Published online by Cambridge University Press: 03 December 2021
Pores are in aerogels essential. Experimentersoften usethe nitrogen adsorption measurement technique and derive from the desorption curve the pores' size distribution assuming cylindrical pores and the Kelvin equation to be applicable.A description of the pores is difficult and the situation is not comparable with, for instance, closed cell foams. Scanning electron microscopy gives an imagination of the particles or fibrils and thus also the pores. Nevertheless, there are simple measures for pore sizes possible, which are well defined in stereology, namely the mean free distance between particles or fibrils in a network and the next nearest neighbour distance. In addition, scattering methods allow us to extract chord lengths in pores and the solid phase assuming a suitable model of the two-phase structure. The experimental techniques such as the BJH model and thermoporosimetry are discussed and the basic equations derived. The theoretical models are compared with experimental results for different aerogels.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.