Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T06:21:43.911Z Has data issue: false hasContentIssue false

Section IV - Audition and Perception

Published online by Cambridge University Press:  11 November 2021

Rachael-Anne Knight
Affiliation:
City, University of London
Jane Setter
Affiliation:
University of Reading
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

16.7 References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128(3), 466–78.Google Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R. et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 2076–86.Google Scholar
Arantes, M., Arantes, J. & Ferreira, M. A. (2018). Tools and resources for neuroanatomy education: A systematic review. BMC Medical Education, 18(1), 94.CrossRefGoogle ScholarPubMed
Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system: A technical review. NMR in Biomedicine, 15(7–8), 435–55.Google Scholar
Beaulieu, C. (2014). The biological basis of diffusion anisotropy BT – diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. In Johansen-Berg, H. & Behrens, T. E. J., eds., Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy. San Diego, CA: Academic Press, pp. 155–83.Google Scholar
Bidelman, G. M. (2018). Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage, 175, 5669.Google Scholar
Binder, J. R. (2015). The Wernicke area: Modern evidence and a reinterpretation. Neurology, 85(24), 2170–5.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N. et al. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512–28.Google Scholar
Bopp, K. L. & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60(5), P223P233.CrossRefGoogle ScholarPubMed
Brauer, J., Anwander, A. & Friederici, A. D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21(2), 459–66.Google Scholar
Burke, D. M. & Shafto, M. A. (2004). Aging and language production. Current Directions in Psychological Science, 13(1), 21–4.Google Scholar
Catani, M. & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex, 44(8), 953–61.CrossRefGoogle ScholarPubMed
Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T. & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64(3), 311–19.Google Scholar
Chandrasekaran, B., Chan, A. H. D. & Wong, P. C. M. (2011). Neural processing of what and who information in speech. Journal of Cognitive Neuroscience, 23(10), 2690–700.CrossRefGoogle ScholarPubMed
Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. (2018). Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron, 98(5), 1042–54.Google Scholar
Chee, M. W. L., Hon, N., Lee, H. L. & Soon, C. S. (2001). Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. NeuroImage, 13(6), 1155–63.Google Scholar
Chodosh, J., Reuben, D. B., Albert, M. S. & Seeman, T. E. (2002). Predicting cognitive impairment in high-functioning community-dwelling older persons: MacArthur studies of successful aging. Journal of the American Geriatrics Society, 50(6), 1051–60.Google Scholar
Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S. & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 7, 11070.CrossRefGoogle Scholar
Cullum, S., Huppert, F. A., Mcgee, M., Dening, T. O. M., Ahmed, A., Paykel, E. S. et al. (2000). Decline across different domains of cognitive function in normal ageing: Results of a longitudinal population-based study using CAMCOG. International Journal of Geriatric Psychiatry, 15(9), 853–62.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Davis, M. H. & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension. The Journal of Neuroscience, 23(8), 3423–31.Google Scholar
Diamond, M. C., Scheibel, A. B. & Elson, L. M. (1985). The Human Brain Coloring Book: Coloring Concepts. New York: HarperCollins.Google Scholar
Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340–52.Google Scholar
Eckert, M. A., Keren, N. I., Roberts, D. R., Calhoun, V. D. & Harris, K. C. (2010). Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex. Frontiers in Human Neuroscience, 4, 10.Google ScholarPubMed
Federmeier, K. D., Van Petten, C., Schwartz, T. J. & Kutas, M. (2003). Sounds, words, sentences: Age-related changes across levels of language processing. Psychology and Aging, 18(4), 858–72.Google Scholar
Feng, G., Ingvalson, E. M., Grieco-Calub, T. M., Roberts, M. Y., Ryan, M. E., Birmingham, P. et al. (2018). Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients. Proceedings of the National Academy of Sciences of the United States of America, 115(5), E1022E1031.Google Scholar
Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F., Knight, R. T. et al. (2015). Redefining the role of Broca’s area in speech. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2871–5.Google ScholarPubMed
Formisano, E., De Martino, F., Bonte, M. & Goebel, R. (2008). ‘Who’ is saying ‘what’? Brain-based decoding of human voice and speech. Science, 322(5903), 970–3.Google Scholar
Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6(2), 7884.Google Scholar
Friederici, A. D. (2009). Allocating functions to fiber tracts: Facing its indirectness. Trends in Cognitive Sciences, 13(9), 370–1.Google Scholar
Giles, J. (2010). Clinical neuroscience attachments: A student’s view of ‘neurophobia’. The Clinical Teacher, 7(1), 913.CrossRefGoogle ScholarPubMed
Glasser, M. F. & Rilling, J. K. (2008). DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18(11), 2471–82.Google Scholar
Goebel, R. (2008). Brain Tutor 3D. Retrieved from www.brainvoyager.com.Google Scholar
Golestani, N., Molko, N., Dehaene, S., LeBihan, D. & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17(3), 575–82.Google Scholar
Grady, C. L. & Craik, F. I. (2000). Changes in memory processing with age. Current Opinion in Neurobiology, 10(2), 224–31.Google Scholar
Green, D. W. (2003). Neural basis of lexicon and grammar in L2 acquisition: The convergence hypothesis. In van Hout, R., Hulk, A., Kuiken, F. & Towell, R. J., eds., The Interface Between Syntax and the Lexicon in Second Language Acquisition. Amsterdam: John Benjamins, pp. 197218.Google Scholar
Greenwood, P. M. (2007). Functional plasticity in cognitive aging: Review and hypothesis. Neuropsychology, 21(6), 657–73.Google Scholar
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416–23.CrossRefGoogle Scholar
Harrington, D. L. & Haaland, K. Y. (1992). Skill learning in the elderly: Diminished implicit and explicit memory for a motor sequence. Psychology and Aging, 7(3), 425–34.Google Scholar
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393402.Google Scholar
Hirayasu, Y., McCarley, R. W., Salisbury, D. F., Tanaka, S., Kwon, J. S., Frumin, M. et al. (2000). Planum temporale and Heschl’s gyrus volume reduction in schizophrenia: A magnetic resonance imaging study of first-episode patients. Archives of General Psychiatry, 57(7), 692–99.Google Scholar
Johnson, K. & Mullennix, J. W. (1997). Talker Variability in Speech Processing. San Diego, CA: Academic Press.Google Scholar
Kraus, N. & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599605.Google Scholar
Krishnan, A., Xu, Y., Gandour, J. & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Brain Research. Cognitive Brain Research, 25(1), 161–8.CrossRefGoogle ScholarPubMed
Leonard, M. K., Desai, M., Hungate, D., Cai, R., Singhal, N. S., Knowlton, R. C. et al. (2019). Direct cortical stimulation of inferior frontal cortex disrupts both speech and music production in highly trained musicians. Cognitive Neuropsychology, 36(3–4), 158–66.Google Scholar
Liberman, A. M. & Mattingly, I. G. (1985). The motor theory of speech perception revisited. Cognition, 21, 136.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S. et al. (2004). Structural plasticity in the bilingual brain. Nature, 431(7010), 757–757.Google Scholar
Menjot de Champfleur, N., Lima Maldonado, I., Moritz-Gasser, S., Machi, P., Le Bars, E., Bonafé, A. et al. (2013). Middle longitudinal fasciculus delineation within language pathways: A diffusion tensor imaging study in human. European Journal of Radiology, 82(1), 151–7.Google Scholar
Mitchell, D. B. & Bruss, P. J. (2003). Age differences in implicit memory: Conceptual, perceptual, or methodological? Psychology and Aging, 18(4), 807–22.Google Scholar
Morse, C. K. (1993). Does variability increase with age? An archival study of cognitive measures. Psychology and Aging, 8(2), 156–64.Google Scholar
Neef, N. E., Müller, B., Liebig, J., Schaadt, G., Grigutsch, M., Gunter, T. C. et al. (2017). Dyslexia risk gene relates to representation of sound in the auditory brainstem. Developmental Cognitive Neuroscience, 24, 6371.Google Scholar
Nelson, D. L., Schreiber, T. A. & McEvoy, C. L. (1992). Processing implicit and explicit representations. Psychological Review, 99(2), 322–48.Google Scholar
Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I.-H., Saberi, K. et al. (2010). Hierarchical organization of human auditory cortex: Evidence from acoustic invariance in the response to intelligible speech. Cerebral Cortex, 20(10), 2486–95.Google Scholar
Otto-Meyer, S., Krizman, J., White-Schwoch, T. & Kraus, N. (2018). Children with autism spectrum disorder have unstable neural responses to sound. Experimental Brain Research, 32(11), 14111–56.Google Scholar
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D. & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299320.Google Scholar
Peelle, J. E., Johnsrude, I. S. & Davis, M. H. (2010). Hierarchical processing for speech in human auditory cortex and beyond. Frontiers in Human Neuroscience, 4, 51.Google ScholarPubMed
Peelle, J. E., Troiani, V., Wingfield, A. & Grossman, M. (2010). Neural processing during older adults’ comprehension of spoken sentences: Age differences in resource allocation and connectivity. Cerebral Cortex, 20(4), 773–82.Google Scholar
Perani, D. & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15(2), 202–6.Google Scholar
Poeppel, D. (2012). The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology, 29(1–2), 3455.Google Scholar
Poeppel, D. (2014). The neuroanatomic and neurophysiological infrastructure for speech and language. Current Opinion in Neurobiology, 28, 142–9.Google Scholar
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197(3), 335–59.Google Scholar
Pulvermuller, F., Huss, M., Kherif, F., Moscoso del Prado Martin, F., Hauk, O. & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103(20), 7865–70.Google Scholar
Rauschecker, J. P. & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–24.Google Scholar
Röder, B., Stock, O., Neville, H., Bien, S. & Rösler, F. (2002). Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: A functional magnetic resonance imaging study. NeuroImage, 15(4), 1003–14.Google Scholar
Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M.-S. et al. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18035–40.Google Scholar
Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Küpper, H., Kellmeyer, P. et al. (2010). Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. NeuroImage, 49(4), 3187–97.Google Scholar
Schacter, D. L. (1992). Priming and multiple memory systems: Perceptual mechanisms of implicit memory. Journal of Cognitive Neuroscience, 4(3), 244–56.Google Scholar
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A. & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688–94.Google Scholar
Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123(12), 2400–6.CrossRefGoogle ScholarPubMed
Skoe, E., Chandrasekaran, B., Spitzer, E. R., Wong, P. C. M. & Kraus, N. (2014). Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 109, 8293.CrossRefGoogle ScholarPubMed
Slevc, L. R. & Miyake, A. (2006). Individual differences in second-language proficiency. Psychological Science, 17(8), 675–81.Google Scholar
Smith, P. A. (2010). Ageing, auditory distraction, and grammaticality judgement. Aphasiology, 24(11), 1342–53.Google Scholar
Staeren, N., Renvall, H., De Martino, F., Goebel, R. & Formisano, E. (2009). Sound categories are represented as distributed patterns in the human auditory cortex. Current Biology, 19(6), 498502.Google Scholar
Tremblay, P. & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 6071.Google Scholar
Vaden, K. I., Piquado, T. & Hickok, G. (2011). Sublexical properties of spoken words modulate activity in Broca’s area but not superior temporal cortex: Implications for models of speech recognition. Journal of Cognitive Neuroscience, 23(10), 2665–74.Google Scholar
Veroude, K., Norris, D. G., Shumskaya, E., Gullberg, M. & Indefrey, P. (2010). Functional connectivity between brain regions involved in learning words of a new language. Brain and Language, 113(1), 21–7.CrossRefGoogle ScholarPubMed
Vigneau, M., Beaucousin, V., Hervé, P. Y., Duffau, H., Crivello, F., Houdé, O. et al. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage, 30(4), 1414–32.Google Scholar
Vigneau, M., Beaucousin, V., Hervé, P.-Y., Jobard, G., Petit, L., Crivello, F. et al. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. NeuroImage, 54(1), 577–93.Google Scholar
Warrier, C., Wong, P. C. M., Penhune, V., Zatorre, R., Parrish, T., Abrams, D. et al. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. The Journal of Neuroscience, 29(1), 61–9.Google Scholar
Weber, M. J. & Thompson-Schill, S. L. (2010). Functional neuroimaging can support causal claims about brain function. Journal of Cognitive Neuroscience, 22(11), 2415–16.Google Scholar
Weiller, C., Musso, M., Rijntjes, M. & Saur, D. (2009). Please don’t underestimate the ventral pathway in language. Trends in Cognitive Sciences, 13(9), 361–9.CrossRefGoogle ScholarPubMed
Whalley, L. J., Deary, I. J., Appleton, C. L. & Starr, J. M. (2004). Cognitive reserve and the neurobiology of cognitive aging. Ageing Research Reviews, 3(4), 369–82.Google Scholar
White-Schwoch, T., Woodruff Carr, K., Thompson, E. C., Anderson, S., Nicol, T., Bradlow, A. R. et al. (2015). Auditory processing in noise: A preschool biomarker for literacy. PLOS Biology, 13(7), e1002196.Google Scholar
Wingfield, A., Peelle, J. E. & Grossman, M. (2003). Speech rate and syntactic complexity as multiplicative factors in speech comprehension by young and older adults. Aging, Neuropsychology, and Cognition, 10(4), 310–22.Google Scholar
Wise, R., Chollet, F., Hadar, U., Friston, K., Hoffner, E. & Frackowiak, R. (1991). Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114(4), 1803–17.Google Scholar
Wong, F. C. K., Chandrasekaran, B., Garibaldi, K. & Wong, P. C. M. (2011). White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. The Journal of Neuroscience, 31(24), 8780–5.Google Scholar
Wong, P. C. M., Perrachione, T. K. & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28, 9951006.Google Scholar
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T. & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–2.Google Scholar
Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B. et al. (2008). Volume of left Heschl’s Gyrus and linguistic pitch learning. Cerebral Cortex, 18(4), 828–36.CrossRefGoogle ScholarPubMed
Wong, P. C. M., Jin, J. X., Gunasekera, G. M., Abel, R., Lee, E. R. & Dhar, S. (2009). Aging and cortical mechanisms of speech perception in noise. Neuropsychologia, 47(3), 693703.Google Scholar
Yang, J. & Li, P. (2012). Brain networks of explicit and implicit learning. PLOS ONE, 7(8), e42993.Google Scholar
Yetkin, O., Yetkin, F. Z., Haughton, V. M. & Cox, R. W. (1996). Use of functional MR to map language in multilingual volunteers. American Journal of Neuroradiology, 17(3), 473–7.Google Scholar
Zhang, F., Wang, J.-P., Kim, J., Parrish, T. & Wong, P. C. M. (2015). Decoding multiple sound categories in the human temporal cortex using high-resolution fMRI. PloS One, 10(2), e0117303.Google Scholar

17.7 References

Allen, J. S. & Miller, J. L. (2004). Listener sensitivity to individual talker differences in voice-onset-time. Journal of the Acoustical Society of America, 115(6), 3171–83.CrossRefGoogle ScholarPubMed
Andruski, J. E., Blumstein, S. E. & Burton, M. (1994). The effect of subphonetic differences on lexical access. Cognition, 52(3), 163–87.CrossRefGoogle ScholarPubMed
Bowers, J. S. (2000). In defense of abstractionist theories of repetition priming and word identification. Psychonomic Bulletin & Review, 7(1), 8399.Google Scholar
Bradlow, A. R., Nygaard, L. C. & Pisoni, D. B. (1999). Effects of talker, rater, and amplitude variation on recognition memory for spoken words. Perception & Psychophysics, 61(2), 206–19.Google Scholar
Cai, Z. G., Gilbert, R. A., Davis, M. H., Gaskell, M. G., Farrar, L., Adler, S. et al. (2017). Accent modulates access to word meaning: Evidence for a speaker-model account of spoken word recognition. Cognitive Psychology, 98, 73101.Google Scholar
Campbell-Kibler, K. (2007). Accent, (ING), and the social logic of listener perceptions. American Speech, 82(1), 3264.Google Scholar
Campbell-Kibler, K. (2009). The nature of sociolinguistic perception. Language Variation and Change, 21, 135–56.Google Scholar
Church, B. A. & Schacter, D. L. (1994). Perceptual specificity of auditory priming: Implicit memory for voice intonation and fundamental frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(3), 521–33.Google Scholar
Clayards, M., Tanenhaus, M., Aslin, R. & Jacobs, R. (2008). Perception of speech reflects optimal use of probabilistic speech cues. Cognition, 108, 804–9.Google Scholar
Connine, C. M. (2004). It’s not what you hear but how often you hear it: On the neglected role of phonological variant frequency in auditory word recognition. Psychonomic Bulletin & Review, 11(6), 1084–9.Google Scholar
Cooper, A., Brouwer, S. & Bradlow, A. R. (2015). Interdependent processing and encoding of speech and concurrent background noise. Attention, Perception & Psychophysics, 77(4), 1342–57.Google Scholar
Creel, S. C., Aslin, R. N. & Tanenhaus, M. K. (2012). Word learning under adverse listening conditions: Context-specific recognition. Language and Cognitive Processes, 27, 1021–38.Google Scholar
Dahan, D., Drucker, S. J. & Scarborough, R. A. (2008). Talker adaptation in speech perception: Adjusting the signal or the representations? Cognition, 108(3), 710–18.CrossRefGoogle ScholarPubMed
Dilley, L., Wieland, E., Gamache, J., McAuley, J. D. & Redford, M. (2013). Age-related changes to spectral voice characteristics affect judgments of prosodic, segmental, and talker attributes for child and adult speech. Journal of Speech, Language, and Hearing Research, 56, 159–77.CrossRefGoogle ScholarPubMed
D’Onofrio, A. (2015). Perceiving personae: Effects of social information on perceptions of TRAP-backing. University of Pennsylvania Working Papers in Linguistics, 21(2), 31–9.Google Scholar
D’Onofrio, A. (in press). Sociolinguistic signs as cognitive representations. In Hall-Lew, L., Podesva, E. &Moore, R. J., eds., Social Meaning in Linguistic Variation: Theorizing the Third Wave. Cambridge: Cambridge University Press.Google Scholar
Dumay, N. & Gaskell, M. G. (2005). Do words go to sleep? Exploring consolidation of spoken forms through direct and indirect measures. Behavioural and Brain Sciences, 28, 6970.Google Scholar
Dumay, N. & Gaskell, M. G. (2007). Sleep-associated changes in the mental representation of spoken words. Psychological Science, 18, 35–9.Google Scholar
Eckert, P. (2008). Variation and the indexical field. Journal of Sociolinguistics, 12(4), 453–76.Google Scholar
Eckert, P. (2012). Three waves of variation study: The emergence of meaning in the study of sociolinguistic variation. Annual Review of Anthropology, 41(1), 87100.Google Scholar
Freeman, J. B. & Ambady, N. (2011). A dynamic interactive theory of person construal. Psychological Review, 118(2), 247–79.Google Scholar
Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of Experimental Psychology: Human Perception and Performance, 6(1), 110–25.Google Scholar
Gaskell, M. G. & Marslen-Wilson, W. D. (1996). Phonological variation and inference in lexical access. Journal of Experimental Psychology: Human Perception and Performance, 22(1), 144–58.Google Scholar
Goh, W. D. (2005). Talker variability and recognition memory: Instance-specific and voice-specific effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 4053.Google Scholar
Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken word identification and recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(5), 1166–83.Google Scholar
Goldinger, S. D. (1998). Echoes of echoes: An episodic theory of lexical access. Psychological Review, 105, 251–79.Google Scholar
Gordon, M., Barthmaier, P. & Sands, K. (2002). A cross-linguistic acoustic study of voiceless fricatives. Journal of the International Phonetic Association, 32(2), 141–74.Google Scholar
Gow, D. W. (2001). Assimilation and anticipation in continuous spoken word recognition. Journal of Memory and Language, 45(1), 133–59.Google Scholar
Gow, D. W. (2002). Does English coronal place assimilation create lexical ambiguity? Journal of Experimental Psychology: Human Perception and Performance, 28(1), 163–79.Google Scholar
Gow, D. W. (2003). Feature parsing: Feature cue mapping in spoken word recognition. Perception & Psychophysics, 65(4), 575–90.CrossRefGoogle ScholarPubMed
Gow, D. W. & Im, A. M. (2004). A cross-linguistic examination of assimilation context effects. Journal of Memory and Language, 51(2), 279–96.Google Scholar
Grossberg, S. (2013). Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 147.Google Scholar
Halpern, D. F. & Hakel, M. D. (2003). Applying the science of learning to the university and beyond. Change Magazine. July/August, pp. 3641.Google Scholar
Hay, J., Podlubny, R., Drager, K. & McAuliffe, M. (2017). Car-talk: Location-specific speech production and perception. Journal of Phonetics, 65, 94109.CrossRefGoogle Scholar
Howe, M. L., Wimmer, M. C., Gagnon, N. & Plumpton, S. (2009). An associative-activation theory of children’s and adults’ memory illusions. Journal of Memory and Language, 60, 229–51.Google Scholar
Johnson, K. (1997). Speech perception without speaker normalization: An exemplar model. In Johnson, K. & Mullennix, J. W., eds., Talker Variability in Speech Processing. San Diego, CA: Academic Press, pp. 145–65.Google Scholar
Johnson, K. (2005). Speaker normalization in speech perception. In Pisoni, D. B. & Remez, R. E., eds., The Handbook of Speech Perception. Malden, MA: Blackwell, pp. 363–89.Google Scholar
Johnson, K. (2006). Resonance in an exemplar-based lexicon: The emergence of social identity and phonology. Journal of Phonetics, 34, 485–99.Google Scholar
Keating, P. A. (1998). Word-level phonetic variation in large speech corpora. In A. Alexiadou, N. Fuhrop, U. Kleinhenz & P. Law, eds., ZAS Papers in Linguistics, 11, 3550.Google Scholar
Kim, S. K. (2015). Speech, Variation, and Meaning: The Effects of Emotional Prosody on Word Recognition. PhD thesis, Stanford University.Google Scholar
Kim, S. K. & Sumner, M. (2017). Beyond lexical meaning: The effect of emotional prosody on spoken word recognition. Journal of the Acoustical Society of America, 142(1), EL4955.Google Scholar
King, E. & Sumner, M. (2015). Voice-specific effects in semantic association. Proceedings of the Annual Meeting of the Cognitive Science Society, 37, 1111–16.Google Scholar
Klatt, D. H. (1979). Speech perception: A model of acoustic-phonetic analysis and lexical access. Journal of Phonetics, 7, 279312.Google Scholar
Kleinschmidt, D. F. & Jaeger, T. F. (2015). Robust speech perception: Recognize the familiar, generalize to the similar, and adapt to the novel. Psychological Review, 122(2), 148203.Google Scholar
Kong, E. J., Kang, S. & Seo, M. (2014). Gender difference in the affricate productions of young Seoul Korean speakers. Journal of the Acoustical Society of America, 136(4), EL329–EL335.Google Scholar
Kraljic, T. & Samuel, A. G. (2006). Generalization in perceptual learning for speech. Psychonomic Bulletin & Review, 13(2), 262–8.Google Scholar
Kumaran, D. and McClelland, J. L. (2012). Generalization through the recurrent interaction of episodic memories: A model of the hippocampal system. Psychological Review 119(3), 573616.CrossRefGoogle Scholar
Ladefoged, P. & Broadbent, D. E. (1960). Perception of sequence in auditory events. Quarterly Journal of Experimental Psychology, 12(3), 162–70.Google Scholar
Lahiri, A. & Marslen-Wilson, W. (1991). The mental representation of lexical form: A phonological approach to the recognition lexicon. Cognition, 38, 245–94.Google Scholar
Liberman, A. M. & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 136.Google Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–61.Google Scholar
Lindblom, B. E. & Studdert‐Kennedy, M. (1967). On the role of formant transitions in vowel recognition. Journal of the Acoustical Society of America, 42(4), 830–43.Google Scholar
Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In Hardcastle, W. J. & Marchal, A., eds., Speech Production and Speech Modeling. Dordrecht: Kluwer Academic Publishers, pp. 403–39.Google Scholar
LoCasto, P. C. & Connine, C. M. (2002). Rule-governed missing information in spoken word recognition: Schwa vowel deletion. Perception & Psychophysics, 64(2), 208–19.Google Scholar
LoCasto, P. C. & Connine, C. M. (2011). Processing of no-release variants in connected speech. Language and Speech, 54(2), 181–97.Google Scholar
Luce, P. A. & Lyons, E. (1998). Specificity of memory representation for spoken words. Memory & Cognition, 26, 708–15.CrossRefGoogle ScholarPubMed
Luce, P. A. & McLennan, C. T. (2005). Spoken word recognition: The challenge of variation. In Pisoni, D. B. & Remez, R. E., eds., The Handbook of Speech Perception. Malden, MA: Wiley.Google Scholar
Maida, C. (2014). Project-based learning: A critical pedagogy for the twenty-first century. Policy Futures in Education, 9, 759–68.Google Scholar
Marslen-Wilson, W. & Warren, P. (1994). Levels of perceptual representation and process in lexical access: Words, phonemes, and features. Psychological Review, 101(4), 653.Google Scholar
Marslen-Wilson, W., Nix, A. & Gaskell, G. (1995). Phonological variation in lexical access: Abstractness, inference and English place assimilation. Language and Cognitive Processes, 10, 285308.Google Scholar
Mattys, S. L., Davis, M. H., Bradlow, A. R. & Scott, S. K. (2012). Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 27(7–8), 953–78.Google Scholar
Maye, J., Asline, R. N. & Tanenhaus, M. K. (2008). The weckud wetch of the wast: Lexical adaptation to a novel accent. Cognitive Science, 32(3), 543–62.Google Scholar
McClelland, J. L. & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 186.Google Scholar
McGowan, K. B. & Sumner, M. (2014). The effect of contextual mismatches on lexical activation of phonetic variants. Journal of the Acoustical Society of America, 135(4), 2199.Google Scholar
Niedzielski, N. (1999). The effect of social information on the perception of sociolinguistic variables. Journal of Language and Social Psychology, 18(1), 6285.CrossRefGoogle Scholar
Noelle, D. C., Dale, R., Warlaumont, A. S., Yoshimi, J., Matlock, T., Jennings, C. D. et al. (2015). Proceedings of the 37th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.Google Scholar
Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52(3), 189234.Google Scholar
Norris, D., McQueen, J. M. & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47(2), 204–38.CrossRefGoogle ScholarPubMed
Nygaard, L. C. & Lunders, E. R. (2002). Resolution of lexical ambiguity by emotional tone of voice. Memory & Cognition, 30(4), 583–93.Google Scholar
Nygaard, L. C. & Pisoni, D. B. (1998). Talker-specific learning in speech perception. Perception & Psychophysics, 60(3), 355–76.Google Scholar
Otgaar, H., Peters, M. & Howe, M. L. (2012). Dividing attention lowers children’s, but increases adults’ false memories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(1), 204–10.Google Scholar
Palmeri, T. J., Goldinger, S. D. & Pisoni, D. B. (1993). Episodic encoding of voice attributes and recognition memory for spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(2), 309–28.Google Scholar
Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition and contrast. In Bybee, J. & Hopper, P., eds., Frequency Effects and the Emergence of Linguistic Structure. Amsterdam: John Benjamins, pp. 137–58.Google Scholar
Pierrehumbert, J. B. (2016). Phonological representation: Beyond abstract versus episodic. Annual Review of Linguistics, 2, 3352.Google Scholar
Pitt, M. A. (2009). The strength and time course of lexical activation of pronunciation variants. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 896910.Google Scholar
Pufahl, A. & Samuel, A. G. (2014). How lexical is the lexicon? Evidence for integrated auditory memory representations. Cognitive Psychology, 70, 130.Google Scholar
Salverda, A. P., Kleinschmidt, D. & Tanenhaus, M. K. (2014). Immediate effects of anticipatory coarticulation in spoken-word recognition. Journal of Memory and Language, 71(1), 145–63.Google Scholar
Samuel, A. G. & Kraljic, T. (2009). Perceptual learning for speech. Attention, Perception, & Psychophysics, 71(6), 1207–18.Google Scholar
Schacter, D. L. & Church, B. A. (1992). Auditory priming: Implicit and explicit memory for words and voices. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 915–30.Google Scholar
Steen, S., Bader, C. & Kubrin, C. (1999). Rethinking the graduate seminar. Teaching Sociology, 27(2), 167–73.Google Scholar
Strand, E. A. (2000). Gender Stereotype Effects in Speech Processing. Doctoral dissertation, Ohio State University.Google Scholar
Strori, D., Zaar, J., Cooke, M. & Mattys, S. L. (2018). Sound specificity effects in spoken word recognition: The effect of integrality between words and sounds. Attention, Perception & Psychophysics, 80, 222–41.Google Scholar
Sumner, M. (2015). The social weight of spoken words. Trends in Cognitive Sciences, 19(5), 238–9.Google Scholar
Sumner, M., and Kataoka, R. (2013). Effects of phonetically cued talker variation on semantic-encoding. Journal of Acoustical Society of America, 134, EL485491.Google Scholar
Sumner, M. & Samuel, A. G. (2007). Lexical inhibition and sublexical facilitation are surprisingly long lasting. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 769–90.Google Scholar
Sumner, M. & Samuel, A. G. (2009). The effect of experience on the perception and representation of dialect variants. Journal of Memory and Language, 60, 487501.Google Scholar
Sumner, M., Kurumada, C., Gafter, R. & Casillas, M. (2013). Phonetic variation and the recognition of words with pronunciation variants. Proceedings of the Annual Meeting of the Cognitive Science Society, 35, 3486–91.Google Scholar
Sumner, M., Kim, S. K., King, E. & McGowan, K. B. (2014). The socially weighted encoding of spoken words: A dual-route approach to speech perception. Frontiers in Psychology, 4(January), 113.Google Scholar
Toscano, J. C. & McMurray, B. (2010). Cue integration with categories: Weighting acoustic cues in speech using unsupervised learning and distributional statistics. Cognitive Science, 34, 434–64.Google Scholar
Toscano, J. C. & McMurray, B. (2015). The time-course of speaking rate compensation: effects of sentential rate and vowel length on voicing judgments. Language, Cognition and Neuroscience, 30(5), 529–43.Google Scholar
Vitevitch, M. S. (2003). Change deafness: The inability to detect changes between two voices. Journal of Experimental Psychology: Human Perception and Performance, 29, 333–42.Google Scholar
Warren, P. (2016). Uptalk: The Phenomenon of Rising Intonation, Cambridge: Cambridge University Press.Google Scholar
Zhao, Y. (2009). Statistical Inference in Learning of Novel Phonetic Categories. Doctoral dissertation, Stanford University, CA.Google Scholar

18.7 References

Allopenna, P. D., Magnuson, J. S. & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38(4), 419–39.Google Scholar
Alsius, A., Navarra, J., Campbell, R. & Soto-Faraco, S. (2005). Audiovisual integration of speech falters under high attention demands. Current Biology, 15(9), 839–43. https://doi.org/10.1016/j.cub.2005.03.046.Google Scholar
Altmann, G. T. M. (2011). Language can mediate eye movement control within 100 milliseconds, regardless of whether there is anything to move the eyes to. Acta Psychologica, 137(2), 190200. https://doi.org/10.1016/j.actpsy.2010.09.009.Google Scholar
Arnold, J. E. (2008). THE BACON not the bacon: How children and adults understand accented and unaccented noun phrases. Cognition, 108(1), 6999. https://doi.org/10.1016/j.cognition.2008.01.001.Google Scholar
Barr, D. J. (2008). Analyzing ‘visual world’ eyetracking data using multilevel logistic regression. Journal of Memory and Language, 59(4), 457–74. https://doi.org/10.1016/j.jml.2007.09.002.Google Scholar
Beckman, M. & Hirschberg, J. (1994). The ToBI Annotation Conventions, Columbus, OH: Ohio State University.Google Scholar
Beddor, P. S., McGowan, K. B., Boland, J. E., Coetzee, A. W. & Brasher, A. (2013). The time course of perception of coarticulation. Journal of the Acoustical Society of America, 133(4), 2350–66. https://doi.org/10.1121/1.4794366.Google Scholar
Brouwer, S., Mitterer, H. & Huettig, F. (2012). Can hearing puter activate pupil? Phonological competition and the processing of reduced spoken words in spontaneous conversations. The Quarterly Journal of Experimental Psychology, 65(11), 2193–220. https://doi.org/10.1080/17470218.2012.693109.Google Scholar
Brouwer, S., Mitterer, H. & Huettig, F. (2013). Discourse context and the recognition of reduced and canonical spoken words. Applied Psycholinguistics, 34, 519–39. https://doi.org/10.1017/s0142716411000853.Google Scholar
Brown, M., Salverda, A. P., Dilley, L. C. & Tanenhaus, M. K. (2011). Expectations from preceding prosody influence segmentation in online sentence processing. Psychonomic Bulletin & Review, 18(6), 1189–96. https://doi.org/10.3758/s13423-011–0167-9.Google Scholar
Brown, M., Salverda, A. P., Dilley, L. C. & Tanenhaus, M. K. (2015a). Metrical expectations from preceding prosody influence perception of lexical stress. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 306–23. https://doi.org/10.1037/a0038689.Google Scholar
Brown, M., Salverda, A. P., Gunlogson, C. & Tanenhaus, M. K. (2015b). Interpreting prosodic cues in discourse context. Language, Cognition and Neuroscience, 30(1–2), 149–66. https://doi.org/10.1080/01690965.2013.862285.Google Scholar
Brown-Schmidt, S. & Toscano, J. C. (2017). Gradient acoustic information induces long-lasting referential uncertainty in short discourses. Language, Cognition and Neuroscience, 32(10), 1211–28. https://doi.org/10.1080/23273798.2017.1325508.Google Scholar
Chen, A., den Os, E. & de Ruiter, J. P. (2007). Pitch accent type matters for online processing of information status: Evidence from natural and synthetic speech. The Linguistic Review, 24(2–3), 317–44. https://doi.org/10.1515/TLR.2007.012.Google Scholar
Clayards, M., Niebuhr, O. & Gaskell, M. G. (2015). The time course of auditory and language-specific mechanisms in compensation for sibilant assimilation. Attention, Perception & Psychophysics, 77(1), 311–28. https://doi.org/10.3758/s13414-014–0750-z.Google Scholar
Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken language: A new methodology for the real-time investigation of speech perception, memory, and language processing. Cognitive Psychology, 6(1), 84107. https://doi.org/10.1016/0010–0285(74)90005-X.Google Scholar
Cutler, A., Weber, A. & Otake, T. (2006). Asymmetric mapping from phonetic to lexical representations in second-language listening. Journal of Phonetics, 34, 269–84. https://doi.org/10.1016/j.wocn.2005.06.002.Google Scholar
Dahan, D. & Tanenhaus, M. K. (2004). Continuous mapping from sound to meaning in spoken-language comprehension: Immediate effects of verb-based thematic constraints. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 498513.Google Scholar
Dahan, D., Tanenhaus, M. K. & Chambers, C. G. (2002). Accent and reference resolution in spoken-language comprehension. Journal of Memory and Language, 47(2), 292314. https://doi.org/10.1016/S0749-596X(02)00001–3.Google Scholar
Donnelly, S. & Verkuilen, J. (2017). Empirical logit analysis is not logistic regression. Journal of Memory and Language, 94, 2842. https://doi.org/10.1016/j.jml.2016.10.005.CrossRefGoogle Scholar
Escudero, P., Hayes-Harb, R. & Mitterer, H. (2008). Novel second-language words and asymmetric lexical access. Journal of Phonetics, 36, 345–60. https://doi.org/10.1016/j.wocn.2007.11.002.Google Scholar
Gow, D. W. & McMurray, B. (2007). Word recognition and phonology: The case of English coronal place assimilation. In Cole, J. & Hualde, J., eds., Laboratory Phonology 9. New York: Mouton de Gruyter, pp. 173200.Google Scholar
Hanulíková, A. & Weber, A. (2012). Sink positive: Linguistic experience with th substitutions influences nonnative word recognition. Attention, Perception & Psychophysics, 74(3), 613–29. https://doi.org/10.3758/s13414-011–0259-7.Google Scholar
Heeren, W. F. L., Bibyk, S. A., Gunlogson, C. & Tanenhaus, M. K. (2015). Asking or telling: Real-time processing of prosodically distinguished questions and statements. Language and Speech, 58(4), 474501. https://doi.org/10.1177/0023830914564452.Google Scholar
Hisanaga, S., Sekiyama, K., Igasaki, T. & Murayama, N. (2016). Language/culture modulates brain and gaze processes in audiovisual speech perception. Scientific Reports, 6, srep35265. https://doi.org/10.1038/srep35265.Google Scholar
Huettig, F. & Altmann, G. T. M. (2007). Visual-shape competition during language-mediated attention is based on lexical input and not modulated by contextual appropriateness. Visual Cognition, 15(8), 9851018. https://doi.org/10.1080/13506280601130875.Google Scholar
Huettig, F. & McQueen, J. M. (2007). The tug of war between phonological, semantic and shape information in language-mediated visual search. Journal of Memory and Language, 57(4), 460–82. https://doi.org/10.1016/j.jml.2007.02.001.Google Scholar
Huettig, F., Rommers, J. & Meyer, A. S. (2011). Using the visual world paradigm to study language processing: A review and critical evaluation. Acta Psychologica, 137(2), 151–71. https://doi.org/10.1016/j.actpsy.2010.11.003.Google Scholar
Ito, K. & Speer, S. R. (2008). Anticipatory effects of intonation: Eye movements during instructed visual search. Journal of Memory and Language, 58(2), 541–73. https://doi.org/10.1016/j.jml.2007.06.013.Google Scholar
Ito, K. & Speer, S. R. (2011). Semantically-independent but contextually-dependent interpretation of contrastive accent. In Frota, S., Elordieta, G. & Prieto, P., eds., Prosodic Categories: Production, Perception and Comprehension. Dordrecht: Springer, pp. 6992. https://doi.org/10.1007/978–94-007–0137-3_4.Google Scholar
Jesse, A., Poellmann, K. & Kong, Y.-Y. (2017). English listeners use suprasegmental cues to lexical stress early during spoken-word recognition. Journal of Speech, Language, and Hearing Research, 60(1), 190–8. https://doi.org/10.1044/2016_JSLHR-H-15–0340.Google Scholar
Kingston, J., Levy, J., Rysling, A. & Staub, A. (2016). Eye movement evidence for an immediate Ganong effect. Journal of Experimental Psychology. Human Perception and Performance, 42(12), 1969–88. https://doi.org/10.1037/xhp0000269.Google Scholar
Liberman, A. M., Harris, K. S., Hoffman, H. S. & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–68. https://doi.org/10.1037/h0044417.Google Scholar
Llompart, M. & Reinisch, E. (2017). Articulatory information helps encode lexical contrasts in a second language. Journal of Experimental Psychology: Human Perception and Performance, 43(5), 1040–56. https://doi.org/10.1037/xhp0000383.Google Scholar
Magnuson, J. S., Dixon, J. A., Tanenhaus, M. K. & Aslin, R. N. (2007). The dynamics of lexical competition during spoken word recognition. Cognitive Science, 31(1), 133–56. https://doi.org/10.1080/03640210709336987.Google Scholar
Malins, J. G. & Joanisse, M. F. (2010). The roles of tonal and segmental information in Mandarin spoken word recognition: An eyetracking study. Journal of Memory and Language, 62(4), 407–20. https://doi.org/10.1016/j.jml.2010.02.004.Google Scholar
McClelland, J. L. & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 186. https://doi.org/10.1016/0010–0285(86)90015–0.Google Scholar
McMurray, B., Clayards, M. A., Tanenhaus, M. K. & Aslin, R. N. (2008). Tracking the time course of phonetic cue integration during spoken word recognition. Psychonomic Bulletin & Review, 15(6), 1064–71.Google Scholar
McMurray, B., Tanenhaus, M. K. & Aslin, R. N. (2009). Within-category VOT affects recovery from ‘lexical’ garden paths: Evidence against phoneme-level inhibition. Journal of Memory and Language, 60(1), 6591. https://doi.org/10.1016/j.jml.2008.07.002.Google Scholar
Mirman, D., Dixon, J. A. & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59(4), 475–94. https://doi.org/10.1016/j.jml.2007.11.006.Google Scholar
Mitterer, H. & Ernestus, M. (2006). Listeners recover /t/s that speakers reduce: Evidence from /t/-lenition in Dutch. Journal of Phonetics, 34(1), 73103. https://doi.org/10.1016/j.wocn.2005.03.003.Google Scholar
Mitterer, H. & McQueen, J. M. (2009). Processing reduced word-forms in speech perception using probabilistic knowledge about speech production. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 244–63. https://doi.org/10.1037/a0012730.Google Scholar
Mitterer, H. & Reinisch, E. (2013). No delays in application of perceptual learning in speech recognition: Evidence from eye tracking. Journal of Memory and Language, 69(4), 527–45. https://doi.org/10.1016/j.jml.2013.07.002.Google Scholar
Mitterer, H. & Reinisch, E. (2015). Letters don’t matter: No effect of orthography on the perception of conversational speech. Journal of Memory and Language, 85, 116–34. https://doi.org/10.1016/j.jml.2015.08.005.Google Scholar
Mitterer, H. & Reinisch, E. (2017). Visual speech influences speech perception immediately but not automatically. Attention, Perception & Psychophysics, 79(2), 660–78. https://doi.org/10.3758/s13414-016–1249-6.Google Scholar
Mitterer, H., Kim, S. & Cho, T. (2013). Compensation for complete assimilation in speech perception: The case of Korean labial-to-velar assimilation. Journal of Memory and Language, 69(1), 5983. https://doi.org/10.1016/j.jml.2013.02.001.Google Scholar
Nakamura, C., Arai, M. & Mazuka, R. (2012). Immediate use of prosody and context in predicting a syntactic structure. Cognition, 125(2), 317–23. https://doi.org/10.1016/j.cognition.2012.07.016.Google Scholar
Nixon, J. S., van Rij, J., Mok, P., Baayen, R. H. & Chen, Y. (2016). The temporal dynamics of perceptual uncertainty: Eye movement evidence from Cantonese segment and tone perception. Journal of Memory and Language, 90, 103–25. https://doi.org/10.1016/j.jml.2016.03.005.Google Scholar
Quam, C. & Swingley, D. (2014). Processing of lexical stress cues by young children. Journal of Experimental Child Psychology, 123, 7389. https://doi.org/10.1016/j.jecp.2014.01.010.Google Scholar
Reinisch, E. & Sjerps, M. J. (2013). The uptake of spectral and temporal cues in vowel perception is rapidly influenced by context. Journal of Phonetics, 41(2), 101–16.Google Scholar
Reinisch, E. & Weber, A. (2012). Adapting to suprasegmental lexical stress errors in foreign-accented speech. Journal of the Acoustical Society of America, 132(2), 1165–76.Google Scholar
Reinisch, E., Jesse, A. & McQueen, J. M. (2010). Early use of phonetic information in spoken word recognition: Lexical stress drives eye movements immediately. The Quarterly Journal of Experimental Psychology, 63(4), 772–83.Google Scholar
Reinisch, E., Jesse, A. & McQueen, J. M. (2011). Speaking rate from proximal and distal contexts is used during word segmentation. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 978.Google Scholar
Rossano, F., Brown, P. & Levinson, S. C. (2009). Gaze, questioning and culture. In Sidnell, J., ed., Conversation Analysis: Comparative Perspectives. Cambridge: Cambridge University Press, pp. 187249.Google Scholar
Salverda, A. P. & Tanenhaus, M. K. (2010). Tracking the time course of orthographic information in spoken-word recognition. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(5), 1108–17. https://doi.org/10.1037/a0019901.Google Scholar
Salverda, A. P., Dahan, D. & McQueen, J. M. (2003). The role of prosodic boundaries in the resolution of lexical embedding in speech comprehension. Cognition, 90(1), 5189. https://doi.org/10.1016/S0010-0277(03)00139–2.Google Scholar
Salverda, A. P., Dahan, D., Tanenhaus, M. K., Crosswhite, K., Masharov, M. & McDonough, J. (2007). Effects of prosodically-modulated sub-phonetic variation on lexical competition. Cognition, 105(2), 466–76. https://doi.org/10.1016/j.cognition.2006.10.008.Google Scholar
Salverda, A. P., Kleinschmidt, D. & Tanenhaus, M. K. (2014). Immediate effects of anticipatory coarticulation in spoken-word recognition. Journal of Memory and Language, 71(1), 145–63. https://doi.org/10.1016/j.jml.2013.11.002.Google Scholar
Sedivy, J. C., Tanenhaus, M. K., Chambers, C. G. & Carlson, G. N. (1999). Achieving incremental semantic interpretation through contextual representation. Cognition, 71(2), 109–47. https://doi.org/10.1016/S0010-0277(99)00025–6.Google Scholar
Shatzman, K. B. & McQueen, J. M. (2006a). Prosodic knowledge affects the recognition of newly acquired words. Psychological Science, 17(5), 372–7. https://doi.org/10.1111/j.1467–9280.2006.01714.x.Google Scholar
Shatzman, K. B. & McQueen, J. M. (2006b). Segment duration as a cue to word boundaries in spoken-word recognition. Perception & Psychophysics, 68(1), 116. https://doi.org/10.3758/BF03193651.Google Scholar
Shatzman, K. B. & McQueen, J. M. (2006c). The modulation of lexical competition by segment duration. Psychonomic Bulletin & Review, 13(6), 966–71. https://doi.org/10.3758/BF03213910.Google Scholar
Shen, J., Deutsch, D. & Rayner, K. (2013). On-line perception of Mandarin Tones 2 and 3: Evidence from eye movements. Journal of the Acoustical Society of America, 133(5), 3016–29. https://doi.org/10.1121/1.4795775.Google Scholar
Shockey, L. (2003). Sound Patterns of Spoken English. Cambridge, MA: Blackwell.Google Scholar
Snedeker, J. & Trueswell, J. (2003). Using prosody to avoid ambiguity: Effects of speaker awareness and referential context. Journal of Memory and Language, 48(1), 103–30. https://doi.org/10.1016/S0749-596X(02)00519–3.Google Scholar
Somppi, S., Törnqvist, H., Hänninen, L., Krause, C. & Vainio, O. (2012). Dogs do look at images: Eye tracking in canine cognition research. Animal Cognition, 15(2), 163–74. https://doi.org/10.1007/s10071-011–0442-1.Google Scholar
Sulpizio, S. & McQueen, J. M. (2012). Italians use abstract knowledge about lexical stress during spoken-word recognition. Journal of Memory and Language, 66(1), 177–93. https://doi.org/10.1016/j.jml.2011.08.001.Google Scholar
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M. & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632–4.Google Scholar
Toscano, J. C. & McMurray, B. (2015). The time-course of speaking rate compensation: Effects of sentential rate and vowel length on voicing judgments. Language, Cognition and Neuroscience, 30(5), 529–43. https://doi.org/10.1080/23273798.2014.946427.Google Scholar
van der Heijden, A. H. C. (1992). Selective Attention in Vision. New York: Routledge.Google Scholar
Vatikiotis-Bateson, E., Eigsti, I.-M., Yano, S. & Munhall, K. G. (1998). Eye movement of perceivers during audiovisual speech perception. Perception & Psychophysics, 60(6), 926–40. https://doi.org/10.3758/BF03211929.Google Scholar
Viebahn, M. C., Ernestus, M. & McQueen, J. M. (2015). Syntactic predictability in the recognition of carefully and casually produced speech. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1684–702. https://doi.org/10.1037/a0039326.Google Scholar
Watson, D. G., Tanenhaus, M. K. & Gunlogson, C. A. (2008). Interpreting pitch accents in online comprehension: H* vs. L+H*. Cognitive Science, 32(7), 1232–44. https://doi.org/10.1080/03640210802138755.Google Scholar
Weber, A. & Cutler, A. (2004). Lexical competition in non-native spoken-word recognition. Journal of Memory and Language, 50, 125. https://doi.org/10.1016/S0749-596X(03)00105–0.Google Scholar
Weber, A., Braun, B. & Crocker, M. W. (2006a). Finding referents in time: Eye-tracking evidence for the role of contrastive accents. Language and Speech, 49(3), 367–92. https://doi.org/10.1177/00238309060490030301.Google Scholar
Weber, A., Grice, M. & Crocker, M. W. (2006b). The role of prosody in the interpretation of structural ambiguities: A study of anticipatory eye movements. Cognition, 99(2), B63B72. https://doi.org/10.1016/j.cognition.2005.07.001.Google Scholar
Westfall, J., Kenny, D. A. & Judd, C. M. (2014). Statistical power and optimal design in experiments in which samples of participants respond to samples of stimuli. Journal of Experimental Psychology. General, 143(5), 2020–45. https://doi.org/10.1037/xge0000014.Google Scholar

19.7 References

Allen, J. (1994). How do humans process and recognize speech. IEEE Transactions on Speech and Audio Processing, 2(4) 567–77.Google Scholar
Baker, J. K. (1975). The DRAGON System: An overview. IEEE Transactions on Acoustics, Speech and Signal Processing, 23(1), 24–9.Google Scholar
Bourlard, H. A. & Morgan, N. (1994). Connectionist Speech Recognition: A Hybrid Approach. Berlin: Springer-Verlag.Google Scholar
Chan, W., Jaitly, N., Le, Q. & Vinyals, O. (2016). Listen, attend and spell: A neural network for large vocabulary conversational speech recognition. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Shanghai, pp. 4960–4.Google Scholar
Cherry, C. (1968). On Human Communications. Cambridge, MA: MIT Press.Google Scholar
Cohen, M. H., Giangola, J. P. & Balogh, J. (2004). Voice User Interface Design. Hoboken, NJ: Anderson-Wiley.Google Scholar
Davis, K. H., Biddulph, R. & Balashek, S. (1952). Automatic recognition of spoken digits. Journal of the Acoustical Society of America, 24(6), 637–42.Google Scholar
Denes, P. E. & Pinson, E. N. (1993). The Speech Chain: The Physics and Biology of Spoken Languages, 2nd ed. Oxford: W. H. Freeman and Company.Google Scholar
Fant, G. (1960). Acoustic Theory of Speech Production. The Hague: Mouton.Google Scholar
Fant, G. (1973). Speech Sounds and Features. Cambridge, MA: MIT Press.Google Scholar
Flanagan, J. L. (1965). Speech Analysis, Synthesis and Perception. Berlin: Springer-Verlag.Google Scholar
Forgie, J. W. & Forgie, C. D. (1959). Results obtained from a vowel recognition computer program. Journal of the Acoustical Society of America, 31(11), 1480–89.Google Scholar
Gold, B. & Morgan, N. (1999). Speech and Audio Signal Processing. New York: Wiley.Google Scholar
Graves, A., Fernández, S., Gomez, F. & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning, pp. 369–76.Google Scholar
Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E. et al. (2014). Deep speech: Scaling up end-to-end speech recognition. In arXiv preprint arXiv:1412.5567.Google Scholar
Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–7.Google Scholar
Hinton, G. E., Deng, L., Yu, D., Dahl, G., Mohamed, A. R., Jaitly, N. et al. (2012). Deep neural networks for acoustic modelling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 8297.Google Scholar
Huang, X., Acero, A. & Hong, H.-W. (2001). Spoken Language Processing: A Guide to Theory, Algorithm and System Development. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Jelinek, F. (1997). Statistical Methods for Speech Recognition. Cambridge, MA: MIT Press.Google Scholar
Juang, B. H. & Furui, S. (2000). Automatic speech recognition and understanding: A first step toward natural human–machine communication. Proceedings of the IEEE, 88(8), 1142–65.Google Scholar
Juneja, A., Deshmukh, O. & Espy-Wilson, C. (2002). An event-based acoustic-phonetic approach to speech segmentation and E-set recognition. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 4: IV/4164.Google Scholar
Jurafsky, D. & Martin, J. H. (2000). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Klatt, D. (1977). Review of the ARPA Speech Understanding Project. Journal of the Acoustical Society of America, 62(6), 1324–66.Google Scholar
Lee, C. H. & Rabiner, L. R. (1989). A frame-synchronous network search algorithm for connected word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11), 1649–58.Google Scholar
Lee, C. H., Soong, F. K. & Paliwal, K. K. (1996). Automatic Speech and Speaker Recognition: Advanced Topics. Dordrecht: Kluwer Academic.Google Scholar
Lee, C.-H. & Huo, Q. (2000). On adaptive decision rules and decision parameter adaptation for automatic speech recognition. Proceedings of the IEEE, 88(8), 1241–69.Google Scholar
Lee, C.-H. & Siniscalchi, S. M. (2013). An information-extraction approach to speech processing: Analysis, detection, verification and recognition. Proceedings of the IEEE, 101(5), 1089–115.Google Scholar
Liu, S. A. (1996). Landmark detection for distinctive feature-based speech recognition. Journal of the Acoustical Society of America, 100(5), 3417–30.Google Scholar
Lippmann, R. P. (1997). Speech recognition by machines and humans. Speech Communication, 22(1), 115.Google Scholar
Lowerre, B. (1990). The HARPY speech understanding system. In Lea, W., ed., Trends in Speech Recognition. Upper Saddle River, NJ: Prentice Hall, pp. 576–86.Google Scholar
Manning, C. & Schutze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press.Google Scholar
Martin, T. B., Nelson, A. L. & Zadell, H. J. (1964). Speech Recognition by Feature-Abstraction Techniques. Tech Report AL-TDR-64–176, Air Force Avionics Lab.Google Scholar
Mohri, M., Pereira, F. C. N. & Riley, M. (2002). Weighted finite-state transducers in speech recognition. Computer Speech & Language, 16, 6988.Google Scholar
Nagata, K., Kato, Y. & Chiba, S. (1963). Spoken Digit Recognizer for Japanese Language. NEC Research and Development Laboratories.Google Scholar
Ney, H. & Ortmanns, S. (2000). Progress in dynamic programming search for LVCSR. Proceedings of the IEEE, 88(8), 1224–40.Google Scholar
Olive, J. P., Greenwood, A. & Coleman, J. (1993). Acoustics of American English Speech: A Dynamic Approach. Berlin: Springer-Verlag.Google Scholar
Olson, H. F. & Belar, H. (1956). Phonetic typewriter. Journal of the Acoustical Society of America, 28(6), 1072–81.Google Scholar
O’Shaughnessy, D. (2000). Speech Communications: Human and Machine. Reading, MA: Addison-Wesley.Google Scholar
Ostendorf, M. (1999). Moving beyond the beads-on-a-string model of speech. In Proceedings of. IEEE ASRU Automatic Speech Recognition and Understanding, Singapore, pp. 7984.Google Scholar
Ostendorf, M., Digalakis, V. V. & Kimball, O. A. (1996). From HMM’s to segment models: A unified view of stochastic modeling for speech recognition. IEEE Transactions on Speech and Audio Processing, 4(5), 360–78.Google Scholar
Paul, D. B. & Baker, J. M. (1992). The design for the Wall Street Journal-based CSR Corpus. In Proceedings of the Workshop on Speech and Natural Language, pp. 899902.Google Scholar
Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the. IEEE, 77(2), 257–86.Google Scholar
Rabiner, L. R. & Juang, B.-H. (1993). Fundamentals of Speech Recognition. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Rabiner, L. R. & Schafer, R. W. (2010). Theory and Applications of Digital Speech Processing. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Ramabhadran, B., Chen, N. F., Harper, M. P., Kingsbury, B. & Knill, K. (2017). Introduction to the special issue on end-to-end speech and language processing. IEEE Journal of Selected Topics in Signal Processing, 11(8), 1237–9.Google Scholar
Sainath, T. N., Weiss, R. J., Wilson, K. W., Li, B., Narayanan, A., Variani, E. et al. (2017). Multichannel signal processing with deep neural networks for automatic speech recognition. IEEE /ACM Transactions on Audio, Speech, and Language Processing, 25, 965–79.Google Scholar
Sakoe, H. (1979). Two-level DP matching: A dynamic programming-based pattern matching algorithm for connected word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27, 588–95.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379423 & 623–56.Google Scholar
Siniscalchi, S. M. & Lee, C.-H. (2009). A study on integrating acoustic-phonetic information into lattice rescoring for automatic speech recognition. Speech Communication, 51, 1139–53.Google Scholar
Sproat, R. (1998). Multilingual Text-to-Speech Synthesis: The Bell Labs Approach, Dordrecht: Kluwer Academic.Google Scholar
Stevens, K. (2000). Acoustic Phonetics. Cambridge, MA: MIT Press.Google Scholar
Stork, D. G. (1997). HAL’s Legacy: 2001’s Computer as Dream and Reality. Cambridge, MA: MIT Press.Google Scholar
Sundermeyer, M., Schlüter, R. & Ney, H. (2012). LSTM neural networks for language modelling. In Proceedings of INTERSPEECH, Portland, OR, 194–6.Google Scholar
Taylor, P. (2009). Text-to-Speech Synthesis. Cambridge: Cambridge University Press.Google Scholar
Thomáš, M. (2012). Statistical Language Models Based on Neural Networks. PhD thesis, Brno University of Technology.Google Scholar
Vintsyuk, T. K. (1968). Speech discrimination by dynamic programming. Kibernetika, 4(2), 81–8.Google Scholar
Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260–9.Google Scholar
Yu, D. & Deng, L. (2014). Automatic Speech Recognition: A Deep Learning Approach. Berlin: Springer-Verlag.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×