Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:44:09.221Z Has data issue: false hasContentIssue false

2 - The Creative Brain

A Developmental Snapshot

from Part I - Core Concepts of Lifespan Creativity Development

Published online by Cambridge University Press:  19 November 2021

Sandra W. Russ
Affiliation:
Case Western Reserve University, Ohio
Jessica D. Hoffmann
Affiliation:
Yale University, Connecticut
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Over the last two decades we have begun to gain some traction on the neural systems that underlie creative cognition in young adults. Specifically, neuroimaging experiments have revealed that creativity across several domains arises from the interaction of two large-scale systems in the brain: whereas the default mode network (DMN) is involved in the generation of novel ideas, the executive control network (ECN) exerts top-down regulation on the generative process to ensure the production of task-appropriate output. However, much less is known about the contributions of the DMN and the ECN – including specific structures within each network – to creative cognition at various time points throughout development. In this chapter I will review the nascent but growing cross-sectional literature on the neurological bases of creativity in the adolescent and the aging brain, which together with data from young adults provides a snapshot into the developmental bases of creativity across the lifespan. I will also outline avenues for future research in order to develop more sophisticated models of the developing creative brain, including investigations into the trajectory of change in the cerebral cortex, as well as the dynamics of synaptogenesis in relation to creativity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 13631377. doi:10.1016/j.neuropsychologia.2006.10.016CrossRefGoogle ScholarPubMed
Adnan, A., Beaty, R., Lam, J., Spreng, R. N., & Turner, G. R. (2019a). Intrinsic default–executive coupling of the creative aging brain. Social Cognitive and Affective Neuroscience, 14, 291303. doi:10.1093/scan/nsz013Google Scholar
Adnan, A., Beaty, R., Silvia, P. J., Spreng, N., & Turner, G. (2019b). Creative aging: Functional brain networks associated with divergent thinking in older and younger adults. Neurobiology of Aging, 75, 150158. doi:10.1016/j.neurobiolaging.2018.11.004CrossRefGoogle ScholarPubMed
Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 357376. doi:10.1037/0022-3514.43.5.997Google Scholar
Ashtari, M., Cervellione, K. L., Hasan, K. M., Wu, J., McIlree, C., Kester, H., … Kumra, S. (2007). White matter development during late adolescence in healthy males: A cross-sectional diffusion tensor imaging study. NeuroImage, 35, 501510. doi:10.1016/j.neuroimage.2006.10.047Google Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. doi:10.1038/srep10964Google Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. doi:10.1016/j.tics.2015.10.004Google Scholar
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. doi:10.1016/j.neuropsychologia.2014.09.019Google Scholar
Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., … Silvia, P. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences USA, 115, 10871092. doi:10.1073/pnas.1713532115CrossRefGoogle ScholarPubMed
Bijvoet-van den Berg, S., & Hoicka, E. (2014). Individual differences and age-related changes in divergent thinking in toddlers and preschoolers. Developmental Psychology, 50, 16291639. doi:10.1037/a0036131CrossRefGoogle ScholarPubMed
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, Article 1195. doi:10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380400. doi:10.1037/h0040373Google Scholar
Casey, B., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126. doi:10.1196/annals.1440.010Google Scholar
Christoff, K., & Gabrieli, J. D. E. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human PFC cortex. Psychobiology, 28, 168186.Google Scholar
Claxton, A. F., Pannells, T. C., & Rhoads, P. A. (2005). Developmental trends in the creativity of school-age children. Creativity Research Journal, 17, 327335. doi:10.1207/s15326934crj1704_4Google Scholar
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 494501. doi:10.1016/j.tics.2013.08.006Google Scholar
Corel, J. L. (1975). The postnatal development of the human cerebral cortex. Cambridge, MA: Harvard University Press.Google Scholar
Crone, E. A. (2009). Executive function in adolescence: Inferences from brain and behavior. Developmental Science, 12, 825830. doi:10.1111/j.1467-7687.2009.00918.xCrossRefGoogle ScholarPubMed
Dahl, R. (2011). Understanding the risky business of adolescence. Neuron, 69, 837839. doi:10.1016/j.neuron.2011.02.036Google Scholar
Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. NeuroImage, 160, 3240. doi:10.1016/j.neuroimage.2017.01.077Google Scholar
Eckstrom, R. B., French, J. W., Harman, M. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.Google Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. doi:10.1016/j.neuroimage.2011.08.008Google Scholar
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748. doi:10.1002/hbm.20538CrossRefGoogle ScholarPubMed
Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25, 19871999. doi:10.1093/cercor/bhu012Google Scholar
Goel, V. (2007). Anatomy of deductive reasoning. Trends in Cognitive Sciences, 11, 435441. doi:10.1016/j.tics.2007.09.003Google Scholar
Goel, V., & Vartanian, O. (2005). Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cerebral Cortex, 15, 11701177. doi:10.1093/cercor/bhh217Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences USA, 101, 81748179. doi:10.1073/pnas.0402680101CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, Article 465. doi:10.3389/fnhum.2013.00465Google Scholar
Gray, J. A., Buhusi, C. V., & Schmajuk, N. (1997). The transition from automatic to controlled processing. Neural Networks, 10, 12571268. doi:10.1016/s0893–6080(97)00058-0Google Scholar
Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.Google Scholar
Henke, K., Buck, A., Weber, B., & Wieser, H. G. (1997). Human hippocampus establishes associations in memory. Hippocampus, 7, 249256. doi:10.1002/(sici)1098-1063(1997)7:3<249::aid-hipo1>3.0.co;2-gGoogle Scholar
Henke, K., Weber, B., Kneifel, S., Wieser, H. G., & Buck, A. (1999). Human hippocampus associates information in memory. Proceedings of the National Academy of Sciences USA, 96, 58845889. doi:10.1073/pnas.96.10.5884Google Scholar
Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107129. doi:10.1016/0001-6918(67)90011-xGoogle Scholar
Hui, A. N. N., He, M. W. J., & Wong, A. W. C. (2019). Understanding the development of creativity across the life span. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 6987). New York: Cambridge University Press.Google Scholar
Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 20172036. doi:10.1016/j.neuropsychologia.2006.01.010CrossRefGoogle Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – Developmental changes and effects of aging. Brain Research, 163, 195205. doi:10.1016/0006-8993(79)90349-4Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178. doi:10.1002/(sici)1096-9861(19971020)387:2<167::aid-cne1>3.0.co;2-zGoogle Scholar
Johnson, C., & Wilbrecht, L. (2011). Juvenile mice show greater flexibility in multiple choice reversal learning than adults. Developmental Cognitive Neuroscience, 1, 540551. doi:10.1016/j.dcn.2011.05.008Google Scholar
Jung, R. E., & Vartanian, O. (Eds.). (2018). The Cambridge handbook of the neuroscience of creativity. New York: Cambridge University Press.Google Scholar
Katona, G. (1940). Organizing and memorizing. New York: Columbia University Press.Google Scholar
Kaufman, J. C., Glăveanu, V. P., & Baer, J. (Eds.). (2017). The Cambridge handbook of creativity across domains. New York: Cambridge University Press.CrossRefGoogle Scholar
Kleibeuker, S. W., De Dreu, C. K. W., & Crone, E. A. (2013a). The development of creative cognition across adolescence: Distinct trajectories for insight and divergent thinking. Developmental Science, 16, 212. doi:10.1111/j.1467-7687.2012.01176.xGoogle Scholar
Kleibeuker, S. W., Koolschijn, P. C. M. P., Jolles, D. D., De Dreu, C. K. W., & Crone, E. A. (2013b). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7, Article 905. doi:10.3389/fnhum.2013.00905Google Scholar
Kleibeuker, S. W., Koolschijn, P. C. M. P., Jolles, D. D., Schel, M. A., De Dreu, C. K. W., & Crone, E. A. (2013c). Prefrontal cortex involvement in creative problem solving in middle adolescence and adulthood. Developmental Cognitive Neuroscience, 5, 197206. doi:10.1016/j.dcn.2013.03.003Google Scholar
Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior PFC cortex in human cognition. Nature, 399, 148151. doi:10.1038/20178Google Scholar
Lau, S., & Cheung, P. C. (2010). Developmental trends of creativity: What twists of turn do boys and girls take at different grades? Creativity Research Journal, 22, 329336. doi:10.1080/10400419.2010.503543Google Scholar
Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLOS One, 3, e1679. doi:10.1371/journal.pone.0001679Google Scholar
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36, 33513372. doi:10.1002/hbm.22849Google Scholar
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., … Sweeney, J. A. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793. doi:10.1006/nimg.2000.0743Google Scholar
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232. doi:10.1037/h0048850Google Scholar
Miller, L. A., & Tippett, L. J. (1996). Effects of focal brain lesions on visual problem-solving. Neuropsychologia, 34, 387398. doi:10.1016/0028-3932(95)00116-6Google Scholar
Mills, K. L., & Tamnes, C. K. (2014). Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental Cognitive Neuroscience, 9, 172190. doi:10.1016/j.dcn.2014.04.004CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, M., Fransson, P., & de Manzano, Ö. (2016). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063. doi:10.1093/cercor/bhv130Google Scholar
Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79, 798813. doi:10.1016/j.neuron.2013.07.035Google Scholar
Runco, M. A., & Bahleda, M. D. (1986). Implicit theories of artistic, scientific, and everyday creativity. Journal of Creative Behavior, 20, 9398. doi:10.1002/j.2162-6057.1986.tb00423.xGoogle Scholar
Russ, S. W., & Doernberg, E. A. (2019). Play and creativity. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 607622). New York: Cambridge University Press.Google Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679. doi:10.1038/nature04513Google Scholar
Shonkoff, J. P., & Phillips, D. A. (Eds.). (2000). From neurons to neighborhoods: The science of early childhood development. Washington, DC: National Academy Press.Google Scholar
Simonton, D. K. (2001). The psychology of creativity: A historical perspective [Presentation]. Green College Lecture Series on the nature of creativity: History, biology, and socio-cultural dimensions, University of British Columbia, Vancouver.Google Scholar
Spreng, R. N., & Turner, G. R. (2019). The shifting architecture of cognition and brain function in older adulthood. Perspectives on Psychological Science. [Preprint: 10.31219/osf.io/8s93y]Google Scholar
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49, 30993109. doi:10.1016/j.neuroimage.2009.11.015Google Scholar
Turner, G. R., & Spreng, R. N. (2015). Prefrontal engagement and reduced default network suppression co-occur and are dynamically coupled in older adults: The default–executive coupling hypothesis of aging. Journal of Cognitive Neuroscience, 27, 24622476. doi:10.1162/jocn_a_00869Google Scholar
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Review Neuroscience, 16, 5561. doi:10.1038/nrn3857Google Scholar
Van Dam, A. G., & Van Wesel, F. (2006). CAT: Creatieve Aanleg Test: Een instrument om de creatieve competenties te meten.Google Scholar
Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology, 103, 302316. doi:10.1111/j.2044-8295.2011.02073.xGoogle Scholar
Vartanian, O. (2019). Neuroscience of creativity. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 148172). New York: Cambridge University Press.Google Scholar
Vartanian, O., Beatty, E. L., Smith, I., Blackler, K., Lam, Q., & Forbes, S. (2018). One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking. Neuropsychologia, 118, 6878. doi:10.1016/j.neuropsychologia.2018.02.024Google Scholar
Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.). (2013). Neuroscience of creativity. Cambridge, MA: MIT Press.Google Scholar
Wu, C. H., Cheng, Y., Ip, H. M., & McBride-Chang, C. (2005). Age differences in creativity: Task structure and knowledge base. Creativity Research Journal, 17, 321326. doi:10.1207/s15326934crj1704_3Google Scholar
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., … Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718. doi:10.1002/hbm.22801Google Scholar
Zabelina, D. L., & Andrews-Hanna, J. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 8693. doi:10.1016/j.conb.2016.06.014Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×