Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:17:37.128Z Has data issue: false hasContentIssue false

7 - The Cognitive Neuroscience of Working Memory and Language

from Part II - Models and Measures

Published online by Cambridge University Press:  08 July 2022

John W. Schwieter
Affiliation:
Wilfrid Laurier University
Zhisheng (Edward) Wen
Affiliation:
Hong Kong Shue Yan University
Get access

Summary

Working memory and language are tightly intertwined cognitive systems. Working memory enables language acquisition and vocabulary expansion; it supports both language comprehension and language production. Language, on the other hand, provides key representations that support efficient and robust encoding and maintenance of information in working memory, as well as the ability to compress information and the redundancy to reconstruct it in case of partial information loss. The close relationship can also be observed in the overlap and integration of brain systems and networks supporting working memory and language processing. This chapter examines the brain substrate of working memory and language processes, focusing on their interdependence, synergy, and the mechanisms underlying their close integration. It integrates key theoretical models and empirical evidence from behavioural and neuroimaging studies, computational modelling, and insights based on patterns of working memory and language dysfunctions due to brain injury and disease.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J., Canini, M., Della Rosa, P. A., Green, D. W., & Weekes, B. S. (2015). The neuroprotective effects of bilingualism upon the inferior parietal lobule: A structural neuroimaging study in aging Chinese bilinguals. Journal of Neurolinguistics, 33, 313. https://doi.org/10.1016/j.jneuroling.2014.09.008Google Scholar
Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35(9), 21262133. https://doi.org/10.1016/j.neurobiolaging.2014.03.010Google Scholar
Acheson, D. J., Hamidi, M., Binder, J. R., & Postle, B. R. (2011). A common neural substrate for language production and verbal working memory. Journal of Cognitive Neuroscience, 23(6), 13581367. https://doi.org/10/bcv4c5CrossRefGoogle ScholarPubMed
Acheson, D. J., & MacDonald, M. C. (2009). Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135(1), 5068. https://doi.org/10/dxhnfjCrossRefGoogle Scholar
Ali, N., Green, D. W., Kherif, F., Devlin, J. T., & Price, C. J. (2010). The role of the left head of caudate in suppressing irrelevant words. Journal of Cognitive Neuroscience, 22(10), 23692386. https://doi.org/10/cfcdwrGoogle Scholar
Allen, R. J., Hitch, G. J., & Baddeley, A. D. (2018). Exploring the sentence advantage in working memory: Insights from serial recall and recognition. Quarterly Journal of Experimental Psychology, 71(12), 25712585. https://doi.org/10.1177/1747021817746929CrossRefGoogle Scholar
Amici, S., Brambati, S. M., Wilkins, D. P., Ogar, J., Dronkers, N. L., Miller, B. L., & Gorno-Tempini, M. L. (2007). Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. Journal of Neuroscience, 27(23), 62826290. https://doi.org/10/db6h6vCrossRefGoogle ScholarPubMed
Baddeley, A. D. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189208. https://doi.org/10.1016/s0021-9924(03)00019-4Google Scholar
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In Bower, G. A. (Ed.), Recent advances in learning and motivation, Vol.8 (pp. 4790). Academic Press.Google Scholar
Baddeley, A. D., Papagno, C., & Vallar, G. (1988). When long-term learning depends on short-term storage. Journal of Memory and Language, 27(5), 586595. https://doi.org/10.1016/0749-596X(88)90028-9Google Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17(2), 8998. https://doi.org/10/f4j39rGoogle Scholar
Binder, J. R. (2017). Current controversies on Wernicke’s area and its role in language. Current Neurology and Neuroscience Reports, 17(8), 110. https://doi.org/10/gf26w5CrossRefGoogle ScholarPubMed
Bock, J. K., & Levelt, W. J. M. (1994). Language production: Grammatical encoding. In Gernsbacher, M. A. (Ed.), Handbook of psycholinguistics (pp. 945984). Elsevier/Academic Press.Google Scholar
Bornkessel, I., & Schlesewsky, M. (2006). The extended argument dependency model: A neurocognitive approach to sentence comprehension across languages. Psychological Review, 113(4), 787821. https://doi.org/10/ctj65qCrossRefGoogle Scholar
Bornkessel, I., Zysset, S., Friederici, A. D., von Cramon, D. Y., & Schlesewsky, M. (2005). Who did what to whom? The neural basis of argument hierarchies during language comprehension. NeuroImage, 26, 221233. https://doi.org/10/fjrs3tCrossRefGoogle ScholarPubMed
Buchsbaum, B. R., & D’Esposito, M. (2019). A sensorimotor view of verbal working memory. Cortex, 112, 134148. https://doi.org/10/ghpwf3Google Scholar
Caplan, D., & Waters, G. (2013). Memory mechanisms supporting syntactic comprehension. Psychonomic Bulletin & Review, 20(2), 243268. https://doi.org/10/f4qqwsCrossRefGoogle ScholarPubMed
Chang, S.-E., Kenney, M. K., Loucks, T. M. J., Poletto, C. J., & Ludlow, C. L. (2009). Common neural substrates support speech and non-speech vocal tract gestures. NeuroImage, 47(1), 314325. https://doi.org/10/d2jc3vGoogle Scholar
Chein, J. M., Ravizza, S. M., & Fiez, J. A. (2003). Using neuroimaging to evaluate models of working memory and their implications for language processing. Journal of Neurolinguistics, 16(4–5), 315339. https://doi.org/10/fw5shnCrossRefGoogle Scholar
Christophel, T. B., Hebart, M. N., & Haynes, J.-D. (2012). Decoding the contents of visual short-term memory from human visual and parietal cortex. Journal of Neuroscience, 32(38), 1298312989. https://doi.org/10.1523/JNEUROSCI.0184-12.2012Google Scholar
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J.-D. (2017). The distributed nature of working memory. Trends in Cognitive Sciences, 21(2), 111124. https://doi.org/10.1016/j.tics.2016.12.007CrossRefGoogle ScholarPubMed
Collette, F., Majerus, S., Van der Linden, M., Dabe, P., Degueldre, C., Delfiore, G., Luxen, A., & Salmon, E. (2001). Contribution of lexico-semantic processes to verbal short-term memory tasks: A PET activation study. Memory, 9(4–6), 249259. https://doi.org/10/bbzpf5CrossRefGoogle ScholarPubMed
Constantinidis, C., & Wang, X.-J. (2004). A Neural Circuit Basis for Spatial Working Memory. The Neuroscientist, 10(6), 553565. https://doi.org/10.1177/1073858404268742CrossRefGoogle ScholarPubMed
Cooke, A., Zurif, E. B., DeVita, C., Alsop, D., Koenig, P., Detre, J., Gee, J., Pinãngo, M., Balogh, J., & Grossman, M. (2002). Neural basis for sentence comprehension: Grammatical and short-term memory components. Human Brain Mapping, 15(2), 8094. https://doi.org/10/dxk2x9Google Scholar
Curtis, C. E., Rao, V. Y., & D’Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24(16), 39443952. https://doi.org/10.1523/JNEUROSCI.5640-03.2004CrossRefGoogle ScholarPubMed
Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3(4), 422433. https://doi.org/10/c659r8Google Scholar
Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298(5600), 20132015. https://doi.org/10.1126/science.1077066CrossRefGoogle ScholarPubMed
D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115142. https://doi.org/10.1146/annurev-psych-010814-015031CrossRefGoogle ScholarPubMed
Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca’s historic cases: High resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(5), 14321441. https://doi.org/10/d5m4r2CrossRefGoogle ScholarPubMed
Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural correlates of verbal working memory: An fMRI meta-analysis. Frontiers in Human Neuroscience, 13(180). https://doi.org/10/ggqqtfCrossRefGoogle ScholarPubMed
Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 3346. https://doi.org/10.1016/j.neuron.2015.09.020Google Scholar
Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 13571392. https://doi.org/10/crdcmjGoogle Scholar
Friederici, A. D. (2017). Language in our brain: The origins of a uniquely human capacity. MIT Press.Google Scholar
Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind and brain. Nature Human Behaviour, 1(10), 713722. https://doi.org/10.1038/s41562-017-0184-4CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331349. https://doi.org/10.1152/jn.1989.61.2.331Google Scholar
Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652654. https://doi.org/10.1126/science.173.3997.652Google Scholar
Ganushchak, L. Y., Christoffels, I. K., & Schiller, N. O. (2011). The use of electroencephalography in language production research: A review. Frontiers in Psychology, 2, 16. https://doi.org/10/fn6k8pGoogle Scholar
Gathercole, S. E. (1995). Is nonword repetition a test of phonological memory or long-term knowledge? It all depends on the nonwords. Memory and Cognition, 23(1), 8394. https://doi.org/10.3758/bf03210559Google Scholar
Gathercole, S. E., Frankish, C. R., Pickering, S. J., & Peaker, S. (1999). Phonotactic influences on short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 8495. https://doi.org/10/cvchznGoogle Scholar
Glaser, Y. G., Martin, R. C., Van Dyke, J. A., Hamilton, A. C., & Tan, Y. (2013). Neural basis of semantic and syntactic interference in sentence comprehension. Brain and Language, 126(3), 314326. https://doi.org/10/f5gdtzGoogle Scholar
Grant, A., Dennis, N. A., & Li, P. (2014). Cognitive control, cognitive reserve, and memory in the aging bilingual brain. Frontiers in Psychology, 5(1401), 110. https://doi.org/10.3389/fpsyg.2014.01401Google Scholar
Herman, A. B., Houde, J. F., Vinogradov, S., & Nagarajan, S. S. (2013). Parsing the phonological loop: Activation timing in the dorsal speech stream determines accuracy in speech reproduction. Journal of Neuroscience, 33(13), 54395453. https://doi.org/10/f4svd5Google Scholar
Howard, D., & Nickels, L. (2005). Separating input and output phonology: Semantic, phonological, and orthographic effects in short-term memory impairment. Cognitive Neuropsychology, 22(1), 4277. https://doi.org/10/fcjfkcGoogle Scholar
Ishkhanyan, B., Boye, K., & Mogensen, J. (2019). The meeting point: Where language production and working memory share resources. Journal of Psycholinguistic Research, 48(1), 6179. https://doi.org/10.1007/s10936-018-9589-0Google Scholar
Ji, J. L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., & Cole, M. W. (2019). Mapping the human brain’s cortical-subcortical functional network organization. NeuroImage, 185, 3557. https://doi.org/10.1016/j.neuroimage.2018.10.006CrossRefGoogle ScholarPubMed
Jones, T., & Farrell, S. (2018). Does syntax bias serial order reconstruction of verbal short-term memory? Journal of Memory and Language, 100, 98122. https://doi.org/10.1016/j.jml.2018.02.001Google Scholar
Kellogg, R. T. (1996). A model of working memory in writing. In Levy, C. & Ransdell, S. (Eds.), The science of writing: Theories, methods, individual differences, and applications (pp. 5771). Erlbaum.Google Scholar
Kellogg, R. T., Whiteford, A., Turner, C., Cahill, M., & Mertens, A. (2013). Working memory in written composition: An evaluation of the 1966 model. Journal of Writing Research, 5(2), 159190. https://doi.org/10/gfpqbvGoogle Scholar
Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29(47), 1498014986. https://doi.org/10.1523/JNEUROSCI.3706-09.2009Google Scholar
Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. MIT Press.Google Scholar
Lee, H., Devlin, J. T., Shakeshaft, C., Stewart, L. H., Brennan, A., Glensman, J., Pitcher, K., Crinion, J., Mechelli, A., Frackowiak, R. S. J., Green, D. W., & Price, C. J. (2007). Anatomical traces of vocabulary acquisition in the adolescent brain. Journal of Neuroscience, 27(5), 11841189. https://doi.org/10.1523/JNEUROSCI.4442-06.2007Google Scholar
Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences, 98(23), 1346413471. https://doi.org/10.1073/pnas.231459498Google Scholar
Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24(1), 6179. https://doi.org/10/dmmt42Google Scholar
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324. https://doi.org/10.1016/j.cortex.2014.05.001CrossRefGoogle ScholarPubMed
Lohmann, G., Hoehl, S., Brauer, J., Danielmeier, C., Bornkessel-Schlesewsky, I., Bahlmann, J., Turner, R., & Friederici, A. (2010). Setting the frame: The human brain activates a basic low-frequency network for language processing. Cerebral Cortex, 20(6), 12861292. https://doi.org/10.1093/cercor/bhp190Google Scholar
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011Google Scholar
Majerus, S., van der Linden, M., Mulder, L., Meulemans, T., & Peters, F. (2004). Verbal short-term memory reflects the sublexical organization of the phonological language network: Evidence from an incidental phonotactic learning paradigm. Journal of Memory and Language, 51(2), 297306. https://doi.org/10/cjw86hGoogle Scholar
Makuuchi, M., & Friederici, A. D. (2013). Hierarchical functional connectivity between the core language system and the working memory system. Cortex, 49(9), 24162423. https://doi.org/10/f5dq23Google Scholar
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. Henry Holt. https://doi.org/10.1037/10039-000Google Scholar
Novais-Santos, S., Gee, J., Shah, M., Troiani, V., Work, M., & Grossman, M. (2007). Resolving sentence ambiguity with planning and working memory resources: Evidence from fMRI. NeuroImage, 37(1), 361378. https://doi.org/10/bvn8g6Google Scholar
O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1999). A biologically based computational model of working memory. In Miyake, A. & Shah, P. (Eds.), Models of Working Memory (1st ed., pp. 375411). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.014Google Scholar
Peschke, C., Ziegler, W., Kappes, J., & Baumgaertner, A. (2009). Auditory–motor integration during fast repetition: The neuronal correlates of shadowing. NeuroImage, 47(1), 392402. https://doi.org/10.1016/j.neuroimage.2009.03.061Google Scholar
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 2338. https://doi.org/10.1016/j.neuroscience.2005.06.005CrossRefGoogle ScholarPubMed
Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191(1), 6288. https://doi.org/10.1111/j.1749-6632.2010.05444.xCrossRefGoogle Scholar
Rogalsky, C., & Hickok, G. (2011). The role of Brocaʼs area in sentence comprehension. Journal of Cognitive Neuroscience, 23(7), 16641680. https://doi.org/10.1162/jocn.2010.21530Google Scholar
Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., Fox, P. T., & Eickhoff, S. B. (2012). Modelling neural correlates of working memory: A coordinate-based meta-analysis. NeuroImage, 60(1), 830846. https://doi.org/10.1016/j.neuroimage.2011.11.050Google Scholar
Sakai, K. L. (2005). Language acquisition and brain development. Science, 310(5749), 815819. https://doi.org/10.1126/science.1113530Google Scholar
Sanches, C., Routier, A., Colliot, O., & Teichmann, M. (2018). The structure of the mental lexicon: What primary progressive aphasias reveal. Neuropsychologia, 109, 107115. https://doi.org/10.1016/j.neuropsychologia.2017.12.018CrossRefGoogle Scholar
Savill, N., Cornelissen, P., Whiteley, J., Woollams, A., & Jefferies, E. (2019). Individual differences in verbal short-term memory and reading aloud: Semantic compensation for weak phonological processing across tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 18151831. https://doi.org/10.1037/xlm0000675Google Scholar
Schiller, N. O., Bles, M., & Jansma, B. M. (2003). Tracking the time course of phonological encoding in speech production: An event-related brain potential study. Cognitive Brain Research, 17(3), 819831. https://doi.org/10.1016/s0926–6410(03)00204-0Google Scholar
Schwering, S. C., & MacDonald, M. C. (2020). Verbal working memory as emergent from language comprehension and production. Frontiers in Human Neuroscience, 14, 68. https://doi.org/10.3389/fnhum.2020.00068CrossRefGoogle ScholarPubMed
Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., & Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146(3), 10821108. https://doi.org/10/bcz5k9Google Scholar
Slana Ozimič, A., & Repovš, G. (2020). Visual working memory capacity is limited by two systems that change across lifespan. Journal of Memory and Language, 112, 104090. https://doi.org/10/ggjfhbGoogle Scholar
Starc, M., Anticevic, A., & Repovš, G. (2017). Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance. Psychophysiology, 54(5), 724735. https://doi.org/10.1111/psyp.12828Google Scholar
Stokes, M. G. (2015). “Activity-silent” working memory in prefrontal cortex: A dynamic coding framework. Trends in Cognitive Sciences, 19(7), 394405. https://doi.org/10.1016/j.tics.2015.05.004Google Scholar
Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., & Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75(1), 454468. https://doi.org/10.1152/jn.1996.75.1.454CrossRefGoogle ScholarPubMed
Vallar, G., & Baddeley, A. D. (1984). Fractionation of working memory: Neuropsychological evidence for a phonological short-term store. Journal of Verbal Learning and Verbal Behavior, 23(2), 151161. https://doi.org/10.1016/S0022-5371(84)90104-XGoogle Scholar
Van Dyke, J. A., & Johns, C. L. (2012). Memory interference as a determinant of language comprehension: Interference in comprehension. Language and Linguistics Compass, 6(4), 193211. https://doi.org/10.1002/lnc3.330Google Scholar
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748751. https://doi.org/10/dpb3j5Google Scholar
Walenski, M., Europa, E., Caplan, D., & Thompson, C. K. (2019). Neural networks for sentence comprehension and production: An ALE‐based meta‐analysis of neuroimaging studies. Human Brain Mapping, 40(8), 22752304. https://doi.org/10.1002/hbm.24523Google Scholar
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665670. https://doi.org/10.1038/nmeth.1635Google Scholar
Zheng, Z. Z., Munhall, K. G., & Johnsrude, I. S. (2010). Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production. Journal of Cognitive Neuroscience, 22(8), 17701781. https://doi.org/10.1162/jocn.2009.21324Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×