarke, K. C., et al. (2018). Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change 8(3): 193.CrossRefGoogle Scholar
Aitsi-Selmi, A., Murray, V., Wannous, C., et al. (2016). Reflections on a science and technology agenda for 21st century disaster risk reduction. International Journal of Disaster Risk Science 7(1): 129.CrossRefGoogle Scholar
Andoh, R. Y. G., & Iwugo, K. O. (2012). Sustainable urban drainage systems: A UK perspective. Global Solutions for Urban Drainage 1–16. DOI:10.1061/40644(2002)19.CrossRefGoogle Scholar
Balica, S., & Wright, N. G. (2010). Reducing the complexity of the flood vulnerability index. Environmental Hazards 9(4): 321339.CrossRefGoogle Scholar
Behzadian, K., & Kapelan, Z. (2015) Modelling metabolism based performance of an urban water system using Water MET 2. Resources, Conservation and Recycling 99: 8499.Google Scholar
Bennet, O., & Hartwell-Naquib, S. (2014). Flood defence spending in England. House of Commons library, standard note SN/SC/5755.Google Scholar
Bensona, D., Fritsch, O., Cook, H., & Schmidd, M. (2014). Evaluating participation in WFD river basin management in England and Wales: Processes, communities, outputs and outcomes. Land Use Policy 38: 213222.CrossRefGoogle Scholar
Berndtsson, R., Becker, P., Persson, A., et al. (2019). Drivers of changing urban flood risk: A framework for action. Journal of Environmental Management 240: 4756.CrossRefGoogle Scholar
Bertilsson, L., Wiklund, K., Tebaldi, I. D. M., et al. (2019). Urban flood resilience – A multi-criteria index to integrate flood resilience into urban planning, Journal of Hydrology 573: 970982.CrossRefGoogle Scholar
Beven, K. (2012). Rainfall-Runoff Modelling: The Primer (2nd ed., pp. ixxix). Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Bottazzi, P., Winkler, M. S., & Speranza, C. I. (2019). Flood governance for resilience in cities: The historical policy transformations in Dakar’s suburbs. Environmental Science & Policy 93: 172180.CrossRefGoogle Scholar
Brown, R. R., Keath, N., & Wong, T. H. F. (2009). Urban water management in cities: Historical, current and future regimes. Water Science & Technology 59(5): 847855.CrossRefGoogle ScholarPubMed
Bruwier, M., Maravat, C., Mustafa, A., et al. (2020). Influence of urban forms on surface flow in urban pluvial flooding. Journal of Hydrology 582: 124493.CrossRefGoogle Scholar
Bubeck, P., Kreibich, H., Penning-Rowsell, E. C., Botzen, W. J. W., De Moel, H., & Klijn, F. (2015). Explaining differences in flood management approaches in Europe and in the USA – A comparative analysis. Journal of Flood Risk Management 10: 436445.CrossRefGoogle Scholar
Burby, R. J., Deyle, R. E., Godschalk, D. R., & Olshansky, R. B. (2000). Creating hazard resilient communities through land-use planning. Natural Hazards Review 1(2): 99106.CrossRefGoogle Scholar
Cabral, P., Augusto, G., Akande, A., et al. (2017). Assessing Mozambique’s exposure to coastal climate hazards and erosion. International Journal of Disaster Risk Reduction 23: 4552.CrossRefGoogle Scholar
Cai, T., Li, X., Ding, X., Wang, J., & Zhan, J. (2019). Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. International Journal of Disaster Risk Reduction 35: 101077.CrossRefGoogle Scholar
Cariolet, J.-M., Vuillet, M. & Diab, Y. (2019). Mapping urban resilience to disasters – A review. Sustainable Cities and Society 51: 101746,CrossRefGoogle Scholar
Chan, F. K. S., Griffiths, J. A., Higgitt, D., et al. (2018). ‘Sponge City’ in China – A breakthrough of planning and flood risk management in the urban context. Land Use Policy 76: 772778.CrossRefGoogle Scholar
Chang, F., Chen, P., Lu, Y., Huang, E., & Chang, K. (2014). Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. Journal of Hydrology 517: 836846.CrossRefGoogle Scholar
Chelleri, L., Schuetze, T., & Salvati, L. (2015). Integrating resilience with urban sustainability in neglected neighbourhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City. Habitat International 48: 122130.CrossRefGoogle Scholar
Chen, J., Gao, C., Zeng, X., et al. (2017). Assessing changes of river discharge under global warming of 1.5º and 2º in the upper reaches of the Yangtze River Basin: Approach by using multiple-GCMs and hydrological models. Quaternary International 453: 6373.CrossRefGoogle Scholar
Chini, M., Giustarini, L., Matgen, P., Hostache, R., Pappenberger, F., & Bally, P. (2014). Flood hazard mapping combining high resolution multi-temporal SAR data and coarse resolution global hydrodynamic modelling. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC (pp. 23942396).Google Scholar
Cigler, B. (2017). U.S. floods: The necessity of mitigation. State and local government Review 49(2): 127139.Google Scholar
Cobbinah, P. B., Asibey, M. O., Opoku-Gyamfi, M., & Peprah, C. (2019). Urban planning and climate change in Ghana. Journal of Urban Management 8(2): 261271.CrossRefGoogle Scholar
Cobbinah, P. B., Poku-Boansi, M., & Peprah, C. (2017). Urban environmental problems in Ghana. Environmental Development 23: 3346.CrossRefGoogle Scholar
Costabile, P., Costanzo, C., De Lorenzo, G., & Macchione, F. (2020). Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model? Journal of Hydrology 580: 124231.Google Scholar
Costanza, R., Perez-Maqueo, O., Martinez, M. L., Sutton, P., Anderson, S. J., & Mulder, K. (2008). The value of coastal wetlands for hurricane protection. AMBIO: A Journal of the Human Environment 37(4): 241248.Google Scholar
Darabi, H., Choubin, B., Rahmati, O., Haghighi, A. T., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology 569: 142154.Google Scholar
Dawson, R. J., Speight, L., Hall, J. W., Djordjevic, S., Savic, D., & Leandro, J. (2008). Attribution of flood risk in urban areas. Journal of Hydroinformatics 10(4): 275288.CrossRefGoogle Scholar
Department for Environment Food and Rural Affairs (DEFRA) (2017). Evaluation of the Arrangements for Managing Local Flood Risk in England (p. FD2680). Final Report. London: DEFRA.Google Scholar
Diagne, K., Ndiaye, A., Pelling, M., & Wisner, B. (2012). History, governance and the millennium development goals: Flood risk reduction in Saint-Louis, Senegal. In Pelling, M. and Wisner, B. (eds.), Disaster Risk Reduction: Cases From Urban Africa. (p. 147). London: Routledge.Google Scholar
van Dijk, E., van der Meulen, J., Kluck, J., & Straatman, J. H. M. (2014). Comparing modelling techniques for analysing urban pluvial flooding. Water Science & Technology 69(2): 305311.CrossRefGoogle ScholarPubMed
Dixon, L., Clancy, N., Seabury, S. A., & Overton, A. (2006). The National Flood Insurance Program’s Market Penetration Rate, Estimates and Policy Implications. Arlington, VA: RAND.Google Scholar
FEMA (Federal Emergency Management) (1994). A Unified National Program for Floodplain Management. Washington, DC: FEMA. Available from www.fema.gov/media-library-data/20130726-1733-25045-0814/unp_floodplain_mgmt_1994.pdf (Last accessed 15 March 2020).Google Scholar
Fenner, R. A., O’Donnell, E., Ahilan, S., et al. (2019). Achieving urban flood resilience in an uncertain future. Water 11(5): 1082.CrossRefGoogle Scholar
Field, C. B., Barros, V., Stocker, T. F., et al. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Filho, W. L., Balogun, A., Ayal, D. Y., et al. (2018). Strengthening climate change adaptation capacity in Africa – Case studies from six major African cities and policy implications. Environmental Science & Policy 86: 2937.CrossRefGoogle Scholar
Fletcher, T. D., Andrieu, H., & Hamel, P. (2013). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources 51: 261279.CrossRefGoogle Scholar
Foresight (2004). Foresight: Future Flooding. Executive Summary. London: Department of Trade and Industry, The Government Office for Science.Google Scholar
Fritsch, O., & Benson, D. (2013). Integrating the principles of IWRM? River basin planning in England and Wales. International Journal of Water Governance 1(3–4): 265284.Google Scholar
Gaitan, S., van de Giesen, N. C., & ten Veldhuis, J. A. E. (2016). Can urban pluvial flooding be predicted by open spatial data and weather data? Environmental Modelling & Software: With Environment Data News 85: 156171.Google Scholar
Gallien, T. W., Sanders, B. F., & Flick, R. E. (2014). Urban coastal flood prediction: Integrating wave overtopping, flood defences and drainage. Coastal Engineering 91: 1828.Google Scholar
Gebrehiwot, A., Hashemi-Beni, L., Thompson, G., Kordjamshidi, P., & Langan, T. E. (2019). Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data. Sensors 19(7): 1486.CrossRefGoogle ScholarPubMed
Gersonius, B. (2012). The Resilience Approach to Climate Adaptation Applied for Flood Risk. PhD Thesis, UNESCO-IHE/TU Delft.Google Scholar
Gersonius, B., van Buuren, A., Zethof, M., & Kelder, E. (2016). Resilient flood risk strategies: Institutional preconditions for implementation. Ecology and Society 21(4): 28.CrossRefGoogle Scholar
Glenis, V., Kutija, V., & Kilsby, C. G. (2018). A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions. Environmental Modelling & Software 109: 272292.Google Scholar
Griffiths, J. A., Zhu, F., Chan, F. K. S., & Higgitt, D. L. (2019). Modelling the impact of sea-level rise on urban flood probability in SE China. Geoscience Frontiers 10(2): 363372.Google Scholar
Grimaldi, S., Petroselli, A., Arcangeletti, E., & Nardi, F. (2013). Flood mapping in ungauged basins using fully continuous hydrologic–hydraulic modeling. Journal of Hydrology 487: 3947.Google Scholar
Hall, J. W., Meadowcroft, I. C., Sayers, P. B., & Bramley, M. E. (2003). Integrated flood risk management in England and Wales. Natural Hazards Review 4(3): 126135.Google Scholar
Hegger, D., Alexander, M., Raadgever, T., Priest, S., & Bruzzone, S. (2020). Shaping flood risk governance through science-policy interfaces: Insights from England, France and the Netherlands. Environmental Science & Policy 106: 157165.Google Scholar
Hirabayashi, Y., Mahendran, R., Koirala, S., et al. (2013). Global flood risk under climate change. Nature Climate Change 3: 816821.Google Scholar
Huang, D., Zhang, R., Huo, Z., et al. (2012). An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method. Natural Hazards 64(2): 15751586.CrossRefGoogle Scholar
van den Hurk, M., Mastenbroek, E., & Meijerink, S. (2014). Water safety and spatial development: An institutional comparison between the United Kingdom and the Netherlands. Land Use Policy 36: 416426.Google Scholar
Hutter, G., & Schanze, J. (2008). Learning how to deal with uncertainty of flood risk in long-term planning. Journal of River Basin Management 6(2): 175184.Google Scholar
Imran, M., Sumra, K., Mahmood, S. A., & Sajjad, S. F. (2019). Mapping flood vulnerability from socioeconomic classes and GI data: Linking socially resilient policies to geographically sustainable neighbourhoods using PLS-SEM. International Journal of Disaster Risk Reduction 41: 101288.Google Scholar
IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, 582 pp. [Field, C. B., Barros, V., Stocker, T. F., et al. (eds.)]. Cambridge: Cambridge University Press.Google Scholar
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151 pp. [Core Writing Team, Pachauri, R. K. & Meyer, L. A. (eds.)]. Geneva: IPCC.Google Scholar
IPCC-SRES (2000). Emission scenarios. In Nakićenovic, N., & Swart, R. (eds.), Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (pp. 239292). Cambridge: Cambridge University Press.Google Scholar
Jenkins, K., Surminski, S., Hall, J., & Crick, F. (2017). Assessing surface water flood risk and management strategies under future climate change: Insights from an agent-based model. Science of The Total Environment 595: 159168.Google Scholar
Ke, Y., Wang, S., Chan, A. P. C., & Lam, P. T. I. (2010). Preferred risk allocation in China’s public–private partnership (PPP) projects. International Journal of Project Management 28(5): 482492.Google Scholar
Khan, S. (2012). Vulnerability assessments and their planning implications: A case study of the Hutt Valley, New Zealand. Natural Hazards 64(2): 15871607.Google Scholar
Koks, E. E., Jongman, B., Husby, T. G., & Botzen, W. J. W. (2015). Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science & Policy 47: 4252.Google Scholar
Kolsky, P. (1999). Storm Drainage: An Engineering Guide to the Low-Cost Evaluation of System Performance. Rugby: Practical Action.Google Scholar
Kunreuther, H., & Roth, R. J. (1998). Paying the Price: The Status and Role of Insurance against Natural Disasters in the United States. Washington, DC: Joseph Henry.Google Scholar
Lee, S., Kim, J. C., Jung, H. S., Lee, M. J., & Lee, S. (2017). Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics Natural Hazards & Risk 8(2): 11851203.Google Scholar
Li, Y., Li, H. X., Huang, J., & Liu, C. (2020). An approximation method for evaluating flash flooding mitigation of sponge city strategies – A case study of Central Geelong. Journal of Cleaner Production 257: 120525.CrossRefGoogle Scholar
Liao, K. (2012). A theory on urban resilience to floods – A basis for alternative planning practices. Ecology and Society 17(4): 48.Google Scholar
Löschner, L., & Nordbeck, R. (2019). Switzerland’s transition from flood defence to flood-adapted land use: A policy coordination perspective. Land Use Policy, 95: 103873.Google Scholar
Lu, X., & Ran, L. (2011). China flood havoc highlights poor urban planning. Natural Hazards 56: 575576.Google Scholar
Macchione, F., Costabile, P., Costanzo, C., & De Lorenzo, G. (2019). Extracting quantitative data from non-conventional information for the hydraulic reconstruction of past urban flood events. A case study. Journal of Hydrology 576: 443465.Google Scholar
Maheu, A. (2012). Urbanization and flood vulnerability in a peri-urban neighbourhood of Dakar, Senegal: How can participatory GIS contribute to flood management? In Filho, W. L. (ed.), Climate Change and the Sustainable Use of Water Resources. Climate Change Management (pp. 185207). Berlin: Springer.Google Scholar
Mai, T., Mushtaq, S., Reardon-Smith, K., et al. (2020). Defining flood risk management strategies: A systems approach. International Journal of Disaster Risk Reduction 47: 101550.Google Scholar
Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning 147: 3849.Google Scholar
Mehrotra, R., & Sharma, A. (2010). Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resources Research 46(7): 759768.CrossRefGoogle Scholar
Mehrotra, R., Sharma, A., Nagesh Kumarb, D., & Reshmidevi, T. V. (2013). Assessing future rainfall projections using multiple GCMs and a multi-site stochastic downscaling model. Journal of Hydrology 488: 84100.Google Scholar
Meinshausen, M., Smith, S. J., Calvin, K., et al. (2011). The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climate Change 109(1–2): 213241.Google Scholar
Merz, B., Hall, J., Disse, M., & Schumann, A. (2010). Fluvial flood risk management in a changing world. Natural Hazards and Earth System Sciences 10(3): 509727.Google Scholar
Metz, F., Angst, M., & Fischer, M. (2020). Policy integration: Do laws or actors integrate issues relevant to flood risk management in Switzerland? Global Environmental Change 61: 101945,Google Scholar
Miguez, M. G., & Veról, A. P. (2017). A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design. Environment and Planning B: Planning and Design 44(5): 925946.Google Scholar
Miller, J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies 12: 345362.Google Scholar
Ministry of Water Resources of the People’s Republic of China (2013). China Flood and Drought Disaster Bulletin 2013. Beijing: SinoMaps Press. Available from www.mwr.gov.cn/sj/tjgb/zgshzhgb/201612/t20161222_776091.html (Last accessed 9 March 2020).Google Scholar
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Allaire, M., & Matthew, R. A. (2018). What is nuisance flooding? Defining and monitoring an emerging challenge. Water Resource Research 54(7): 42184227.Google Scholar
Mugume, S. N., Gomez, D. E., Fu, G., Farmani, R., & Butler, D. (2015). A global analysis approach for investigating structural resilience in urban drainage systems, Water Research 81: 1526.CrossRefGoogle ScholarPubMed
Müller, H., & Haberlandt, U. (2018). Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology. Journal of Hydrology 556: 847864,Google Scholar
NOAA National Centers for Environmental Information (NCEI) (2020). U.S. Billion-Dollar Weather and Climate Disasters. Available from www.ncdc.noaa.gov/billions/ (Last accessed 22 August 2021).Google Scholar
Nkhonjera, G. K. (2017). Understanding the impact of climate change on the dwindling water resources of South Africa, focusing mainly on Olifants River basin: A review. Environmental Science & Policy 71: 1929.CrossRefGoogle Scholar
Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2020). A review of the current status of flood modelling for urban flood risk management in the developing countries. Scientific African 7: e00269.Google Scholar
Noonan, D. S., & Sadiq, A. A. (2018). Flood risk management: Exploring the impacts of the community rating system program on poverty and income inequality. Risk Analysis 38(3): 489503.Google Scholar
O’Donnell, E. C., Lamond, J. E., & Thorne, C. R. (2018). Learning and action alliance framework to facilitate stakeholder collaboration and social learning in urban flood risk management. Environmental Science & Policy 80(Suppl C): 18.CrossRefGoogle Scholar
O’Donnell, E., Thorne, C., Ahilan, S., et al. (2019) The blue-green path to urban flood resilience. Blue-Green Systems 2(1): 2845.Google Scholar
Pelling, M., & Wisner, B. (2012). Disaster Risk Reduction: Cases from Urban Africa. London: Routledge.Google Scholar
Petersen, M. S. (2001). Impact of flash floods. In Gruntfest, E., & Handmer, J. (eds.), Coping with Flash Floods (pp. 1113). Netherlands: Klumer Academic Publishers.Google Scholar
Qiao, X., Liao, K., & Randrup, T. B. (2020). Sustainable stormwater management: A qualitative case study of the Sponge Cities initiative in China. Sustainable Cities and Society 53: 101963.Google Scholar
Reshmidevi, T. V., Nagesh Kumar, D., Mehrotra, R., & Sharma, A. (2018). Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. Journal of Hydrology 556: 11921204.Google Scholar
Reynard, N. S., Prudhomme, C., & Crooks, S. M. (2001). The flood characteristics of large UK rivers: Potential effects of changing climate and land use. Climate Change 48: 343359.Google Scholar
Rubinato, M., Nichols, A., Peng, Y., et al. (2019). Urban and river flooding: Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs. Water Science and Engineering 12(4): 274283.Google Scholar
Sadler, J. M., Goodall, J. L., Morsy, M. M., & Spencer, K. (2018). Modelling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest. Journal of Hydrology 559: 4355.Google Scholar
Saul, A. J., Djordjevic, S., Maksimovic, C., & Blanksby, J. (2011). Integrated urban flood modelling In Pender, G., & Faulkner, H. (eds.), Flood Risk Science and Management (pp. 258288). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Sayers, P., Li, Y., Galloway, G., et al. (2013). Flood Risk Management: A Strategic Approach. Paris: UNESCO.Google Scholar
Schanze, J. (2006). Flood risk management – A basic framework. In Schanze, J., Zeman, E., & Marsalek, J. (eds.), Flood Risk Management – Hazards, Vulnerability and Mitigation Measures (pp. 120). Berlin: Springer.Google Scholar
Scholz, M. (2013). Water quality improvement performance of geotextiles within permeable paving systems: A critical review. Water 5(2): 462479.Google Scholar
Schwartz, S. S., & Smith, B. (2016). Restoring hydrologic function in urban landscapes with suburban subsoiling. Journal of Hydrology 543(Part B): 770781.Google Scholar
Sendzimir, J., Magnuszewski, P., Flachner, Z., et al. (2007). Assessing the resilience of a river management regime: Informal learning in a shadow network in the Tisza River Basin. Ecology and Society 13(1): 11.Google Scholar
Smith, L. S., & Liang, Q. (2015). A high-performance integrated hydrodynamic modelling system for urban flood simulations. Journal of Hydroinformatics 17(4): 518533.Google Scholar
Smits, A. J. M., Nienhuis, P. H., & Saeijs, H. L. F. (2006). Changing estuaries, changing views. Hydrobiologia 565: 339355.Google Scholar
Sörensen, J., & Mobini, S. (2017). Pluvial, urban flood mechanisms and characteristics – Assessment based on insurance claims. Journal of Hydrology 555: 5167.Google Scholar
Sörensen, J., Persson, A., Sternudd, C., et al. (2016). Re-thinking urban flood management – Time for a regime shift. Water 8(8): 332.Google Scholar
Tang, Q. (2020). Global change hydrology: Terrestrial water cycle and global change. Science China Earth Sciences 63: 459462.CrossRefGoogle Scholar
Tanoue, M., Hirabayashi, Y., & Ikeuchi, H. (2016). Global-scale river flood vulnerability in the last 50 years. Scientific Reports 6: 36021.CrossRefGoogle ScholarPubMed
Tiepolo, M. (2014). Flood risk reduction and climate change in large cities south of the Sahara. In Macchi, S., & Tiepolo, M. (eds.), Climate Change Vulnerability in Southern African Cities (pp. 1936). Cham: Springer.Google Scholar
Trzaska, S., & Schnarr, E. (2014). A review of downscaling methods for climate change projections. United States Agency for International Development by Tetra Tech ARD (pp. 142).Google Scholar
UK Government (2010). Flood and Water Management Act. London: UK Government.Google Scholar
UN (2018). 68% of the world population projected to live in urban areas by 2050, says UN. Available from www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (Last accessed 17 October 2019).Google Scholar
UN (United Nations, Department of Economic and Social Affairs, Population Division) (2019). World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421).Google Scholar
Ungaro, F., Calzolari, C., Pistocchi, A., & Malucelli, F. (2014). Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: A hydrogeological approach. Journal of Hydrology & Hydromechanics 62(1): 3342.CrossRefGoogle Scholar
UNISDR (2004). Living with risk. A Global Review of Disaster Reduction Initiatives. Geneva: UNISDR. Available from www.unisdr.org/files/657_lwr21.pdf (Last accessed 21 March 2020).Google Scholar
Vahedifard, F., AghaKouchak, A., & Jafari, N. H. (2016). Compound hazards yield Louisiana flood. Science 353(6306): 1374.Google Scholar
ten Veldhuis, J. A. E., Harder, R. C., & Loog, M. (2010). Automatic classification of municipal call data to support quantitative risk analysis of urban drainage systems. Structure and Infrastructure Engineering 9(2): 110.Google Scholar
Vercruysse, K., Dawson, D., & Wright, N. (2019) Interoperability: A conceptual framework to bridge the gap between multi-functional and multi-system urban flood management. Journal of Flood Risk Management 12(S2): e12535.Google Scholar
van Vuuren, D. P., Edmonds, J., Kainuma, M., et al. (2011). The representative concentration pathways: An overview. Climatic Change 109: 531.CrossRefGoogle Scholar
Waghwala, R. K., & Agnihotri, P. G. (2019). Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. International Journal of Disaster Risk Reduction 40: 101155.Google Scholar
Wang, Q., Xu, Y., Wang, Y., et al. (2020). Individual and combined impacts of future land-use and climate conditions on extreme hydrological events in a representative basin of the Yangtze River Delta, China. Atmospheric Research 236: 104805.CrossRefGoogle Scholar
Wang, Y., Sun, M., & Song, B. (2017). Public perceptions of and willingness to pay for sponge city initiatives in China. Resources, Conservation and Recycling 122: 11–0.Google Scholar
Wang, Y., Zhang, X., Tang, Q., et al. (2019). Assessing flood risk in Baiyangdian Lake area in a changing climate using an integrated hydrological-hydrodynamic modelling. Hydrological Sciences Journal 64(16): 20062014.Google Scholar
Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., & Bai, X. (2015). Flood hazard risk assessment model based on random forest. Journal of Hydrology 527: 11301141.Google Scholar
Ward, P. J., Jongman, B., Weiland, F. S., et al. (2013). Assessing flood risk at the global scale: Model setup, results, and sensitivity. Environmental Research Letters 8(4): 044019.Google Scholar
Watson, K. M., Harwell, G. R., Wallace, D. S., Welborn, T. L., Stengel, V. G., & McDowell, J. S. (2018). Characterization of peak streamflows and flood inundation of selected areas in southeastern Texas and southwestern Louisiana from the August and September 2017 flood resulting from Hurricane Harvey: U.S. Geological Survey Scientific Investigations Report 2018-5070, 44 p., https://doi.org/10.3133/sir20185070.Google Scholar
Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., et al. (2016). Global drivers of future river flood risk. Nature Climate Change 6: 381385.Google Scholar
Wisner, B., Blaikie, P. M., Blaikie, P., Cannon, T., & Davis, I. (2004). At Risk: Natural Hazards, People’s Vulnerability and Disasters. New York: Routledge.Google Scholar
Yao, L., Wei, W., & Chen, L. (2016). How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecological Indicators 60: 893905.Google Scholar
Yin, Y., Tang, Q., Liu, X., & Zhang, X. (2017). Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River Basin. Hydrology and Earth System Sciences 21: 791804.Google Scholar
Zhang, L., Sun, X., & Xue, H. (2019). Identifying critical risks in Sponge City PPP projects using DEMATEL method: A case study of China. Journal of Cleaner Production 226: 949958.Google Scholar
Zhao, G., Pang, B., Xu, Z., Peng, D., & Xu, L. (2019). Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of the Total Environment 659: 940949.Google Scholar
Zheng, Z., Qi, S., & Xu, Y. (2013). Questionable frequent occurrence of urban flood hazards in modern cities of China. Natural Hazards 65: 10091010.Google Scholar

References

Abdullah, S. S., Malek, M. A., Abdullah, N. S., Kisi, O., & Yap, K. S. (2015). Extreme learning machines: A new approach for prediction of reference evapotranspiration. Journal of Hydrology 527: 184195.Google Scholar
Abdullah, S. S., Malek, M. A., Mustapha, A., & Aryanfar, A. (2014). Hybrid of artificial neural network-genetic algorithm for prediction of reference evapotranspiration (ET0) in arid and semiarid regions. Journal of Agricultural Science 6(3): 191.Google Scholar
Afzaal, H., Farooque, A. A., Abbas, F., & Acharya, B. (2020). Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning. Water 12(1): 5.Google Scholar
Agana, N., & Homaifar, A. (2018). EMD-based predictive deep belief network for time series prediction: An application to drought forecasting. Hydrology 5(1): 18.Google Scholar
Ahmad, A., Razali, S. F. M., Mohamed, Z. S., & El-shafie, A. (2016). The application of artificial bee colony and gravitational search algorithm in reservoir optimization. Water Resources Management 30(7): 24972516.Google Scholar
Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmospheric Research 213: 450464.Google Scholar
Al-Sudani, Z. A., Salih, S. Q., & Yaseen, Z. M. (2019). Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. Journal of Hydrology 573: 112.Google Scholar
Ashofteh, P. S., Bozorg-Haddad, O., & Loáiciga, H. A. (2020). Logical genetic programming (LGP) application to water resources management. Environmental Monitoring and Assessment 192(1): 34.Google Scholar
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems 19. Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, BC, 4–7 December 2006 (pp. 153160).Google Scholar
Cao, J., Chi, D., Liu, L., Li, S., & Yu, M. (2009). Application of BP network model based on PSO for the forecast of drought and flood. Journal of Shenyang Agricultural University 40(1): 118121.Google Scholar
Cao, J., Lin, Z., & Huang, G. B. (2012). Self-adaptive evolutionary extreme learning machine. Neural Processing Letters 36(3): 285305.Google Scholar
Chen, J., Jin, Q., & Chao, J. (2012). Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin. Mathematical Problems in Engineering 2012(6): 235929.Google Scholar
Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences 46: 229247.Google Scholar
Darabi, H., Choubin, B., Rahmati, O., Haghighi, A. T., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology 569: 142154.Google Scholar
Deo, R. C., & Şahin, M. (2015). Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmospheric Research 153: 512525.Google Scholar
Deo, R. C., Tiwari, M. K., Adamowski, J. F., & Quilty, J. M. (2017). Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stochastic Environmental Research and Risk Assessment 31(5): 12111240.Google Scholar
Dongwen, C. (2013). Comprehensive evaluation of water resources development and utilization in Yangtze River Basin based on extreme learning machine. Advances in Science and Technology of Water Resources 2: 005.Google Scholar
Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modelling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture 136: 7178.Google Scholar
Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation 76(2): 6068.Google Scholar
Ghimire, S., Deo, R. C., Downs, N. J., & Raj, N. (2018). Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and reanalysis atmospheric products in solar-rich cities. Remote Sensing of Environment 212: 176198.Google Scholar
Gocic, M., Petković, D., Shamshirband, S., & Kamsin, A. (2016). Comparative analysis of reference evapotranspiration equations modelling by extreme learning machine. Computers and Electronics in Agriculture 127: 5663.Google Scholar
He, X., Luo, J., Zuo, G., & Xie, J. (2019a). Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks. Water Resources Management 33(4): 15711590.Google Scholar
He, Z., Zhou, J., Qin, H., Jia, B., & Lu, C. (2019b). Long-term joint scheduling of hydropower station group in the upper reaches of the Yangtze River using partition parameter adaptation differential evolution. Engineering Applications of Artificial Intelligence 81: 113.Google Scholar
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation 18(7): 15271554.Google Scholar
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. Neural Networks 2: 985990.Google Scholar
Huang, W. B., & Sun, F. C. (2015). A deep and stable extreme learning approach for classification and regression. Proceedings of ELM-2014, Vol. 1 (pp. 141150). Cham: Springer.Google Scholar
Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization (Vol. 200, pp. 1–10). Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.Google Scholar
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural Networks, Proceedings, IEEE International Conference, vol. 4, 27 November–1 December, Perth, WA (pp. 19421948).Google Scholar
Kisi, O., & Alizamir, M. (2018). Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: Wavelet extreme learning machine vs wavelet neural networks. Agricultural and Forest Meteorology 263: 4148.Google Scholar
Kisi, O., Gorgij, A. D., Zounemat-Kermani, M., Mahdavi-Meymand, A., & Kim, S. (2019). Drought forecasting using novel heuristic methods in a semi-arid environment. Journal of Hydrology 578: 124053.Google Scholar
Kisi, O., Sanikhani, H., Zounemat-Kermani, M., & Niazi, F. (2015). Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Computers and Electronics in Agriculture 115: 6677.Google Scholar
Kisi, O., & Zounemat-Kermani, M. (2014). Comparison of two different adaptive neuro-fuzzy inference systems in modelling daily reference evapotranspiration. Water Resources Management 28(9): 26552675.Google Scholar
Li, B., & Cheng, C. (2014). Monthly discharge forecasting using wavelet neural networks with extreme learning machine. Science China Technological Sciences 57(12), 24412452.Google Scholar
Li, M. B., Huang, G. B., Saratchandran, P., & Sundararajan, N. (2005). Fully complex extreme learning machine. Neurocomputing 68: 306314.Google Scholar
Li, S., Kazemi, H., & Rockaway, T. D. (2019). Performance assessment of stormwater GI practices using artificial neural networks. Science of the Total Environment 651: 28112819.Google Scholar
Li, X., Du, Z., & Song, G. (2018). A method of rainfall runoff forecasting based on deep convolution neural networks. 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD), 12–15 August, Lanzhou, China (pp. 304310). IEEE.Google Scholar
Liang, N. Y., Huang, G. B., Saratchandran, P., & Sundararajan, N. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks 17(6): 14111423.Google Scholar
Liu, F., Xu, F., & Yang, S. (2017). A flood forecasting model based on deep learning algorithm via integrating stacked autoencoders with BP neural network. 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), 19–21 April, Laguna Hills, CA (pp. 5861). IEEE.Google Scholar
Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software 15(1): 101124.Google Scholar
Malik, A., Kumar, A., & Singh, R. P. (2019). Application of heuristic approaches for prediction of hydrological drought using multi-scalar streamflow drought index. Water Resources Management 33(8): 39854006.Google Scholar
Meng, X., Chang, J., Wang, X., & Wang, Y. (2019). Multi-objective hydropower station operation using an improved cuckoo search algorithm. Energy 168: 425439.Google Scholar
Meshram, S. G., Ghorbani, M. A., Deo, R. C., Kashani, M. H., Meshram, C., & Karimi, V. (2019). New approach for sediment yield forecasting with a two-phase feedforward neuron network-particle swarm optimization model integrated with the gravitational search algorithm. Water Resources Management 33(7): 23352356.Google Scholar
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software 69: 4661.Google Scholar
Moeini, R., Soltani-Nezhad, M., & Daei, M. (2017). Constrained gravitational search algorithm for large scale reservoir operation optimization problem. Engineering Applications of Artificial Intelligence 62: 222233.CrossRefGoogle Scholar
Naidu, M. N., Boindala, P. S., Vasan, A., & Varma, M. R. (2020). Optimization of water distribution networks using cuckoo search algorithm. In Renkata Rao, R., & Taler, J. (eds.), Advanced Engineering Optimization Through Intelligent Techniques (pp. 6774). Singapore: Springer.Google Scholar
Niu, W. J., Feng, Z. K., Zeng, M., et al. (2019). Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm. Applied Soft Computing 82: 105589.Google Scholar
Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–artificial intelligence models in hydrology: A review. Journal of Hydrology 514: 358377.Google Scholar
Ojugo, A. A., Emudianughe, J., Yoro, R. E., Okonta, E. O., & Eboka, A. O. (2013). A hybrid artificial neural network gravitational search algorithm for rainfall runoffs modeling and simulation in hydrology. Progress in Intelligent Computing and Applications 2: 2233.Google Scholar
Petković, D., Gocic, M., Shamshirband, S., Qasem, S. N., & Trajkovic, S. (2016). Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration. Theoretical and Applied Climatology 125(3–4): 555563.Google Scholar
Rahgoshay, M., Feiznia, S., Arian, M., & Hashemi, S. A. A. (2019). Simulation of daily suspended sediment load using an improved model of support vector machine and genetic algorithms and particle swarm. Arabian Journal of Geosciences 12(9): 277.Google Scholar
Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences 179(13): 22322248.Google Scholar
Reddy, M. J., & Singh, V. P. (2014). Multivariate modelling of droughts using copulas and metaheuristic methods. Stochastic Environmental Research and Risk Assessment 28(3): 475489.Google Scholar
Robles-Velasco, A., Cortés, P., Muñuzuri, J., & Onieva, L. (2020). Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliability Engineering & System Safety 196: 106754.Google Scholar
Roushangar, K., Alizadeh, F., & Nourani, V. (2017). Improving capability of conceptual modelling of watershed rainfall–runoff using hybrid wavelet-extreme learning machine approach. Journal of Hydroinformatics 20(1): 6987.Google Scholar
Saggi, M. K., & Jain, S. (2019). Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Computers and Electronics in Agriculture 156: 387398.Google Scholar
Sattar, A. M., Ertuğrul, Ö. F., Gharabaghi, B., McBean, E. A., & Cao, J. (2019). Extreme learning machine model for water network management. Neural Computing and Applications 31(1): 157169.Google Scholar
Shabanlou, S. (2018). Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels. Flow Measurement and Instrumentation 59: 6371.Google Scholar
Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4): 341359.Google Scholar
Taormina, R., & Chau, K. W. (2015). Data-driven input variable selection for rainfall–runoff modelling using binary-coded particle swarm optimization and extreme learning machines. Journal of Hydrology 529: 16171632.Google Scholar
Tikhamarine, Y., Souag-Gamane, D., & Kisi, O. (2019). A new intelligent method for monthly streamflow prediction: Hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO). Arabian Journal of Geosciences 12(17): 540.Google Scholar
Wang, L., Kisi, O., Zounemat-Kermani, M., & Li, H. (2017). Pan evaporation modeling using six different heuristic computing methods in different climates of China. Journal of Hydrology 544: 407427.Google Scholar
Wang, W. C., Xu, D. M., Chau, K. W., & Chen, S. (2013). Improved annual rainfall–runoff forecasting using PSO–SVM model based on EEMD. Journal of Hydroinformatics 15(4): 13771390.Google Scholar
Wen, X., Feng, Q., Deo, R. C., et al. (2019). Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems. Journal of Hydrology 570: 167184.CrossRefGoogle Scholar
Yadav, B., Ch, S., Mathur, S., & Adamowski, J. (2016). Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement 92: 433445.Google Scholar
Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 9–11 December, Coimbatore, India (pp. 210214). IEEE.Google Scholar
Yang, Y., Wang, Y., & Yuan, X. (2012). Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Transactions on Neural Networks and Learning Systems 23(9): 14981505.Google Scholar
Yaseen, Z. M., Jaafar, O., Deo, R. C., et al. (2016). Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. Journal of Hydrology 542: 603614.Google Scholar
Yilmaz, B., Aras, E., Kankal, M., & Nacar, S. (2019). Prediction of suspended sediment loading by means of hybrid artificial intelligence approaches. Acta Geophysica 67(6): 16931705.Google Scholar
Yin, Z., Wen, X., Feng, Q., He, Z., Zou, S., & Yang, L. (2016). Integrating genetic algorithm and support vector machine for modelling daily reference evapotranspiration in a semi-arid mountain area. Hydrology Research 48(5): 11771191.Google Scholar
Yue, Q., Zhang, F., Zhang, C., Zhu, H., Tang, Y., & Guo, P. (2020). A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty. Agricultural Water Management 230: 105961.Google Scholar
Zong, W., Huang, G. B., & Chen, Y. (2013). Weighted extreme learning machine for imbalance learning. Neurocomputing 101: 229242.Google Scholar
Zou, Q., Liao, L., Ding, Y., & Qin, H. (2019). Flood classification based on a fuzzy clustering iteration model with combined weight and an immune grey wolf optimizer algorithm. Water 11(1): 80.Google Scholar
Zounemat-Kermani, M., Kisi, O., & Rajaee, T. (2013). Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Applied Soft Computing 13(12): 46334644.Google Scholar
Zounemat-Kermani, M., Kisi, O., Piri, J., & Mahdavi-Meymand, A. (2019). Assessment of artificial intelligence-based models and metaheuristic algorithms in modelling evaporation. Journal of Hydrologic Engineering 24(10): 04019033.Google Scholar

References

Abbasi, T., & Abbasi, S. A. (2011). Sources of pollution in rooftop rainwater harvesting systems and their control. Critical Reviews in Environmental Science and Technology 41(23): 20972167.Google Scholar
Abdulla, F. A., & Al-Shareef, A. W. (2009). Roof rainwater harvesting systems for household water supply in Jordan. Desalination 243(1–3): 195207.Google Scholar
Amos, C. C., Rahman, A., & Gathenya, J. M. (2016). Economic analysis and feasibility of rainwater harvesting systems in urban and peri-urban environments: A review of the global situation with a special focus on Australia and Kenya. Water 8(4): 121.Google Scholar
Andersson, J. C., Zehnder, A. J., Rockström, J., & Yang, H. (2011). Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa. Agricultural Water Management 98(7): 11131124.Google Scholar
Angelakis, A. (2016). Evolution of rainwater harvesting and use in Crete, Hellas, through the millennia. Water Science and Technology: Water Supply 16(6): 16241638.Google Scholar
Angelakis, A. N., & Spyridakis, S. V. (1996). The status of water resources in Minoan times: A preliminary study. In Angelakis, A. N., & Issar, A. S. (eds.), Diachronic Climatic Impacts on Water Resources. NATO ASI Series (Series I: Global Environmental Change, vol. 36, pp. 161191). Berlin: Springer.Google Scholar
Antoniou, G., Kathijotes, N., Spyridakis, D. S., & Angelakis, A. N. (2014). Historical development of technologies for water resources management and rainwater harvesting in the Hellenic civilizations. International Journal of Water Resources Development 30(4): 680693.Google Scholar
Ayele, Y. A. (2014). Rainwater harvesting for climate change adaptation in Ethiopia: Policy and institutional analysis. V.R.F. Series 488: 84.Google Scholar
Bassi, N., Kumar, M. D., Sharma, A., & Pardha-Saradhi, P. (2014). Status of wetlands in India: A review of extent, ecosystem benefits, threats, and management strategies. Journal of Hydrology: Regional Studies 2: 119.Google Scholar
Bhattacharya, S. (2015). Traditional water harvesting structures and sustainable water management in India: A socio-hydrological review. International Letters of Natural Sciences 37: 3038.Google Scholar
Bhattacharya, S., Dasgupta, A., Mahansaria, R., Ghosh, S., Chattopadhyay, D., & Mukhopadhyay, A. (2011). Traditional water harvesting in India: Historical perspectives, present scenario, and future prospects. Water Advisory Committee Meeting, 612623.Google Scholar
Boelee, E., Mekonnen, Y., Jean-Noel, P., et al. (2013). Options for water storage and rainwater harvesting to improve health and resilience against climate change in Africa. Regional Environmental Change 13: 509519.Google Scholar
Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Florke, M. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa: Science of the Anthropocene 4: 000083.Google Scholar
Bruins, H. J., Evenari, M., & Nessler, U. (1986). Rainwater-harvesting agriculture for food production in arid zones: The challenge of the African famine. Applied Geography 6(1): 1332.Google Scholar
Bunclark, L., Gowing, J., Oughton, E., Ouattara, K., Ouoba, S., & Benao, D. (2018). Understanding farmers’ decisions on adaptation to climate change: Exploring adoption of water harvesting technologies in Burkina Faso. Global Environmental Change 48: 243254.Google Scholar
Campisano, A., Butler, D., Ward, S., et al. (2017). Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research 115: 195209.Google Scholar
Chien, H., Yeh, P. J. F., & Knouft, J. H. (2013). Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. Journal of Hydrology 491(1): 7388.Google Scholar
Clark, M. P., Wilby, R. L., Gutmann, E. D., et al. (2016). Characterizing uncertainty of the hydrologic impacts of climate change. Current Climate Change Reports 2(2): 5564.Google Scholar
Costanza, R., de Groot, R., Sutton, P., et al. (2014). Changes in the global value of ecosystem services. Global Environmental Change 26(1): 152158.Google Scholar
Critchley, W., Siegert, K., Chapman, C., & Finket, M. (2013). Water Harvesting: A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production. Jodhpur: Scientific Publishers.Google Scholar
Crosbie, R. S., Scanlon, B. R., Mpelasoka, F. S., Reedy, R. C., Gates, J. B., & Zhang, L. (2013). Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resources Research, 49(7): 39363951.Google Scholar
Cupido, A., Brian, B., Guo, Y., & Robertson, A. (2012). An evaluation of rainwater runoff quality from selected white roof membranes. Water Quality Research Journal 47(1): 6679.Google Scholar
Dile, Y. T., Karlberg, L., Daggupati, P., Srinivasan, R., Wiberg, D., & Rockström, J. (2016). Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: A case study in the Lake Tana basin. The Science of the Total Environment 542(Part A): 2235.Google Scholar
Dodds, W. K., & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6(2): 155164.Google Scholar
Doll, P. (2009). Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environmental Research Letters 4: 035006.Google Scholar
Donat, M. G., Alexander, L. V., Yang, H., et al. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres 118(5): 20982118.Google Scholar
Falkenmark, M., Fox, P., Persson, G., & Rockstrom, J. (2001). Water harvesting for upgrading of rainfed agriculture: Problems analysis and research needs. SIWI Report 11. Stockholm: Stockholm International Water Institute. 94 pp.Google Scholar
Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change 4(11): 945948.Google Scholar
FAO (1994). Water harvesting for improved agricultural production: Proceedings of the FAO Expert Consultation, Cairo, Egypt. Water Reports Series 6: 424 pp.Google Scholar
FAO (2016). AQUASTAT Main Database – Food and Agriculture Organization of the United Nations (FAO). Available from https://ceowatermandate.org/resources/fao-aquastat-2016/ (Last accessed 14 January 2020).Google Scholar
Ferrand, E. A., & Cecunjanin, F. (2014). Potential of rainwater harvesting in a thirsty world: A survey of ancient and traditional rainwater harvesting applications. Geography Compass 8(6): 395413.Google Scholar
Frasier, G. W. (1985). Technical, economic, and social considerations of water harvesting and runoff farming. Paper presented at the Conference Arid Lands: Today and Tomorrow, 20–25 October, University of Arizona, Tucson, AZ.Google Scholar
Garg, K. K., Karlberg, L., Barron, J., Wani, S. P., & Rockstrom, J. (2012). Assessing impacts of agricultural water interventions in the Kothapally watershed, Southern India. Hydrological Processes 26(3): 387404.Google Scholar
Garg, K. K., Wani, S. P., Barron, J., Karlberg, L., & Rockstrom, J. (2013). Upscaling potential impacts on water flows from agricultural water interventions: Opportunities and tradeoffs in the Osman Sagar catchment, Musi subbasin, India. Hydrological Processes 27(26): 39053921.Google Scholar
Garibaldi, L. A., Gemmill-Herren, B., D’Annolfo, R., Graeub, B. E., Cunningham, S. A., & Breeze, T. D. (2017). Farming approaches for greater biodiversity, livelihoods, and food security. Trends in Ecology and Evolution 32(1): 6880.CrossRefGoogle ScholarPubMed
GhaffarianHoseini, A., Tookey, J., GhaffarianHoseini, A., Yusoff, S. M., & Hassan, N. B. (2016). State of the art of rainwater harvesting systems towards promoting green built environments: A review. Desalination and Water Treatment 57(1): 95104.Google Scholar
Ghimire, S. R., Johnston, J. M., Garland, J., Edelen, A., Ma, X., & Jahne, M. (2019). Life cycle assessment of a rainwater harvesting system compared with an AC condensate harvesting system. Resources, Conservation and Recycling 146: 536548.Google Scholar
Ghisi, E., Montibeller, A., & Schmidt, R. W. (2006). Potential for potable water savings by using rainwater: An analysis over 62 cities in southern Brazil. Building and Environment 41(2): 204210.Google Scholar
Githui, F., Gitau, W., Mutua, F., & Bauwens, W. (2009). Climate change impact on SWAT simulated streamflow in western Kenya. International Journal of Climatology 29(12): 18231834.Google Scholar
Gizaw, M. S., Biftu, G. F., Gan, T. Y., Moges, S. A., & Koivusalo, H. (2017). Potential impact of climate change on streamflow of major Ethiopian rivers. Climatic Change 143(3–4): 371383.Google Scholar
Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410): 197200.Google Scholar
Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change 134(3): 371385.Google Scholar
Gunnell, Y., & Krishnamurthy, A. (2003). Past and present status of runoff harvesting systems in dryland peninsular India: A critical review. AMBIO: A Journal of the Human Environment 32(4): 320324.Google Scholar
Guo, R., & Guo, Y. (2018). Stochastic modeling of the hydrologic operation of rainwater harvesting systems. Journal of Hydrology 562: 3039.Google Scholar
Gupta, A. K. (2006). Rainwater Harvesting. Pune: Indian Railways Institute of Civil Engineering.Google Scholar
Handia, L., Tembo, J. M., & Mwiindwa, C. (2003). Potential of rainwater harvesting in urban Zambia. Physics and Chemistry of the Earth 28(20–27): 893896.Google Scholar
Haque, M. M., Rahman, A., & Samali, B. (2016). Evaluation of climate change impacts on rainwater harvesting. Journal of Cleaner Production 137: 6069.Google Scholar
Hatibu, N., & Mahoo, H. F. (2000). Rainwater harvesting for natural resources management: A planning guide for Tanzania. In Sida’s Regional Land Management Unit, Technical Handbook (No. 22). Nairobi: Regional Land Management Unit, RELMA/Sida.Google Scholar
Hofman, J. A., & Paalman, M. (2014). Rainwater harvesting, a sustainable solution for urban climate adaptation? KWR Watercycle Research Institute. KFC report number KfC 142/2014, 66 p.Google Scholar
Jha, M., Pan, Z., Takle, E. S., & Gu, R. (2004). Impacts of climate change on streamflow in the Upper Mississippi River Basin: A regional climate model perspective. Journal of Geophysical Research: Atmospheres 109(D9105): 112.Google Scholar
Kahinda, J. M., & Taigbenu, A. E. (2011). Rainwater harvesting in South Africa: Challenges and opportunities. Physics and Chemistry of the Earth, Parts A/B/C 36(14–15): 968976.Google Scholar
Khatakho, R., & Koju, N. (2017). Rain Water Harvesting (RWH) technique: An alternative way to irrigation in Arid and Semi-Arid Regions (ASARs). Available from www.researchgate.net/publication/324803601 (Last accessed 20 December).Google Scholar
Khoury-Nolde, N. (2006). Rainwater Harvesting. Germany: Zero-M Organization. Available from https://pdfcoffee.com/rainwater-harvesting-5-pdf-free.html (Last accessed 20 December 2019).Google Scholar
Koirala, S., Hirabayashi, Y., Mahendran, R., & Kanae, S. (2014). Global assessment of agreement among streamflow projections using CMIP5 model outputs. Environmental Research Letters 9(6): 064017.Google Scholar
Konikow, L. F., & Kendy, E. (2005). Groundwater depletion: A global problem. Hydrogeology Journal 13(1): 317320.Google Scholar
Kreins, P., Henseler, M., Anter, J., Herrmann, F., & Wendland, F. (2015). Quantification of climate change impact on regional agricultural irrigation and groundwater demand. Water Resources Management 29(10): 35853600.Google Scholar
Krueger, E., Rao, P. S. C., & Borchardt, D. (2019). Quantifying urban water supply security under global change. Global Environmental Change 56: 6674.Google Scholar
Kumar, K. K., Patwardhan, S. K., Kulkarni, A., Kamala, K., Rao, K. K., & Jones, R. (2011). Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Current Science 101(3): 312326.Google Scholar
Kumar, M. D. (2004). Roof water harvesting for domestic water security: Who gains and who loses? Water International 29(1): 4353.Google Scholar
Kumar, M. D., Patel, A., Ravindranath, R., & Singh, O. P. (2008). Chasing a mirage: Water harvesting and artificial recharge in naturally water-scarce regions. Economic and Political Weekly 43(35): 6171.Google Scholar
Kummu, M., Guillaume, J. H. A., de Moel, H., et al. (2016). The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports 6(1): 38495.Google Scholar
Loucks, D. P. (2000). Sustainable water resources management. Water international 25(1): 310.Google Scholar
Love, D., Uhlenbrook, S., Corzo-Perez, G., Twomlow, S., & van der Zaag, P. (2010). Rainfall–interception–evaporation–runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe. Hydrological Sciences Journal 55(5): 687703.Google Scholar
Matos, C., Santos, C., Pereira, S., Bentes, I., & Imteaz, M. (2013). Rainwater storage tank sizing: A case study of a commercial building. International Journal of Sustainable Built Environment 2(2): 109118.Google Scholar
Mays, L. W. (2007). Water Resources Sustainability (No. 363.6 M3.). New York: McGraw-Hill.Google Scholar
Mays, L. W., Antoniou, G. P., & Angelakis, A. N. (2013). History of water cisterns: Legacies and lessons. Water 5(4): 19161940.Google Scholar
McVicar, T. R., Roderick, M. L., Donohue, R. J., et al. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology 416–417: 182205.Google Scholar
Meehl, G. A., Arblaster, J. M., & Tebaldi, C. (2005). Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters 32(18): 14.Google Scholar
Mehrabadi, M. H. R., Saghafian, B., & Fashi, F. H. (2013). Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions. Resources, Conservation and Recycling 73: 8693.Google Scholar
Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances 2(2): e1500323.Google Scholar
Meter, K. J. V., Basu, N. B., Tate, E., & Wyckoff, J. (2014). Monsoon harvests: The living legacies of rainwater harvesting systems in South India. Environmental Science and Technology 48(8): 42174225.Google Scholar
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island Press.Google Scholar
Milly, P. C., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066): 347350.Google Scholar
Mishra, V., Ganguly, A. R., Nijssen, B., & Lettenmaier, D. P. (2015). Changes in observed climate extremes in global urban areas. Environmental Research Letters, 10(2), 024005.Google Scholar
Muchuru, S., & Nhamo, G. (2019). Sustaining African water resources under climate change: Emerging adaptation measures from UNFCCC national communications. African Journal of Science, Technology, Innovation and Development 11(2): 181196.Google Scholar
Muthukumaran, S., Baskaran, K., & Sexton, N. (2011). Quantification of potable water savings by residential water conservation and reuse – A case study. Resources, Conservation and Recycling 55(11): 945952.Google Scholar
Mutunga, K. (2001). Water conservation, harvesting and management (WCHM) – Kenyan experience. In Sustaining the Global Farm. 10th International Soil Conservation Organization Meeting. Purdue University and the USDA-ARS National Soil Erosion Research Laboratory (pp. 11391143).Google Scholar
Nawaz, M., Amin, M. T., Han, M., Alazba, A. A., Manzoor, U., & Amin, M. N. (2013). Variation of pseudomonas aeruginosa in rainwater harvesting systems: Effects of seasons, catchments and storage conditions. Clean – Soil Air Water 42(7): 893900.Google Scholar
Ngigi, S. N. (2003). What is the limit of up-scaling rainwater harvesting in a river basin? Physics and Chemistry of the Earth, Parts A/B/C 28(20–27): 943956.Google Scholar
Norfolk, O., Abdel-Dayem, M., & Gilbert, F. (2012). Rainwater harvesting and arthropod biodiversity within an arid agro-ecosystem. Agriculture, Ecosystems and Environment 162: 814.Google Scholar
O’Gorman, P. A. (2015). Precipitation extremes under climate change. Current Climate Change Reports 1(2): 4959.Google Scholar
Oweis, T., Hachum, A., & Bruggeman, A. (2004). The Role of Indigenous Knowledge in Improving Present Water Harvesting Practices. Aleppo, Syria: ICARDA.Google Scholar
Pachpute, J. S., Tumbo, S. D., Sally, H., & Mul, M. L. (2009). Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resources Management 23(13): 28152839.Google Scholar
Pandey, D. N., Gupta, A. K., & Anderson, D. M. (2003). Rainwater harvesting as an adaption to climate change. Current Science 85(1): 4659.Google Scholar
Pietrapertosa, F., Khokhlov, V., Salvia, M., & Cosmi, C. (2018). Climate change adaptation policies and plans: A survey in 11 southeast European countries. Renewable and Sustainable Energy Reviews 81: 30413050.Google Scholar
Pina, C. L., Kassaye, R. B., & Schaldach, R. (2018). Working Paper: Rainwater Harvesting Methods. Available from https://ruvival.de/rainwater-harvesting (Last accessed 20 December 2019).Google Scholar
Pittock, J. (2011). National climate change policies and sustainable water management: Conflicts and synergies. Ecology and Society 16(2): 25.Google Scholar
Prinz, D. (2002). The role of water harvesting in alleviating water scarcity in arid areas. Keynote Lecture, Proceedings, International Conference on Water Resources Management in Arid Regions. Kuwait Institute for Scientific Research, Kuwait, 3, 107–122.Google Scholar
Prinz, D., & Singh, A. (2000). Technological potential for improvements of water harvesting. Contribution Paper to the World Commission on Dams, Cape Town, South Africa. Technical Report, 12 p.Google Scholar
Rahman, S., Khan, M. T. R., Akib, S., Din, N. B. C., Biswas, S. K., & Shirazi, M. (2014). Sustainability of rainwater harvesting system in terms of water quality. The Scientific World Journal 2014: 721357.Google Scholar
Rana, S. (2005). Rainwater harvesting for drinking in rural area: A case study on three villages of Paikgacha Thana in Khulna District. Available from www.ctahr.hawaii.edu/hawaiirain/Library/papers/Rana_Md.Sohel.pdf (Last accessed 20 December 2019).Google Scholar
Rockström, J., Karlberg, L., Wani, S. P., et al. (2010). Managing water in rainfed agriculture-The need for a paradigm shift. Agricultural Water Management 97(4): 543550.Google Scholar
Saleh, S. A., Taher, T., & Noaman, A. (2017). Manual for Rooftop Rainwater Harvesting Systems in the Republic of Yemen. Available from http://spate-irrigation.org/wp-content/uploads/2018/02/Rain-Water-Harvesting-Manual-WEC-FINAL2-Small.pdf (Last accessed 19 December 2019).Google Scholar
Schewe, J., Heinke, J., Gerten, D., et al. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences (USA) 111(9): 32453250.Google Scholar
Şen, Z., Al Alsheikh, A., Al-Turbak, A. S., Al-Bassam, A. M., & Al-Dakheel, A. M. (2013). Climate change impact and runoff harvesting in arid regions. Arabian Journal of Geosciences 6(1): 287295.Google Scholar
Sharda, V. N. (2006). Watershed Management and Water Harvesting as Strategic Tools for Groundwater Augmentation. Colombo, Sri Lanka: International Water Management Institute, IWMI Books, Reports H039314.Google Scholar
Shrestha, S., Chapagain, R., & Babel, M. S. (2017). Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Science of the Total Environment 599: 689699.Google Scholar
Singh, R., Garg, K. K., Wani, S. P., Tewari, R. K., & Dhyani, S. K. (2014). Impact of water management interventions on hydrology and ecosystem services in Garhkundar-Dabar watershed of Bundelkhand region, Central India. Journal of Hydrology 509: 132149.Google Scholar
Sishodia, R. P., Shukla, S., Graham, W. D., Wani, S. P., Jones, J. W., & Heaney, J. (2017). Current and future groundwater withdrawals: Effects, management and energy policy options for a semi-arid Indian watershed. Advances in Water Resources 110: 459475.Google Scholar
Sishodia, R. P., Shukla, S., Wani, S. P., Graham, W. D., & Jones, J. W. (2018). Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India. Science of the Total Environment 635(3): 725740.Google Scholar
Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100(1–3): 179196.Google Scholar
Stiefel, J. M., Melesse, A. M., McClain, M. E., Price, R. M., Anderson, E. P., & Chauhan, N. K. (2009). Effects of rainwater-harvesting-induced artificial recharge on the groundwater of wells in Rajasthan, India. Hydrogeology Journal 17(8): 20612073.Google Scholar
Stocker, T. F., Qin, D., Plattner, G.-K., et al. (eds.) (2013). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Sturm, M., Zimmermann, M., Schütz, K., Urban, W., & Hartung, H. (2009). Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia. Physics and Chemistry of the Earth, Parts A/B/C 34(13): 776785.Google Scholar
Texas AgriLife Extension (TALE) (2012). Rainwater Harvesting: System Planning, report, November 2012; College Station, TX: University of North Texas Libraries, The Portal to Texas History. Available from https://texashistory.unt.edu/ark:/67531/metapth639744/ (Last accessed 23 August 2021).Google Scholar
Taye, M. T., Ntegeka, V., Ogiramoi, N. P., & Willems, P. (2011). Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrology and Earth System Sciences 15(1): 209222.Google Scholar
Taylor, R. G., Scanlon, B., Döll, P., et al. (2013). Groundwater and climate change. Nature Climate Change 3(4): 322329.Google Scholar
Tesfay, G. (2011). On-Farm Water Harvesting for Rainfed Agriculture Development and Food Security in Tigray, Northern Ethiopia. Investigation of Technical and Socioeconomic Issues, DCG Report No. 61.Google Scholar
UNEP. (1979). Rain and Storm Water Harvesting for Additional Water Supply in Rural Areas. Nairobi, Kenya. Expert Group Meeting, 30 October to 2 November 1979. 28 p.Google Scholar
UNEP International Environmental Technology Centre -Osaka/Shiga, JP, IETC. (2001). Rainwater Harvesting and Utilization: An Environmentally Sound Approach for Sustainable Urban Water Management: An Introductory Guide for Decision-makers. UNEP International Environmental Technology Centre, 2, 12 p.Google Scholar
UN-HABITAT. (2005). Rainwater Harvesting and Utilisation; Blue Drop Series, Book 2: Beneficiaries & Capacity Builders. Mtwapa, Kenya: UN-HABITAT.Google Scholar
Van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., et al. (2013). Global river discharge and water temperature under climate change. Global Environmental Change 23(2): 450464.Google Scholar
Van Wyk, E., Van Tonder, G. J., & Vermeulen, D. (2012). Characteristics of local groundwater recharge cycles in South African semi-arid hard rock terrains: Rainfall–groundwater interaction. Water SA 38(5): 747754.Google Scholar
Vano, J. A., Nijssen, B., & Lettenmaier, D. P. (2015). Seasonal hydrologic responses to climate change in the Pacific Northwest. Water Resources Research, 51(4): 19591976.Google Scholar
Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., Batlles-delaFuente, A., & Fidelibus, M. D. (2019). Rainwater harvesting for agricultural irrigation: An analysis of global research. Water 11(1320): 118.Google Scholar
Vohland, K., & Barry, B. (2009). A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agriculture, Ecosystems and Environment 131(3–4): 119127.Google Scholar
Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. Science 289(5477): 284288.Google Scholar
Wada, Y., Van Beek, L. P., Van Kempen, C. M., et al. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20): L20402.Google Scholar
Wallace, C. D., Bailey, R. T., & Arabi, M. (2015). Rainwater catchment system design using simulated future climate data. Journal of Hydrology 529: 17981809.Google Scholar
Wang, Q., Li, Y., & Alva, A. (2010). Cropping systems to improve carbon sequestration for mitigation of climate change. Journal of Environmental Protection, 1(3): 207215.Google Scholar
Wani, S. P., Singh, H. P., Sreedevi, T. K., et al. (2003). Farmer-Participatory Integrated Watershed Management: Adarsha Watershed, Kothapally India. Case 7.Google Scholar
Welderufael, W. A., Woyessa, Y. E., & Edossa, D. C. (2013). Impact of rainwater harvesting on water resources of the Modder river basin, central region of South Africa. Agricultural Water Management 116: 218227.Google Scholar
Wen, F., & Chen, X. (2006). Evaluation of the impact of groundwater irrigation on streamflow in Nebraska. Journal of Hydrology 327(3–4): 603617.Google Scholar
Wilby, R. L., & Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK. Water Resources Research, 42(2).Google Scholar
Wild, M. (2009). Global dimming and brightening: A review. Journal of Geophysical Research-Atmospheres 114: D00D16.Google Scholar
Willett, K. M., Jones, P. D., Gillett, N. P., & Thorne, P. W. (2008). Recent changes in surface humidity: Development of the HadCRUH dataset. Journal of Climate 21(20): 53645383.Google Scholar
Wirtenberg, J., Kelley, L.M., Lipsky, D., & Russell, W.G. (2019). The Sustainable Enterprise Fieldbook: Building New Bridges. New York: Routledge.Google Scholar
Yannopoulos., S., Antoniou, G., Kaiafa-Saropoulou, M., & Angelakis, A. N. (2017). Historical development of rainwater harvesting and use in Hellas: A preliminary review. Water Science & Technology: Water Supply 17(4): 10221034.Google Scholar
Zahmatkesh, Z., Karamouz, M., Goharian, E., & Burian, S. J. (2014). Analysis of the effects of climate change on urban stormwater runoff using statistically downscaled precipitation data and a change factor approach. Journal of Hydrologic Engineering 20(7): 05014022.Google Scholar
Zhang, S., Zhang, J., Yue, T., & Jing, X. (2019). Impacts of climate change on urban rainwater harvesting systems. Science of the Total Environment 665(10): 262274.Google Scholar

References

Arora, V. K. (2002). The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology 265(1–4): 164177.Google Scholar
Chiew, F. H. S. (2006). Estimation of rainfall elasticity of streamflow in Australia. Hydrological Sciences Journal 51(4): 613625.Google Scholar
Choudhury, B. J. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology 216(1–2): 99110.Google Scholar
Fu, B. P. (1981). On the calculation of the evaporation from land surface. Scientia Atmospherica Sinica 5(1): 2331 (in Chinese).Google Scholar
Fu, G., Charles, S. P., & Chiew, F. H. S. (2007). A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resources Research 43(11): W11419.Google Scholar
Limbrunner, J. F. (1998). Climatic elasticity of streamflow in the United States, MS thesis, 39 pp., Tufts University, Medford, MA.Google Scholar
Liu, X., Liu, W., Yang, H., et al. (2019). Multimodel assessments of human and climate impacts on mean annual streamflow in China. Hydrology and Earth System Sciences 23(3): 12451261.Google Scholar
Mezentsev, V. S. (1955). More on the calculation of average total evaporation. Meteorologija i gidrologija 5: 2426.Google Scholar
Sankarasubramanian, A., & Vogel, R. M. (2003). Hydroclimatology of the continental United States. Geophysical Research Letters 30(7): 1363.Google Scholar
Sankarasubramanian, A., Vogel, R. M., & Limbrunner, J. F. (2001). Climate elasticity of streamflow in the United States. Water Resources Research 37(6): 17711781.Google Scholar
Schaake, J. C. (1990), From climate to flow. In Waggoner, P. E. (ed.), Climate Change and U.S. Water Resources (pp. 177206). New York: Wiley.Google Scholar
Tang, Y., Tang, Q., Wang, Z., et al. (2019). Different precipitation elasticity of runoff for precipitation increase and decrease at watershed scale. Journal of Geophysical Research: Atmospheres 124(22): 1193211943.Google Scholar
Wang, D., & Tang, Y. (2014), A one-parameter Budyko model for water balance captures emergent behavior in Darwinian hydrologic models, Geophysical Research Letters 41(13): 45694577.Google Scholar
Yang, H., Yang, D., Lei, Z., & Sun, F. (2008), New analytical derivation of the mean annual water-energy balance equation, Water Resources Research 44(3): W03410.Google Scholar
Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research 37(3): 701708.Google Scholar
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., & Briggs, P. R. (2004). A rational function approach for estimating mean annual evapotranspiration. Water Resources Research 40(2): W02502.Google Scholar

References

Abatzoglou, J. T., & Brown, T. J. (2012). A comparison of statistically downscaling methods suited for wildfire applications. International Journal of Climatology 32(5): 772780.Google Scholar
Addor, N., Rössler, O., Köplin, N., et al. (2014). Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research 50(10): 75417562.Google Scholar
Bales, R. C., Molotch, N. P., Painter, T. H., et al. (2006). Mountain hydrology of the western United States. Water Resources Research 42(8): W08432.Google Scholar
Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438: 303309.Google Scholar
Bastola, S., Murphy, C., & Sweeney, J. (2011). The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Advances in Water Resources 34(5): 562576.Google Scholar
Chen, J. M., Chen, X., Ju, W., & Geng, X. (2005). Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology 305(1–4): 1539.Google Scholar
Demaria, E. M., Nijssen, B., & Wagener, T. (2007). Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. Journal of Geophysical Research 112(D11): D11113.Google Scholar
Dietz, J., Hölscher, D., Leuschner, C., & Hendrayanto, H. (2006). Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. Forest Ecology and Management 237(1–3): 170178.Google Scholar
Elsner, M. M., Gangopadhyay, S., Pruitt, T., et al. (2014). How does the choice of distributed meteorological data affect hydrologic model calibration and streamflow simulations? Journal of Hydrometeorology 15(4): 13841403.Google Scholar
Ficklin, D. L., Stewart, I. T., & Maurer, E. P. (2013). Climate change impacts on streamflow and subbasin-scale hydrology in the upper Colorado River basin. PLoS One 8(8): e71297.Google Scholar
Gao, H., Tang, Q., Shi, X., et al. (2010). Water budget record from Variable Infiltration Capacity (VIC) model. In Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records (pp. 120173). Available from: www.research.lancs.ac.uk/portal/en/publications/water-budget-record-from-variable-infiltration-capacity-vic-model(1e8618dd-212f-4c3b-bee3-65862ea5a4b9)/export.html (Last accessed 3 September 2021).Google Scholar
Guo, D., Johnson, F., & Marshall, L. (2018). Assessing the potential robustness of conceptual rainfall-runoff models under a changing climate. Water Resources Research 54(7): 50305049.Google Scholar
Gupta, H. V., Wagener, T., & Liu, Y. (2008). Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrological Processes 22(18): 38023813.Google Scholar
Gutmann, E., Pruitt, T., Clark, M. P., et al. (2014). An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resources Research 50(9): 71677186.Google Scholar
Hadka, D., & Reed, P. (2013). Borg: An auto-adaptive many-objective evolutionary computing framework. Evolutionary Computation 21(2): 231259.Google Scholar
Hadka, D., & Reed, P. (2015). Large-scale parallelization of the Borg multiobjective evolutionary algorithm to enhance the management of complex environmental systems. Environmental Modelling & Software 69(C): 353369.Google Scholar
Hamlet, A. F., & Lettenmaier, D. P. (2007). Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resources Research 43(6): W06427.Google Scholar
Hansen, M. C., Defries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing 21(6–7): 13311364.Google Scholar
Harding, B. L., Wood, A. W., & Prairie, J. R. (2012). The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin. Hydrology and Earth System Sciences 16(11): 39894007.Google Scholar
Hattermann, F. F., Vetter, T., Breuer, L., et al. (2018). Sources of uncertainty in hydrological climate impact assessment: A cross-scale study. Environmental Research Letters 13(1): 015006.Google Scholar
Her, Y., Yoo, S. H., Cho, J., et al. (2019). Uncertainty in hydrological analysis of climate change: Multi-parameter vs. multi-GCM ensemble predictions. Scientific Reports 9: 4974.Google Scholar
Hewitson, B. C., & Crane, R. G. (2006). Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. International Journal of Climatology 26(10): 13151337.Google Scholar
Huang, M. (2005). Surface and Groundwater Interactions and their Impacts on Water and Energy Budgets at the Land Surface. Berkeley, CA: University of California Press.Google Scholar
Joseph, J., Ghosh, S., Pathak, , A., & Sahai, A. K. (2018). Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty. Journal of Hydrology 566: 122.Google Scholar
Kay, A. L., Davies, H. N., Bell, V. A., & Jones, R. G. (2009). Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change 92(1–2): 4163.Google Scholar
Köplin, N., Schädler, B., Viviroli, D., & Weingartner, R. (2012). Relating climate change signals and physiographic catchment properties to clustered hydrological response types. Hydrology and Earth System Sciences 16: 22672283.Google Scholar
Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research 99(D7): 1441514428.Google Scholar
Liu, X., Tang, Q., Cui, H., et al. (2017). Multimodel uncertainty changes in simulated river flows induced by human impact parameterizations. Environmental Research Letters 12(2): 025009.Google Scholar
Liu, X., Tang, Q., Voisin, N., & Cui, H. (2016). Projected impacts of climate change on hydropower potential in China. Hydrology and Earth System Sciences 20: 33433359.Google Scholar
Liu, Y., Hejazi, M., Li, H., Zhang, X., & Leng, G. (2018). A hydrological emulator for global applications – HE v1.0.0. Geoscientific Model Development 11(3): 10771092.Google Scholar
Lohmann, D., Nolte-Holube, R., & Raschke, E. (1996). A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A: Dynamic Meteorology and Oceanography, 48(5): 708721.Google Scholar
Maurer, E. P., Wood, A. W., Adam, J. C., & Lettenmaier, D. P. (2002). A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. Journal of Climate 15(22): 32373251.Google Scholar
Meinshausen, M., Smith, S. J., Calvin, K., et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109(1–2): 213241.Google Scholar
Mendoza, P. A., Clark, M. P., Mizukami, N., et al. (2015). Effects of hydrologic model choice and calibration on the portrayal of climate change impacts. Journal of Hydrometeorology 16(2): 762780.Google Scholar
Mendoza, P. A., Clark, M. P., Mizukami, N., et al. (2016). How do hydrologic modeling decisions affect the portrayal of climate change impacts? Hydrological Processes 30(7): 10711095.Google Scholar
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., et al. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE 50(3): 885900.Google Scholar
Murphy, S. F., Barber, L. B., Verplanck, P. L., & Kinner, D. A. (2003). Environmental setting and hydrology of the Boulder Creek Watershed, Colorado. In Murphy, S. F., Verplanck, P. L., & Barber, L. B. (eds.), Comprehensive Water Quality of the Boulder Creek Watershed, Colorado, during High-Flow and Low-Flow Conditions. 2000. Water Resources Investigation Report 03-4045. Denver, CO: US Geological Survey.Google Scholar
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., & Rasmussen, R. (2017). Slower snowmelt in a warmer world. Nature Climate Change 7: 214219.Google Scholar
Poff, N. L., Allan, J. D., Bain, M. B., et al. (1997). The natural flow regime – A paradigm for river conservation and restoration. BioScience 47(11): 769784.Google Scholar
Pradhanang, S. M., Mukundan, R., Schneiderman, E. M., et al. (2013). Streamflow responses to climate change: Analysis of hydrologic indicators in a New York City water supply watershed. Journal of American Water Resources Association 49(6): 13081326.Google Scholar
Raje, D., & Krishnan, R. (2012). Bayesian parameter uncertainty modeling in a macroscale hydrologic model and its impact on Indian river basin hydrology under climate change. Water Resources Research 48(8): W08522.Google Scholar
Rauscher, S. A., Pal, J. S., Diffenbaugh, N. S., & Benedetti, M. M. (2008). Future changes in snowmelt-driven runoff timing over the western US. Geophysical Research Letters 35(16): L16703.Google Scholar
Reclamation (2013). Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs. U.S. Department of the Interior, Bureau of Reclamation, 104 pp. Available from http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf (Last accessed 1 March 2018).Google Scholar
Ren, H., Hou, Z., Huang, M., et al. (2016). Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins. Journal of Hydrology 536: 92108.Google Scholar
Riahi, K., Rao, S., Krey, V., et al. (2011). RCP8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change 109(1): 3357.Google Scholar
Schewe, J., Heinke, J., Gerten, D., et al. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences (USA) 111(9): 32453250.Google Scholar
Seiller, G., Roy, R., & Anctil, F. (2017). Influence of three common calibration metrics on the diagnosis of climate change impacts on water resources. Journal of Hydrology 547: 280295.Google Scholar
Shi, X., Wood, A. W., & Lettenmaier, D. P. (2008). How essential is hydrologic model calibration to seasonal streamflow forecasting? Journal of Hydrometeorology 9(6): 13501363.Google Scholar
Soil Survey Staff (2015). Natural Resources Conservation Service. United States Department of Agriculture, Web Soil Survey. Available from http://websoilsurvey.nrcs.usda.gov/ (Last accessed 1 March 2018).Google Scholar
Stone, M. C., Hotchkiss, R. H., & Mearns, L. O. (2003). Water yield responses to high and low spatial resolution climate change scenarios in the Missouri River Basin. Geophysical Research Letters 30(4): 1186.Google Scholar
Thomson, A. M., Calvin, K. V., Smith, S. J., et al. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change 109(1–2): 7794.Google Scholar
USBR (2013). Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs (47 pp.). Denver, CO: U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center.Google Scholar
Vuuren, D. P. V., Stehfest, E., Elzen, M. G. J. D., et al. (2011). RCP2.6: Exploring the possibility to keep global mean temperature increase below 2℃. Climatic Change 109(1–2): 95116.Google Scholar
Wagener, T., Sivapalan, M., Troch, P. A., et al. (2010). The future of hydrology: An evolving science for a changing world. Water Resources Research 46(5): W05301.Google Scholar
Watts, A., Grant, G., & Safeeq, M. (2016). Flows of the Future – How Will Climate Change Affect Streamflows in the Pacific Northwest? Science Findings, 187. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.Google Scholar
Wilby, R. L., Troni, J., Biot, Y., et al. (2009). A review of climate risk information for adaptation and development planning. International Journal of Climatology 29(9): 11931215.Google Scholar
Yin, Y., Tang, Q., Liu, X., & Zhang, X. (2017). Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River Basin. Hydrology and Earth System Sciences 21: 791804.Google Scholar
Yuan, F., Zhao, C., Jiang, Y., et al. (2017). Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China. Journal of Hydrology 554: 434450.Google Scholar
Zhang, Q., Knowles, J. F., Barnes, R. T., et al. (2018). Surface and subsurface water contributions to streamflow from a mesoscale watershed in complex mountain terrain. Hydrological Processes 32(7): 954967.Google Scholar

References

Alcamo, J., Flörke, M., & Märker, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal 52(2): 247275.Google Scholar
Barnett, J., Rogers, S., Webber, M., Finlayson, B., & Wang, M. (2015). Sustainability: Transfer project cannot meet China’s water needs. Nature 527(7578): 295.Google Scholar
van Beek, L., Wada, Y., & Bierkens, M. F. (2011). Global monthly water stress: 1. Water balance and water availability. Water Resources Research 47: W07517.Google Scholar
Bijl, D. L., Biemans, H., Bogaart, P. W., et al. (2018). A global analysis of future water deficit based on different allocation mechanisms. Water Resources Research 54(8): 58035824.Google Scholar
Cai, X., & Rosegrant, M. W. (2004). Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands. Water Resources Research 40: W08S04.Google Scholar
Calvin, K., Patel, P., Clarke, L., et al. (2018). GCAM v5.1: Representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development 12(2): 677698.Google Scholar
Calvin, K., Wise, M., Kyle, P., et al. (2014). Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Climatic Change 123(3–4): 691704.Google Scholar
Chaturvedi, V., Hejazi, M., Edmonds, J., et al. (2015). Climate mitigation policy implications for global irrigation water demand. Mitigation and Adaptation Strategies for Global Change 20(3): 389407.Google Scholar
Cheng, H., Hu, Y., & Zhao, J. (2009). Meeting China’s water shortage crisis: Current practices and challenges. Environmental Science & Technology 43(2): 240244.Google Scholar
Cong, Z., Yang, D., Gao, B., Yang, H., & Hu, H. (2009). Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resources Research 45: W00A13.Google Scholar
Davie, J. C. S., Falloon, P. D., Kahana, R., et al. (2013). Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP, Earth System Dynamics 4(2): 359374.Google Scholar
Döll, P., Fiedler, K., & Zhang, J. (2009). Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrology and Earth System Sciences 13(12): 24132432.Google Scholar
Döll, P., Mueller Schmied, H., Schuh, C., Portmann, F. T., & Eicker, A. (2014). Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resources Research 50(7): 56985720.Google Scholar
Edmonds, J., Wise, M., Pitcher, H., et al. (1997). An integrated assessment of climate change and the accelerated introduction of advanced energy technologies – An application of MiniCAM 1.0. Mitigation and Adaptation Strategies for Global Change 1(4): 311339.Google Scholar
Flörke, M., Kynast, E., Bärlund, I., et al. (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change 23(1): 144156.Google Scholar
Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability 1(1): 5158.Google Scholar
Fricko, O., Havlik, P., Rogelj, J., et al. (2017). The marker quantification of the shared socioeconomic pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change: Human and Policy Dimensions 42(1): 251267.Google Scholar
Greve, P., Kahil, T., Mochizuki, J., et al. (2018). Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability 1(9): 486494.Google Scholar
Haddeland, I., Heinke, J., Biemans, H., et al. (2014). Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences (USA) 111(9): 32513256.Google Scholar
Hanasaki, N., Fujimori, S., Yamamoto, T., et al. (2013). A global water scarcity assessment under shared socio-economic pathways – Part 2: Water availability and scarcity. Hydrology and Earth System Sciences 17(7): 23932413.Google Scholar
Hanasaki, N., Kanae, S., Oki, T., et al. (2008a). An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing. Hydrology and Earth System Sciences 12(4): 10071025.Google Scholar
Hanasaki, N., Kanae, S., Oki, T., et al. (2008b). An integrated model for the assessment of global water resources – Part 2: Applications and assessments. Hydrology and Earth System Sciences 12(4): 10271037.Google Scholar
Hanasaki, N., Yoshikawa, S., Kakinuma, K., & Kanae, S. (2016). A seawater desalination scheme for global hydrological models. Hydrology and Earth System Sciences 20(10): 125.Google Scholar
Hejazi, M. I., Edmonds, J., Clarke, L., et al. (2014). Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrology and Earth System Sciences 18(8): 28592883.Google Scholar
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., & Piontek, F. (2013). A trend-preserving bias correction – The ISI-MIP approach. Earth System Dynamics 4(2): 219236.Google Scholar
Huang, Z., Hejazi, M., Li, X., et al. (2018). Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrology and Earth System Sciences 22(4): 21172133.Google Scholar
Huang, Z., Tang, Q., Lo, M.-H., et al. (2019). The influence of groundwater representation on hydrological simulation and its assessment using satellite-based water storage variation. Hydrological Processes 33(8): 12181230.Google Scholar
Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J., & Wise, M. (2006). The ObjECTS framework for integrated assessment: Hybrid modeling of transportation. The Energy Journal (Special Issue #2): 6391.Google Scholar
Kummu, M., Guillaume, J. H. A., de Moel, H., et al. (2016). The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports 6(1): 116.Google Scholar
Kustu, M. D., Fan, Y., & Rodell, M. (2011). Possible link between irrigation in the US High Plains and increased summer streamflow in the Midwest. Water Resources Research 47: W03522.Google Scholar
Le Page, Y., West, T. O., Link, R., & Patel, P. (2016). Downscaling land use and land cover from the Global Change Assessment Model for coupling with Earth system models. Geoscientific Model Development 9(9): 30553069.Google Scholar
Li, L., Shen, H. Y., Dai, S., Xiao, J. S., & Shi, X. H. (2012). Response of runoff to climate change and its future tendency in the source region of Yellow River. Journal of Geographical Sciences 23(3): 431440.Google Scholar
Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres 99(D7): 1441514428.Google Scholar
Liu, J. G., Liu, Q. Y., & Yang, H. (2016). Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecological Indicators 60(1): 434441.Google Scholar
Liu, J. G., Yang, H., Gosling, S. N., et al. (2017). Water scarcity assessments in the past, present, and future. Earth’s Future 5(6): 545559.Google Scholar
Liu, X., Tang, Q., Liu, W., et al. (2019). A spatially explicit assessment of growing water stress in China from the past to the future. Earths Future 7(9): 10271043.Google Scholar
Ma, T., Sun, S., Fu, G., et al. (2020). Pollution exacerbates China’s water scarcity and its regional inequality. Nature Communications 11(1): 650.Google Scholar
Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances 2(2): e1500323.Google Scholar
Müller Schmied, H., Eisner, S., Franz, D., et al. (2014). Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrology and Earth System Sciences 18(9): 35113538.Google Scholar
O’Neill, B. C., Kriegler, E., Riahi, K., et al. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climate Change 122(3): 387400.Google Scholar
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., & Kabat, P. (2014). Accounting for environmental flow requirements in global water assessments. Hydrology and Earth System Sciences 18(12): 50415059.Google Scholar
Piani, C., Weedon, G. P., Best, M., et al. (2010). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology 395(3): 199215.Google Scholar
Piontek, F., Müller, C., Pugh, T. A., et al. (2014). Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences (USA) 111(9): 32333238.Google Scholar
Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature 460(7258): 9991002.Google Scholar
Schewe, J., Heinke, J., Gerten, D., et al. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences (USA) 111(9): 32453250.Google Scholar
Shiklomanov, I. A. (2000). Appraisal and assessment of world water resources. Water International 25(1): 1132.Google Scholar
Stacke, T., & Hagemann, S. (2012). Development and evaluation of a global dynamical wetlands extent scheme. Hydrology and Earth System Sciences 16(8): 29152933.Google Scholar
Stohlgren, T. J., Chase, T. N., Pielke, R. A., Kittel, T. G., & Baron, J. (1998). Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Global Change Biology 4(5): 495504.Google Scholar
Tang, Q. (2020). Global change hydrology: Terrestrial water cycle and global change. Science China Earth Sciences 63(3): 459462.Google Scholar
Tang, Q., & Oki, T. (2016). Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts, American Geophysical Union (AGU) Geophysical Monograph Series (Vol. 221). Hoboken, NJ: John Wiley & Sons.Google Scholar
Tang, Q., Oki, T., Kanae, S., & Hu, H. (2008). Hydrological cycles change in the Yellow River basin during the last half of the twentieth century. Journal of Climate 21(8): 17901806.Google Scholar
Taylor, R. G., Scanlon, B., Döll, P., et al. (2013). Ground water and climate change. Nature Climate Change 3(4): 322329.Google Scholar
Veldkamp, T. I. E., Wada, Y., Aerts, J., et al. (2017). Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature communications 8(1): 112.Google Scholar
Veldkamp, T. I. E., Wada, Y., de Moel, H., et al. (2015). Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Global Environmental Change 32(1): 1829.Google Scholar
Vernon, C. R., Le Page, Y., Chen, M., et al. (2018). Demeter – A land use and land cover change disaggregation model. Journal of Open Research Software 6(1): 15.Google Scholar
Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. Science 289(5477): 284288.Google Scholar
van Vuuren, D. P., Kriegler, E., O’Neill, B. C., et al. (2014). A new scenario framework for climate change research: Scenario matrix architecture. Climate Change 122(3): 373386.Google Scholar
Wada, Y., Beek, L. P. H. V., & Bierkens, M. F. P. (2011a). Modelling global water stress of the recent past: On the relative importance of trends in water demand and climate variability. Hydrology and Earth System Sciences 8(4): 37853805.Google Scholar
Wada, Y., Beek, L. P. H. V., Viviroli, D., et al. (2011b). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research 47(7): 197203.Google Scholar
Wada, Y., & Bierkens, M. F. (2014). Sustainability of global water use: Past reconstruction and future projections. Environmental Research Letters 9(10): 104003.Google Scholar
Wada, Y., Flörke, M., Hanasaki, N., et al. (2016). Modeling global water use for the 21st century: Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development 9(1): 175222.Google Scholar
Wada, Y., Wisser, D., Eisner, S., et al. (2013). Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters 40(17): 46264632.Google Scholar
Wang, D., & Hejazi, M. (2011). Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resources Research 47: W00J12.Google Scholar
Wang, S. J., Yan, M., Yan, Y. X., Shi, C. X., & He, L. (2012). Contributions of climate change and human activities to the changes in runoff increment in different sections of the Yellow River. Quaternary International 282(1): 6677.Google Scholar
West, T. O., Le Page, Y., Huang, M., Wolf, J., & Thomson, A. M. (2014). Downscaling global land cover projections from an integrated assessment model for use in regional analyses: results and evaluation for the US from 2005 to 2095. Environmental Research Letters 9(6): 064004.Google Scholar
Wisser, D., Frolking, S., Douglas, E. M., et al. (2010). The significance of local water resources captured in small reservoirs for crop production – A global-scale analysis. Journal of Hydrology 384(3): 264275.Google Scholar
Xu, J. (2011). Variation in annual runoff of the Wudinghe River as influenced by climate change and human activity. Quaternary International 244(1): 230237.Google Scholar
Yin, Y., Tang, Q., Liu, X., & Zhang, X. (2017). Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin. Hydrology and Earth System Sciences 21(2): 791804.Google Scholar
YRCC (Yellow River Conservancy Commission) (2013). Comprehensive Planning of Yellow River Basin (2012–2030). Zhengzhou, China: The Yellow River Water Conservancy Press (in Chinese).Google Scholar
Zhao, X., Liu, J., Liu, Q., et al. (2015). Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the National Academy of Sciences (USA) 112(4): 10311035.Google Scholar
Zhou, F., Bo, Y., Ciais, P., et al. (2020). Deceleration of China’s human water use and its key drivers. Proceedings of the National Academy of Sciences (USA) 117(14): 7702.Google Scholar

References

Abbaspour, M., & Nazaridoust, A. (2007). Determination of environmental water requirements of Lake Urmia, Iran: An ecological approach. International Journal of Environmental Studies 64(2): 161169.Google Scholar
AghaKouchak, A., Norouzi, H., Madani, K., et al. (2015). Aral Sea syndrome desiccates Lake Urmia: Call for action. Journal of Great Lakes Research 41(1): 307311.Google Scholar
Ahmadi, M., Haddad, O. B., & Loáiciga, H. A. (2015). Adaptive reservoir operation rules under climatic change. Water Resources Management 29(4): 12471266.Google Scholar
Alborzi, A., Mirchi, A., Moftakhari, H., et al. (2018). Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Environmental Research Letters 13(8): 084010.Google Scholar
Amirataee, B., & Zeinalzadeh, K. (2016). Trends analysis of quantitative and qualitative changes in groundwater with considering the autocorrelation coefficients in west of Lake Urmia, Iran. Environmental Earth Sciences 75(5): 371.Google Scholar
Amiri, V., Nakhaei, M., Lak, R., & Kholghi, M. (2016). Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environmental Science and Pollution Research 23(16): 1673816760.Google Scholar
Azarnivand, A., & Banihabib, M. E. (2017). A multi-level strategic group decision making for understanding and analysis of sustainable watershed planning in response to environmental perplexities. Group Decision and Negotiation 26(3): 629648.Google Scholar
Azarnivand, A., Camporese, M., Alaghmand, S., & Daly, E. (2020). Simulated response of an intermittent stream to rainfall frequency patterns. Hydrological Processes 34(3): 615632,Google Scholar
Bavil, S. S., Zeinalzadeh, K., & Hessari, B. (2018). The changes in the frequency of daily precipitation in Urmia Lake basin, Iran. Theoretical and Applied Climatology 133(1–2): 205214.Google Scholar
Chaudhari, S., Felfelani, F., Shin, S., & Pokhrel, Y. (2018). Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology 560: 342353.Google Scholar
Danesh-Yazdi, M., & Ataie-Ashtiani, B. (2019). Lake Urmia crisis and restoration plan: Planning without appropriate data and model is gambling. Journal of Hydrology 576: 639651.Google Scholar
Delju, A. H., Ceylan, A., Piguet, E., & Rebetez, M. (2013). Observed climate variability and change in Urmia Lake Basin, Iran. Theoretical and Applied Climatology 111(1–2): 285296.Google Scholar
Farokhnia, A., Morid, S., Abbaspour, K., & Delavar, M. (2018). Development of SWAT-LU model for simulation of Urmia lake water level decrease and assessment of the proposed actions for its restoration (role of anthropogenic and climatic factors on hydrological change of the basin and lake). Iranian Journal of Irrigation and Drainage 12(5): 10411058.Google Scholar
Fathian, F., Morid, S., & Kahya, E. (2015). Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology 119(3–4): 443464.Google Scholar
Fazel, N., Berndtsson, R., Uvo, C. B., Madani, K., & Kløve, B. (2018). Regionalization of precipitation characteristics in Iran’s Lake Urmia basin. Theoretical and Applied Climatology 132(1–2): 363373.Google Scholar
Ghale, Y. A. G., Altunkaynak, A., & Unal, A. (2018). Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis. Water Resources Management 32(1): 325337.Google Scholar
Gholampour, A., Nabizadeh, R., Hassanvand, M. S., et al. (2015). Characterization of saline dust emission resulted from Urmia Lake drying. Journal of Environmental Health Science and Engineering 13(1): 82.Google Scholar
Guardian (2015). Lake Urmia: How Iran’s most famous lake is disappearing. Available from www.theguardian.com/world/iran-blog/2015/jan/23/iran-lake-urmia-drying-up-new-research-scientists-urge-actionv (Last accessed 14 December 2019).Google Scholar
Henareh Khalyani, A., Mayer, A. L., & Norman, E. S. (2014). Water flows toward power: Socioecological degradation of Lake Urmia, Iran. Society & Natural Resources 27(7): 759767.Google Scholar
Herrera-Pantoja, M., & Hiscock, K. M. (2015). Projected impacts of climate change on water availability indicators in a semi-arid region of central Mexico. Environmental Science & Policy 54: 8189.Google Scholar
Hesami, A., & Amini, A. (2016). Changes in irrigated land and agricultural water use in the Lake Urmia basin. Lake and Reservoir Management 32(3): 288296.Google Scholar
Hoodfar, H., & Assadpour, S. (2000). The politics of population policy in the Islamic Republic of Iran. Studies in Family Planning 31(1): 1934.Google Scholar
Hosseini-Moghari, S. M., Araghinejad, S., & Azarnivand, A. (2017). Drought forecasting using data-driven methods and an evolutionary algorithm. Modeling Earth Systems and Environment 3(4): 16751689.Google Scholar
Hosseini-Moghari, S. M., Araghinejad, S. & Ebrahimi, K. (2018). Monthly precipitation assessment: A misleading tool for understanding the effects of climate change. 8th Global FRIEND-Water Conference, Beijing, China, 6–9 November 2018.Google Scholar
Hosseini-Moghari, S. M., Araghinejad, S., Tourian, M. J., Ebrahimi, K., & Döll, P. (2020). Quantifying the impacts of human water use and climate variations on recent drying of Lake Urmia basin: The value of different sets of spaceborne and in situ data for calibrating a global hydrological model. Hydrology and Earth System Sciences 24(4): 19391956.Google Scholar
Kamali, M., & Youneszadeh Jalili, S. (2015). Investigation of land use changes in Lake Urmia Basin using remotely sensed images. Report of Urmia Lake Restoration Program (ULRP) (in Persian).Google Scholar
Karbassi, A., Bidhendi, G. N., Pejman, A., & Bidhendi, M. E. (2010). Environmental impacts of desalination on the ecology of Lake Urmia. Journal of Great Lakes Research 36(3): 419424.Google Scholar
Khalili, K., Tahoudi, M. N., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment 30(4): 12051221.Google Scholar
Madani, K. (2014). Water management in Iran: What is causing the looming crisis? Journal of Environmental Studies and Sciences 4(4): 315328.Google Scholar
Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iranian Studies 49(6): 9971016.Google Scholar
Mardi, A. H., Khaghani, A., MacDonald, A. B., et al. (2018). The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Science of The Total Environment 633: 42–9.Google Scholar
Pengra, B. (2012). The drying of Iran’s Lake Urmia and its environmental consequences. UNEP-GRID, Sioux Falls, UNEP Global Environmental Alert Service (GEAS).Google Scholar
Rahimi, J., Ebrahimpour, M., & Khalili, A. (2013). Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology 112(3–4): 409418.Google Scholar
Saboohi, R., Soltani, S., & Khodagholi, M. (2012). Trend analysis of temperature parameters in Iran. Theoretical and Applied Climatology 109(3–4): 529547.Google Scholar
Saemian, P., Faridzad, M., Youneszadeh, S., et al. (2015). Estimation of evapotranspiration, water saving and agricultural water consumption at Urmia Lake Basin, 2010. Report of ULRP (in Persian).Google Scholar
Save, H., Bettadpur, S., & Tapley, B. D. (2016). High‐resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth 121(10): 75477569.Google Scholar
Shadkam, S. (2017). Preserving Urmia Lake in a Changing World: Reconciling Anthropogenic and Climate Drivers by Hydrological Modelling and Policy Assessment. Wageningen, Netherlands: Wageningen University.Google Scholar
Shadkam, S., Ludwig, F., van Oel, P., Kirmit, Ç., & Kabat, P. (2016). Impacts of climate change and water resources development on the declining inflow into Iran’s Urmia Lake. Journal of Great Lakes Research 42(5): 942952.Google Scholar
Tourian, M. J., Elmi, O., Chen, Q., et al. (2015). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment 156: 349360.Google Scholar
ULRP (2015a). The trend of Lake Urmia changes. Available from http://ulrp.sharif.ir/fa (Last accessed 20 July 2020) (in Persian).Google Scholar
ULRP (2015b). Status of water resources and water consumption in the basin. Available from http://ulrp.sharif.ir (Last accessed 20 July 2020) (in Persian).Google Scholar
Vaheddoost, B., & Aksoy, H. (2018). Interaction of groundwater with Lake Urmia in Iran. Hydrological Processes 32(21): 32833295.Google Scholar
Van Vuuren, D. P., Edmonds, J., Kainuma, M., et al. (2011). The representative concentration pathways: An overview. Climatic Change 109(1–2): 5.Google Scholar
Wang, X. J., Zhang, J. Y., Shahid, S., et al. (2016). Adaptation to climate change impacts on water demand. Mitigation and Adaptation Strategies for Global Change 21(1): 8199.Google Scholar
Zahedi, S., Azarnivand, A., & Chitsaz, N. (2017). Groundwater quality classification derivation using multi-criteria-decision-making techniques. Ecological Indicators 78: 243252.Google Scholar
Zeinoddini, M., Tofighi, M. A., & Vafaee, F. (2009). Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. Journal of Great Lakes Research 35(1): 1322.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×