Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:02:24.821Z Has data issue: false hasContentIssue false

5a - Sex Differences on the Brain

A Networking Perspective

from Section 1 - The Underpinnings of Sex and Gender and How to Study Them

Published online by Cambridge University Press:  20 July 2020

Fanny M. Cheung
Affiliation:
The Chinese University of Hong Kong
Diane F. Halpern
Affiliation:
Claremont McKenna College, California
Get access

Summary

Trying to assess the way sex differences in behavior are reflected in the brain, neuroscience reports produced diverse results triggering hot discussions on whether such differences exist and/or are worth considering in further studies. This chapter summarizes recent progress in the study of sex/gender effect on the brain as viewed from the perspective of (1) anatomy, which is based on the description of various global and local morphometric features of male and female brain structures; and (2) connections, which conceptualizes the brain as a large-scale network of structures interconnected within the human connectome which subserves the transmission and integration of information at both global and local levels. It is argued that the key to understanding the behavioral differentiation of the two sexes might lie in the differences in the architecture of their networks rather than in morphometric measures of particular structures and tissues.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Readings

Anna Grabowska was born and grew up in Poland when it was a Communist country. Living in a country behind the “iron curtain” made it very difficult to have access to international scientific publications and to establish contacts with other scientific groups in the West. The Solidarity breakthrough and then the accession of Poland to the European Union opened new opportunities for her professional and personal development. In the 1980s, she obtained six months of postdoctoral training in Padua (Italy). Grabowska is Professor of Psychology at the University of Social Sciences and Humanities, Warsaw, and Professor Emerita of Biology at the Nencki Institute of Experimental Biology, Polish Academy of Sciences, where she led the Psychophysiology Laboratory until 2018. In 2016 she was elected a member of the Polish Academy of Arts and Sciences. From 1998 to 2004 she was a Professor of Psychology at Jagiellonian University, Krakow. She served on the executive committee of the European Brain and Behaviour Society (1994–1997, 2000–2003) and in 2010 she co-chaired the Mid-Year Meeting of the International Neuropsychological Society in Krakow. Her expertise is in understanding the neural networks underlying cognitive function in humans, hemispheric asymmetry, and sex differences. Her research focuses on brain dysfunction (including dyslexia), combining behavioral, cognitive, neuroimaging, and electrophysiological (ERP) approaches. She has three children and six grandchildren. She enjoys her hobbies: skiing, Argentine tango, and gardening.

Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews Neuroscience, 7(6), 477484. doi:10.1038/nrn1909Google Scholar
Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological Psychiatry, 62(8), 847855. doi:10.1016/j.biopsych.2007.03.001Google Scholar
Grabowska, A. (2017). Sex on the brain: Are gender-dependent structural and functional differences associated with behavior? Journal of Neuroscience Research, 95, 200212. doi:10.1002/jnr.23953Google Scholar
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., … Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 823828. doi:10.1073/pnas.1316909110Google Scholar
Leonard, C. M., Towler, S., Welcome, S., Halderman, L. K., Otto, R., Eckert, M. A., & Chiarello, C. (2008). Size matters: Cerebral volume influences sex differences in neuroanatomy. Cerebral Cortex, 18, 29202931. doi:10.1093/cercor/bhn052Google Scholar
Tunç, B., Solmaz, B., Parker, D., Satterthwaite, T. D., Elliott, M. A., Calkins, M. E., … Verma, R. (2016). Establishing a link between sex-related differences in the structural connectome and behaviour. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 371(1688), 20150111. doi:10.1098/rstb.2015.0111Google Scholar
Zhang, C., Dougherty, C. C., Baum, S. A., White, T., & Michael, A. M. (2018). Functional connectivity predicts gender: Evidence for gender differences in resting brain connectivity. Human Brain Mapping, 39(4), 17651776. doi:10.1002/hbm.23950CrossRefGoogle ScholarPubMed

References

Abe, O., Aoki, S., Hayashi, N., Yamada, H., Kunimatsu, A., Mori, H., … Ohtomo, K. (2002). Normal aging in the central nervous system: Quantitative MR diffusion-tensor analysis. Neurobiology of Aging, 23, 433441. doi:10.1016/S0197–4580(01)00318-9Google Scholar
Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Fiber composition of the human corpus callosum. Brain Research, 598, 143153. doi:10.1016/0006-8993(92)90178-CGoogle Scholar
Allen, J., Damasio, H., & Grabowski, T. (2002). Normal neuroanatomical variation in the human brain: An MRI-volumetric study. American Journal of Physical Anthropology, 118, 341358. doi:10.1002/ajpa.10092Google Scholar
Allen, J. S., Damasio, H., Grabowski, T. J., Bruss, J., & Zhang, W. (2003). Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage, 18, 880894. doi:10.1016/S1053–8119(03)00034-XGoogle Scholar
Anderson, N. E., Harenski, K. A., Harenski, C. L., Koenigs, M. R., Decety, J., Calhoun, V. D., & Kiehl, K. A. (2018). Machine learning of brain gray matter differentiates sex in a large forensic sample. Human Brain Mapping. doi:10.1002/hbm.24462 [Epub ahead of print]Google Scholar
Bava, S., Boucquey, V., Goldenberg, D., Thayer, R. E., Ward, M., Jacobus, J., & Tapert, S. F. (2011). Sex differences in adolescent white matter architecture. Brain Research, 1375, 4148. doi:10.1016/j.brainres.2010.12.051Google Scholar
Bishop, K. M., & Wahlsten, D. (1997). Sex differences in the human corpus callosum: Myth or reality? Neuroscience & Biobehavioral Reviews, 21(5), 581601. doi:10.1016/S0149–7634(96)00049-8Google Scholar
Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107, 4734-4739. doi:10.1073/pnas.0911855107Google Scholar
Bluhm, R. L., Osuch, E. A., Lanius, R. A., Boksman, K., Neufeld, R. W., Theberge, J., & Williamson, P. (2008). Default mode network connectivity: Effects of age, sex, and analytic approach. Neuroreport, 19, 887891. doi:10.1097/WNR.0b013e328300ebbfGoogle Scholar
Brun, C. C., Leporé, N., Luders, E., Chou, Y. Y., Madsen, S. K., Toga, A. W., & Thompson, P. M. (2009). Sex differences in brain structure in auditory and cingulate regions. Neuroreport, 20, 930935. doi:10.1097/WNR.0b013e32832c5e65Google Scholar
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186198. doi:10.1038/nrn2575Google Scholar
Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews Neuroscience, 7(6), 477484. doi:10.1038/nrn1909CrossRefGoogle ScholarPubMed
Cahill, L. (2009). Sex differences in human brain structure and function: Relevance to learning and memory. In Pfaff, D. W., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., & Rubin, R. T. (Eds.), Hormones, brain and behavior (2nd ed., pp. 23072315). London: Academic Press. doi:10.1016/B978–008088783-8.00072-3Google Scholar
Chekroud, A. M., Ward, E. J., Rosenberg, M. D., & Holmes, A. J. (2016). Patterns in the human brain mosaic discriminate males from females. Proceedings of the National Academy of Sciences of the United States of America, 113(14), E1968. doi:10.1073/pnas.1523888113Google ScholarPubMed
Chen, X., Sachdev, P. S., Wen, W., & Anstey, K. J. (2007). Sex differences in regional gray matter in healthy individuals aged 44-48 years: A voxel-based morphometric study. Neuroimage, 36, 691699. doi:10.1016/j.neuroimage.2007.03.063Google Scholar
Cheng, Y., Chou, K. H., Decety, J., Chen, I. Y., Hung, D., Tzeng, O. J., & Lin, C. P. (2009). Sex differences in the neuroanatomy of human mirror-neuron system: A voxel-based morphometric investigation. Neuroscience, 158, 713720. doi:10.1016/j.neuroscience.2008.10.026Google Scholar
Clayden, J. D., Jentschke, S., Munoz, M., Cooper, J. M., Chadwick, M. J., Banks, T., … Vargha-Khadem, F. (2012). Normative development of white matter tracts: similarities and differences in relation to age, gender, and intelligence. Cerebral Cortex, 22, 17381747. doi:10.1093/cercor/bhr243Google Scholar
Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological Psychiatry, 62(8), 847855. doi:10.1016/j.biopsych.2007.03.001Google Scholar
Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., … Press, G. A. (2000). Normal brain development and aging: Quantitative analysis and in vivo MR imaging in healthy volunteers. Radiology, 216, 672682. doi:10.1148/radiology.216.3.r00au37672Google Scholar
Davatzikos, C. (2004). Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage, 23, 1720. doi:10.1016/j.neuroimage.2004.05.010Google Scholar
Davatzikos, C., & Resnick, S. M. (1998). Sex differences in anatomic measures of interhemispheric connectivity: Correlations with cognition in women but not men. Cerebral Cortex, 8, 635640. doi:10.1093/cercor/8.7.635CrossRefGoogle Scholar
de Vries, G. J. (2004). Minireview: Sex differences in adult and developing brains: Compensation, compensation, compensation. Endocrinology, 145, 10631068. doi:10.1210/en.2003-1504Google Scholar
Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, , … Tsuang, M. T. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490497. doi:10.1093/cercor/11.6.490Google Scholar
Gong, G., He, Y., & Evan, A. C. (2011). Brain connectivity: Gender makes a difference. Neuroscientist, 17, 575591. doi:10.1177/1073858410386492Google Scholar
Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z. J., He, Y., & Evans, A. C. (2009) Age- and gender-related differences in the cortical anatomical network. Journal of Neuroscience, 29(50), 1568415693. doi:10.1523/JNEUROSCI.2308-09.2009Google Scholar
Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage, 14, 685700. doi:10.1006/nimg.2001.0857Google Scholar
Grabowska, A. (2017). Sex on the brain: Are gender-dependent structural and functional differences associated with behavior? Journal of Neuroscience Research, 95, 200212. doi:10.1002/jnr.23953Google Scholar
Gur, R. C., Gunning-Dixon, F., Bilker, W. B., & Gur, R. E. (2002). Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cerebral Cortex, 12, 9981003. doi:10.1093/cercor/12.9.998Google Scholar
Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience, 19, 4065-4072. doi:10.1523/JNEUROSCI.19-10-04065.1999CrossRefGoogle ScholarPubMed
Haier, R., Jung, R., Yeo, R., Head, K., & Alkire, M. (2005). The neuroanatomy of general intelligence: Sex matters. Neuroimage, 25, 320327. doi:10.1016/j.neuroimage.2004.11.019Google Scholar
Halpern, D. F. (2017). Sex differences in cognitive abilities (4th ed.). New York: Routledge; first published 2012 by Psychology Press.Google Scholar
Hänggi, J., Fövenyi, L., Liem, F., Meyer, M., & Jäncke, L. (2014). The hypothesis of neuronal interconnectivity as a function of brain size – a general organization principle of the human connectome. Frontiers in Human Neuroscience, 8, 915. doi:10.3389/fnhum.2014.00915Google Scholar
Herting, M. M., Maxwell, E. C., Irvine, C., & Nagel, B. J. (2012). The impact of sex, puberty, and hormones on white matter microstructure in adolescents. Cerebral Cortex, 22, 19791992. doi:10.1093/cercor/bhr246Google Scholar
Im, K., Lee, J. M., Lee, J., Shin, Y. W., Kim, I. Y., Kwon, J. S., & Kim, S. I. (2006). Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. Neuroimage, 31(1), 3138. doi:10.1016/j.neuroimage.2005.11.042Google Scholar
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., … Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 823828. doi:10.1073/pnas.1316909110Google Scholar
Jäncke, L., Mérillat, S., Liem, F., & Hänggi, J. (2015). Brain size, sex, and the aging brain. Human Brain Mapping, 36(1), 150169. doi:10.1002/hbm.22619Google Scholar
Jäncke, L., Staiger, J. F., Schlaug, G., Huang, Y. X., & Steinmetz, H. (1997). The relationship between corpus callosum size and forebrain volume. Cerebral Cortex, 7, 4856. doi:10.1093/cercor/7.1.48CrossRefGoogle ScholarPubMed
Joel, D., Berman, Z., Tavor, I., Wexler, N., Gaber, O., Stein, Y., … Assaf, Y. (2015). Sex beyond the genitalia: The human brain mosaic. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15,46815,473. doi:10.1073/pnas.1509654112Google Scholar
Kanaan, R. A., Allin, M., Picchioni, M., Barker, G. J., Daly, E., Shergill, S. S., … McGuire, P. K. (2012). Gender differences in white matter microstructure. PLoS One, 7(6), e38272. doi:10.1371/journal.pone.0038272Google Scholar
Keller, K., & Menon, V. (2009). Gender differences in the functional and structural neuroanatomy of mathematical cognition. Neuroimage, 47(1), 342352. doi:10.1016/j.neuroimage.2009.04.042Google Scholar
Lee, C. E., Danielian, L. E., Thomasson, D., & Baker, E. H. (2009). Normal regional fractional anisotropy and apparent diffusion coefficient of the brain measured on a 3 T MR scanner. Neuroradiology, 51(1), 39. doi:10.1007/s00234–008-0441-3Google Scholar
Leonard, C. M., Towler, S., Welcome, S., Halderman, L. K., Otto, R., Eckert, M. A., & Chiarello, C. (2008). Size matters: Cerebral volume influences sex differences in neuroanatomy. Cerebral Cortex, 18, 29202931. doi:10.1093/cercor/bhn052Google Scholar
Luders, E., Gaser, C., Narr, K. L., & Toga, A. W. (2009). Why sex matters: Brain size independent differences in gray matter distributions between men and women. Journal of Neuroscience, 29(45), 14,265-14,270. doi:10.1523/JNEUROSCI.2261-09.2009Google Scholar
Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L., Steinmetz, H., & Toga, A. W. (2004). Gender differences in cortical complexity. Nature Neuroscience, 7, 799-800. doi:10.1038/nn1277Google Scholar
Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Woods, R. P., Deluca, H., … Toga, A. W. (2006). Gender effects on cortical thickness and the influence of scaling. Human Brain Mapping, 27(4), 314324. doi:10.1002/hbm.20187Google Scholar
Luders, E., Narr, K. L., Thompson, P. M., Woods, R. P., Rex, D. E., Jancke, L., … Toga, A. W. (2005). Mapping cortical gray matter in the young adult brain: Effects of gender. Neuroimage, 26, 493-501. doi:10.1016/j.neuroimage.2005.02.010Google Scholar
Luders, E., Rex, D. E., Narr, K. L., Woods, R. P., Jancke, L., Thompson, P. M., … Toga, A. W. (2003). Relationships between sulcal asymmetries and corpus callosum size: Gender and handedness effects. Cerebral Cortex, 13, 1084-1093. doi:10.1093/cercor/13.10.1084Google Scholar
Luders, E., Steinmetz, H., & Jancke, L. (2002). Brain size and grey matter volume in the healthy human brain. Neuroreport , 13, 23712374. doi:10.1097/00001756-200212030-00040Google Scholar
Menzler, K., Belke, M., Wehrmann, E., Krakow, K., Lengler, U., Jansen, A., … Knake, S. (2011). Men and women are different: Diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage, 54, 25572562. doi:10.1016/j.neuroimage.2010.11.029Google Scholar
Peters, M., Jancke, L., Staiger, J., Schlaug, G., Huang, Y., & Steinmetz, H. (1998). Unsolved problems in comparing brain sizes in Homo sapiens. Brain and Cognition, 37, 254285. doi:10.1006/brcg.1998.0983Google Scholar
Ringo, J. (1991). Neuronal interconnection as a function of brain size. Brain, Behavior and Evolution, 38, 16. doi:10.1159/000114375Google Scholar
Ringo, J., Doty, R. W., Demeter, S., & Simard, P. Y. (1994). Time is of the essence: A conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cerebral Cortex, 4, 331343. doi:10.1093/cercor/4.4.331Google Scholar
Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C., … Deary, I. J. (2018). Sex differences in the adult human brain: Evidence from 5,216 UK Biobank participants. Cerebral Cortex, 28, 29592975. doi:10.1093/cercor/bhy109Google Scholar
Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience & Biobehavioral Reviews, 39, 3450. doi:10.1016/j.neubiorev.2013.12.004CrossRefGoogle ScholarPubMed
Sacher, J., Neumann, J., Okon-Singer, H., Gotowiec, S., & Villringer, A. (2013). Sexual dimorphism in the human brain: Evidence from neuroimaging. Magnetic Resonance Imaging, 31(3), 366375. doi:10.1016/j.mri.2012.06.007Google Scholar
Satterthwaite, T. D., Wolf, D. H., Roalf, D. R., Ruparel, K., Erus, G., Vandekar, S., … Gur, R. C. (2015). Linked sex differences in cognition and functional connectivity in youth. Cerebral Cortex, 25(9), 23832394. doi:10.1093/cercor/bhu036Google Scholar
Scheinost, D., Finn, E. S., Tokoglu, F., Shen, X., Papademetris, X., Hampson, M., & Constable, R. T. (2015). Sex differences in normal age trajectories of functional brain networks. Human Brain Mapping, 36(4), 15241535. doi:10.1002/hbm.22720Google Scholar
Schulte, T., Sullivan, E. V., Muller-Oehring, E. M., Adalsteinsson, E., & Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: A diffusion tensor imaging study. Cerebral Cortex, 15, 13841392. doi:10.1093/cercor/bhi020Google Scholar
Sepehrband, F., Lynch, K. M., Cabeen, R. P., Gonzalez-Zacarias, C., Zhao, L., D’Arcy, M., … Clark, K. A. (2018). Neuroanatomical morphometric characterization of sex differences in youth using statistical learning. Neuroimage, 172, 217227. doi:10.1016/j.neuroimage.2018.01.065Google Scholar
Shin, Y. W., Kim, D. J., Ha, T. H., Park, H. J., Moon, W. J., Chung, E. C., … Kwon, J. S. (2005). Sex differences in the human corpus callosum: Diffusion tensor imaging study. Neuroreport, 16, 795798. doi:10.1097/00001756-200505310-00003Google Scholar
Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., … Toga, A. W. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex, 17(7), 15501560. doi:10.1093/cercor/bhl066Google Scholar
Sullivan, E. V., Rosenbloom, M. J., Desmond, J. E., & Pfefferbaum, A. (2001). Sex differences in corpus callosum size: Relationship to age and intracranial size. Neurobiology of Aging, 22, 603611. doi:10.1016/S0197–4580(01)00232-9Google Scholar
Sun, Y., Lee, R., Chen, Y., Collinson, S., Thakor, N., Bezerianos, A., & Sim, K. (2015). Progressive gender differences of structural brain networks in healthy adults: A longitudinal, diffusion tensor imaging study. PLoS One, 10(3), e0118857. doi:10.1371/journal.pone.0118857Google Scholar
Tian, L., Wang, J., Yan, C., & He, Y. (2011). Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study. Neuroimage, 54(1), 191202. doi:10.1016/j.neuroimage.2010.07.066Google Scholar
Tunç, B., Solmaz, B., Parker, D., Satterthwaite, T. D., Elliott, M. A., Calkins, M. E., … Verma, R. (2016). Establishing a link between sex-related differences in the structural connectome and behaviour. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 371(1688). doi:10.1098/rstb.2015.0111Google Scholar
Westerhausen, R., Kreuder, F., Dos Santos Sequeira, S., Walter, C., Woerner, W., Wittling, R. A., … Wittling, W. (2004). Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: A combined high-resolution and diffusion-tensor MRI study. Cognitive Brain Research, 21, 418426. doi:10.1016/j.cogbrainres.2004.07.002Google Scholar
Westerhausen, R., Walter, C., Kreuder, F., Wittling, R. A., Schweiger, E., & Wittling, W. (2003). The influence of handedness and gender on the microstructure of the human corpus callosum: A diffusion-tensor magnetic resonance imaging study. Neuroscience Letters, 351, 99102. doi:10.1016/j.neulet.2003.07.011Google Scholar
Witelson, S. F., Glezer, I. I., & Kigar, D. L. (1995). Women have greater density of neurons in posterior temporal cortex. Journal of Neuroscience, 15, 34183428. doi:10.1523/JNEUROSCI.15-05-03418.1995Google Scholar
Wu, Y. C., Field, A. S., Whalen, P. J., & Alexander, A. L. (2011). Age- and gender-related changes in the normal human brain using hybrid diffusion imaging (HYDI). Neuroimage, 54, 18401853. doi:10.1016/j.neuroimage.2010.09.067Google Scholar
Yan, C., Gong, G, Wang, J., Wang, D., Liu, D., Zhu, C., … He, Y. (2011). Sex- and brain size-related small-world structural cortical networks in young adults: A DTI tractography study. Cerebral Cortex, 21, 449458. doi:10.1093/cercor/bhq111Google Scholar
Zhang, C., Cahill, N. D., Arbabshirani, M. R., White, T., Baum, S. A., & Michael, A. M. (2016). Sex and age effects of functional connectivity in early adulthood. Brain Connect, 6(9), 700713. doi:10.1089/brain.2016.0429Google Scholar
Zhang, C., Dougherty, C. C., Baum, S. A., White, T., & Michael, A. M. (2018). Functional connectivity predicts gender: Evidence for gender differences in resting brain connectivity. Human Brain Mapping, 39(4), 17651776. doi:10.1002/hbm.23950Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×