Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T21:52:18.321Z Has data issue: false hasContentIssue false

Part IV - Behavioral Measures

Published online by Cambridge University Press:  12 December 2024

John E. Edlund
Affiliation:
Rochester Institute of Technology, New York
Austin Lee Nichols
Affiliation:
Central European University, Vienna
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ando, S., Kida, N., & Oda, S. (2002). Practice effects on reaction time for peripheral and central visual fields. Perceptual and Motor Skills, 95(3), 747752. http://dx.doi.org/10.2466/pms.2002.95.3.747CrossRefGoogle ScholarPubMed
Ando, S., Kida, N., & Oda, S. (2004). Retention of practice effects on simple reaction time for peripheral and central visual fields. Perceptual and Motor Skills, 98(3), 897900. http://dx.doi.org/10.2466/PMS.98.3.897-900CrossRefGoogle ScholarPubMed
Arent, S. M., & Landers, D. M. (2003). Arousal, anxiety, and performance: A reexamination of the inverted-U hypothesis. Research Quarterly for Exercise and Sport, 74(4), 436444. http://dx.doi.org/10.1080/02701367.2003.10609113CrossRefGoogle ScholarPubMed
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. & Spence, J. T., The Psychology of Learning and Motivation (vol. 2, pp. 89195). Academic Press.Google Scholar
Babkoff, H., Genser, S., & Hegge, F. W. (1985). Lexical decision, parafoveal eccentricity and visual hemifield. Cortex, 21(4), 581593. http://dx.doi.org/10.1016/S0010-9452(58)80006-4CrossRefGoogle ScholarPubMed
Baghdadi, G., Towhidkhah, F., & Rajabi, M. (2021). Neurocognitive Mechanisms of Attention. Elsevier.Google Scholar
Boring, E. G. (1950). A History of Experimental Psychology, 2nd ed. Appleton-Century-Crofts.Google Scholar
Brendl, C. M., Markman, A. B., & Messner, C. (2001). How do indirect measures of evaluation work? Evaluating the inference of prejudice in the Implicit Association Test. Journal of Personality and Social Psychology, 81(5), 760773. http://dx.doi.org/10.1037//0022-3514.81.5.760CrossRefGoogle ScholarPubMed
Cedrus Corporation. (2022). Download SuperLab [webpage]. https://cedrus.com/superlab/download.htmGoogle Scholar
Damanpak, S., Mokhtari, P., & Mousavi, S. M. V. (2014). Relationship between arousal and choice reaction time. Biosciences Biotechnology Research Asia, 11(2), 803806. http://dx.doi.org/10.13005/bbra/1341CrossRefGoogle Scholar
Danek, R. H., & Mordkoff, J. T. (2011). Unequal motor durations under simple-, Go/No-go, and choice-RT tasks: Extension of Miller and Low (2001). Journal of Experimental Psychology: Human Perception and Performance, 37(4), 13231329. https://doi.org/10.1037/a0023092Google Scholar
de Leeuw, J. R., & Motz, B. A. (2016). Psychophysics in a Web browser? Comparing response times collected with JavaScript and Psychophysics Toolbox in a visual search task. Behavior Research Methods, 48(1), 112. http://dx.doi.org/10.3758/s13428-015-0567-2CrossRefGoogle Scholar
Delwiche, J. F., Halpern, B. P., & Desimone, J. A. (1999). Anion size of sodium salts and simple taste reaction times. Physiology & Behavior, 66(1), 2732. https://doi.org/10.1016/S0031-9384(98)00273-XCrossRefGoogle ScholarPubMed
Der, G., & Deary, I. J. (2006). Age and sex differences in reaction time in adulthood: Results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging, 21(1), 6273. http://dx.doi.org/10.1037/0882-7974.21.1.62CrossRefGoogle ScholarPubMed
Dovidio, J. F., Kawakami, K., & Gaertner, S. L. (2002). Implicit and explicit prejudice and interracial interaction. Journal of Personality and Social Psychology, 82(1), 6268. http://dx.doi.org/10.1037/0022-3514.82.1.62CrossRefGoogle ScholarPubMed
Dovidio, J. F., Kawakami, K., Johnson, C., Johnson, B., & Howard, A. (1997). On the nature of prejudice: Automatic and controlled processes. Journal of Experimental Social Psychology, 33(5), 510540. http://dx.doi.org/10.1006/jesp.1997.1331CrossRefGoogle Scholar
Durlach, P. J., Edmunds, R., Howard, L., & Tipper, S. P. (2002). A rapid effect of caffeinated beverages on two choice reaction time tasks. Nutritional Neuroscience 5(6), 433442. https://doi.org/10.1080/1028415021000039211CrossRefGoogle Scholar
Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2009). A diffusion model decomposition of the practice effect. Psychonomic Bulletin and Review, 16(6), 10261036. http://dx.doi.org/10.3758/16.6.1026CrossRefGoogle ScholarPubMed
Dykiert, D., Der, G., Starr, J. M., & Deary, I. J. (2012). Age differences in intra-individual variability in simple and choice reaction time: Systematic review and meta-analysis. PLOS ONE, 7(10). https://doi.org/10.1371/journal.pone.0045759CrossRefGoogle ScholarPubMed
Elliott, E. M., Morey, C. C., Morey, R. D., Eaves, S. D., Shelton, J. T., & Lutfi-Proctor, D. A. (2014). The role of modality: Auditory and visual distractors in Stroop interference. Journal of Cognitive Psychology, 26(1), 1526. http://dx.doi.org/10.1080/20445911.2013.859133CrossRefGoogle Scholar
Empirisoft Corporation. (2020a). v2020 Downloads [DirectRT 2020.1.111]. www.empirisoft.com/download.aspxGoogle Scholar
Empirisoft Corporation. (2020b). v2020 Downloads [MediaLab 2020.1.111]. www.empirisoft.com/download.aspxGoogle Scholar
Epifania, O. M., Robusto, E., & Anselmi, P. (2023). Is the performance at the Implicit Association Test sensitive to feedback presentation? A Rasch-based analysis. Psychological Research, 87, 737750. https://doi.org/10.1007/s00426-022-01703-wCrossRefGoogle Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143149. http://dx.doi.org/10.3758/BF03203267CrossRefGoogle Scholar
Eriksen, C. W., & St. James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception and Psychophysics, 40(4), 225240. http://dx.doi.org/10.3758/BF03211502CrossRefGoogle ScholarPubMed
Evans, N. J., Brown, S. D., Mewhort, D. J. K., & Heathcote, A. (2018). Refining the law of practice. Psychological Review, 125(4), 592605. https://doi.org/10.1037/rev0000105CrossRefGoogle ScholarPubMed
Exner, S. (1873). Experimentelle Untersuchung der einfachsten psychischen Processe: Erste Abhandlung. Archiv für die Gesammte Physiologie des Menschen und der Thiere, 7, 601660. https://doi.org/10.1007/BF01613351CrossRefGoogle Scholar
Fazio, R. H., Jackson, J. R., Dunton, B. C., & Williams, C. J. (1995). Variability in automatic activation as an unobtrusive measure of racial attitudes: A bona fide pipeline? Journal of Personality and Social Psychology, 69(6), 10131027. http://dx.doi.org/10.1037/0022-3514.69.6.1013CrossRefGoogle Scholar
Fazio, R. H., Sanbonmatsu, D. M., Powell, M. C., & Kardes, F. R. (1986). On the automatic activation of attitudes. Journal of Personality and Social Psychology, 50(2), 229238. http://dx.doi.org/10.1037/0022-3514.50.2.229CrossRefGoogle ScholarPubMed
Fontani, G., Lodi, L., Felici, A., Migliorini, S., & Corradeschi, F. (2006). Attention in athletes of high and low experience engaged in different open skill sports. Perceptual and Motor Skills, 102(3), 791805. http://dx.doi.org/10.2466/PMS.102.3.791-805CrossRefGoogle ScholarPubMed
Gorus, E., De Raedt, R., Lambert, M., Lemper, J.-C., & Mets, T. (2008). Reaction times and performance variability in normal aging, mild cognitive impairment, and Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology, 21(3), 204218.CrossRefGoogle ScholarPubMed
Gotlib, I. H., & McCann, C. D. (1984). Construct accessibility and depression: An examination of cognitive and affective factors. Journal of Personality and Social Psychology, 47(2), 427439. http://dx.doi.org/10.1037/0022-3514.47.2.427CrossRefGoogle ScholarPubMed
Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics. John Wiley.Google Scholar
Greenwald, A. G., & Farnham, S. D. (2000). Using the Implicit Association Test to measure self-esteem and self-concept. Journal of Personality and Social Psychology, 79(6), 10221038. http://dx.doi.org/10.1037/0022-3514.79.6.1022CrossRefGoogle ScholarPubMed
Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: The Implicit Association Test. Journal of Personality and Social Psychology, 74(6), 14641480. http://dx.doi.org/10.1037/0022-3514.74.6.1464CrossRefGoogle ScholarPubMed
Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition and Emotion, 25(3), 400412. http://dx.doi.org/10.1080/02699931.2010.544160CrossRefGoogle ScholarPubMed
Harrison, C., Lim, B. Y., Shick, A., & Hudson, S. E. (2009, April). Where to locate wearable displays? Reaction time performance of visual alerts from tip to toe. In Chi ’09: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 941944). ACM. https://doi.org/10.1145/1518701.1518845Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(23), 6183. https://doi.org/10.1017/S0140525X0999152XCrossRefGoogle ScholarPubMed
Hergenhahn, B. R. (2013). An Introduction to the History of Psychology, 7th ed. Wadsworth.Google Scholar
Hernandez, S., Nieto, A., & Barroso, J. (1992). Hemispheric specialization for word classes with visual presentations and lexical decision task. Brain and Cognition, 20(2), 399408. http://dx.doi.org/10.1016/0278-2626(92)90029-LCrossRefGoogle ScholarPubMed
Hervey, A. S., Epstein, J. N., Curry, J. F., Tonev, S., Arnold, L. E., Conners, C. K., et al. (2006). Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychology, 12(2), 125140. https://doi.org/10.1080/09297040500499081CrossRefGoogle Scholar
Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 1126. http://dx.doi.org/10.1080/17470215208416600CrossRefGoogle Scholar
Howse, D. (1989). Nevil Maskelyne: The Seaman’s Astronomer. Cambridge University Press.Google Scholar
Jaśkowski, P., & Włodarczyk, D. (1997). Effect of sleep deficit, knowledge of results, and stimulus quality on reaction time and response force. Perceptual and Motor Skills, 84(2), 563572. http://dx.doi.org/10.2466/pms.1997.84.2.563CrossRefGoogle ScholarPubMed
Johns, M., Crowley, K., Chapman, R., Tucker, A., & Hocking, C. (2009). The effect of blinks and saccadic eye movements on visual reaction times. Attention, Perception, and Psychophysics, 71(4), 783788. http://dx.doi.org/10.3758/APP.71.4.783CrossRefGoogle ScholarPubMed
Jones, E. E., & Sigall, H. (1971). The bogus pipeline: A new paradigm for measuring affect and attitude. Psychological Bulletin, 76(5), 349364. https://doi.org/10.1037/h0031617CrossRefGoogle Scholar
Kling, J. W., & Riggs, L. A. (1971). Woodworth & Schlosberg’s experimental psychology, 3rd ed. Holt, Rinehart, & Winston.Google Scholar
Krizan, Z., & Suls, J. (2008). Are implicit and explicit measures of self-esteem related? A meta-analysis for the Name-Letter test. Personality and Individual Differences, 44(2), 521531. http://dx.doi.org/10.1016/j.paid.2007.09.017CrossRefGoogle Scholar
Lavoie, M. E., Dupuis, F., Johnston, K. M., Leclerc, S., & Lassonde, M. (2004). Visual P300 effects beyond symptoms in concussed college athletes. Journal of Clinical and Experimental Neuropsychology, 26(1), 5573. http://dx.doi.org/10.1076/jcen.26.1.55.23936CrossRefGoogle ScholarPubMed
Levitt, S., & Gutin, B. (1971). Multiple choice reaction time and movement time during physical exertion. Research Quarterly of the American Association for Health, Physical Education, and Recreation, 42(4), 405410. https://doi.org/10.1080/10671188.1971.10615088CrossRefGoogle ScholarPubMed
Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. Oxford University Press.Google Scholar
MacLeod, C. M., & Dunbar, K. (1988). Training and Stroop-like interference: Evidence for a continuum of automaticity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 126135. http://dx.doi.org/10.1037/0278-7393.14.1.126Google ScholarPubMed
Medic-Pericevic, S., Mikov, I., Glavaski-Kraljevic, M., Spanovic, M., Bozic, A., Vasovic, V., & Mikov, M. (2020). The effects of aging and driving experience on reaction times of professional drivers. Work: Journal of Prevention, Assessment & Rehabilitation, 66(2), 405419. https://doi.org/10.3233/WOR-203181CrossRefGoogle ScholarPubMed
Miller, J. O., & Low, K. (2001). Motor processes in simple, Go/No-go, and choice reaction time tasks: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 266289. http://dx.doi.org/10.1037/0096-1523.27.2.266Google ScholarPubMed
Millisecond Software. (2022). Download Inquisit Lab [Inquisit Lab 6.6.1]. www.millisecond.com/downloadGoogle Scholar
Müller, J. (1833–1840). Handbuch der Physiologie des Menschen für Vorlesungen. J. Hölscher.Google Scholar
Nosek, B. A. (2007). Implicit–explicit relations. Current Directions in Psychological Science, 16(2), 6569. http://dx.doi.org/10.1111/j.1467-8721.2007.00477.xCrossRefGoogle Scholar
Nosek, B. A., & Banaji, M. R. (2001). The Go/No-go Association Task. Social Cognition, 19(6), 625666. http://dx.doi.org/10.1521/soco.19.6.625.20886CrossRefGoogle Scholar
Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Harvesting implicit group attitudes and beliefs from a demonstration web site. Group Dynamics: Theory, Research, and Practice, 6(1), 101115. http://dx.doi.org/10.1037/1089-2699.6.1.101CrossRefGoogle Scholar
Nosek, B. A., Smyth, F. L., Hansen, J. J., Devos, T., Lindner, N. M., Ranganath, K. A., et al. (2007). Pervasiveness and correlates of implicit attitudes and stereotypes. European Review of Social Psychology, 18, 3688. http://dx.doi.org/10.1080/10463280701489053CrossRefGoogle Scholar
Olson, M. A., & Fazio, R. H. (2004). Reducing the influence of extrapersonal associations on the Implicit Association Test: Personalizing the IAT. Journal of Personality and Social Psychology, 86(5), 653667. http://dx.doi.org/10.1037/0022-3514.86.5.653CrossRefGoogle ScholarPubMed
Osborne, J. W. (2002). Notes on the use of data transformations. Practical Assessment, Research, and Evaluation, 8(6). https://doi.org/10.7275/4vng-5608Google Scholar
Overbosch, P., de Wijk, R., de Jonge, T. J., & Köster, E. P. (1989). Temporal integration and reaction times in human smell. Physiology & Behavior, 45(3), 615626. https://doi.org/10.1016/0031-9384(89)90082-6CrossRefGoogle ScholarPubMed
Pavelka, R., Třebicky, V., Fialova, J. T., Zdobinsky, A., Coufalova, K., Havlicek, J., & Tufano, J. J. (2020). Acute fatigue affects reaction times and reaction consistency in mixed martial arts fighters. PLOS ONE, 15(1), e0227675. https://doi.org/10.1371/journal.pone.0227675CrossRefGoogle ScholarPubMed
Peschke, C., Hilgetag, C. C., & Olk, B. (2013). Influence of stimulus type on effects of flanker, flanker position, and trial sequence in a saccadic eye movement task. Quarterly Journal of Experimental Psychology, 66(11), 22532267. https://doi.org/10.1080/17470218.2013.777464CrossRefGoogle Scholar
Pins, D., & Bonnet, C. (1996). On the relation between stimulus intensity and processing time: Piéron’s law and choice reaction time. Perception & Psychophysics, 58(3), 390400. https://doi.org/10.3758/BF03206815CrossRefGoogle ScholarPubMed
Psychology Software Tools. (2016). Psychology Software Tools homepage [E-Prime 3.0]. www.pstnet.comGoogle Scholar
Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3), 510532. https://doi.org/10.1037/0033-2909.114.3.510CrossRefGoogle ScholarPubMed
Robinson, E. S. (1934). Work of the integrated organism. In Murchison, C. (ed.), A Handbook of General Experimental Psychology (pp. 571650). Clark University Press.CrossRefGoogle Scholar
Robinson, M. D., & Tamir, M. (2005). Neuroticism as mental noise: A relation between neuroticism and reaction time standard deviations. Journal of Personality and Social Psychology, 89(1), 107114. http://dx.doi.org/10.1037/0022-3514.89.1.107CrossRefGoogle ScholarPubMed
Rodriguez-Raecke, R., Schrader, C., Tacik, P., Dressler, D., Lanfermann, H., & Wittfoth, M. (2022). Conflict adaptation and related neuronal processing in Parkinson’s disease. Brain Imaging and Behavior, 16, 455463.CrossRefGoogle ScholarPubMed
Sanders, A. F. (1998). Elements of Human Performance: Reaction Processes and Attention in Human Skill. Lawrence Erlbaum Associates.Google Scholar
Satorres, E., Oliva, I., Escudero, J., & Meléndez, J. C. (2020). Conflict monitoring on an emotional Stroop task: Comparison of healthy older adults and patients with major neurocognitive disorders due to probable AD. Journal of Clinical and Experimental Neuropsychology, 42(5), 485494. https://doi.org/10.1080/13803395.2020.1761946CrossRefGoogle Scholar
Schultz, D. P., & Schultz, S. E. (2016). A History of Modern Psychology, 11th ed. Cengage Learning.Google Scholar
Senholzi, K. B., Depue, B. E., Correll, J., Banich, M. T., & Ito, T. A. (2015). Brain activation underlying threat detection to targets of different races. Social Neuroscience, 10(6), 651662. http://dx.doi.org/10.1080/17470919.2015.1091380CrossRefGoogle ScholarPubMed
Stafford, T., Ingram, L., & Gurney, K. N. (2011). Piéron’s law holds during Stroop conflict: Insights into the architecture of decision making. Cognitive Science, 35(8), 15531566. https://doi.org/10.1111/j.1551-6709.2011.01195.xCrossRefGoogle ScholarPubMed
Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421457.Google ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643662. http://dx.doi.org/10.1037/h0054651CrossRefGoogle Scholar
VaezMousavi, S. M., Barry, R. J., & Clarke, A. R. (2009). Individual differences in task-related activation and performance. Physiology and Behavior, 98(3), 326330. http://dx.doi.org/10.1016/j.physbeh.2009.06.007CrossRefGoogle ScholarPubMed
Vakil, E., Lowe, M., & Goldfus, C. (2015). Performance of children with developmental dyslexia on two skill learning tasks – Serial Reaction Time and Tower of Hanoi Puzzle: A test of the specific procedural learning difficulties theory. Journal of Learning Disabilities, 48(5), 471481. http://dx.doi.org/10.1177/0022219413508981CrossRefGoogle Scholar
Valiente, C., Cantero, D., Vázquez, C., Sanchez, Á., Provencio, M., & Espinosa, R. (2011). Implicit and explicit self-esteem discrepancies in paranoia and depression. Journal of Abnormal Psychology, 120(3), 691699. https://doi.org/10.1037/a0022856CrossRefGoogle ScholarPubMed
Van Bavel, J. J., & Cunningham, W. A. (2010). A social neuroscience approach to self and social categorisation: A new look at an old issue. European Review of Social Psychology, 21(1), 237284. https://doi.org/10.1080/10463283.2010.543314CrossRefGoogle Scholar
Van Zandt, T. (2002). Analysis of response time distributions. In Pashler, H. & Wixted, J. (eds.), Stevens’ Handbook of Experimental Psychology: Methodology in Experimental Psychology, 3rd ed. (vol. 4, pp. 461516). John Wiley & Sons.Google Scholar
Volkan, E., & Hadjimarkou, M. M. (2019). Undivided trauma in a divided Cyprus: Modified emotional Stroop study. Psychological Trauma: Theory, Research, Practice, and Policy, 14(6), 989997. https://doi.org./10.1037/tra0000527CrossRefGoogle Scholar
Welford, A. T. (1981). Signal, noise, performance, and age. Human Factors, 23(1), 97109.CrossRefGoogle ScholarPubMed
Whelan, R. (2008). Effective analysis of reaction time data. Psychological Record, 58(3), 475482.CrossRefGoogle Scholar
Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53(3), 300314. https://doi.org./10.1037/0003-066X.53.3.300CrossRefGoogle Scholar
Wylie, S. A., van den Wildenberg, W. P. M., Ridderinkhof, K. R., Bashore, T. R., Powell, V. D., Manning, C. A., & Wooten, G. F. (2009). The effect of speed-accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia, 47(8–9), 18441853. https://doi.org/10.1016/j.neuropsychologia.2009.02.025CrossRefGoogle ScholarPubMed
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18, 459482. http://dx.doi.org/10.1002/cne.920180503CrossRefGoogle Scholar
Zayas, V., Wang, A. M., & McCalla, J. D. (2022). Me as good and me as bad: Priming the self triggers positive and negative implicit evaluations. Journal of Personality and Social Psychology, 122(1), 106134. http://dx.doi.org/2048/10.1037/pspp0000332CrossRefGoogle ScholarPubMed

References

Bahill, A., Brockenbrough, A., & Troost, B. (1981). Variability and development of a normative data base for saccadic eye movements. Investigative Ophthalmology & Visual Science, 21(1), 116125.Google ScholarPubMed
Becker, W. (1989). The neurobiology of saccadic eye movements: Metrics. Reviews of Oculomotor Research, 3, 1367.Google ScholarPubMed
Belli, R. F., Traugott, M. W., & Beckmann, M. N. (2001). What leads to voting overreports? Contrasts of overreporters to validated voters and admitted nonvoters in the American National Election Studies. Journal of Official Statistics, 17(4), 479498.Google Scholar
Binaee, K., & Diaz, G. (2019). Movements of the eyes and hands are coordinated by a common predictive strategy. Journal of Vision, 19(12).CrossRefGoogle ScholarPubMed
Blignaut, P., & Beelders, T. (2012). The precision of eye-trackers: A case for a new measure. In Proceedings of the 2006 Symposium on Eye Tracking Research and Applications (pp. 289292). ACM.Google Scholar
Chaudhary, A. K., & Pelz, J. B. (2020a). pi t –enhancing the precision of eye tracking using iris feature motion vectors [preprint]. ArXiv. https://doi.org/10.48550/arXiv.2009.09348CrossRefGoogle Scholar
Chaudhary, A. K., & Pelz, J. B. (2020b). Privacy-preserving eye videos using rubber sheet model. In ETRA ’20 Short Papers: ACM Symposium on Eye Tracking Research and Applications (pp. 15). ACM.Google Scholar
Clarke, A. D., Mahon, A., Irvine, A., & Hunt, A. R. (2017). People are unable to recognize or report on their own eye movements. Quarterly Journal of Experimental Psychology, 70(11), 22512270.CrossRefGoogle ScholarPubMed
Conklin, K., & Pellicer-Sanchez, A. (2016). Using eye-tracking in applied linguistics and second language research. Second Language Research, 32(3), 453467.CrossRefGoogle Scholar
Darwin, E. (1794). Zoonomia or the Laws of Organic Life (vol. 1). Printed for J. johnson.Google Scholar
Diaz, G., Cooper, J., Kit, D., & Hayhoe, M. (2013). Real-time recording and classification of eye movements in an immersive virtual environment. Journal of Vision, 13(12).CrossRefGoogle Scholar
Dodge, R. (1911). Visual motor functions. Psychological Bulletin, 8(11), 382385.CrossRefGoogle Scholar
Dodge, R. (1916). Visual motor functions. Psychological Bulletin, 13(11), 421427.CrossRefGoogle Scholar
Duchowski, A. T., Shivashankaraiah, V., Rawls, T., Gramopadhye, A. K., Melloy, B. J., & Kanki, B. (2000). Binocular eye tracking in virtual reality for inspection training. In Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (pp. 8996). ACM.CrossRefGoogle Scholar
Eberhard, K. M., Spivey-Knowlton, M. J., Sedivy, J. C., & Tanenhaus, M. K. (1995). Eye movements as a window into real-time spoken language comprehension in natural contexts. Journal of Psycholinguistic Research, 24(6), 409436.CrossRefGoogle ScholarPubMed
Evans, K. M., Jacobs, R. A., Tarduno, J. A., & Pelz, J. B. (2012). Collecting and analyzing eye tracking data in outdoor environments. Journal of Eye Movement Research, 5(2).CrossRefGoogle Scholar
Feit, A. M., Williams, S., Toledo, A., Paradiso, A., Kulkarni, H., Kane, S., & Morris, M. R. (2017). Toward everyday gaze input: Accuracy and precision of eye tracking and implications for design. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 11181130). ACM.CrossRefGoogle Scholar
Foulsham, T., & Kingstone, A. (2013). Fixation-dependent memory for natural scenes: An experimental test of scanpath theory. Journal of Experimental Psychology: General, 142(1):4156.CrossRefGoogle ScholarPubMed
Geisler, W. S., & Perry, J. S. (1998). Real-time foveated multiresolution system for low-bandwidth video communication. In Human Vision and Electronic Imaging III (pp. 294305). SPIE.CrossRefGoogle Scholar
Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: Guiding attention guides thought. Psychological Science, 14(5), 462466.CrossRefGoogle ScholarPubMed
Grossberg, S., Srihasam, K., & Bullock, D. (2012). Neural dynamics of saccadic and smooth pursuit eye movement coordination during visual tracking of unpredictably moving targets. Neural Networks, 27, 120.CrossRefGoogle ScholarPubMed
Ha, J., Park, S., & Im, C.-H. (2022). Novel hybrid brain-computer interface for virtual reality applications using steady-state visual-evoked potential-based brain–computer interface and electrooculogram-based eye tracking for increased information transfer rate. Frontiers in Neuroinformatics, 16.CrossRefGoogle ScholarPubMed
Harris, D. J., Wilson, M. R., Holmes, T., de Burgh, T., & Vine, S. J. (2022). Eye movements in sports research and practice: Immersive technologies as optimal environments for the study of gaze behavior. In Stuart, S. (ed.), Eye Tracking: Background, Methods, and Applications (pp. 207221). Springer.CrossRefGoogle Scholar
Jensen, R. R., Stets, J. D., Suurmets, S., Clement, J., & Aanæs, H. (2017). Wearable gaze trackers: Mapping visual attention in 3d. In Scandinavian Conference on Image Analysis (pp. 6676). Springer.CrossRefGoogle Scholar
Jogeshwar, A. K. (2020). Analysis and visualization tool for motion and gaze. In ETRA ’20 Short Papers: ACM Symposium on Eye Tracking Research and Applications (pp. 13). ACM.Google Scholar
Jogeshwar, A. K., Diaz, G. J., Farnand, S. P., & Pelz, J. B. (2020). The cone model: Recognizing gaze uncertainty in virtual environments. Electronic Imaging, 32, 18.CrossRefGoogle Scholar
Jogeshwar, A. K., & Pelz, J. B. (2021). GazeEnViz4D: 4-d gaze-in-environment visualization pipeline. Procedia Computer Science, 192, 29522961.CrossRefGoogle Scholar
Jogeshwar, A. (2023). Look at the Bigger Picture: Analyzing Eye Tracking Data With Multi-Dimensional Visualization. Rochester Institute of Technology.Google Scholar
Joseph, A. W., Jeevitha Shree, D., Saluja, K. P. S., Mukhopadhyay, A., Murugesh, R., & Biswas, P. (2021). Eye tracking to understand impact of aging on mobile phone applications. In Design for Tomorrow (vol. 1, pp. 315326). Springer.CrossRefGoogle Scholar
Kaminska, O., & Foulsham, T. (2016). Eye-tracking social desirability bias. Bulletin of Sociological Methodology / Bulletin de Methodologie Sociologique, 130(1), 7389.CrossRefGoogle Scholar
Kassner, M., Patera, W., & Bulling, A. (2014). Pupil: An open source platform for pervasive eye tracking and mobile gaze-based interaction. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (pp. 11511160). ACM.CrossRefGoogle Scholar
Koch, M., Weiskopf, D., & Kurzhals, K. (2022). A spiral into the mind: Gaze spiral visualization for mobile eye tracking. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 5(2), 116.CrossRefGoogle Scholar
Kothari, R., Yang, Z., Kanan, C., Bailey, R., Pelz, J. B., & Diaz, G. J. (2020). Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities. Scientific Reports, 10(1), 118.CrossRefGoogle ScholarPubMed
Kovesdi, C., Spielman, Z., LeBlanc, K., & Rice, B. (2018). Application of eye tracking for measurement and evaluation in human factors studies in control room modernization. Nuclear Technology, 202(2–3), 220229.CrossRefGoogle Scholar
Kowler, E. (1995). Cogito ergo moveo: Cognitive control of eye movement. In Exploratory Vision: The Active Eye, pages 5177. Springer.Google Scholar
Kröger, J. L., Lutz, O. H.-M., & Müller, F. (2019). What does your gaze reveal about you? On the privacy implications of eye tracking. In Privacy and Identity Management: Data for Better Living (pp. 226241). Springer.Google Scholar
Lasky, N. V., Fisher, B. S., & Jacques, S. (2017). “Thinking thief” in the crime prevention arms race: Lessons learned from shoplifters. Security Journal, 30(3), 772792.CrossRefGoogle Scholar
Leigh, R., & Zee, D. (2015). The Neurology of Eye Movements, 5th ed. Oxford University Press.CrossRefGoogle Scholar
Li, T.-H., Suzuki, H., & Ohtake, Y. (2020). Visualization of user’s attention on objects in 3D environment using only eye tracking glasses. Journal of Computational Design and Engineering, 7(2), 228237.CrossRefGoogle Scholar
Lisberger, S. G. (2010). Visual guidance of smooth-pursuit eye movements: Sensation, action, and what happens in between. Neuron, 66(4), 477491.CrossRefGoogle ScholarPubMed
Macatee, R. J., Albanese, B. J., Schmidt, N. B., & Cougle, J. R. (2017). Attention bias towards negative emotional information and its relationship with daily worry in the context of acute stress: An eye-tracking study. Behaviour Research and Therapy, 90, 96110.CrossRefGoogle ScholarPubMed
Marti, S., Bayet, L., & Dehaene, S. (2015). Subjective report of eye fixations during serial search. Consciousness and Cognition, 33, 115.CrossRefGoogle ScholarPubMed
Maurus, M., Hammer, J. H., & Beyerer, J. (2014). Realistic heatmap visualization for interactive analysis of 3D gaze data. In ETRA ’14: Proceedings of the Symposium on Eye Tracking Research and Applications (pp. 295298). ACM.CrossRefGoogle Scholar
Mele, M. L., & Federici, S. (2012). Gaze and eye-tracking solutions for psychological research. Cognitive Processing, 13(1), 261265.CrossRefGoogle ScholarPubMed
Merchant, J. (1967). The Oculometer [technical report]. NASA.Google Scholar
Mühlenbeck, C., Jacobsen, T., Pritsch, C., & Liebal, K. (2017). Cultural and species differences in gazing patterns for marked and decorated objects: A comparative eye-tracking study. Frontiers in psychology, 8.CrossRefGoogle ScholarPubMed
Munn, S. M., & Pelz, J. B. (2009). Fixtag: An algorithm for identifying and tagging fixations to simplify the analysis of data collected by portable eye trackers. ACM Transactions on Applied Perception (TAP), 6(3), 125.CrossRefGoogle Scholar
Nyström, M., Andersson, R., Holmqvist, K., & Van De Weijer, J. (2013). The influence of calibration method and eye physiology on eyetracking data quality. Behavior Research Methods, 45(1), 272288.CrossRefGoogle ScholarPubMed
Pelz, J. B., Hayhoe, M. M., Ballard, D. H., Shrivastava, A., Bayliss, J. D., & von der Heyde, M. (1999). Development of a virtual laboratory for the study of complex human behavior. In Stereoscopic Displays and Virtual Reality Systems VI (pp. 416426). SPIE.CrossRefGoogle Scholar
Pfeiffer, T., & Renner, P. (2014). Eyesee3D: A low-cost approach for analyzing mobile 3D eye tracking data using computer vision and augmented reality technology. In ETRA ’14: Proceedings of the Symposium on Eye Tracking Research and Applications (pp. 369376). ACM.CrossRefGoogle Scholar
Porterfield, W. (1735). An essay concerning the motions of our eyes. Part I. Of their external motions. Edinburgh Medical Essays and Observations, 3, 160260.Google Scholar
Reingold, E. M. (2014). Eye tracking research and technology: Towards objective measurement of data quality. Visual Cognition, 22(3–4), 635652.CrossRefGoogle ScholarPubMed
Rucci, M., & Victor, J. D. (2015). The unsteady eye: An information-processing stage, not a bug. Trends in Neurosciences, 38(4), 195206.CrossRefGoogle Scholar
Salverda, A. P., & Tanenhaus, M. K. (2017). The visual world paradigm. In de Groot, A. & Hagoort, P. (eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 89110). Wiley-Blackwell.CrossRefGoogle Scholar
Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 symposium on Eye Tracking Research and applications (pp. 7178). ACM.CrossRefGoogle Scholar
Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 16271639.CrossRefGoogle Scholar
Shepherd, M., Findlay, J. M., & Hockey, R. J. (1986). The relationship between eye movements and spatial attention. Quarterly Journal of Experimental Psychology, 38(3), 475491.CrossRefGoogle ScholarPubMed
Spering, M., & Carrasco, M. (2015). Acting without seeing: Eye movements reveal visual processing without awareness. Trends in Neurosciences, 38(4), 247258.CrossRefGoogle ScholarPubMed
Startsev, M., & Zemblys, R. (2022). Evaluating eye movement event detection: A review of the state of the art. Behavior Research Methods, 55(4), 16531714.CrossRefGoogle ScholarPubMed
Tatler, B. W., & Wade, N. J. (2003). On nystagmus, saccades, and fixations. Perception, 32(2), 167184.CrossRefGoogle ScholarPubMed
Tinker, M. A., & Paterson, D. G. (1939). Influence of type form on eye movements. Journal of Experimental Psychology, 25(5), 528531.CrossRefGoogle Scholar
Tonsen, M., Baumann, C. K., & Dierkes, K. (2020). A high-level description and performance evaluation of pupil invisible [preprint]. ArXiv. https://doi.org/10.48550/arXiv.2009.00508CrossRefGoogle Scholar
Ukai, K., & Howarth, P. A. (2008). Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays, 29(2), 106116.CrossRefGoogle Scholar
Vansteenkiste, P., Cardon, G., Philippaerts, R., & Lenoir, M. (2015). Measuring dwell time percentage from head-mounted eye-tracking data–comparison of a frame-by-frame and a fixation-by-fixation analysis. Ergonomics, 58(5), 712721.CrossRefGoogle Scholar
Wang, D., Mulvey, F. B., Pelz, J. B., & Holmqvist, K. (2017). A study of artificial eyes for the measurement of precision in eye-trackers. Behavior Research Methods, 49(3), 947959.CrossRefGoogle ScholarPubMed
Watalingam, R. D., Richetelli, N., Pelz, J. B., & Speir, J. A. (2017). Eye tracking to evaluate evidence recognition in crime scene investigations. Forensic Science International, 280, 6480.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Behavioral Measures
  • Edited by John E. Edlund, Rochester Institute of Technology, New York, Austin Lee Nichols, Central European University, Vienna
  • Book: The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences
  • Online publication: 12 December 2024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Behavioral Measures
  • Edited by John E. Edlund, Rochester Institute of Technology, New York, Austin Lee Nichols, Central European University, Vienna
  • Book: The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences
  • Online publication: 12 December 2024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Behavioral Measures
  • Edited by John E. Edlund, Rochester Institute of Technology, New York, Austin Lee Nichols, Central European University, Vienna
  • Book: The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences
  • Online publication: 12 December 2024
Available formats
×