Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-ksgrx Total loading time: 0 Render date: 2025-12-12T06:24:59.749Z Has data issue: false hasContentIssue false

Part IV - Variations of Language Representations in the Brain

Published online by Cambridge University Press:  aN Invalid Date NaN

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35(9), 21262133. https://doi.org/10.1016/j.neurobiolaging.2014.03.010CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(04), 110. https://doi.org/10.1017/S1366728916000225CrossRefGoogle Scholar
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P. A., Parris, B. A., & Weekes, B. S. (2015). Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201210. https://doi.org/10.1016/j.neuropsychologia.2015.01.040CrossRefGoogle ScholarPubMed
Abutalebi, J., Rosa, P. A. D., Castro Gonzaga, A. K., Keim, R., Costa, A., & Perani, D. (2013). The role of the left putamen in multilingual language production. Brain and Language, 125(3), 307315. https://doi.org/10.1016/j.bandl.2012.03.009CrossRefGoogle ScholarPubMed
Alrwaita, N., Houston-Price, C., & Pliatsikas, C. (2022). The effects of using two varieties of one language on cognition: Evidence from bidialectalism and diglossia. Linguistic Approaches to Bilingualism, 13(6), 830853. https://doi.org/10.1075/lab.21044.alrCrossRefGoogle Scholar
Anderson, J. A. E., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. NeuroImage, 167, 143150. https://doi.org/10.1016/j.neuroimage.2017.11.038CrossRefGoogle Scholar
Anderson, J. A. E., Mak, L., Keyvani Chahi, A., & Bialystok, E. (2018). The language and social background questionnaire: Assessing degree of bilingualism in a diverse population. Behavior Research Methods, 50(1), 250263. https://doi.org/10.3758/s13428-017-0867-9CrossRefGoogle Scholar
Archila-Suerte, P., Woods, E. A., Chiarello, C., & Hernandez, A. E. (2018). Neuroanatomical profiles of bilingual children. Developmental Science, 21(5), e12654. https://doi.org/10.1111/desc.12654CrossRefGoogle ScholarPubMed
Aveledo, F., Higueras, Y., Marinis, T., Bose, A., Pliatsikas, C., Meldaña-Rivera, A., Martínez-Ginés, M. L., García-Domínguez, J. M., Lozano-Ros, A., Cuello, J. P., & Goicochea-Briceño, H. (2021). Multiple sclerosis and bilingualism: Some initial findings. Linguistic Approaches to Bilingualism, 11(4), 551577. https://doi.org/10.1075/lab.18037.aveCrossRefGoogle Scholar
Berken, J. A., Chai, X. J., Chen, J.-K., Gracco, V. L., & Klein, D. (2016). Effects of early and late bilingualism on resting-state functional connectivity. Journal of Neuroscience, 36(4), 11651172. https://doi.org/10.1523/JNEUROSCI.1960-15.2016CrossRefGoogle ScholarPubMed
Berken, J. A., Gracco, V. L., Chen, J.-K., & Klein, D. (2016). The timing of language learning shapes brain structure associated with articulation. Brain Structure and Function, 221(7), 35913600. https://doi.org/10.1007/s00429-015-1121-9CrossRefGoogle ScholarPubMed
Berkes, M., Bialystok, E., Craik, F. I. M., Troyer, A., & Freedman, M. (2020). Conversion of mild cognitive impairment to Alzheimer disease in monolingual and bilingual patients. Alzheimer Disease & Associated Disorders, 34(3), 225230. https://doi.org/10.1097/WAD.0000000000000373CrossRefGoogle ScholarPubMed
Berkes, M., Calvo, N., Anderson, J. A. E., & Bialystok, E. (2021). Poorer clinical outcomes for older adult monolinguals when matched to bilinguals on brain health. Brain Structure and Function, 226(2), 415424. https://doi.org/10.1007/s00429-020-02185-5CrossRefGoogle ScholarPubMed
Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233262. https://doi.org/10.1037/bul0000099CrossRefGoogle ScholarPubMed
Bialystok, E. (2021). Bilingualism: Pathway to cognitive reserve. Trends in Cognitive Sciences, 25(5), 355364. https://doi.org/10.1016/j.tics.2021.02.003CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240250. https://doi.org/10.1016/j.tics.2012.03.001CrossRefGoogle ScholarPubMed
Bice, K., Yamasaki, B. L., & Prat, C. S. (2020). Bilingual language experience shapes resting-state brain rhythms. Neurobiology of Language, 1(3), 288318. https://doi.org/10.1162/nol_a_00014CrossRefGoogle ScholarPubMed
Brito, N. H., & Noble, K. G. (2018). The independent and interacting effects of socioeconomic status and dual-language use on brain structure and cognition. Developmental Science, 21(6), e12688. https://doi.org/10.1111/desc.12688CrossRefGoogle ScholarPubMed
Burgaleta, M., Sanjuán, A., Ventura-Campos, N., Sebastian-Galles, N., & Ávila, C. (2016). Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis. NeuroImage, 125, 437445. https://doi.org/10.1016/j.neuroimage.2015.09.073CrossRefGoogle ScholarPubMed
Claussenius-Kalman, H., Hernandez, A. E., & Li, P. (2021). Expertise, ecosystem, and emergentism: Dynamic developmental bilingualism. Brain and Language, 222, 105013. https://doi.org/10.1016/j.bandl.2021.105013CrossRefGoogle ScholarPubMed
Claussenius‐Kalman, H. L., Vaughn, K. A., Archila‐Suerte, P., & Hernandez, A. E. (2020a). Age of acquisition impacts the brain differently depending on neuroanatomical metric. Human Brain Mapping, 41(2), 484502. https://doi.org/10.1002/hbm.24817CrossRefGoogle ScholarPubMed
Claussenius‐Kalman, H. L., Vaughn, K. A., Archila‐Suerte, P., & Hernandez, A. E. (2020b). Highly proficient, balanced bilingualism is related to thinner cortex in two cognitive control regions. Annals of the New York Academy of Sciences, nyas.14491. https://doi.org/10.1111/nyas.14491CrossRefGoogle Scholar
Costumero, V., Marin-Marin, L., Calabria, M., Belloch, V., Escudero, J., Baquero, M., Hernandez, M., Ruiz de Miras, J., Costa, A., Parcet, M. A., & Ávila, C. (2020). A cross-sectional and longitudinal study on the protective effect of bilingualism against dementia using brain atrophy and cognitive measures. Alzheimer’s Research & Therapy, 12(1), 11. https://doi.org/10.1186/s13195-020-0581-1CrossRefGoogle ScholarPubMed
Dash, T., Joanette, Y., & Ansaldo, A. I. (2022). Exploring attention in the bilingualism continuum: A resting-state functional connectivity study. Brain and Language, 224, 105048. https://doi.org/10.1016/j.bandl.2021.105048CrossRefGoogle ScholarPubMed
de Frutos-Lucas, J., López-Sanz, D., Cuesta, P., Bruña, R., de la Fuente, S., Serrano, N., López, M. E., Delgado-Losada, M. L., López-Higes, R., Marcos, A., & Maestú, F. (2020). Enhancement of posterior brain functional networks in bilingual older adults. Bilingualism: Language and Cognition, 23(2), 387400. https://doi.org/10.1017/S1366728919000178CrossRefGoogle Scholar
Del Maschio, N., Fedeli, D., Sulpizio, S., & Abutalebi, J. (2019). The relationship between bilingual experience and gyrification in adulthood: A cross-sectional surface-based morphometry study. Brain and Language, 198, 104680. https://doi.org/10.1016/j.bandl.2019.104680CrossRefGoogle ScholarPubMed
Del Maschio, N., Sulpizio, S., Gallo, F., Fedeli, D., Weekes, B. S., & Abutalebi, J. (2018). Neuroplasticity across the lifespan and aging effects in bilinguals and monolinguals. Brain and Cognition, 125, 118126. https://doi.org/10.1016/j.bandc.2018.06.007CrossRefGoogle ScholarPubMed
Del Maschio, N., Sulpizio, S., Toti, M., Caprioglio, C., Del Mauro, G., Fedeli, D., & Abutalebi, J. (2020). Second language use rather than second language knowledge relates to changes in white matter microstructure. Journal of Cultural Cognitive Science, 4 (2), 165175. https://doi.org/10.1007/s41809-019-00039-zCrossRefGoogle Scholar
Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2013). A neural interactive location for multilingual talent. Cortex, 49(2), 605608. https://doi.org/10.1016/j.cortex.2012.12.001CrossRefGoogle ScholarPubMed
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2019). Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116(15), 75657574. https://doi.org/10.1073/pnas.1811513116CrossRefGoogle ScholarPubMed
DeLuca, V., Rothman, J., & Pliatsikas, C. (2019). Linguistic immersion and structural effects on the bilingual brain: A longitudinal study. Bilingualism: Language and Cognition, 22(5), 11601175. https://doi.org/10.1017/S1366728918000883CrossRefGoogle Scholar
DeLuca, V., Segaert, K., Mazaheri, A., & Krott, A. (2020). Understanding bilingual brain function and structure changes? U bet! A unified bilingual experience trajectory model. Journal of Neurolinguistics, 56, 100930. https://doi.org/10.1016/j.jneuroling.2020.100930CrossRefGoogle Scholar
DeLuca, V., & Voits, T. (2022). Bilingual experience affects white matter integrity across the lifespan. Neuropsychologia, 169, 108191. https://doi.org/10.1016/j.neuropsychologia.2022.108191CrossRefGoogle ScholarPubMed
Duncan, H. D., Nikelski, J., Pilon, R., Steffener, J., Chertkow, H., & Phillips, N. A. (2018). Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve. Neuropsychologia, 109, 270282. https://doi.org/10.1016/j.neuropsychologia.2017.12.036CrossRefGoogle ScholarPubMed
Ehling, R., Amprosi, M., Kremmel, B., Bsteh, G., Eberharter, K., Zehentner, M., Steiger, R., Tuovinen, N., Gizewski, E. R., Benke, T., Berger, T., Spöttl, C., Brenneis, C., & Scherfler, C. (2019). Second language learning induces grey matter volume increase in people with multiple sclerosis. PLoS ONE, 14(12), e0226525. https://doi.org/10.1371/journal.pone.0226525CrossRefGoogle ScholarPubMed
Elmer, S., Hänggi, J., & Jäncke, L. (2014). Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex, 54, 179189. https://doi.org/10.1016/j.cortex.2014.02.014CrossRefGoogle ScholarPubMed
Fedeli, D., Del Maschio, N., Sulpizio, S., Rothman, J., & Abutalebi, J. (2021). The bilingual structural connectome: Dual-language experiential factors modulate distinct cerebral networks. Brain and Language, 220, 104978. https://doi.org/10.1016/j.bandl.2021.104978CrossRefGoogle ScholarPubMed
Felton, A., Vazquez, D., Ramos-Nunez, A. I., Greene, M. R., Macbeth, A., Hernandez, A. E., & Chiarello, C. (2017). Bilingualism influences structural indices of interhemispheric organization. Journal of Neurolinguistics, 42, 111. https://doi.org/10.1016/j.jneuroling.2016.10.004CrossRefGoogle ScholarPubMed
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700711. https://doi.org/10.1038/nrn2201CrossRefGoogle ScholarPubMed
Gallo, F., DeLuca, V., Prystauka, Y., Voits, T., Rothman, J., & Abutalebi, J. (2022). Bilingualism and aging: Implications for (delaying) neurocognitive decline. Frontiers in Human Neuroscience, 16, 819105. https://doi.org/10.3389/fnhum.2022.819105CrossRefGoogle ScholarPubMed
Gallo, F., Myachykov, A., Shtyrov, Y., & Abutalebi, J. (2020). Cognitive and brain reserve in bilinguals: Field overview and explanatory mechanisms. Journal of Cultural Cognitive Science, 4(2), 127143. https://doi.org/10.1007/s41809-020-00058-1CrossRefGoogle Scholar
Gallo, F., Novitskiy, N., Myachykov, A., & Shtyrov, Y. (2021). Individual differences in bilingual experience modulate executive control network and performance: Behavioral and structural neuroimaging evidence. Bilingualism: Language and Cognition, 24(2), 293304. https://doi.org/10.1017/S1366728920000486CrossRefGoogle Scholar
García-Pentón, L., Fernández García, Y., Costello, B., Duñabeitia, J. A., & Carreiras, M. (2016). The neuroanatomy of bilingualism: How to turn a hazy view into the full picture. Language, Cognition and Neuroscience, 31(3), 303327. https://doi.org/10.1080/23273798.2015.1068944CrossRefGoogle Scholar
Goksan, S., Argyri, F., Clayden, J. D., Liegeois, F., & Wei, L. (2020). Early childhood bilingualism: Effects on brain structure and function. F1000Research, 9, 370. https://doi.org/10.12688/f1000research.23216.1CrossRefGoogle ScholarPubMed
Gold, B. T. (2016). Lifelong bilingualism, cognitive reserve and Alzheimer’s disease: A review of findings. Linguistic Approaches to Bilingualism, 6(1–2), 171189. https://doi.org/10.1075/lab.14028.golCrossRefGoogle Scholar
Gold, B. T., Johnson, N. F., & Powell, D. K. (2013). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia, 51(13), 28412846. https://doi.org/10.1016/j.neuropsychologia.2013.09.037CrossRefGoogle ScholarPubMed
Grady, C. L., Luk, G., Craik, F. I. M., & Bialystok, E. (2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170181. https://doi.org/10.1016/j.neuropsychologia.2014.10.042CrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals: Neural correlates of bilingualism. Annals of the New York Academy of Sciences, 1396(1), 183201. https://doi.org/10.1111/nyas.13333CrossRefGoogle Scholar
Gullifer, J. W., Chai, X. J., Whitford, V., Pivneva, I., Baum, S., Klein, D., & Titone, D. (2018). Bilingual experience and resting-state brain connectivity: Impacts of L2 age of acquisition and social diversity of language use on control networks. Neuropsychologia, 117, 123134. https://doi.org/10.1016/j.neuropsychologia.2018.04.037CrossRefGoogle ScholarPubMed
Gullifer, J. W., & Titone, D. (2020). Characterizing the social diversity of bilingualism using language entropy. Bilingualism: Language and Cognition, 23(2), 283294. https://doi.org/10.1017/S1366728919000026CrossRefGoogle Scholar
Hämäläinen, S., Sairanen, V., Leminen, A., & Lehtonen, M. (2017). Bilingualism modulates the white matter structure of language-related pathways. NeuroImage, 152, 249257. https://doi.org/10.1016/j.neuroimage.2017.02.081CrossRefGoogle ScholarPubMed
Heim, S., Stumme, J., Bittner, N., Jockwitz, C., Amunts, K., & Caspers, S. (2019). Bilingualism and “brain reserve”: A matter of age. Neurobiology of Aging, 81, 157165. https://doi.org/10.1016/j.neurobiolaging.2019.05.021CrossRefGoogle ScholarPubMed
Hernandez, A. E., Claussenius-Kalman, H. L., Ronderos, J., Castilla-Earls, A. P., Sun, L., Weiss, S. D., & Young, D. R. (2019). Neuroemergentism: A framework for studying cognition and the brain. Journal of Neurolinguistics, 49, 214223. https://doi.org/10.1016/j.jneuroling.2017.12.010CrossRefGoogle ScholarPubMed
Jafari, Z., Perani, D., Kolb, B. E., & Mohajerani, M. H. (2021). Bilingual experience and intrinsic functional connectivity in adults, aging, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1, nyas.14666. https://doi.org/10.1111/nyas.14666Google Scholar
Kaiser, A., Eppenberger, L. S., Smieskova, R., Borgwardt, S., Kuenzli, E., Radue, E.-W., Nitsch, C., & Bendfeldt, K. (2015). Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00638CrossRefGoogle ScholarPubMed
Klein, D., Mok, K., Chen, J.-K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: A cortical thickness study of bilingual and monolingual individuals. Brain and Language, 131, 2024. https://doi.org/10.1016/j.bandl.2013.05.014CrossRefGoogle ScholarPubMed
Korenar, M., & Pliatsikas, C. (2023). L2 acquisition and neuroplasticity: Insights from the dynamic restructuring model. In The Routledge Handbook of Second Language Acquisition and Neurolinguistics. Routledge.Google Scholar
Korenar, M., Treffers-Daller, J., & Pliatsikas, C. (2023). Dynamic effects of bilingualism on brain structure map onto general principles of experience-based neuroplasticity. Scientific Reports, 13, 3428. https://doi.org/10.1038/s41598-023-30326-3CrossRefGoogle ScholarPubMed
Kousaie, S., Chai, X. J., Sander, K. M., & Klein, D. (2017). Simultaneous learning of two languages from birth positively impacts intrinsic functional connectivity and cognitive control. Brain and Cognition, 117, 4956. https://doi.org/10.1016/j.bandc.2017.06.003CrossRefGoogle ScholarPubMed
Kowoll, M. E., Degen, C., Gorenc, L., Küntzelmann, A., Fellhauer, I., Giesel, F., Haberkorn, U., & Schröder, J. (2016). Bilingualism as a contributor to cognitive reserve? Evidence from cerebral glucose metabolism in mild cognitive impairment and Alzheimer’s disease. Frontiers in Psychiatry, 7(APR), 16. https://doi.org/10.3389/fpsyt.2016.00062CrossRefGoogle ScholarPubMed
Kroll, J. F., & Bialystok, E. (2013). Understanding the consequences of bilingualism for language processing and cognition. Journal of Cognitive Psychology, 25(5), 497514. https://doi.org/10.1080/20445911.2013.799170CrossRefGoogle ScholarPubMed
Lehtonen, M., Soveri, A., Laine, A., Järvenpää, J., de Bruin, A., & Antfolk, J. (2018). Is bilingualism associated with enhanced executive functioning in adults? A meta-analytic review. Psychological Bulletin, 144(4), 394425. https://doi.org/10.1037/bul0000142CrossRefGoogle ScholarPubMed
Leivada, E., Duñabeitia, J. A., Westergaard, M., & Rothman, J. (2021). On the phantom-like appearance of bilingualism effects on cognition: (How) should we proceed? Bilingualism: Language and Cognition, 24(1), 197210. https://doi.org/10.1017/S1366728920000358CrossRefGoogle Scholar
Li, L., Abutalebi, J., Emmorey, K., Gong, G., Yan, X., Feng, X., Zou, L., & Ding, G. (2017). How bilingualism protects the brain from aging: Insights from bimodal bilinguals: Bimodal bilingualism prevents brain aging. Human Brain Mapping, 38(8), 41094124. https://doi.org/10.1002/hbm.23652CrossRefGoogle Scholar
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324. https://doi.org/10.1016/j.cortex.2014.05.001CrossRefGoogle ScholarPubMed
Li, X., Ng, K. K., Wong, J. J. Y., Lee, J. W., Zhou, J. H., & Yow, W. Q. (2021). Bilingual language entropy influences executive functions through functional connectivity and signal variability. Brain and Language, 222, 105026. https://doi.org/10.1016/j.bandl.2021.105026CrossRefGoogle ScholarPubMed
Liu, X., Tu, L., Chen, X., Wang, J., Li, M., Lu, Z., & Huang, R. (2021). Effect of AoA-L2 on L1 and L2 networks in early and late bilinguals. International Journal of Bilingualism, 25(6), 136700692110330. https://doi.org/10.1177/13670069211033026CrossRefGoogle Scholar
Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., & Bäckman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience & Biobehavioral Reviews, 37(9), 22962310. https://doi.org/10.1016/j.neubiorev.2013.02.014CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. The Journal of Neuroscience, 31(46), 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Luk, G., Mesite, L., & Leon Guerrero, S. (2020). Onset age of second language acquisition and fractional anisotropy variation in multilingual young adults. Journal of Neurolinguistics, 56, 100937. https://doi.org/10.1016/j.jneuroling.2020.100937CrossRefGoogle Scholar
Luk, G., Pliatsikas, C., & Rossi, E. (2020). Brain changes associated with language development and learning: A primer on methodology and applications. System, 89, 102209. https://doi.org/10.1016/j.system.2020.102209CrossRefGoogle Scholar
Marin-Marin, L., Costumero, V., Ávila, C., & Pliatsikas, C. (2022). Dynamic effects of immersive bilingualism on cortical and subcortical grey matter volumes. Frontiers in Psychology, 13. www.frontiersin.org/articles/10.3389/fpsyg.2022.88622210.3389/fpsyg.2022.886222CrossRefGoogle ScholarPubMed
Marin‐Marin, L., Costumero, V., Belloch, V., Escudero, J., Baquero, M., Parcet, M. ‐A., & Ávila, C. (2020). Effects of bilingualism on white matter atrophy in mild cognitive impairment: A diffusion tensor imaging study. European Journal of Neurology, 27(4), 603608. https://doi.org/10.1111/ene.14135CrossRefGoogle Scholar
Marin-Marin, L., Palomar-García, M.-Á., Miró-Padilla, A., Adrián-Ventura, J., Aguirre, N., Villar-Rodríguez, E., & Costumero, V. (2021). Bilingualism’s effects on resting-state functional connectivity in mild cognitive impairment. Brain Connectivity, 11(1), 3037. https://doi.org/10.1089/brain.2020.0877CrossRefGoogle ScholarPubMed
Martínez-Horta, S., Moreu, A., Perez-Perez, J., Sampedro, F., Horta-Barba, A., Pagonabarraga, J., Gomez-Anson, B., Lozano-Martinez, G. A., Lopez-Mora, D. A., Camacho, V., Fernández-León, A., Carrió, I., & Kulisevsky, J. (2019). The impact of bilingualism on brain structure and function in Huntington’s disease. Parkinsonism & Related Disorders, 60, 9297. https://doi.org/10.1016/j.parkreldis.2018.09.017CrossRefGoogle ScholarPubMed
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Structural plasticity in the bilingual brain. Nature, 431(7010), 757. https://doi.org/10.1038/431757aCrossRefGoogle ScholarPubMed
Mohades, S. G., Struys, E., Van Schuerbeek, P., Mondt, K., Van De Craen, P., & Luypaert, R. (2012). DTI reveals structural differences in white matter tracts between bilingual and monolingual children. Brain Research, 1435, 7280. https://doi.org/10.1016/j.brainres.2011.12.005CrossRefGoogle Scholar
Mohades, S. G., Van Schuerbeek, P., Rosseel, Y., Van De Craen, P., Luypaert, R., & Baeken, C. (2015). White-matter development is different in bilingual and monolingual children: A longitudinal DTI study. PLoS ONE, 10(2), e0117968. https://doi.org/10.1371/journal.pone.0117968CrossRefGoogle ScholarPubMed
Nichols, E. S., & Joanisse, M. F. (2016). Functional activity and white matter microstructure reveal the independent effects of age of acquisition and proficiency on second-language learning. NeuroImage, 143, 1525. https://doi.org/10.1016/j.neuroimage.2016.08.053CrossRefGoogle ScholarPubMed
Olsen, R. K., Pangelinan, M. M., Bogulski, C., Chakravarty, M. M., Luk, G., Grady, C. L., & Bialystok, E. (2015). The effect of lifelong bilingualism on regional grey and white matter volume. Brain Research, 1612, 128139. https://doi.org/10.1016/j.brainres.2015.02.034CrossRefGoogle ScholarPubMed
Olulade, O. A., Jamal, N. I., Koo, D. S., Perfetti, C. A., LaSasso, C., & Eden, G. F. (2016). Neuroanatomical evidence in support of the bilingual advantage theory. Cerebral Cortex, 26(7), 31963204. https://doi.org/10.1093/cercor/bhv152CrossRefGoogle ScholarPubMed
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., Magnani, G., March, A., & Abutalebi, J. (2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Sciences, 114(7), 16901695. https://doi.org/10.1073/pnas.1610909114CrossRefGoogle ScholarPubMed
Pereira Soares, S. M., Kubota, M., Rossi, E., & Rothman, J. (2021). Determinants of bilingualism predict dynamic changes in resting state EEG oscillations. Brain and Language, 223, 105030. https://doi.org/10.1016/j.bandl.2021.105030CrossRefGoogle ScholarPubMed
Pliatsikas, C. (2019). Multilingualism and brain plasticity. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 230251). Wiley. https://doi.org/10.1002/9781119387725.ch11CrossRefGoogle Scholar
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The dynamic restructuring model. Bilingualism: Language and Cognition, 23(2), 459471. https://doi.org/10.1017/S1366728919000130CrossRefGoogle Scholar
Pliatsikas, C. (2023): Bilingualism and brain structure: insights from healthy ageing and progressive neurodegenerative diseases. In Luk, G. et al. (Eds.), Understanding Language and Cognition through Bilingualism: In Honor of Ellen Bialystok (pp. 301317). John Benjamins.10.1075/sibil.64.14pliCrossRefGoogle Scholar
Pliatsikas, C., Ansaldo, A. I., & Voits, T. (2021). Bilingualism and the declining brain. Linguistic Approaches to Bilingualism, 11(4), 453458. https://doi.org/10.1075/lab.00031.intCrossRefGoogle Scholar
Pliatsikas, C., DeLuca, V., Moschopoulou, E., & Saddy, J. D. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222(4), 17851795. https://doi.org/10.1007/s00429-016-1307-9CrossRefGoogle ScholarPubMed
Pliatsikas, C., DeLuca, V., & Voits, T. (2020). The many shades of bilingualism: Language experiences modulate adaptations in brain structure. Language Learning, 70(S2), 133149. https://doi.org/10.1111/lang.12386CrossRefGoogle Scholar
Pliatsikas, C., Johnstone, T., & Marinis, T. (2014). Grey matter volume in the cerebellum is related to the processing of grammatical rules in a second language: A structural voxel-based morphometry study. The Cerebellum, 13(1), 5563. https://doi.org/10.1007/s12311-013-0515-6CrossRefGoogle Scholar
Pliatsikas, C., & Luk, G. (2016). Executive control in bilinguals: A concise review on fMRI studies. Bilingualism: Language and Cognition, 19(4), 699705. https://doi.org/10.1017/S1366728916000249CrossRefGoogle Scholar
Pliatsikas, C., Meteyard, L., Veríssimo, J., DeLuca, V., Shattuck, K., & Ullman, M. T. (2020). The effect of bilingualism on brain development from early childhood to young adulthood. Brain Structure and Function, 225(7), 21312152. https://doi.org/10.1007/s00429-020-02115-5CrossRefGoogle ScholarPubMed
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. Proceedings of the National Academy of Sciences, 112(5), 13341337. https://doi.org/10.1073/pnas.1414183112CrossRefGoogle ScholarPubMed
Pliatsikas, C., Pereira Soares, S. M., Voits, T., Deluca, V., & Rothman, J. (2021). Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain. Scientific Reports, 11(1), 112. https://doi.org/10.1038/s41598-021-86443-4CrossRefGoogle ScholarPubMed
Prat, C. S., Yamasaki, B. L., Kluender, R. A., & Stocco, A. (2016). Resting-state qEEG predicts rate of second language learning in adults. Brain and Language, 157–158, 4450. https://doi.org/10.1016/j.bandl.2016.04.007CrossRefGoogle ScholarPubMed
Raji, C. A., Meysami, S., Merrill, D. A., Porter, V. R., & Mendez, M. F. (2020). Brain structure in bilingual compared to monolingual individuals with Alzheimer’s disease: Proof of concept. Journal of Alzheimer’s Disease, 76(1), 275280. https://doi.org/10.3233/JAD-200200CrossRefGoogle ScholarPubMed
Rosselli, M., Loewenstein, D. A., Curiel, R. E., Penate, A., Torres, V. L., Lang, M., Greig, M. T., Barker, W. W., & Duara, R. (2019). Effects of bilingualism on verbal and nonverbal memory measures in mild cognitive impairment. Journal of the International Neuropsychological Society, 25(1), 1528. https://doi.org/10.1017/S135561771800070XCrossRefGoogle ScholarPubMed
Sala, A., Malpetti, M., Farsad, M., Lubian, F., Magnani, G., Frasca Polara, G., Epiney, J., Abutalebi, J., Assal, F., Garibotto, V., & Perani, D. (2022). Lifelong bilingualism and mechanisms of neuroprotection in Alzheimer dementia. Human Brain Mapping, 43(2), 581592. https://doi.org/10.1002/hbm.25605CrossRefGoogle ScholarPubMed
Schweizer, T. A., Ware, J., Fischer, C. E., Craik, F. I. M., & Bialystok, E. (2012). Bilingualism as a contributor to cognitive reserve: Evidence from brain atrophy in Alzheimer’s disease. Cortex, 48(8), 991996. https://doi.org/10.1016/j.cortex.2011.04.009CrossRefGoogle ScholarPubMed
Smirnov, D. S., Stasenko, A., Salmon, D. P., Galasko, D., Brewer, J. B., & Gollan, T. H. (2019). Distinct structural correlates of the dominant and nondominant languages in bilinguals with Alzheimer’s disease (AD). Neuropsychologia, 132, 107131. https://doi.org/10.1016/j.neuropsychologia.2019.107131CrossRefGoogle ScholarPubMed
Soares, D. P., & Law, M. (2009). Magnetic resonance spectroscopy of the brain: Review of metabolites and clinical applications. Clinical Radiology, 64(1), 1221. https://doi.org/10.1016/j.crad.2008.07.002CrossRefGoogle ScholarPubMed
Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 114. https://doi.org/10.3389/fnins.2013.00031CrossRefGoogle ScholarPubMed
Stern, Y., Albert, M., Barnes, C. A., Cabeza, R., Pascual-Leone, A., & Rapp, P. R. (2023). A framework for concepts of reserve and resilience in aging. Neurobiology of Aging, 124, 100–103. https://doi.org/10.1016/j.neurobiolaging.2022.10.015CrossRefGoogle Scholar
Stocco, A., & Prat, C. S. (2014). Bilingualism trains specific brain circuits involved in flexible rule selection and application. Brain and Language, 137, 5061. https://doi.org/10.1016/j.bandl.2014.07.005CrossRefGoogle ScholarPubMed
Sulpizio, S., Del Maschio, N., Del Mauro, G., Fedeli, D., & Abutalebi, J. (2020). Bilingualism as a gradient measure modulates functional connectivity of language and control networks. NeuroImage, 205, 116306. https://doi.org/10.1016/j.neuroimage.2019.116306CrossRefGoogle ScholarPubMed
Sun, X., Li, L., Ding, G., Wang, R., & Li, P. (2019). Effects of language proficiency on cognitive control: Evidence from resting-state functional connectivity. Neuropsychologia, 129, 263275. https://doi.org/10.1016/j.neuropsychologia.2019.03.020CrossRefGoogle ScholarPubMed
Surrain, S., & Luk, G. (2019). Describing bilinguals: A systematic review of labels and descriptions used in the literature between 2005–2015. Bilingualism: Language and Cognition, 22(2), 401415. https://doi.org/10.1017/S1366728917000682CrossRefGoogle Scholar
Thieba, C., Long, X., Dewey, D., & Lebel, C. (2019). Young children in different linguistic environments: A multimodal neuroimaging study of the inferior frontal gyrus. Brain and Cognition, 134, 7179. https://doi.org/10.1016/j.bandc.2018.05.009CrossRefGoogle ScholarPubMed
Titone, D. A., & Tiv, M. (2022). Rethinking multilingual experience through a systems framework of bilingualism. Bilingualism: Language and Cognition, 26(1), 116. https://doi.org/10.1017/S1366728921001127CrossRefGoogle Scholar
Tu, L., Niu, M., Pan, X., Hanakawa, T., Liu, X., Lu, Z., Gao, W., Ouyang, D., Zhang, M., Li, S., Wang, J., Jiang, B., & Huang, R. (2021). Age of acquisition of Mandarin modulates cortical thickness in high-proficient Cantonese–Mandarin bidialectals. Journal of Psycholinguistic Research, 50(4), 723736. https://doi.org/10.1007/s10936-020-09716-5CrossRefGoogle ScholarPubMed
Vaughn, K. A., Nguyen, M. V. H., Ronderos, J., & Hernandez, A. E. (2021). Cortical thickness in bilingual and monolingual children: Relationships to language use and language skill. NeuroImage, 243, 118560. https://doi.org/10.1016/j.neuroimage.2021.118560CrossRefGoogle ScholarPubMed
Voits, T., DeLuca, V., & Abutalebi, J. (2022). The nuance of bilingualism as a reserve contributor: Conveying research to the broader neuroscience community. Frontiers in Psychology, 13. www.frontiersin.org/articles/10.3389/fpsyg.2022.90926610.3389/fpsyg.2022.909266CrossRefGoogle Scholar
Voits, T., Pliatsikas, C., Robson, H., & Rothman, J. (2020). Beyond Alzheimer’s disease: Can bilingualism be a more generalized protective factor in neurodegeneration? Neuropsychologia, 147, 107593. https://doi.org/10.1016/j.neuropsychologia.2020.107593CrossRefGoogle ScholarPubMed
Voits, T., Robson, H., Rothman, J., & Pliatsikas, C. (2022). The effects of bilingualism on hippocampal volume in ageing bilinguals. Brain Structure and Function, 227(3), 979994. https://doi.org/10.1007/s00429-021-02436-zCrossRefGoogle ScholarPubMed
Voits, T., Rothman, J., Aguirre, N., Cattaneo, G., Calabria, M., Costumero, V., Hernández, M., Juncadella Puig, M., Marín-Marín, L., Robson, H., Suades, A., Costa, A., & Pliatsikas, C. (2023). Hippocampal adaptations in mild cognitive impairment patients are modulated by bilingual language experiences. Bilingualism: Language and Cognition, 27(2), 263273. https://doi.org/10.1017/S1366728923000354CrossRefGoogle Scholar
Wang, R., Ke, S., Zhang, Q., Zhou, K., Li, P., & Yang, J. (2020). Functional and structural neuroplasticity associated with second language proficiency: An MRI study of Chinese-English bilinguals. Journal of Neurolinguistics, 56, 100940. https://doi.org/10.1016/j.jneuroling.2020.100940CrossRefGoogle Scholar
Weekes, B. S., Abutalebi, J., Mak, H. K., Borsa, V. M., Soares, S. M. P., Chiu, P.-W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: A proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 512. https://doi.org/dx.doi.org/10.15448/1984-7726.2018.1.30954CrossRefGoogle Scholar
Wenger, E., Brozzoli, C., Lindenberger, U., & Lövdén, M. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in Cognitive Sciences, 21(12), 930939. https://doi.org/10.1016/j.tics.2017.09.008CrossRefGoogle ScholarPubMed
Yee, J., Deluca, V., & Pliatsikas, C. (2023): The effects of multilingualism on brain structure, language control and language processing: Insights from MRI. In Cabrelli, J. et al. (Eds.), The Cambridge Handbook of Third Language Acquisition and Processing (pp. 577605). Cambridge University Press.10.1017/9781108957823.023CrossRefGoogle Scholar
Yee, J., Kořenář, M., Sheehan, A., & Pliatsikas, C. (2024). Subcortical malleability as a result of cognitively challenging experiences: the case of bi-/multilingualism. Current Opinion in Behavioral Sciences, 59, 101438. https://doi.org/1016/j.cobeha.2024.101438CrossRefGoogle Scholar
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48(9), 11971206. https://doi.org/10.1016/j.cortex.2011.05.022CrossRefGoogle ScholarPubMed

References

Al-Hoorie, A., Oga-Baldwin, W. L. Q., Hiver, P., & Vitta, J. P. (2022). Self-determination mini-theories in second language learning: A systematic review of three decades of research. Language Teaching Research, 0(0). https://doi.org/10.1177/13621688221102686Google Scholar
Anderson, J. A. E., Yurtsever, A., Fisher-Skau, O., Cherep, L. A., MacPhee, I., Luk, G., & Grundy, J. G. (2023). Consistency in bilingualism and white matter research: A meta-analysis. Bilingualism – Mind – Brain Lab Talk, University of California-Irvine, June 19, 2023.Google Scholar
Ando, J., Ono, Y., & Wright, M. J. (2001). Genetic structure of spatial and working memory. Behavior Genetics, 31(6), 615624. https://doi.org/10.1023/A:1013353613591CrossRefGoogle ScholarPubMed
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Science, 11(67). https://doi.org/10.3390/brainsci11010067CrossRefGoogle Scholar
Asano, R., & Boecks, C. (2015). Syntax in language and music: What is the right level of comparision. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00942CrossRefGoogle Scholar
Baddeley, A. D. (2012). Working memory: Theories, models and controversies. Annual Review of Psychology, 63, 130. https://doi.org/10.1146/annurev-psych-120710-100422CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2015). Working memory in second language learning. In Wen, Z., Mota, M., & McNeill, A. (Eds.), Working Memory in Second Language Acquisition and Processing (pp. 1728). Multilingual Matters.Google Scholar
Baddeley, A. D., & Hitch, M. (1974). Working memory. Psychology of Learning and Motivation, 8, 4789. https://doi.org/10.1016/S0079-7421(08)60452-1CrossRefGoogle Scholar
Baddeley, A., Hitch, G., & Allen, R. (2021). A multicomponent model of working memory. In Logie, R., Camos, V., & Cowan, N. (Eds.), Working Memory: The State of the Science (pp. 1043). Oxford Academic.Google Scholar
Balcom, P. (2003). Cross-linguistic influence of L2 English on middle constructions in L1 French. In Cook, V. (Ed.), Effects of the Second Language on the First (pp. 168192). Multilingual Matters.Google Scholar
Ballinger, E., Ananth, M., Talmage, D. A., & Role, L. (2016). Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron, 91(6), 11991218. https://doi.org/10.1016/j.neuron.2016.09.006CrossRefGoogle ScholarPubMed
Barbeau, E. B., Kousaie, S., Brass, K., Descoteaux, M., Petrides, D., & Klein, D. (2023). The importance of the dorsal branch of the arcuate fasciculus in phonological working memory, Cerebral Cortex, 33 (16), 95549565. https://doi.org/10.1093/cercor/bhad226CrossRefGoogle ScholarPubMed
Bauer, J.-R., Martinez, J. E., Roe, M. A., & Church, J. A. (2017). Consistent performance differences between children and adults despite manipulation of cue-target variables. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01304CrossRefGoogle ScholarPubMed
Berry, A. S., Blakely, R. D., Sarter, M., & Lustig, C. (2015). Cholinergic capacity mediates prefrontal engagement during challenges to attention: Evidence from imaging genetics. NeuroImage, 108, 386395. https://doi.org/10.1016/j.neuroimage.2014.12.036CrossRefGoogle ScholarPubMed
Besson, D., & Schön, D. (2001). Comparison between language and music. Annals of the New York Academy of Sciences, 930(1), 232258. https://doi.org/10.1111/j.1749-6632.2001.tb05736.xCrossRefGoogle ScholarPubMed
Bialystok, E., & Hakuta, K. (1999). Confounded age: Linguistic and cognitive factors in age differences for second language acquisition. In Birdsong, D. (Ed.), Second Language Acquisition and the Critical Period Hypothesis (pp. 161181). Erlbaum.Google Scholar
Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2010). Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 23, 425434. https://doi.org/10.1162/jocn.2009.21362CrossRefGoogle Scholar
Bidelman, G. M., Hutka, S., & Moreno, S. (2013). Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. PLoS ONE, 8, e60676. https://doi.org/10.1371/journal.pone.0060676CrossRefGoogle ScholarPubMed
Biedroń, A., & Birdsong, D. (2019). Highly proficient and gifted bilinguals. In Ortega, L. & De Houwer, A. (Eds.), Cambridge Handbook of Bilingualism (pp. 307323). Cambridge University Press.Google Scholar
Birdsong, D. (1992). Ultimate attainment in second language acquisition. Language, 68, 706755. https://doi.org/10.2307/416851CrossRefGoogle Scholar
Birdsong, D. (2005). Interpreting age effects in second language acquisition. In Kroll, J. & DeGroot, A. (Eds.), Handbook of Bilingualism: Psycholinguistic Perspectives (pp. 109127). Oxford University Press.Google Scholar
Birdsong, D. (2006). Age and second language acquisition and processing: A selective overview. Language Learning, 56, 949. https://doi.org/10.1111/j.1467-9922.2006.00353.xCrossRefGoogle Scholar
Birdsong, D. (2009). Age and the end state of second language acquisition. In Ritchie, W. & Bhatia, T. (Eds.), The New Handbook of Second Language Acquisition (pp. 401424). Emerald.Google Scholar
Birdsong, D. (2012). Three perspectives on non-uniform linguistic attainment. Linguistic Approaches to Bilingualism, 2, 255259. https://doi.org/10.1075/lab.2.3.02birCrossRefGoogle Scholar
Birdsong, D. (2014a). Dominance and age in bilingualism. Applied Linguistics, 35, 374392. https://doi.org/10.1093/applin/amu031CrossRefGoogle Scholar
Birdsong, D. (2014b). The Critical Period Hypothesis for second language acquisition: Tailoring the coat of many colors. In Pawlak, M. & Aronin, L. (Eds.), Essential Topics in Applied Linguistics and Multilingualism. Studies in Honor of David Singleton (pp. 4350). Springer.10.1007/978-3-319-01414-2_3CrossRefGoogle Scholar
Birdsong, D. (2016). Dominance in bilingualism: Foundations of measurement, with insights from the study of handedness. In Silva-Corvalán, C. & Treffers-Daller, J. (Eds.), Language Dominance in Bilinguals: Issues of Operationalization and Measurement (pp. 85105). Cambridge University Press.Google Scholar
Birdsong, D. (2018). Plasticity, variability and age in second language acquisition and bilingualism. Frontiers in Psychology, 9: 81. https://doi.org/10.3389/fpsyg.2018.00081CrossRefGoogle ScholarPubMed
Birdsong, D. (2021). Analyzing variability in L2 ultimate attainment. Language, Interaction and Acquisition, 12, 133156. https://doi.org/10.1075/lia.21001.birCrossRefGoogle Scholar
Birdsong, D. (2022). Critical Periods. In Aronoff, M. (Ed.), Oxford Bibliographies in Linguistics. Oxford University Press. www.oxfordbibliographies.com/browse?module_0=obo-9780199772810Google Scholar
Birdsong, D. (2023). Whither bilinguals, natives, and variability? A commentary on Janet van Hell “The neurocognitive underpinnings of second language processing: Knowledge gains from the past and future outlook.” Language Learning, 73(S2), 147150.10.1111/lang.12597CrossRefGoogle Scholar
Birdsong, D. (Ed). (1999). Second Language Acquisition and the Critical Period Hypothesis. Lawrence Erlbaum.10.4324/9781410601667CrossRefGoogle Scholar
Birdsong, D., & Gertken, L. M. (2013). In faint praise of folly: A critical review of native/non-native comparisons, with examples from native and bilingual processing of French complex syntax. Language, Interaction and Acquisition, 4, 107133. https://doi.org/10.1075/lia.4.2.01birCrossRefGoogle Scholar
Birdsong, D., & Molis, M. (2001). On the evidence for maturational effects in second language acquisition. Journal of Memory and Language, 44, 235249. https://doi.org/10.1006/jmla.2000.2750CrossRefGoogle Scholar
Birdsong, D., & Vanhove, J. (2016). Age of second language acquisition: Critical periods and social concerns. In Nicoladis, E. & Montanari, S. (Eds.), Bilingualism across the Lifespan (pp. 163181). APA/De Gruyter.Google Scholar
Bolibaugh, C., & Foster, P. (2021). Implicit statistical learning in naturalistic and instructed morphosyntactic attainment: An aptitude‐treatment interaction design. Language Learning, 71(4), 9591003. https://doi.org/10.1111/lang.12465CrossRefGoogle Scholar
Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 212(4498), 10551059. https://doi.org/10.1126/science.7195071CrossRefGoogle ScholarPubMed
Bowden, H. W., Sanz, C., & Stafford, C. A. (2005). Individual differences: Age, sex, working memory, and prior knowledge. In Sanz, C. (Ed.), Mind and Context in Adult Second Language Acquisition: Methods, Theory, and Practice (pp. 105140). Georgetown University Press.Google Scholar
Bueno, D. (2019) Genetics and learning: How the genes influence educational attainment. Frontiers in Psychology, 10, 1622. https://doi.org/10.3389/fpsyg.2019.01622CrossRefGoogle ScholarPubMed
Buttelmann, F., Könen, T., Hadley, L. V., Meaney, J. A., Auyeung, B., Morey, C. C., Chevalier, N., & Karbach, J. (2020). Age-related differentiation in verbal and visuospatial working memory processing in childhood. Psychological Research, 84(8), 23542360. https://doi.org/10.1007/s00426-019-01219CrossRefGoogle ScholarPubMed
Caplan, D., & Waters, G. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22(1), 7794. https://doi.org/10.1017/S0140525X99001788CrossRefGoogle ScholarPubMed
Carstensen, L. L., & Hartel, C. R. (Eds.) (2006). When I’m 64. National Research Council (US) Committee on Aging Frontiers in Social Psychology, Personality, and Adult Developmental Psychology. National Academies Press (US).Google Scholar
Cesarini, D., & Visscher, P. M. (2017). Genetics and educational attainment. npj Science of Learning, 2(4). https://doi.org/10.1038/s41539-017-0005-6CrossRefGoogle ScholarPubMed
Chan, A. S., Ho, Y. C., & Cheung, M. C. (1998). Music training improves verbal memory. Nature, 396 (6707), 128. https://doi.org/10.1038/24075CrossRefGoogle ScholarPubMed
Chang, C. B. (2012). Rapid and multifaceted effects of second-language learning on first-language speech production. Journal of Phonetics, 40(2), 249268.10.1016/j.wocn.2011.10.007CrossRefGoogle Scholar
Chang, D., Hedberg, N., & Wang, Y. (2016). Effects of musical and linguistic experience on categorization of lexical and melodic tones. Journal of the Acoustical Society of America, 139, 24322447. https://doi.org/10.1121/1.4947497CrossRefGoogle ScholarPubMed
Chen, S., Yang, Y., & Wayland, R. (2021). Categorical perception of Mandarin pitch directions by Cantonese-speaking musicians and non-musicians. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.713949Google ScholarPubMed
Chobert, J., & Besson, M. (2013). Musical expertise and second language learning. Brain Sciences, 3(2), 923940. https://doi.org/10.3390/brainsci3020923CrossRefGoogle ScholarPubMed
Choi, W. (2021). Musicianship influences language effect on musical pitch perception. Frontiers in Pyschology, 12. https://doi.org/10.3389/fpsyg.2021.712753Google ScholarPubMed
Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769786. https://doi.org/10.3758/BF03196772CrossRefGoogle ScholarPubMed
Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive growth? Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11(2), 239264. https://doi.org/10.1177/1745691615621279CrossRefGoogle ScholarPubMed
Craik, F. I. M., & Salthouse, T. A. (Eds.) (2000). The Handbook of Aging and Cognition II. Erlbaum.Google Scholar
Csizér, K., & Dörnyei, Z. (2005). The internal structure of language learning motivation and its relationship with language choice and learning effort. Modern Language Journal, 89, 1936. https://doi.org/10.1111/j.0026-7902.2005.00263.xCrossRefGoogle Scholar
Cunnings, I. (2017). Parsing and working memory in bilingual sentence processing.Bilingualism: Language and Cognition, 20(4), 659678. https://doi.org/10.1017/S1366728916000675CrossRefGoogle Scholar
Dąbrowska, E. (2018). Experience, aptitude and individual differences in native language ultimate attainment. Cognition, 178, 222235. https://doi.org/10.1016/j.cognition.2018.05.018CrossRefGoogle ScholarPubMed
Dąbrowska, E. (2019). Experience, aptitude, and individual differences in linguistic attainment: A comparison of native and nonnative speakers. Language Learning, 69, 72100. https://doi.org/10.1111/lang.12323CrossRefGoogle Scholar
Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicontinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699-729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214CrossRefGoogle Scholar
Daselaar, S., & Cabeza, R. (2013). Age-related-decline in working memory and episodic memory: Contributions of the prefrontal cortex and medial temporal lobes. In Ochsner, K. N. & Kosslyn, S. (Eds.), The Oxford Handbook of Cognitive Neuroscience, Volume 1: Core Topics (pp. 456472). Oxford University Press.Google Scholar
De Bot, K., Lowie, W., & Verspoor, M. (2007). A dynamic systems theory approach to second language acquisition. Bilingualism: Language and Cognition, 10(1), 721. https://doi.org/10.1017/S1366728906002732CrossRefGoogle Scholar
DeKeyser, R. (2012). Age effects in second language learning. In Gass, S. M. & Mackey, A. (Eds.), The Routledge Handbook of Second Language Acquisition (pp. 442460). Routledge.Google Scholar
DeKeyser, R., Alfi-Shabtay, I., & Ravid, D. (2010). Cross-linguistic evidence for the nature of age effects in second language acquisition. Applied Psycholinguistics, 31(3), 413438. https://doi.org/10.1017/S0142716410000056CrossRefGoogle Scholar
DeLuca, V., Miller, D., Pliatsikas, C., & Rothman, J. (2019). Brain adaptations and neurological indices of processing in adult second language acquisition: Challenges to the critical period hypothesis. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 170196). Wiley.10.1002/9781119387725.ch8CrossRefGoogle Scholar
Dijkstra, T., & van Heuven, W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5(3), 175197. https://doi.org/10.1017/S1366728902003012CrossRefGoogle Scholar
Dörnyei, Z. (2005). Psychology of the Language Learner: Individual Differences in Second Language Acquisition. Erlbaum.Google Scholar
Dörnyei, Z. (2009). The L2 motivational self system. In Dörnyei, Z. & Ushioda, E. (Eds.), Motivation, Language Identity and the L2 Self (pp. 942). Multilingual Matters.10.21832/9781847691293-003CrossRefGoogle Scholar
Dörnyei, Z. (2019). From integrative motivation to directed motivational currents: The evolution of the understanding of L2 motivation over three decades. In Lamb, M. et al. (Eds.), The Palgrave Handbook of Motivation for Language Learning (pp. 3969). Palgrave Macmillan.10.1007/978-3-030-28380-3_3CrossRefGoogle Scholar
Dörnyei, Z., & Mentzelopoulos, K. (2022). Lessons from Exceptional Language Learners Who Have Achieved Nativelike Proficiency. Multilingual Matters.Google Scholar
Dörnyei, Z., & Ushioda, E. (2021). Teaching and Researching Motivation (3rd ed.) Routledge.10.4324/9781351006743CrossRefGoogle Scholar
Dörnyei, Z., MacIntyre, P. D., & Henry, A. (2015). Introduction: Applying complex dynamic systems principles to empirical research on L2 motivation. In Dörnyei, Z., MacIntyre, P. D., & Henry, A. (Eds.), Motivational Dynamics in Language Learning (pp. 17). Multilingual Matters.Google Scholar
English, B. A., Hahn, M. K., Gizer, I. R., Mazei-Robison, M., Steele, A., Kurnik, D. M., Stein, M. A., Waldman, I. D., & Blakely, R. D. (2009). Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. Journal of Neurodevelopmental Disorders, 1, 252263. https://doi.org/10.1007/s11689-009-9033-8CrossRefGoogle ScholarPubMed
Ettlinger, M., Bradlow, A., & Wong, P. C. M. (2014). Variability in the learning of complex morphophonology. Applied Psycholinguistics, 35, 807831. https://doi.org/10.1017/S0142716412000586CrossRefGoogle Scholar
Farmer, T. A., Misyak, J. B., & Christiansen, M. H. (2012). Individual differences in sentence processing. In Spivey, M. J., McRae, K., & Joanisse, M. F. (Eds.), The Cambridge Handbook of Psycholinguistics (pp. 353364). Cambridge University Press.10.1017/CBO9781139029377.018CrossRefGoogle Scholar
Felser, C., & Roberts, L. (2007). Processing wh-dependencies in a second language: A cross-modal priming study. Second Language Research, 23(1), 936. https://doi.org/10.1177/0267658307071600CrossRefGoogle Scholar
Feng, L., & Papi, M. (2020). Persistence in language learning: The role of grit and future self-guides. Learning and Individual Differences, 81, 101904. https://doi.org/10.1016/j.lindif.2020.101904CrossRefGoogle Scholar
Fenk-Oczlon, G. (2022). Iconic associations between vowel acoustics and musical patterns, and the Musical Protolanguage Hypothesis. Frontiers in Communication, 7. https://doi.org/10.3389/fcomm.2022.887739CrossRefGoogle Scholar
Fenk-Oczlon, G., & Fenk, A. (2009). Some parallels between language and music from a cognitive and evolutionary perspective. Musicae Scientiae, 13, 201226. https://doi.org/10.1177/1029864909013002101CrossRefGoogle Scholar
Flege, J. E., & Bohn, O.-S. (2021). The revised speech learning model (SLM-r). In Wayland, R. (Ed.), Second Language Speech Learning: Theoretical and Empirical Progress (pp. 383). Cambridge University Press.10.1017/9781108886901.002CrossRefGoogle Scholar
Flege, J. E., & Eefting, W. (1987a). Cross-language switching in stop consonant perception and production by Dutch speakers of English. Speech Communication, 6, 185202. https://doi.org/10.1016/0167-6393(87)90025-2CrossRefGoogle Scholar
Flege, J. E., & Eefting, W. (1987b). Production and perception of English stops by native Spanish speakers. Journal of Phonetics, 15, 6783.10.1016/S0095-4470(19)30538-8CrossRefGoogle Scholar
Flege, J. E., Schirru, C., & MacKay, I. R. A. (2003). Interaction between the native and second language phonetic subsystems. Speech Communication, 40(4), 467491. https://doi.org/10.1016/S0167-6393(02)00128-0CrossRefGoogle Scholar
Flege, J. E., Yeni-Komshian, G. H., & Liu, S. (1999). Age constraints on second-language acquisition. Journal of Memory and Language, 41, 78104. https://doi.org/10.1006/jmla.1999.2638CrossRefGoogle Scholar
François, C., Chobert, J., Besson, M., & Schön, D. (2012) Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 20382043. https://doi.org/10.1093/cercor/bhs180CrossRefGoogle ScholarPubMed
Franklin, M. S., Sledge Moore, K., Yip, C.-Y., Jonides, J., Rattray, K., & Moher, J. (2008). The effects of musical training on verbal memory. Psychology of Music, 36(3), 353365. https://doi.org/10.1177/0305735607086044CrossRefGoogle Scholar
Freeman, G. B., & Gibson, G. E. (1988). Dopamine, acetylcholine, and glutamate interactions in aging. Behavioral and neurochemical correlates. Annals of the New York Academy of Sciences, 515, 191202. https://doi.org/10.1111/j.1749-6632.1988.tb32984.x.CrossRefGoogle ScholarPubMed
Fritz, J., Poeppel, D., Trainor, L. et al. (2013). The neurobiology of language, speech, and music. In Arbib, M. A. (Ed.), Language, Music, and the Brain: A Mysterious Relationship. MIT Press. https://doi.org/10.7551/mitpress/9780262018104.003.0017Google Scholar
Gallo, F., Bermudez-Margaretto, B., Shtyrov, Y., Abutalebi, J., Kreiner, H., Chitaya, T., Petrova, A., & Myachykov, A. (2021). First language attrition: What it is, what it isn’t and what it can be. Frontiers in Human Neurosicence, 07. https://doi.org/10.3389/fnhum.2021.686388Google Scholar
Gardner, R. C., & Lambert, W. E. (1972). Attitudes and Motivation in Second-Language Learning. Newbury House.Google Scholar
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40, 177190. https://doi.org/10.1037/0012-1649.40.2.177CrossRefGoogle ScholarPubMed
Gottfried, T. L., Staby, A. M., & Ziemer, C. J. (2004). Musical experience and Mandarin tone discrimination and imitation. Journal of the Acoustical Society of America, 115, 2545. https://doi.org/10.1121/1.4783674CrossRefGoogle Scholar
Gottfried, T. L., & Ouyang, G. Y.-H. (2005). Production of Mandarin tone contrasts by musicians and non-musicians. Journal of the Acoustical Society of America, 118, 2025. https://doi.org/10.1121/1.4785767CrossRefGoogle Scholar
Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23(1), 4351. https://doi.org/10.1016/j.conb.2012.11.006CrossRefGoogle ScholarPubMed
Grosjean, F. (1989). Neurolinguists, beware! The bilingual is not two monolinguals in one person. Brain and Language, 36, 315. https://doi.org/10.1016/0093-934X(89)90048-5CrossRefGoogle Scholar
Grosjean, F. (2010). Bilingual: Life and Reality. Harvard University Press.10.4159/9780674056459CrossRefGoogle Scholar
Hakuta, K., Bialystok, E., & Wiley, E. (2003). Critical evidence: A test of the critical-period hypothesis for second-language acquisition. Psychological Science, 14, 3138. https://doi.org/10.1111/1467-9280.01415CrossRefGoogle ScholarPubMed
Halliday, D. W. R., Gawryluk, J. R., Garcia-Barrera, M. A., & MacDonald, S. W. S. (2019). White matter integrity is associated with intraindividual variability in neuropsychological test performance in healthy older adults. Frontiers in Human Neuroscience, 13, 352. https://doi.org/10.3389/fnhum.2019.00352CrossRefGoogle ScholarPubMed
Hamrick, P., Graff, C., & Finch, B. (2019). Contributions of episodic memory to novel word learning. The Mental Lexicon, 14(3), 381398. https://doi.org/10.1075/ml.19019.hamCrossRefGoogle Scholar
Han, J.-I., Kim, J.-Y., & Tsukada, K. (2023). Foreign accent in L1 (first language): Case of Korean immigrants in North America. Linguistic Approaches to Bilingualism, 14(5), 740758. https://doi.org/10.1075/lab.22028.hanCrossRefGoogle Scholar
Harrington, M. (2006). The lexical decision task as a measure of L2 proficiency. EUROSLA Yearbook, 6, 147168. https://doi.org/10.1075/eurosla.6.10harCrossRefGoogle Scholar
Hartshorne, J. K. (2022). When do children lose the language instinct? A critical review of the critical periods literature. Annual Review of Linguistics, 8, 143151. https://doi.org/10.1146/annurev-linguistics-032521-053234CrossRefGoogle Scholar
Hartshorne, J. K., Tenenbaum, J. B., & Pinker, S. (2018). A critical period for second language acquisition: Evidence from 2/3 million English speakers. Cognition, 177, 263277. https://doi.org/10.1016/j.cognition.2018.04.007CrossRefGoogle ScholarPubMed
Harvey, L. (2017). Language learning motivation as ideological becoming. System, 65, 6977. https://doi.org/10.1016/j.system.2016.12.009CrossRefGoogle Scholar
Hasselmo, M. E. (2006) The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710715. https://doi.org/10.1016/j.conb.2006.09.002CrossRefGoogle ScholarPubMed
Havik, E., Roberts, L., Van Hout, R., Schreuder, R., & Haverkort, M. (2009). Processing subject-object ambiguities in the L2: A self-paced reading study with German L2 learners of Dutch. Language Learning, 59, 73112. https://doi.org/10.1111/j.1467-9922.2009.00501.xCrossRefGoogle Scholar
Haworth, C. M., Wright, M. J., Luciano, M., et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15(11),11121120. https://doi.org/10.1038/mp.2009.55CrossRefGoogle ScholarPubMed
Henry, A. (2017). L2 motivation and multilingual identities. The Modern Language Journal, 101(3), 548565. https://doi.org/10.1111/modl.12412CrossRefGoogle Scholar
Hernandez, A. E., Bodet, J. P. III, Gehm, K., & Shen, S. (2021). What does a critical period for second language acquisition mean? Reflections on Hartshorne et al. (2018). Cognition, 206, 104478. https://doi.org/10.1016/j.cognition.2020.104478CrossRefGoogle Scholar
Hernandez, A. E., Claussenius-Kalman, H. L., Ronderos, J., Castilla-Earls, A. P., Sun, L., Weiss, S. D., et al. (2019). Neuroemergentism: Response to commentaries. Journal of Neurolinguistics, 49, 258262. https://doi.org/10.1016/j.jneuroling.2018.06.001CrossRefGoogle ScholarPubMed
Ho, Y.-C., Cheung, M.-C., & Chan, A. S. (2003). Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children. Neuropsychology, 17(3), 439450. https://doi.org/10.1037/0894-4105.17.3.439CrossRefGoogle Scholar
Hopp, H. (2014). Working memory effects in the L2 processing of ambiguous relative clauses. Language Acquisition, 21(3), 250278. https://doi.org/10.1080/10489223.2014.892943CrossRefGoogle Scholar
Huang, Q., Liao, C., Ge, F., Aoi, J., & Liu, T. (2022). Acetylcholine bidirectionally regulates learning and memory. Journal of Neurorestoratology, 10(2), 100002. https://doi.org/10.1016/j.jnrt.2022.100002CrossRefGoogle Scholar
Hulstijn, J. H., van Gelderen, A., & Schoonen, R. (2009). Automatization in second language acquisition: What does the coefficient of variation tell us? Applied Psycholinguistics, 30(4), 555582. https://doi.org/10.1017/S0142716409990014CrossRefGoogle Scholar
Hyltenstam, K. (Ed.) (2016). Advanced Proficiency and Exceptional Ability in Second Language. Mouton de Gruyter.10.1515/9781614515173CrossRefGoogle Scholar
Hyltenstam, K., & Abrahamsson, N. (2000). Who can become native-like in a second language? All, some, or none? On the maturational constraints controversy in second language acquisition. Studia Linguistica, 54, 150166. https://doi.org/10.1111/1467-9582.00056CrossRefGoogle Scholar
Indefrey, P. (2006). It is time to work toward explicit processing models for native and second language speakers. Applied Psycholinguistics, 27, 6669. https://doi.org/10.1017/S0142716406280032Google Scholar
Jänke, L. (2012). The relationship between music and language. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00123Google Scholar
Jantzen, M. G., Howe, B. M., & Jantzen, K. J. (2014) Neurophysiological evidence that musical training influences the recruitment of right hemispheric homologues for speech perception. Frontiers in Psychology, 3(5), 171. https://doi.org/10.3389/fpsyg.2014.00171Google Scholar
Jiang, N., & Forster, K. (2001). Cross-language priming asymmetries in lexical decision and episodic recognition. Journal of Memory and Language, 44, 3251. https://doi.org/10.1006/jmla.2000.2737CrossRefGoogle Scholar
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21, 6099. https://doi.org/10.1016/0010-0285(89)90003-0CrossRefGoogle ScholarPubMed
Juffs, A., & Harrington, M. (2011). Aspects of working memory in L2 learning. Language Teaching, 44, 137166. https://doi.org/10.1017/S0261444810000509CrossRefGoogle Scholar
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122149. https://doi.org/10.1037/0033-295X.99.1.122CrossRefGoogle ScholarPubMed
Kane, M. J., Conway, A. R. A., Hambrick, D. Z., & Engle, R. W. (2007). Variation in working memory capacity as variation in executive attention and control. In Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. N. (Eds.), Variation in Working Memory (pp. 2149). Oxford University Press.Google Scholar
Karlsgodt, K. H., Bachman, P., Winkler, A. M., Bearden, C. E., & Glahn, D. C. (2011). Genetic influence on the working memory circuitry: Behavior, structure, function and extensions to illness. Behavioral and Brain Research, 225(2), 610622. https://doi.org/10.1016/j.bbr.2011.08.016CrossRefGoogle ScholarPubMed
Karlsgodt, K. H., Kochunov, P., Winkler, A. M, … & Glahn, D. C. (2010). A multimodal assessment of the genetic control over working memory. Journal of Neuroscience, 30(24), 81978202. https://doi.org/10.1523/JNEUROSCI.0359-10.2010CrossRefGoogle ScholarPubMed
Kidd, E., Donnelly, S., & Christiansen, M. H. (2018). Individual differences in language acquisition and processing. Trends in Cognitive Sciences, 22(2), 154169. https://doi.org/10.1016/j.tics.2017.11.006CrossRefGoogle ScholarPubMed
Kim, A. E., Oines, L., & Miyake, A. (2018). Individual differences in verbal working memory underlie a tradeoff between semantic and structural processing difficulty during language comprehension: An ERP investigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 406420. https://doi.org/10.1037/xlm0000457Google ScholarPubMed
Kim, J. H., & Christianson, K. (2013). Sentence complexity and working memory effects in ambiguity resolution. Journal of Psycholinguistic Research, 42(5), 393411. https://doi.org/10.1007/s10936-012-9224-4CrossRefGoogle ScholarPubMed
Klencklen, G., Lavenex, P. B., Grandner, C., & Lavenex, P. (2017). Working memory decline in normal aging: Is it really worse in space than in color? Learning and Motivation, 57, 4860. https://doi.org/10.1016/j.lmot.2017.01.007CrossRefGoogle Scholar
Knowles, E. E., Mathias, S. R., McKay, D. R., Sprooten, E., Blangero, J., Almasy, L., & Glahn, D. C. (2014). Genome-wide analyses of working-memory ability: A review. Current Behavioral Neuroscience Reports, 1(4), 224233. https://doi.org/10.1007/s40473-014-0028-8CrossRefGoogle ScholarPubMed
Köpke, B., & Genevska-Hanke, D. (2018). First language attrition and dominance: Same same or different? Frontiers in Psychology, 9, 1963. https://doi.org/10.3389/fpsyg.2018.01963CrossRefGoogle ScholarPubMed
Köpke, B., & Schmid, M. S. (2004). Language attrition: The next phase. In Schmid, M. S., Köpke, B., Keijzer, M., & Weilemar, L. (Eds.), First Language Attrition: Interdisciplinary Perspectives on Methodological Issues (pp. 145). John Benjamins. https://doi.org/10.1075/sibil.28.02kopGoogle Scholar
Kormos, J., & Csizér, K. (2014). The interaction of motivation, self‐regulatory strategies, and autonomous learning behavior in different learner groups. TESOL Quarterly, 48(2), 275299. https://doi.org/10.1002/tesq.129CrossRefGoogle Scholar
Kornder, L., & Mennen, I. (2021). Longitudinal developments in bilingual second language acquisition and first language attrition of speech: The case of Arnold Schwarzenegger. Languages, 6(2), 61, 1–25. https://doi.org/10.3390/languages6020061CrossRefGoogle Scholar
Kousaie, S., Chen, J. K., Baum, S. R., Phillips, N. A., Titone, D., & Klein, D. (2021). Bilingual language experience and the neural underpinnings of working memory. Neuropsychologia, 163, 19. https://doi.org/10.1016/j.neuropsychologia.2021.108081CrossRefGoogle ScholarPubMed
Kovas, Y., Voronin, I., Kaydalov, A., Malykh, S. B., Dale, P. S., & Plomin, R. (2013). Literacy and numeracy are more heritable than intelligence in primary school. Psychological Science, 24(10), 20482056. https://doi.org/10.1177/0956797613486982CrossRefGoogle ScholarPubMed
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11, 599605.10.1038/nrn2882CrossRefGoogle ScholarPubMed
Kremen, W. S., Jacobsen, K. C., Xian, H., Eisen, S. A., Eaves, L. J., Tsuang, M. T., & Lyons, M. J. (2007). Genetics of verbal working memory processes: A twin study of middle-aged men. Neuropsychology, 21(5), 569580. https://doi.org/10.1037/0894-4105.21.5.569CrossRefGoogle ScholarPubMed
Kroll, J. F., Bogulski, C. A., & McClain, R. (2012). Psycholinguistic perspectives on second language learning and bilingualism: The course and consequence of cross-language competition. Linguistic Approaches to Bilingualism, 2(1), 124. https://doi.org/10.1075/lab.2.1.01kroCrossRefGoogle Scholar
Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519523. https://doi.org/10.1038/35097076CrossRefGoogle Scholar
Lamb, M., Csizér, K., Henry, A., & Ryan, S. (2019). The Palgrave Handbook of Motivation for Language Learning. Palgrave Macmillan.10.1007/978-3-030-28380-3CrossRefGoogle Scholar
Laufer, B. (2003). The influence of L2 on L1 collocational knowledge and on L1 lexical diversity in free written expression. In Cook, V. (Ed.), Effects of the Second Language on the First (pp. 1931). Multilingual Matters.Google Scholar
Leaderbrand, K., Chen, H. J., Corcoran, K. A., Guedea, A. L., Jovasevic, V., Wess, J., & Radulovic, J. (2016). Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory. Learning & Memory, 23(11), 631638. https://doi.org/10.1101/lm.043133.116CrossRefGoogle ScholarPubMed
Lee, C.Y., & Hung, T. H. (2008). Identification of Mandarin tones by English-speaking musicians and non-musicians. Journal of the Acoustical Society of America, 124, 32353248. https://doi.org/10.1121/1.2990713CrossRefGoogle Scholar
Li, S., Hiver, P., & Papi, M. (2022). The Routledge Handbook of Second Language Acquisition and Individual Differences. Routledge. https://doi.org/10.4324/9781003270546CrossRefGoogle Scholar
Li, W., & Hartshorne, J. K. (2022). Even simultaneous bilinguals do not reach monolingual levels of proficiency in syntax. Languages, 7, 293. https://doi.org/10.3390/languages7040293CrossRefGoogle Scholar
Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F. (2014). Working memory and second language comprehension and production: A meta-analysis. Psychonomic Bulletin & Review, 21(4), 861883. https://doi.org/10.3758/s13423-013-0565-2CrossRefGoogle ScholarPubMed
Logie, R. H., Belletier, C., & Doherty, J. M. (2021). Integrating theories of working memory. In Logie, R., Camos, V., & Cowan, N. (Eds.), Working Memory: The State of the Science (pp. 389430). Oxford Academic. https://doi.org/10.1093/oso/9780198842286.003.0014Google Scholar
Long, M. H. (1990). Maturational constraints on language development. Studies in Second Language Acquisition, 12, 251285. https://doi.org/10.1017/S0272263100009165CrossRefGoogle Scholar
Lybeck, K. (2002). Cultural identification and second language pronunciation of Americans in Norway. The Modern Language Journal, 86(2), 174191. https://doi.org/10.1111/1540-4781.00143CrossRefGoogle Scholar
MacIntyre, P. D., & Serroul, A. (2014). Motivation on a per-second timescale: Examining approach-avoidance motivation during L2 task performance. In Dörnyei, Z., Macintyre, P. D., & Henry, A. (Eds.), Motivational Dynamics in Language Learning (pp. 109138). Multilingual Matters.Google Scholar
MacWhinney, B. (2001). The competition model: The input, the context, and the brain. In Robinson, P. (Ed.), Cognition and Second Language Instruction (pp. 6990). Cambridge University Press. https://doi.org/10.1017/CBO9781139524780.005CrossRefGoogle Scholar
Madden, D. J., Bennett, I. J., Burzynska, A., Potter, G. G., Chen, N. K., & Song, A. W. (2012) Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochimica et Biophysica Acta (BBA): Molecular Basis of Disease, 1822(3), 386400. https://doi.org/10.1016/j.bbadis.2011.08.003CrossRefGoogle ScholarPubMed
Magnusson, J. E., & Stroud, C. (2012). High proficiency in markets of performance: A sociocultural approach to nativelikeness. Studies in Second Language Acquisition, 34(2), 321345. https://doi.org/10.1017/S0272263112000071CrossRefGoogle Scholar
Mamiya, P. C., Richards, T. L., Coe, B. P., & Kuhl, P. K. (2016). Brain white matter structure and COMT gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences, 113(26), 72497254. https://doi.org/10.1073/pnas.1606602113CrossRefGoogle ScholarPubMed
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 1312913134. https://doi.org/10.1073/pnas.1811793115CrossRefGoogle ScholarPubMed
Marie, C., Delogu, F., Lampis, G., Olivetti Belardinelli, M., & Besson, M. (2011). Influence of musical expertise on segmental and tonal processing in Mandarin Chinese. Journal of Cognitive Neuroscience, 23, 27012715. https://doi.org/10.1162/jocn.2010.21585CrossRefGoogle ScholarPubMed
Marques, C., Moreno, S., Luís Castro, S., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19,14531463. https://doi.org/10.1162/jocn.2007.19.9.1453CrossRefGoogle Scholar
Masgoret, A. M., & Gardner, R. C. (2003). Attitudes, motivation and second language learning: A meta-analysis of studies conducted by Gardner and his associates. Language Learning, 53(1), 123163. https://doi.org/10.1111/1467-9922.00212CrossRefGoogle Scholar
Mashburn, C.A., Tsukahara, J. S., & Engle, R. W. (2021). Individual differences in attention control: Implications for the relationship between working memory capacity and fluid intelligence (pp. 175211). Oxford Academic. https://doi.org/10.1093/oso/9780198842286.003.0007Google Scholar
Mayberry, R. I., & Kluender, R. (2018). Rethinking the critical period for language: New insights into an old question from American Sign Language. Bilingualism: Language and Cognition, 21, 886905. https://doi.org/10.1017/S1366728917000724CrossRefGoogle ScholarPubMed
McMullen, E., & Saffran, J. R. (2004). Music and language: A developmental comparison. Music Perception, 21(3), 289311. https://doi.org/0.1525/mp.2004.21.3.289CrossRefGoogle Scholar
McNab, F., Zeidman, P., Rutledge, R. B. …, & Dolan, R. J. (2015). Age-related changes in working memory and the ability to ignore distraction. Publications of the National Academy of Sciences, 112(20), 65156518. https://doi.org/10.1073/pnas.1504162112CrossRefGoogle Scholar
Meulman, N., Wieling, M., Sprenger, S. A., Stowe, L. A., & Schmid, M. S. (2015). Age effects in L2 grammar processing as revealed by ERPs and how (not) to study them. PLoS ONE, 10(12). https://doi.org/10.1371.journal.pone.0143328CrossRefGoogle Scholar
Michalczyk, K., Malstädt, N., Worgt, M., Könen, T., & Hasselhorn, M. (2013). Age differences and measurement invariance of working memory in 5- to 12-year-old children. European Journal of Psychological Assessment, 29(3), 220229. https://doi.org/10.1027/1015-5759/a000149CrossRefGoogle Scholar
Mountford, H. S., Braden, R., Newbury, D. F., & Morgan, A. T. (2022). The genetic and molecular basis of developmental language disorder: A review. Children, 9(5), 586. https://doi.org/10.3390/children9050586CrossRefGoogle ScholarPubMed
Muñoz-Pradas, R., Díaz-Palacios, M., Rodriguez-Martinez, E., & Gómez, C. M. (2021). Order of maturation of the components of working memory from childhood to emerging adulthood. Current Research in Behavioral Sciences, 2, 100062. https://doi.org/10.1016/j.crbeha.2021.100062CrossRefGoogle Scholar
Naiman, N., Fröhlich, M., Stern, H. H., & Todesco, A. (1978). The Good Language Learner. Ontario Institute for Studies in Education (OISE).Google Scholar
Newbury, D. F., & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68(2), 309320. https://doi.org/10.1016/j.neuron.2010.10.001CrossRefGoogle Scholar
Newman, A. J., Tremblay, A., Nichols, E. S., Neville, H. J., & Ullman, M. T. (2012). The influence of language proficiency on lexical semantic processing in native and late learners of English. Journal of Cognitive Neuroscience, 24(5), 12051223. https://doi.org/10.1162/jocn_a_00143CrossRefGoogle ScholarPubMed
Newman, E. L., Gupta, K., Climer, J. R., Monaghan, C. K., & Hasselmo, M. E. (2012). Cholinergic modulation of cognitive processing: Insights drawn from computational models. Frontiers in Behavioral Neuroscience, 6(24). https://doi.org/10.3389/fnbeh.2012.00024CrossRefGoogle ScholarPubMed
Newport, E. L., Bavelier, D., & Neville, H. J. (2001). Critical thinking about critical periods: Perspectives on a critical period for language acquisition. In Dupoux, E. (Ed.), Language, Brain and Cognitive Development: Essays in Honor of Jacques Mehler (pp. 481502). MIT Press.Google Scholar
Nie, P., Wang, C., Rong, G., Du, B., Lu, J., Li, S., Putkinen, V., Tao, S., & Tervaniemi, M. (2022). Effects of music training on the auditory working memory of Chinese-speaking school-aged children: A longitudinal study. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.770425CrossRefGoogle Scholar
Noels, K. A., Lou, N. M., Lascano, D. I. V., Chaffee, K. E., Dincer, A., Zhang, Y. S. D., & Zhang, X. (2019). Self-determination and motivated engagement in language learning. In Lamb, M., Csizér, K., Henry, A., & Ryan, S. (Eds.), The Palgrave Handbook of Motivation for Language Learning (pp. 95115). Palgrave Macmillan.10.1007/978-3-030-28380-3_5CrossRefGoogle Scholar
Norton, B. (2000). Identity and Language Learning: Gender, Ethnicity and Educational Change. Longman.Google Scholar
Novén, M., Olsson, H., Helms, G., Horne, M., Nilsson, M., & Roll, M. (2021). Cortical and white matter correlates of language-learning aptitudes. Human Brain Mapping, 42(15), 50375050.10.1002/hbm.25598CrossRefGoogle ScholarPubMed
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., and Bäckman, L. (2012). Memory, aging and brain maintenance. Trends in Cognitive Sciences, 16, 292305. https://doi.org/10.1016/j.tics.2012.04.005CrossRefGoogle ScholarPubMed
Ogg, M., & Slevc, R. L. (2019). Neural mechanisms of music and language. In de Zubicary, G. I. & Schiller, N. O. (Eds.), The Oxford Handbook of Neurolinguistics (pp. 907952). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190672027.013.35Google Scholar
Okbay, A., Beauchamp, J., Fontana, M., et al. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542. https://doi.org/10.1038/nature17671CrossRefGoogle ScholarPubMed
Papi, M., & Hiver, P. (2020). Language learning motivation as a complex dynamic system: A global perspective of truth, control and value. The Modern Language Journal, 104(1), 209232. https://doi.org/10.1111/modl.12624CrossRefGoogle Scholar
Papi, M., & Teimouri, Y. (2012). Dynamics of selves and motivation: A cross-sectional study in the EFL context of Iran. IRAL: International Journal of Applied Linguistics, 22(3), 287309. https://doi.org/10.1111/j.1473-4192.2012.00312.xGoogle Scholar
Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009b). Musician enhancement for speech in noise. Ear and Hearing, 30, 653661. https://doi.org/10.1097/AUD.0b013e3181b412e9CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., and Kraus, N. (2011b). Musical experience and the aging auditory system: Implications for cognitive abilities and hearing speech in noise. PLoS ONE, 6(5), e10182.https://doi.org/10.1371/journal.pone.0018082CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Strait, D. L., & Kraus, N. (2011a). Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia, 49, 33383345. https://doi.org/10.1016/j.neuropsychologia.2011.08.007CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Tierney, A., Strait, D. L., and Kraus, N. (2012). Musicians have fine-tuned neural distinction of speech syllables. Neuroscience, 219, 111119. https://doi.org/10.1016/j.neuroscience.2012.05.042CrossRefGoogle ScholarPubMed
Park, D. C. (1999). The basic mechanisms accounting for age-related decline in cognitive function. In Park, D. & Schwarz, N. (Eds.), Cognitive Aging: A Primer (pp. 321). Psychology Press. https://doi.org/10.4324/9780203727027Google Scholar
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 114. https://doi.org/10.3389/fpsyg.2011.00142CrossRefGoogle ScholarPubMed
Patel, A. D. (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research, 308, 98108. https://doi.org/10.1016/j.heares.2013.08.011CrossRefGoogle ScholarPubMed
Peretz, I., Nguyen, S., & Cummings, S. (2011). Tone language fluency impairs pitch discrimination. Frontiers in Psychology, 2.https://doi.org/10.3389/fpsyg.2011.00145CrossRefGoogle ScholarPubMed
Pesnot Lerousseau, J., Hidalgo, C., & Schön, D. (2020). Musical training for auditory rehabilitation in hearing loss. Journal of Clinical Medicine, 9(4), 1058. https://doi.org/10.3390/jcm9041058CrossRefGoogle ScholarPubMed
Pfenninger, S. E., & Singleton, D. (2019). Starting age overshadowed: The primacy of differential environmental and family support effects on second language attainment in an instructional context. Language Learning, 69(S1), 207234. https://doi.org/10.1111/lang.12318CrossRefGoogle Scholar
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron, 76(1), 116129. https://doi.org/10.1016/j.neuron.2012.08.036CrossRefGoogle ScholarPubMed
Piller, I. (2002). Passing for a native speaker: Identity and success in second language learning. Journal of Sociolinguistics, 6, 179206. https://doi.org/10.1111/1467-9481.00184CrossRefGoogle Scholar
Pliatsikas, C., Veríssimo, J., Babcock, L., Pullman, M. Y., Glei, D. A., Weinstein, M., Goldman, N., & Ullman, M. T. (2019). Working memory in older adults declines with age, but is modulated by sex and education. Quarterly Journal of Experimental Psychology, 72(6), 13081327. https://doi.org/10.1177/1747021818791994CrossRefGoogle ScholarPubMed
Prins, N., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: An update. Nature Reviews Neurology, 11, 157165. https://doi.org/10.1038/nrneurol.2015.10CrossRefGoogle ScholarPubMed
Qi, Z., Beach, S. D., Finn, A. S., Minas, J., Goetz, C., Chan, B., & Gabrieli, J. D. E. (2017). Native-language N400 and P600 predict dissociable language-learning abilities in adults. Neuropsychologia, 98, 177191. https://doi.org/10.1016/j.neuropsychologia.2016.10.005CrossRefGoogle ScholarPubMed
Rebuschat, P., Rohrmeier, M., Hawkins, J. A., & Cross, I. (2012). Language and Music as Cognitive Systems. Oxford University Press.Google Scholar
Reiterer, S. M. (2019). Neuro-psycho-cognitive markers for pronunciation/speech imitation as language aptitude. In Wen, Z., Skehan, P., Biedroń, A., Li, S., & Sparks, S. L. (Eds.), Language Aptitude: Advancing Theory, Testing, Research and Practice (pp. 277299). Taylor & Francis.10.4324/9781315122021-14CrossRefGoogle Scholar
Rimfeld, K., Malanchini, M., Krapohl, E., et al. (2018). The stability of educational achievement across school years is largely explained by genetic factors. npj Science of Learning, 3(16). https://doi.org/10.1038/s41539-018-0030-0CrossRefGoogle ScholarPubMed
Robinson, P. (2002). Learning conditions, aptitude complexes and SLA: A framework for research and pedagogy. In Robinson, P. (Ed.), Individual Differences and Instructed Language Learning (pp. 113133). John Benjamins.10.1075/lllt.2.08robCrossRefGoogle Scholar
Rubenfeld, S., Clément, R., Lussier, D., Lebrun, M., & Auger, R. (2006). Second language learning and cultural representations: Beyond competence and identity. Language Learning, 56 (4), 609632. https://doi.org/10.1111/j.1467-9922.2006.00390.xCrossRefGoogle Scholar
Rubin, J. (1975). What the “good language learner” can teach us. TESOL Quarterly, 9, 4151. https://doi.org/10.2307/3586011CrossRefGoogle Scholar
Saito, K. (2024). Age effects in spoken second language vocabulary attainment beyond the critical period. Studies in Second Language Acquisition, 46(1), 327. https://doi.org/10.1017/S0272263122000432CrossRefGoogle Scholar
Salthouse, T. A. (2011) Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137(5), 753784. https://doi.org/10.1037/a0023262CrossRefGoogle ScholarPubMed
Schmidt, R. (1983). Interaction, acculturation and the acquisition of communication competence: A case study of an adult. In Wolfson, N. & Judd, E. (Eds.), Sociolinguistics and Language Acquisition (pp. 137174). Newbury House.Google Scholar
Schneiderman, E. I., & Desmarais, C. (1988). A neuropsychological substrate for talent in second-language acquisition. In Obler, L. K. & Fein, D. (Eds.), The Exceptional Brain. Neuropsychology of Talent and Special Abilities (pp. 103126). The Guilford Press.Google Scholar
Schwartz, A. I., & Kroll, J. F. (2006). Bilingual lexical activation in sentence context. Journal of Memory and Language, 55(2), 197212. https://doi.org/10.1016/j.jml.2006.03.004CrossRefGoogle Scholar
Schwering, S. C., & MacDonald, M. C. (2020) Verbal working memory as emergent from language comprehension and production. Frontiers in Human Neuroscience, 14, 68. https://doi.org/10.3389/fnhum.2020.00068CrossRefGoogle ScholarPubMed
Schwieter, J. W., & Wen, Z. (2022). The Cambridge Handbook of Working Memory in Language and Linguistics. Cambridge University Press.10.1017/9781108955638CrossRefGoogle Scholar
Setter, J., & Jenkins, J. (2005). State-of-the-Art Review Article. Language Teaching, 38(1), 117. https://doi.org/10.1017/S026144480500251XCrossRefGoogle Scholar
Shook, A., & Marian, V. (2013). The bilingual language interaction network for comprehension of speech. Bilingualism: Language and Cognition, 16(2), 304324. https://doi.org/10.1017/S1366728912000466CrossRefGoogle Scholar
Shook, A., Marian, V., Bartolotti, J., & Schroeder, S. R. (2013). Musical experience influences statistical learning of a novel language. The American Journal of Psychology, 126(1), 95104. https://doi.org/10.5406/amerjpsyc.126.1.0095CrossRefGoogle ScholarPubMed
Singleton, D., & Leśniewska, J. (2021). The critical period hypothesis for L2 acquisition: An unfalsifiable embarrassment? Languages, 6(3), 149. https://doi.org/10.3390/languages6030149CrossRefGoogle Scholar
Skehan, P. (1998). A Cognitive Approach to Language Learning. Oxford University Press.Google Scholar
Skehan, P. (2016). Foreign language aptitude. In Granena, G., Jackson, D. O., & Yilmaz, Y. (Eds.), Cognitive Individual Differences in L2 Processing and Acquisition (pp. 381395). John Benjamins.Google Scholar
Slevc, L. R., Davey, N. S., Buschkuehl, M., & Jaeggi, S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199211. https://doi.org/10.1016/j.cognition.2016.03.017CrossRefGoogle ScholarPubMed
Slevc, L. R., & Miyake, A. (2006). Individual differences in second-language proficiency: Does musical ability matter? Psychological Science, 17(8), 675681. https://doi.org/s10.1111/j.1467-9280.2006.01765.xCrossRefGoogle ScholarPubMed
Slevc, L. R., & Okada, B. M. (2015). Processing structure in language and music: A case for shared reliance on cognitive control. Psychonomic Bulletin & Review, 22(3), 637652. https://doi.org/10.3758/s13423-014-0712-4CrossRefGoogle Scholar
Smith, A. W., Holden, K. R., Dwivedi, A., Dupont, B. R., & Lyons, M. J. (2015). Deletion of 16q24.1 supports a role for the ATP2C2 gene in specific language impairment. Journal of Child Neurology, 30, 517521. https://doi.org/10.1177/0883073814545113CrossRefGoogle ScholarPubMed
Sparks, R. L. (2012). Individual differences in L2 learning and long-term L1-L2 relationships. Language Learning, 64(s2), 527. https://doi.org/10.1111/j.1467-9922.2012.00704.xCrossRefGoogle Scholar
Sparks, R. L., Patton, J., & Ganschow, L. (2012). Profiles of more and less successful L2 learners: A cluster analysis study. Learning and Individual Differences, 22(4), 463472. https://doi.org/10.1016/j.lindif.2012.03.009CrossRefGoogle Scholar
Sparks, R. L., Patton, J., Ganschow, L., Humbach, N., & Javorsky, J. (2006). Native language predictors of foreign language proficiency and foreign language aptitude. Annals of Dyslexia, 56(1), 129160. https://doi.org/10.1007/s11881-006-0006-2CrossRefGoogle ScholarPubMed
Steinhauer, K., & Kasparian, K. (2020). Brain plasticity in adulthood: ERP evidence for L1-attrition in lexicon and morphosyntax after predominant L2 use. Language Learning, 70(S2), 171193.10.1111/lang.12391CrossRefGoogle Scholar
Stevick, E. (1989). Success with foreign languages: Seven who achieved it and what worked for them. Prentice Hall.Google Scholar
Stromswold, K. (1998). Genetics of spoken language disorders. Human Biology, 70, 297324. www.ncbi.nlm.nih.gov/pubmed/9549241Google ScholarPubMed
Swanson, H. L. (2017). Verbal and visual-spatial working memory: What develops over a life span? Developmental Psychology, 53(5), 971995. https://doi.org/10.1037/dev0000291CrossRefGoogle Scholar
Swets, B., Desmet, T., Hambrick, D. Z., & Ferreira, F. (2007). The role of working memory in syntactic ambiguity resolution: A psychometric approach. Journal of Experimental Psychology: General, 136(1), 6481. https://doi.org/10.1037/0096-3445.136.1.64CrossRefGoogle ScholarPubMed
Takahashi, N., Nishimura, T., Harada, T., Okumura, A., Iwabuchi, T., Rahman, M. S., Kuwabara, H., Takagai, S., Nomura, Y., Takei, N., & Tsuchiya, K. J. (2021). Association between genetic risks for obesity and working memory in children. Frontiers in Neuroscience, 22(15), 749230. https://doi.org/10.3389/fnins.2021.749230CrossRefGoogle Scholar
Thevenon, J., Souchay, C., Seabold, G., …, & Faivre, L. (2016). Heterozygous deletion of the LRFN2 gene is associated with working memory deficits. European Journal of Human Genetics, 24, 911918. https://doi.org/10.1038/ejhg.2015.221CrossRefGoogle ScholarPubMed
Troutman, S. B. W., & Diaz, M. T. (2020). White matter disconnection is related to age-related phonological deficits. Brain Imaging and Behavior, 14(5), 15551565. doi. 10.1007/s11682–019-00086-8CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., Briley, D. A., & Harden, K. P. (2013). Genetic and environmental influences on cognition across development and context. Current Directions in Psychological Science, 22(5), 349355. https://doi.org/10.1177/0963721413485087CrossRefGoogle ScholarPubMed
Turker, S., & Reiterer, S. (2021). Brain, musicality, and language aptitude: A complex interplay. Annual Review of Applied Linguistics, 41, 95107. https://doi.org/10.1017/S0267190520000148CrossRefGoogle Scholar
Ullman, M. T., Miranda, R. A., & Travers, M. L. (2007). Sex differences in the neurocognition of language. In Becker, J. B. et al. (Eds.), Sex Differences in the Brain: From Genes to Behavior (pp. 291310). Oxford Academic. https://doi.org/10.1093/acprof:oso/9780195311587.003.0015CrossRefGoogle Scholar
Unsworth, N., Heitz, R., Schrock, J. C., & Engle, R. (2005). An automated version of the operation span task. Behavioral Research Methods, 37, 498505. https://doi.org/10.3758/BF03192720CrossRefGoogle ScholarPubMed
Ushioda, E. (2009). A person-in-context relational view of emergent motivation, self and identity. In Dörnyei, Z. & Ushioda, E. (Eds.), Motivation, Language Identity and the L2 Self (pp. 215228). Multilingual Matters.Google Scholar
Ushioda, E. (2016). Language learning motivation through a small lens: A research agenda. Language Teaching, 49(4), 564577. https://doi.org/10.1017/S0261444816000173CrossRefGoogle Scholar
Ushioda, E. (2019a). Motivation in second language acquisition. In Chapelle, C. (Ed.), The Encyclopedia of Applied Linguistics (pp. 16). Wiley. https://doi.org/10.1002/9781405198431Google Scholar
Ushioda, E. (2019b). Researching L2 motivation: Past, present and future. In Lamb, M. et al. (Eds.), The Palgrave Handbook of Motivation for Language Learning (pp. 661682). Palgrave Macmillan.10.1007/978-3-030-28380-3_32CrossRefGoogle Scholar
van der Lely, H. K., & Stollwerck, L. (1996). A grammatical specific language impairment in children: An autosomal dominant inheritance? Brain and Language, 52(3), 484504. https://doi.org/10.1006/brln.1996.0026CrossRefGoogle ScholarPubMed
Van Hedger, S. C., Johnsrude, I. S., & Batterink, L. J. (2022) Musical instrument familiarity affects statistical learning of tone sequences. Cognition, 218, 104949. https://doi.org/10.1016/j.cognition.2021.104949CrossRefGoogle ScholarPubMed
van Hell, J. G. (2023). The neurocognitive underpinnings of second language processing: Knowledge gains from the past and future outlook. Language Learning, 73(S2), 95138.10.1111/lang.12601CrossRefGoogle Scholar
van Hell, J., & Abdollahi, F. (2017). Individual variation in syntactic processing in the second language: behavioral and electrophysiological approaches. In Segers, E. & van de Broek, P. (Eds.), Developmental Perspectives in Written Language and Literacy (pp. 257273). John Benjamins. https://doi.org/10.1075/z.206.16vanGoogle Scholar
van Hell, J. G., & Dijkstra, T. (2002). Foreign language knowledge can influence native language performance in exclusively native contexts. Psychonomic Bulletin & Review, 9(4), 780789. https://doi.org/10.3758/BF03196335CrossRefGoogle ScholarPubMed
van Hell, J. G., & Tanner, D. (2012). Second language proficiency and cross-language lexical activation. Language Learning, 62(S2), 148171. https://doi.org/10.1111/j.1467-9922.2012.00710.xCrossRefGoogle Scholar
van Leeuwen, M., van den Berg, S. M., Hoekstra, R. A., & Boomsma, D. I. (2009). The genetic and environmental structure of verbal and visuospatial memory in young adults and children. Neuropsychology, 23(6), 792802. https://doi.org/10.1037/a0016526CrossRefGoogle ScholarPubMed
Vanhove, J. (2013). The critical period hypothesis in second language acquisition: A statistical critique and a reanalysis. PLoS ONE, 8(7), e69172. https://doi.org/10.1371/journal/.pone.0069172CrossRefGoogle ScholarPubMed
Walters, K. (2011). Gendering French in Tunisia: Language ideologies and nationalism. International Journal of the Sociology of Language, 211, 83111. https://doi.org/10.1515/ijsl.2011.039Google Scholar
Waninge, F., Dörnyei, Z., & de Bot, K. (2014). Motivational dynamics in language learning: Change, stability and context. The Modern Language Journal, 9(1), 704723. https://doi.org/10.1111/modl.12118Google Scholar
Weiss, M. W., & Bidelman, G. M. (2015). Listening to the brainstem: Musicianship enhances intelligibility of subcortical representations for speech. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(4), 16871691. https://doi.org/10.1523/JNEUROSCI.3680-1CrossRefGoogle Scholar
Wen, Z. (2016). Working Memory and Second Language Learning: An Integrated Approach. Multilingual Matters.Google Scholar
Wen, Z. (2018). Working memory in first and second language: A comprehensive bibliography. Expanded and updated (November 24, 2018) from Wen (2016). www.academia.edu/12198656Google Scholar
Wen, Z. (2021). Working memory. In Mohebbi, H. & Coombe, C. (Eds.), Research Questions in Language Education and Applied Linguistics (pp. 279284). Springer.10.1007/978-3-030-79143-8_50CrossRefGoogle Scholar
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173196. https://doi.org/10.1146/annurev-psych-010814-015104CrossRefGoogle ScholarPubMed
White, E. J., Hutka, S. A., Williams, L. J., & Moreno, S. (2013). Learning, neural plasticity and sensitive periods: Implications for language acquisition, music training and transfer across the lifespan. Frontiers in Psychology, 7. https://doi.org/10.3389/fnsys.2013.00090Google ScholarPubMed
Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-back task. Frontiers in Psychology, 2, 186. https://doi.org/10.3389/fpsyg.2011.00186CrossRefGoogle Scholar
Wing, H. D. (1968). Tests of Musical Ability and Appreciation: An Investigation into the Measurement, Distribution, and Development of Musical Capacity (2nd ed.). Cambridge University Press.Google Scholar
Wong, P. C. M., Kang, X., So, H.-C., & Choy, K. W. (2022). Contributions of common genetic variants to specific languages and to when a language is learned. Nature Scientific Reports, 12, 580. https://doi.org/10.1038/s41598-021-04163-1CrossRefGoogle Scholar
Wong, P. C., Morgan-Short, K., Ettlinger, M., & Zheng, J. (2012). Linking neurogenetics and individual differences in language learning: The dopamine hypothesis. Cortex, 48(9), 10911102. https://doi.org/10.1016/j.cortex.2012.03.017CrossRefGoogle ScholarPubMed
Wright, M., De Geus, E., Ando, J., Luciano, M., Posthuma, D., Ono, Y., …, & Boomsma, D. (2001). Genetics of cognition: Outline of a collaborative twin study. Twin Research, 4(1), 4856. https://doi.org/10.1375/twin.4.1.48CrossRefGoogle ScholarPubMed
You, C., & Dörnyei, Z. (2016). Language learning motivation in China: Results of a large-scale stratified survey. Applied Linguistics, 37(4), 495519. https://doi.org/10.1093/applin/amu046CrossRefGoogle Scholar
Young, R., & Perkins, K. (1995). Cognition and conation in second language acquisition theory. IRAL: International Review of Applied Linguistics in Language Teaching, 33(2), 142164.Google Scholar
Zhang, F., Roland, C., Rasul, D., Cahn, S., Liang, C., & Valencia, G. (2019.) Comparing musicians and non-musicians in signal-in-noise perception. International Journal of Audiology, 58(11), 717723. https://doi.org/10.1080/14992027.2019.1623424CrossRefGoogle ScholarPubMed
Zhang, L., Xie, S., Li, Y., Shu, H., & Zhang, Y. (2020). Perception of musical melody and rhythm as influenced by native language experience. Journal of the Acoustical Society of America, 147, EL385EL390. https://doi.org/10.1121/10.0001179CrossRefGoogle ScholarPubMed
Zhang, R., & Zou, D. Z. (2022) Self-regulated second language learning: A review of types and benefits of strategies, modes of teacher support, and pedagogical implications. Computer Assisted Language Learning, 37(4), 720765. https://doi.org/10.1080/09588221.2022.2055081CrossRefGoogle Scholar
Zhang, Y., & Papi, M. (2021). Motivation and second language pragmatics: A regulatory focus perspective. Frontiers in Psychology, 12, 753605. https://doi.org/10.3389/fpsyg.2021.753605CrossRefGoogle ScholarPubMed
Zhang, Y., Ridchenko, M., Hayashi, A., & Hamrick, P. (2021). Episodic memory contributions to second language lexical development persist at higher proficiencies. Applied Cognitive Psychology, 35(2), 13561361. https://doi.org/10.1002/acp.3865CrossRefGoogle Scholar
Zhao, X., Xiao, W., & Zhang, J. (2022). L2 motivational self system, international posture and the sustainable development of L2 proficiency in the COVID-19 era: A case of English majors in China. Sustainability, 14, 8087. https://doi.org/10.3390/su14138087CrossRefGoogle Scholar
Zheng, C., Liang, J. C., Li, M., & Tsai, C. C. (2018). The relationship between English language learners’ motivation and online self-regulation: A structural equation modelling approach. System, 76, 144157. https://doi.org/10.1016/j.system.2018.05.003CrossRefGoogle Scholar
Zhou, H., Rossi, S., & Chen, B. (2017). Effects of working memory capacity and tasks in processing L2 complex sentences: Evidence from Chinese-English bilinguals. Frontiers in Psychology, 8, 595. https://doi.org/10.3389/fpsyg.2017.00595CrossRefGoogle ScholarPubMed

References

Abutalebi, J. (2008). Neural processing of second language representation and control. Acta Psychologica, 128, 466478. http://dx.doi.org/10.1016/j.actpsy.2008.03.014CrossRefGoogle Scholar
Abutalebi, J., Della Rosa, P. A., Ding, G., Weekes, B., Costa, A., & Green, D. W. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49, 905911. https://doi.org/10.1016/j.cortex.2012.08.018CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 2076e2086.10.1093/cercor/bhr287CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. W. (2007). Bilingual language production: the neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275. https://doi.org/10.1016/j.jneuroling.2006.10.003CrossRefGoogle Scholar
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(4), 689698. https://doi.org/10.1017/S1366728916000225CrossRefGoogle Scholar
Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain and Language, 109, 5154. http://dx.doi.org/10.1016/j.bandl.2009.04.001CrossRefGoogle ScholarPubMed
Andrews, E. (2011). Language and brain: Recasting meaning in the definition of human language. Semiotica, 184(1/4), 1132. https://doi.org/10.1515/semi.2011.020Google Scholar
Andrews, E. (2014). Neuroscience and Multilingualism. Cambridge University Press.10.1017/CBO9781139567770CrossRefGoogle Scholar
Andrews, E. (2019). Cognitive neuroscience and multilingualism. In Schwieter, J. W. (Ed.), The Handbook of The Neuroscience of Multilingualism. Wiley Blackwell.Google Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Sci, 11, 67.10.3390/brainsci11010067CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2023). DTI analysis of white matter integrity and cognitive brain reserve in lifelong musicians and controls. J Psychiatry Psychiatric Disord, 7(2), 6779.10.26502/jppd.2572-519X0187CrossRefGoogle Scholar
Andrews, E., Frigau, L., Voyvodic-Casabo, C., Voyvodic, J., & Wright, J. (2013). Multilingualism and fMRI: Longitudinal study of second language acquisition. Brain Sciences, 3(2), 849876. https://doi.org/10.3390%2Fbrainsci3020849CrossRefGoogle ScholarPubMed
Andrews, E., Harshbarger, T., & Rammell, C. S. (2019). Multilingual listening and reading: An fMRI study of Russian/ English and Spanish/English bilinguals. Glossos, 14.Google Scholar
Bialystok, E. (2011). Coordination of executive functions in monolingual and bilingual children. Journal of Experimental Child Psychology, 110, 461468. https://doi.org/10.1016%2Fj.jecp.2011.05.005CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459464. https://doi.org/10.1016/j.neuropsychologia.2006.10.009CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240250. https://doi.org/10.1016%2Fj.tics.2012.03.001CrossRefGoogle ScholarPubMed
Birdsong, D. (2006). Age and second language acquisition and processing: A selective overview. Language Learning, 56, 949. https://doi.org/10.1111/j.1467-9922.2006.00353.xCrossRefGoogle Scholar
Bolinger, D. (1949/1965). The sign is not arbitrary. Reprinted in Abe, I. & Kanekiyo, T. (Eds.), Forms of English: Accent, Morpheme, Order. Harvard University Press.Google Scholar
Bolinger, D. (1986). Intonation and Its Parts: Melody in Spoken English. Stanford University Press.Google Scholar
Bolinger, D. (1989). Intonation and Its Uses: Melody in Grammar and Discourse. Stanford University Press.10.1515/9781503623125CrossRefGoogle Scholar
Breiner-Sanders, K. E., Swender, E., & Terry, R. (2002). ACTFL proficiency guidelines (revised). Foreign Language Annuals, 35(1), 915.Google Scholar
Brice, H., Frost, S., Bick, A. S., Molfese, P. J., Rueckl, J. G., Pugh, K. R., & Frost, R. (2021). Tracking second language immersion across time: Evidence from a bi-directional longitudinal cross-linguistic fMRI study. Neuropsychologia, 154(3), 107796. https://doi.org/10.1016/j.neuropsychologia.2021.107796CrossRefGoogle ScholarPubMed
Calvin, W. H., & Ojemann, G. A. (1994). Conversations with Neil’s Brain: The Neural Nature of Thought and Language. Addison-Wesley/Harper & Row.Google Scholar
Child, J., Clifford, R.T., & Lowe, P. Jr. (1993). Proficiency and performance in language testing. Applied Language Learning, 4(1&2), 1954.Google Scholar
Claussenius-Kalman, H., Hernandez, A. E., & Li, P. (2021). Expertise, ecosystem, and emergentism: Dynamic developmental bilingualism. Brain and Language, 222, 105013. https://doi.org/10.1016/j.bandl.2021.105013CrossRefGoogle ScholarPubMed
Corina, D. P, Loudermilk, B. C., Detwiler, L., Martin, R. F., Brinkley, J. F., & Ojemann, G. A. (2010). Analysis of naming errors during cortical stimulation mapping: Implications for models of language representation. Brain and Language, 115, 101112. https://doi.org/10.1016/j.bandl.2010.04.001CrossRefGoogle ScholarPubMed
Cox, R. (2019). Equitable thresholding and clustering: A novel method for fMRI clustering in AFNI. Brain Connectivity, 9(7). https://doi.org/10.1089/brain.2019.0666CrossRefGoogle ScholarPubMed
Craik, F. I. M, Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: Bilingualism as a form of cognitive reserve. Neurology, 75(19), 17261729. https://doi.org/10.1212/wnl.0b013e3181fc2a1cCrossRefGoogle ScholarPubMed
Dash, T., Joanette, Y., Ansaldo, A. I. (2022). Exploring attention in the bilingualism continuum: A resting-state functional connectivity study. Brain and Language, 224, 105048. https://doi.org/10.1016/j.bandl.2021.105048CrossRefGoogle ScholarPubMed
Davis, J. McE., Norris, J. M., Malone, M. E., McKay, T. H., & Son, Y.-A. (Eds.) (2018). Useful Assessment and Evaluation in Language Education. Georgetown University Press. https://doi.org/10.2307/j.ctvvngrqCrossRefGoogle Scholar
de Bot, K. (2008). The imaging of what in the bilingual mind? Second Language Research, 24(1), 111133. http://dx.doi.org/10.1177/0267658307083034CrossRefGoogle Scholar
de Bot, K. (2009). Multilingualism and aging. In Ritchie, W. C. & Bhatia, T. K. (Eds.), The New Handbook of Second Language Acquisition (pp. 425442). Emerald Group Publishing Ltd.Google Scholar
de Bot, K. (2019). Defining and assessing multilingualism. In Schwieter, J. W. (Ed.), The Handbook of The Neuroscience of Multilingualism. Wiley Blackwell.Google Scholar
Demirci, O., Clark, V. P., Magnotta, V. A., et al. (2008). A review of challenges in the use of fMRI for disease classification / characterization and a projection pursuit application from a multi-site fMRI schizophrenia study. Brain Imaging and Behavior, 2, 207226. https://psycnet.apa.org/doi/10.1007/s11682–008-9028-1CrossRefGoogle Scholar
Eierud, C., Michael, A., Banks, D., & Andrews, E. (2023). Resting-state functional connectivity in lifelong musicians. Psychoradiology, 3, 18.10.1093/psyrad/kkad003CrossRefGoogle ScholarPubMed
Eklund, A., et al. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. PNAS, 113(28), 79007905. https://doi.org/10.1073/pnas.1602413113CrossRefGoogle ScholarPubMed
Elmer, S. & Jäncke, L. (2018). Relationships between music training, speech processing, and word learning: A network perspective. Ann. N. Y. Acad. Sci., 2018(1423), 1018.10.1111/nyas.13581CrossRefGoogle Scholar
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3/4), 455479. https://doi.org/10.1080/02643290442000310CrossRefGoogle ScholarPubMed
Gallo, F., DeLuca, V., Prystauka, Y., Voits, T., Rothman, J., & Abutalebi, J. (2022). Bilingualism and aging: Implications for (delaying) neurocognitive decline. Frontiers in Human Neuroscience, 16.10.3389/fnhum.2022.819105CrossRefGoogle ScholarPubMed
Gallo, F., Novitskiy, N., Myachykov, A., & Shtyrov, Y. (2021). Individual differences in bilingual experience modulate executive control network and performance: Behavioral and structural neuroimaging evidence. Bilingualism: Language and Cognition, 24(2), 293304. https://doi.org/DOI:10.1017/S1366728920000486CrossRefGoogle Scholar
García-Pentón, L., Fernández García, Y., Costello, B., Andoni Duñabeitia, J., & Carreiras, M. (2016). The neuroanatomy of bilingualism: How to turn a hazy view into the full picture. Language, Cognition and Neuroscience, 31(3), 303327. https://doi.org/10.1080/23273798.2015.1068944CrossRefGoogle Scholar
Ghazi-Saidi, L., & Ansaldo, A. I. (2017). Second language word learning through repetition and imitation: Functional networks as a function of learning phase and language distance. Frontiers in Human Neuroscience, 11(463). https://doi.org/10.3389/fnhum.2017.00463CrossRefGoogle ScholarPubMed
Ghazi-Saidi, L., Perlbarg, V., Marrelec, G., Pelegrini-Issac, M., Benali, H., & Ansaldo, A. I. (2013). Functional connectivity changes in second language vocabulary learning. Brain and Language, 124, 5665. https://doi.org/10.1016/j.bandl.2012.11.008CrossRefGoogle ScholarPubMed
Grant, A., et al. (2015). Second language lexical development and cognitive control: A longitudinal fMRI study. Brain and Language, 144, 3547. https://doi.org/10.1016/j.bandl.2015.03.010CrossRefGoogle ScholarPubMed
Green, D. W., Crinion, J., & Price, C. J. (2006). Convergence, degeneracy and control. Language Learning, 56(1), 99125. https://doi.org/10.1111%2Fj.1467-9922.2006.00357.xCrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201. https://doi.org/10.1111/nyas.13333CrossRefGoogle ScholarPubMed
Guzmán-Vélez, E., & Tranel, D. (2015). Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives. Neuropsychology, 29, 139150. https://doi.org/10.1037%2Fneu0000105CrossRefGoogle ScholarPubMed
Hagoort, P. (2006). What we cannot learn from neuroanatomy about language learning and language processing: Commentary on Uylings. In Gullberg, M. & Indefrey, P. (Eds.), The Cognitive Neuroscience of Second Language Acquisition. Blackwell Publishers. https://doi.org/10.1111/j.1467-9922.2006.00356.xGoogle Scholar
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 6799. https://doi.org/10.1016/j.cognition.2003.10.011CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews, 8, 393402. https://doi.org/10.1038/nrn2113CrossRefGoogle ScholarPubMed
Hodgson, V. J., Ralph, M. A. L., & Jackson, R. L. (2021). Multiple dimensions underlying the functional organization of the language network. NeuroImage, 241, 118444. https://doi.org/10.1016/j.neuroimage.2021.118444CrossRefGoogle ScholarPubMed
Huettel, S., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sinauer Associates.Google ScholarPubMed
Jafari, Z., Perani, D., Kolb, B. E, & Mohajerani, M. H. (2021). Bilingual experience and intrinsic functional connectivity in adults, aging, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1, nyas.14666. https://doi.org/10.1111/nyas.14666Google Scholar
Jakobson, R. (1956/1985). Metalanguage as a linguistic problem. In Rudy, S. (Ed.), Selected Writings VII (pp. 113121). Mouton.Google Scholar
Jakobson, R. (1957/1987). Linguistics and poetics. In Pomorska, K. & Rudy, S. (Eds.), Language in Literature (pp. 6294). Belknap Press of Harvard University Press.Google Scholar
Jakobson, R. (1967/1985). Language and culture. In Rudy, S. (Ed.), Selected Writings VII (pp. 101112). Mouton.Google Scholar
Liu, X., Tu, L., Chen, X., Wang, J., Li, M., Lu, Z., & Huang, R. (2021). Effects of AoA-L2 on L1 and L2 networks in early and late bilinguals. International Journal of Bilingualism, 25(6). https://doi.org/10.1177/13670069211033026CrossRefGoogle Scholar
Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74(3), 347357. https://doi.org/10.1016/j.bandc.2010.09.004CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. J. Neurosci., 31, 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102(1–3), 5970. https://doi.org/10.1016/j.jphysparis.2008.03.004Google Scholar
Marek, S., et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603, 654660. https://doi.org/10.1038/s41586–022-04492-9CrossRefGoogle ScholarPubMed
Mårtensson, J,, Eriksson, J,, Bodammer, N. C., Lindgren, M., Johansson, M., Nyberg, L., & Lövdén, M. (2012). Growth of language-related brain areas after foreign language learning. Neuroimage, 63(1), 240244. https://doi.org/10.1016/j.neuroimage.2012.06.043CrossRefGoogle ScholarPubMed
North, B. (2000). The Development of a Common Framework Scale of Language Proficiency. P. Lang. https://doi.org/10.3726/978-1-4539-1059-7CrossRefGoogle Scholar
Ojemann, G. A, Corina, D. P., Corrigan, N., Schoenfield-McNeill, J., Poliakov, A., Zamora, L., & Zanos, S. (2010). Neuronal correlates of functional magnetic resonance imaging in human temporal cortex. Brain, 33(1), 4659. https://doi.org/10.1093%2Fbrain%2Fawp227CrossRefGoogle Scholar
Paradis, M. (2000). The neurolinguistics of bilingualism in the next decades. Brain and Language, 71, 178180. https://doi.org/10.1006/brln.1999.2245CrossRefGoogle ScholarPubMed
Paradis, M. (2004). The Neurolinguistics of Bilingualism. John Benjamins.10.1075/sibil.18CrossRefGoogle Scholar
Paradis, M. (2019). Special forward. In Schwieter, J. W. (Ed.), The Handbook of the Neuroscience of Multilingualism. Wiley Blackwell.Google Scholar
Pavlenko, A. (2005). Emotions and Multilingualism. Cambridge University Press.Google Scholar
Pliatsikas, C. (2019). Multilingualism and brain plasticity. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (pp. 230251). Wiley Publishers.10.1002/9781119387725.ch11CrossRefGoogle Scholar
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The dynamic restructuring model. Bilingualism: Language and Cognition, 23(2), 459471. https://doi.org/10.1017/S1366728919000130CrossRefGoogle Scholar
Pliatsikas, C. 2023. Bilingualism and brain structure: Insights from healthy ageing and progressive neurodenegerative disease. In Luk, G. et al. (Eds.), Understanding Language and Cognition through Bilingualism: In Honor of Ellen Bialystok (pp. 301317). John Benjamins.10.1075/sibil.64.14pliCrossRefGoogle Scholar
Pliatsikas, C., Deluca, V., & Volts, T. (2020). The many shades of bilingualism: Language experiences modulate adaptations in brain structure. Language Learning, 70(52), 133149. https://doi.org/10.1111/lang.12386CrossRefGoogle Scholar
Pliatsikas, C., & Luk, G. (2016). Executive control in bilinguals: A concise review on fMRI studies. Bilingualism: Language and Cognition, 19, 699705. https://doi.org/10.1017/S1366728916000249CrossRefGoogle Scholar
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. PNAS, 112(5). https://doi.org/10.1073/pnas.1414183112CrossRefGoogle ScholarPubMed
Pliatsikas, C., Pereira Soares, S. M., Volts, T., Deluca, V., & Rothman, J. (2021). Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain. Scientific Reports, 11(1), 112. https://doi.org/10.1038/s41598–021-86443-4CrossRefGoogle ScholarPubMed
Poeppel, D. (2008). The cartographic imperative: Confusing localization and explanation in human brain mapping. Bildwelten des Wissens (Ikonographie des Gehirns), 6(1), 121. https://doi.org/10.1515/9783110548778-003Google Scholar
Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92, 112. https://doi.org/10.1016/j.cognition.2003.11.001CrossRefGoogle ScholarPubMed
Price, C. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 6288. https://doi.org/10.1111/j.1749-6632.2010.05444.xCrossRefGoogle Scholar
Raboyeau, G., Marcotte, K., Adrover-Roig, D., & Ansaldo, A. I. (2010). Brain activation and lexical learning: The impact of learning phase and word type. NeuroImage, 49, 28502861. https://doi.org/10.1016/j.neuroimage.2009.10.007CrossRefGoogle ScholarPubMed
Raichle, M. (2001). Functional neuroimaging: A historical and physiological perspective. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 326). MIT Press.Google Scholar
Raichle, M. (2006). The brain’s dark energy. Science, 314, 12491250. https://doi.org/10.1126/science.1134405Google ScholarPubMed
Raichle, M. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180190. https://doi.org/10.1016/j.tics.2010.01.008CrossRefGoogle ScholarPubMed
Raichle, M. (2011). The restless brain. Brain Connectivity, 1, 312. https://doi.org/10.1089%2Fbrain.2011.0019CrossRefGoogle ScholarPubMed
Raichle, M. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. https://doi.org/10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Reverberi, C., Kuhlen, A., Abutalebi, J., Greulich, R. S., Costa, A., Seyed-Allaei, S., Haynes, J. D. (2015). Language control in bilinguals: Intention to speak vs. execution. Brain & Language, 144, 19. https://doi.org/10.1016/j.bandl.2015.03.004CrossRefGoogle ScholarPubMed
Schrimer, A., Fox, P. M., & Grandjean, D. (2012). On the spatial organization of sound processing in the human temporal lobe: A meta-analysis. Neuroimage, 63(1), 137147. https://doi.org/10.1016/j.neuroimage.2012.06.025CrossRefGoogle Scholar
Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., Brandeis, D., & Dierks, T. (2012). Structural plasticity in the language system related to increased second language proficiency. Cortex, 48(4), 458465. https://doi.org/10.1016/j.cortex.2010.10.007CrossRefGoogle ScholarPubMed
Stowe, L. A., Haverkort, M., & Zwarts, F. (2005). Rethinking the neurological basis of language. Lingua, 115, 9971042. https://doi.org/10.1016/j.lingua.2004.01.013CrossRefGoogle Scholar
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36, 441454. https://doi.org/10.1017/s0033291705006264CrossRefGoogle ScholarPubMed
Van Horn, J. D., & Toga, A. W. (2009). Multisite neuroimaging trials. Current Opinion in Neurology, 22(4), 370378. https://doi.org/10.1097/wco.0b013e32832d92deCrossRefGoogle ScholarPubMed
Vygotsky, L. S. (1934/1987). Thinking and speech. In Rieber, R. W. & Carton, A. S. (Eds.), The Collected Works of L. S. Vygotsky. Plenum Press.Google Scholar
Wang, R., Ike, S., Zhang, Q., Zhou, K., Li, P., & Yang, J. (2020). Functional and structural neuroplasticity associated with second language proficiency: An MRI study of Chinese-English bilinguals. Journal of Neurolinguistics, 56, 100940. https://doi.org/10.1016/j.jneuroling.2020.100940CrossRefGoogle Scholar
Weinreich, U. (1953/1968). Languages in Contact: Findings and Problems. Mouton.Google Scholar
Weiss, M. W., & Bidelman, G. M. (2015). Listening to the brainstem: Musicianship enhances intelligibility of subcortical representations for speech. The Journal of Neuroscience, 35(4), 16871691.10.1523/JNEUROSCI.3680-14.2015CrossRefGoogle Scholar
Zou, L., Guosheng, D., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of left caudate in bimodal bilinguals. Cortex, 48(9), 1197e1206.10.1016/j.cortex.2011.05.022CrossRefGoogle ScholarPubMed

References

Abutalebi, J., Cappa, S., & Perani, D. (2001). The bilingual brain as revealed by functional neuroimaging. Bilingualism: Language and Congnition, 4, 179190.10.1017/S136672890100027XCrossRefGoogle Scholar
Abutalebi, J., Cappa, S., & Perani, D. (2005). What can functional neuroimaging tell us about the bilingual brain? In Kroll, J. & de Groot, A. (Eds.), The Handbook of Bilingualism: Psycholinguistic Approaches (pp. 497515). Oxford University Press.Google Scholar
Abutalebi, J., Della Rosa, P., Green, D., Hernandez, M., Scifo, P., Keim, R., Cappa, S., & Costa, A. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22, 20762086.10.1093/cercor/bhr287CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.10.1016/j.jneuroling.2006.10.003CrossRefGoogle Scholar
Abutalebi, J., Miozzo, A., & Cappa, S. (2000). Do subcortical structures control “language selection” in polyglots? Evidence from pathological language mixing. Neurocase, 6, 5156.Google Scholar
Aglioti, S., Beltramello, A., Girardi, F., & Fabbro, F. (1996). Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia. Brain, 119, 15511564.10.1093/brain/119.5.1551CrossRefGoogle ScholarPubMed
Alladi, S., Bak, T., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A., Chaudhuri, J., & Kaul, S. (2013). Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology, 81, 19381944.10.1212/01.wnl.0000436620.33155.a4CrossRefGoogle ScholarPubMed
Altarriba, J. (1990). Constraints on interlingual facilitation effects in priming in Spanish-English bilinguals. Unpublished doctoral dissertation, Vanderbilt University.Google Scholar
Altarriba, J. (1992). The representation of translation equivalents in bilingual memory. In Harris, R. (Ed.), Cognitive Processing in Bilinguals (pp. 157174). Elsevier.10.1016/S0166-4115(08)61493-4CrossRefGoogle Scholar
Ameel, E., Malt, B., Storms, G., & Van Assche, F. (2009). Semantic convergence in the bilingual lexicon. Journal of Memory and Language, 60, 270290.10.1016/j.jml.2008.10.001CrossRefGoogle Scholar
Ameel, E., Storms, G., Malt, B., & Sloman, S. (2005). How bilinguals solve the naming problem. Journal of Memory and Language, 53, 6080.10.1016/j.jml.2005.02.004CrossRefGoogle Scholar
Ardal, S., Donald, M., Meuter, R., Muldrew, S., & Luce, M. (1990). Brain responses to semantic incongruity in bilinguals. Brain and Language, 39, 187205.10.1016/0093-934X(90)90011-5CrossRefGoogle ScholarPubMed
Bentin, S., Mouchetant-Rostaing, Y., Giard, M., Echallier, J., & Pernier, J. (1999). ERP manifestations of processing printed words at different psycholinguistic levels: Time course and scalp distribution. Journal of Cognive Neuroscience, 11, 235260.10.1162/089892999563373CrossRefGoogle ScholarPubMed
Berken, J., Chai, X., Chen, J.-K., Gracco, V., & Klein, D. (2016). Effects of early and late bilingualism on resting-state functional connectivity. Journal of Neuroscience, 36(4), 11651172.10.1523/JNEUROSCI.1960-15.2016CrossRefGoogle ScholarPubMed
Bernolet, S., Hartsuiker, R., & Pickering, M. (2013). From language-specific to shared syntactic representations: The influence of second language proficiency on syntactic sharing in bilinguals. Cognition, 127(3), 287306.10.1016/j.cognition.2013.02.005CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F., Green, D., & Gollan, T. (2009). Bilingual minds. Psychological Science in the Public Interest, 10, 89129.10.1177/1529100610387084CrossRefGoogle ScholarPubMed
Bialystok, E., Martin, M., & Viswanathan, M. (2005). Bilingualism across the lifespan: The rise and fall of inhibitory control. International Journal of Bilingualism, 9, 109119.10.1177/13670069050090010701CrossRefGoogle Scholar
Bice, K., & Kroll, J. (2015). Native language change during early stages of second language learning. Neuroreport, 26(16), 966971.10.1097/WNR.0000000000000453CrossRefGoogle ScholarPubMed
Bice, K., Yamasaki, B., & Prat, C. (2020). Bilingual language experience shapes resting-state brain rhythms. Neurobiology of Language, 1(3), 288318.10.1162/nol_a_00014CrossRefGoogle ScholarPubMed
Bobb, S., & Kroll, J. (2018). Words on the brain: The bilingual mental lexicon. In Miller, D., Bayram, F., Rothman, J., & Serratrice, L. (Eds.), Bilingual Cognition and Language: The State of the Science across Its Subfields (pp. 307324). Benjamins.10.1075/sibil.54.14bobCrossRefGoogle Scholar
Bornkessel, I., Fiebach, C., Friederici, A., & Schlesewsky, M. (2004). “Capacity” reconsidered: Interindividual differences in language comprehension and individual alpha frequency. Experimental Psychology, 51(4), 279289.10.1027/1618-3169.51.4.279CrossRefGoogle ScholarPubMed
Branzi, F., Martin, C., Abutalebi, J., & Costa, A. (2014). The after-effects of bilingual language production. Neuropsychologia, 52, 102116.10.1016/j.neuropsychologia.2013.09.022CrossRefGoogle ScholarPubMed
Briellmann, R., Saling, M., Connell, A., Waites, A., Abbott, D., & Jackson, G. (2004). A high-field functional MRI study of quadri-lingual subjects. Brain and Language, 89, 531542.10.1016/j.bandl.2004.01.008CrossRefGoogle ScholarPubMed
Broersma, M., Carter, D., & Acheson, D. (2016). Cognate costs in bilingual speech production: Evidence from language switching. Frontiers in Psychology, 7, 1461.10.3389/fpsyg.2016.01461CrossRefGoogle ScholarPubMed
Cabeza, R., Ciaramelli, E., & Moscovitch, M. (2012). Cognitive contributions of the ventral parietal cortex: An integrative theoretical account. Trends in Cognitive Sciences, 16(6), 338352. https://doi.org/10.1016/j.tics.2012.04.008CrossRefGoogle ScholarPubMed
Cabeza, R., Stanley, M. L., & Moscovitch, M. (2018). Process-specific alliances (PSAs) in cognitive neuroscience. Trends in Cognitive Sciences, 22(11), 9961010. https://doi.org/10.1016/j.tics.2018.08.005CrossRefGoogle ScholarPubMed
Calvo, N., Grundy, J., & Bialystok, E. (2023). Bilingualism modulates neural efficiency at rest through alpha reactivity. Neuropsychologia, 180, 108486.10.1016/j.neuropsychologia.2023.108486CrossRefGoogle ScholarPubMed
Canseco-Gonzalez, E., Brehm, L., Brick, C., Brown-Schmidt, S., Fischer, K., & Wagner, K. (2010). Carpet or cárcel: The effect of age of acquisition and language mode on bilingual lexical access. Language and Cognitive Processes, 25, 669705.10.1080/01690960903474912CrossRefGoogle Scholar
Casaponsa, A., Carreiras, M., & Duñabeitia, J. (2014). Discriminating languages in bilingual contexts: The impact of orthographic markedness. Frontiers in Psychology, 5, 424424.10.3389/fpsyg.2014.00424CrossRefGoogle ScholarPubMed
Casaponsa, A., & Duñabeitia, J. (2016). Lexical organization of language-ambiguous and language-specific words in bilinguals. Quarterly Journal of Experimental Psychology, 69(3), 589604.10.1080/17470218.2015.1064977CrossRefGoogle ScholarPubMed
Chen, H-C., & Ng, M-L. (1989). Semantic facilitation and translation priming effects in Chinese-English bilinguals. Memory & Cognition, 17, 454462.10.3758/BF03202618CrossRefGoogle ScholarPubMed
Colomé, À. (2001). Lexical activation in bilinguals’ speech production: Language-specific or language-independent? Journal of Memory and Language, 45, 721736.10.1006/jmla.2001.2793CrossRefGoogle Scholar
Correia, J., Formisano, E., Valente, G., Hausfeld, L., Jansma, B., & Bonte, M. (2014). Brain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe. The Journal of Neuroscience, 34(1), 332338.10.1523/JNEUROSCI.1302-13.2014CrossRefGoogle ScholarPubMed
Costa, A., & Caramazza, A. (1999). Is lexical selection in bilingual speech production language-specific? Further evidence from Spanish-English and English-Spanish bilinguals. Bilingualism: Language and Cognition, 2(3), 231244.10.1017/S1366728999000334CrossRefGoogle Scholar
Costa, A., Miozzo, M., & Caramazza, A. (1999). Lexical selection in bilinguals: Do words in the bilingual’s two lexicons compete for selection? Journal of Memory and Language, 41, 365397.10.1006/jmla.1999.2651CrossRefGoogle Scholar
Costa, A., & Santesteban, M. (2004). Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language, 50, 491511.10.1016/j.jml.2004.02.002CrossRefGoogle Scholar
Cutler, A., Weber, A., & Otake, T. (2006). Asymmetric mapping from phonetic to lexical representations in second-language listening. Journal of Phonetics, 34, 269284.10.1016/j.wocn.2005.06.002CrossRefGoogle Scholar
De Bleser, R., Dupont, P., Postler, J., Bormans, G., Speelman, D., Mortelmans, L., & Debrock, M. (2003). The organisation of the bilingual lexicon: A PET study. Journal of Neurolinguistics, 16(4), 439456.10.1016/S0911-6044(03)00022-8CrossRefGoogle Scholar
de Bot, K. (1992). A bilingual production model: Levelt’s “Speaking” model adapted. Applied Linguistics, 13, 124.Google Scholar
de Bot, K. (2019). Defining and assessing multilingualism. In Schwieter, J. W. (Ed.), The Handbook of the Neuroscience of Multilingualism (pp. 318). Wiley-Blackwell.Google Scholar
de Groot, A., & Nas, G. (1991). Lexical representation of cognates and noncognates in compound bilinguals. Journal of Memory and Language, 30, 90123.10.1016/0749-596X(91)90012-9CrossRefGoogle Scholar
de León Rodríguez, D., Mouthon, M., Annoni, J.-M., & Khateb, A. (2022). Current exposure to a second language modulates bilingual visual word recognition: An EEG Study. Neuropsychologia, 164, 108109108109.10.1016/j.neuropsychologia.2021.108109CrossRefGoogle ScholarPubMed
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Science, 9, 335341.10.1016/j.tics.2005.05.004CrossRefGoogle ScholarPubMed
Deng, T., Schwieter, J. W., Huan, L., Zhang, Y., Yuan, J., & Wang, R. (2024). Cross-language activation of translation ambiguous words in semantic judgment task of Chinese-English bilinguals. International Journal of Bilingualism, 0(0). https://doi.org/10.1177/13670069241233388CrossRefGoogle Scholar
Dijkstra, T. (2005). Bilingual word recognition and lexical access. In Kroll, J. & de Groot, A. (Eds.), The Handbook of Bilingualism: Psycholinguistic Approaches (pp. 179201). Oxford University Press.Google Scholar
Dijkstra, T., & van Heuven, W. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5, 175197.10.1017/S1366728902003012CrossRefGoogle Scholar
Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008). Changes in gray matter induced by learning revisited. PLoS ONE, 3, e2669.10.1371/journal.pone.0002669CrossRefGoogle Scholar
Druks, J., & Weekes, B. (2013). Parallel deterioration to language processing in a bilingual speaker. Cognitive Neuropsychology, 30(7–8), 578596.10.1080/02643294.2014.882814CrossRefGoogle Scholar
Duñabeitia, J., Perea, M., & Carreiras, M. (2010). Masked translation priming effects with highly proficient simultaneous bilinguals. Experimental Psychology, 57(2), 98107.10.1027/1618-3169/a000013CrossRefGoogle ScholarPubMed
Edmonds, L., & Kiran, S. (2006). Effect of semantic naming treatment on crosslinguistic generalization in bilingual aphasia. Journal of Speech, Language, and Hearing Research, 49(4), 729748.10.1044/1092-4388(2006/053)CrossRefGoogle ScholarPubMed
Elston-Güttler, K., & Friederici, A. (2005). Native and L2 processing of homonyms in sentential context. Journal of Memory and Language, 52, 256283.10.1016/j.jml.2004.11.002CrossRefGoogle Scholar
Emmorey, K., Borinstein, H., Thompson, R., & Gollan, T. (2008). Bimodal bilingualism. Bilingualism: Language and Cognition, 11, 4361.10.1017/S1366728907003203CrossRefGoogle ScholarPubMed
Fabbro, F. (1995). The Neurolinguistics of Bilingualism: An Introduction. Psychology Press.Google Scholar
Fabbro, F. (2001). The bilingual brain: bilingual aphasia. Brain and Language, 79, 201210.10.1006/brln.2001.2480CrossRefGoogle ScholarPubMed
Fabbro, F., & Paradis, M. (1995). Differential impairments in four multilingual patients with subcortical lesions. In Paradis, M. (Ed.), Aspects of Bilingual Aphasia (pp. 139176). Pergamon.Google Scholar
Fabbro, F., Skrap, M., & Aglioti, S. (2000). Pathological switching between languages after frontal lesions in a bilingual client. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 650652.10.1136/jnnp.68.5.650CrossRefGoogle Scholar
Falkenstein, M., Hoormann, J., & Hohnsbein, J. (2002). Inhibition-related ERP components: Variation with modality, age, and time-on task. Journal of Psychophysiology, 16(3), 167175.10.1027//0269-8803.16.3.167CrossRefGoogle Scholar
Fernandez, M., Tartar, J., Padron, D., & Acosta, J. (2013). Neurophysiological marker of inhibition distinguishes language groups on a non-linguistic executive function test. Brain and Cognition, 83, 330336.10.1016/j.bandc.2013.09.010CrossRefGoogle ScholarPubMed
Filippi, R., Karaminis, T., & Thomas, M. (2014). Language switching in bilingual production: Empirical data and computational modelling. Bilingualism: Language and Cognition, 17, 294315.10.1017/S1366728913000485CrossRefGoogle Scholar
Finkbeiner, M., Gollan, T., & Caramazza, A. (2006). Lexical access in bilingual speakers: What’s the (hard) problem? Bilingualism: Lang. Cognit., 9, 153166.10.1017/S1366728906002501CrossRefGoogle Scholar
Francis, W., Tokowicz, N., & Kroll, J. (2014). The consequences of language proficiency and difficulty of lexical access for translation performance and priming. Memory & Cognition, 42, 2740.10.3758/s13421-013-0338-1CrossRefGoogle ScholarPubMed
Frenck, C., & Pynte, J. (1987). Semantic representation and surface forms: A look at across-language priming in bilinguals. Journal of Psycholinguistic Research, 16, 383396.10.1007/BF01069290CrossRefGoogle Scholar
Friederici, A. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Science, 6, 7884.10.1016/S1364-6613(00)01839-8CrossRefGoogle ScholarPubMed
Gold, B., Kim, C., Johnson, N., Kriscio, R., & Smith, C. (2013). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33, 387396.10.1523/JNEUROSCI.3837-12.2013CrossRefGoogle ScholarPubMed
Gong, D., He, H., Liu, D., Ma, W., Dong, L., Luo, C., & Yao, D. (2015). Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Scientific Reports, 5, 9763.10.1038/srep09763CrossRefGoogle ScholarPubMed
Goral, M., Levy, E., Obler, L., & Cohen, E. (2006). Cross-language lexical connections in the mental lexicon: Evidence from a case of trilingual aphasia. Brain and Language, 98, 235247.10.1016/j.bandl.2006.05.004CrossRefGoogle Scholar
Grady, C., Luk, G., Craik, F., & Bialystok, E. (2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170181.10.1016/j.neuropsychologia.2014.10.042CrossRefGoogle ScholarPubMed
Grainger, J., & Beauvillain, C. (1988). Associative priming in bilinguals: Some limits of interlingual facilitation effects. Canadian Journal of Psychology, 42, 261273.10.1037/h0084193CrossRefGoogle Scholar
Gray, T., & Kiran, S. (2013). A theoretical account of lexical and semantic naming deficits in bilingual aphasia. Journal of Speech, Language, and Hearing Research, 56(4), 13141327.10.1044/1092-4388(2012/12-0091)CrossRefGoogle ScholarPubMed
Green, D. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.10.1017/S1366728998000133CrossRefGoogle Scholar
Green, D. (2005). The neurocognition of recovery patterns in bilingual speakers with aphasias. In Kroll, J. & de Groot, A. (Eds.), Handbook of Bilingualism: Psycholinguistic Perspectives (pp. 516530). Oxford University Press.Google Scholar
Gullifer, J., Chai, X., Whitford, V., Pivneva, I., Baum, S., Klein, D., & Titone, D. (2018). Bilingual experience and resting-state brain connectivity: Impacts of L2 age of acquisition and social diversity of language use on control networks. Neuropsychologia, 117(April), 123134.10.1016/j.neuropsychologia.2018.04.037CrossRefGoogle ScholarPubMed
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Science, 9, 416423.10.1016/j.tics.2005.07.004CrossRefGoogle Scholar
Hahne, A. (2001). What’s different in second-language processing? Evidence from event-related brain potentials. Journal of Psycholinguistic Research, 30, 251266.10.1023/A:1010490917575CrossRefGoogle ScholarPubMed
Hartsuiker, R., & Pickering, M. (2008). Language integration in bilingual sentence production. Acta Psychologica, 128(3), 479489.10.1016/j.actpsy.2007.08.005CrossRefGoogle ScholarPubMed
Hartsuiker, R., Beerts, S., Loncke, M., Desmet, T., & Bernolet, S. (2016). Crosslinguistic structural priming in multilinguals: Further evidence for shared syntax. Journal of Memory and Language, 90, 1430.10.1016/j.jml.2016.03.003CrossRefGoogle Scholar
Hasegawa, M., Carpenter, P., & Just, M. (2002). An fMRI study of bilingual sentence comprehension and workload. NeuroImage, 15, 647660.10.1006/nimg.2001.1001CrossRefGoogle ScholarPubMed
Hermans, D. (2004). Between-language identity effects in picture-word interference tasks: A challenge for language-nonspecific or language-specific models of lexical access? International Journal of Bilingualism, 8, 115125.10.1177/13670069040080020101CrossRefGoogle Scholar
Hernandez, A. (2013). What factors influence how two languages are coded in one brain: Comment on “The bilingual brain: Flexibility and control in the human cortex” by Buchweitz and Prat. Physics of Life Reviews, 10(4), 450451.10.1016/j.plrev.2013.09.006CrossRefGoogle ScholarPubMed
Hernandez, A., & Li, P. (2007). Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133, 638650.10.1037/0033-2909.133.4.638CrossRefGoogle ScholarPubMed
Hernandez, A., Li, P., & MacWhinney, B. (2005). The emergence of competing modules in bilingualism. Trends in Cognitive Science, 9, 220225.10.1016/j.tics.2005.03.003CrossRefGoogle ScholarPubMed
Hernandez, A., & Meschyan, G. (2006). Executive function is necessary to enhance lexical processing in a less proficient L2: Evidence from fMRI during picture naming. Bilingualism: Language and Cognition, 9, 177188.10.1017/S1366728906002525CrossRefGoogle Scholar
Hesling, I., Dilharreguy, B., Bordessoules, M., & Allard, M. (2012). The neural processing of second language comprehension modulated by the degree of proficiency: A listening connected speech FMRI study. The Open Neuroimaging Journal, 6, 4454.10.2174/1874440001206010044CrossRefGoogle ScholarPubMed
Holcomb, P., Grainger, J., & O’Rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience, 14, 938950.10.1162/089892902760191153CrossRefGoogle ScholarPubMed
Hoshino, N., & Kroll, J. (2008). Cognate effects in picture naming: Does cross-language activation survive a change of script? Cognition, 106, 501511.10.1016/j.cognition.2007.02.001CrossRefGoogle ScholarPubMed
Hoversten, L., Brothers, T., Swaab, T., & Traxler, M. (2017). Early processing of orthographic language membership information in bilingual visual word recognition: Evidence from ERPs. Neuropsychologia, 103, 183190.10.1016/j.neuropsychologia.2017.07.026CrossRefGoogle ScholarPubMed
Indefrey, P. (2006). A meta-analysis of hemodynamic studies on first and second language processing: Which suggested differences can we trust and what do they mean? Language Learning, 56, 279304.10.1111/j.1467-9922.2006.00365.xCrossRefGoogle Scholar
Jeong, H., Sugiura, M., Sassa, Y., Haji, T., Usui, N., Taira, M., Horie, K., Sato, S., & Kawashima, R. (2007). Effects of syntactic similarity on cortical activation during second language processing: A comparison of English and Japanese among native Korean trilinguals. Hum. Brain Mapp., 28, 194204.10.1002/hbm.20269CrossRefGoogle Scholar
Jeong, H., Sugiura, M., Sassa, Y., Yokoyama, S., Horie, K., Sato, S., Taira, M., Kawashima, R. (2007). Cross-linguistic influence on brain activation during second language processing: An fMRI study. Biling-Lang. Cogn., 10, 175187.10.1017/S1366728907002921CrossRefGoogle Scholar
Jia, F. (2022). Effect of second language proficiency on inhibitory control in the Simon task: An fMRI study. Frontiers in Psychology, 21(13), 812322.10.3389/fpsyg.2022.812322CrossRefGoogle Scholar
Jiang, N. (1999). Testing processing explanations for the asymmetry in masked cross-language priming. Bilingualism: Language and Cognition, 2(1), 5975.10.1017/S1366728999000152CrossRefGoogle Scholar
Jin, Y-S (1990). Effects of concreteness on cross-language priming in lexical decisions. Perceptual and Motor Skills, 70, 11391154.10.2466/pms.1990.70.3c.1139CrossRefGoogle Scholar
Ju, M., & Luce, P. (2004). Falling on sensitive ears: Constraints on bilingual lexical activation. Psychological Science, 15, 314318.10.1111/j.0956-7976.2004.00675.xCrossRefGoogle ScholarPubMed
Kałamała, P., Drożdżowicz, A., Szewczyk, J., Marzecová, A., & Wodniecka, Z. (2018). Task strategy may contribute to performance differences between monolinguals and bilinguals in cognitive control tasks: ERP evidence. Journal of Neurolinguistics, 46, 7892.10.1016/j.jneuroling.2017.12.013CrossRefGoogle Scholar
Kantola, L., & van Gompel, R. (2011). Between- and within-language priming is the same: Evidence for shared bilingual syntactic representations. Memory & Cognition, 39(2), 276290.10.3758/s13421-010-0016-5CrossRefGoogle Scholar
Keatley, C., & de Gelder, B. (1992). The bilingual primed lexical decision task: Cross-language priming disappears with speeded responses. European Journal of Cognitive Psychology, 4(4), 273292.10.1080/09541449208406188CrossRefGoogle Scholar
Keatley, C., Spinks, J., & de Gelder, B. (1994). Asymmetrical cross-language priming effects. Memory and Cognition, 22, 7084.10.3758/BF03202763CrossRefGoogle ScholarPubMed
Kerkhofs, R., Dijkstra, T., Chwilla, D., & De Bruijn, E. (2006). Testing a model for bilingual semantic priming with interlingual homographs: RT and N400 effects. Brain Research, 1068, 170183.10.1016/j.brainres.2005.10.087CrossRefGoogle Scholar
Kim, K., Relkin, N., Lee, K-M, & Hirsch, J. (1997). Distinct cortical area associated with native and second languages. Nature, 388, 171174.10.1038/40623CrossRefGoogle ScholarPubMed
Kirsner, K., Smith, M., Lockhart, R., King, M., & Jain, M. (1984). The bilingual lexicon: Language specific units in an integrated network. Journal of Verbal Learning and Verbal Behavior, 23, 519539.10.1016/S0022-5371(84)90336-0CrossRefGoogle Scholar
Klein, D., Watkins, K., Zatorre, R., & Milner, B. (2006). Word and nonword repetition in bilingual subjects: A PET study. Human Brain Mapping, 27, 153161.10.1002/hbm.20174CrossRefGoogle ScholarPubMed
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 6388.10.1016/j.brainresrev.2006.06.003CrossRefGoogle ScholarPubMed
Kong, A., Abutalebi, J., Lam, K., & Weekes, B. (2014). Executive and language control in the multilingual brain. Behavioural Neurology, 527951.10.1155/2014/527951CrossRefGoogle Scholar
Kotz, S. (2001). Neurolinguistic evidence for bilingual language representation: A comparison of reaction times and event-related brain potentials. Bilingualism: Language and Cognition, 4, 143154.10.1017/S1366728901000244CrossRefGoogle Scholar
Kousaie, S., Chai, X., Sander, K., & Klein, D. (2017). Simultaneous learning of two languages from birth positively impacts intrinsic functional connectivity and cognitive control. Brain and Cognition, 117, 4956.10.1016/j.bandc.2017.06.003CrossRefGoogle ScholarPubMed
Kousaie, S., & Phillips, N. (2012). Conflict monitoring and resolution: Are two languages better than one? Evidence from reaction time and event-related brain potentials. Brain Research, 1446, 7190.10.1016/j.brainres.2012.01.052CrossRefGoogle ScholarPubMed
Kousaie, S., & Phillips, N. (2017). A behavioural and electrophysiological investigation of the effect of bilingualism on aging and cognitive control. Neuropsychologia, 94, 2335.10.1016/j.neuropsychologia.2016.11.013CrossRefGoogle ScholarPubMed
Kovelman, I., Baker, S., & Petitto, L. (2008). Bilingual and monolingual brains compared: A functional magnetic resonance imaging investigation of syntactic processing and a possible “neural signature” of bilingualism. Journal of Cognitive Neuroscience, 20(1), 153169.10.1162/jocn.2008.20011CrossRefGoogle Scholar
Kroll, J., & Bialystok, E. (2013). Understanding the consequences of bilingualism for language processing and cognition. Journal of Cognitive Psychology, 25(5), 497514.10.1080/20445911.2013.799170CrossRefGoogle ScholarPubMed
Kroll, J., Bobb, S., Misra, M., & Guo, T. (2008). Language selection in bilingual speech: Evidence for inhibitory processes. Acta Psychologica, 128, 416430.10.1016/j.actpsy.2008.02.001CrossRefGoogle ScholarPubMed
Kroll, J., Bobb, S., & Wodniecka, Z. (2006). Language selectivity is the exception, not the rule: Arguments against a fixed locus of language selection in bilingual speech. Bilingualism: Language and Cognition, 9, 119135.10.1017/S1366728906002483CrossRefGoogle Scholar
Kroll, J., Bogulski, C., & McClain, R. (2012). Psycholinguistic perspectives on second language learning and bilingualism: The course and consequence of cross-language competition. Linguistic Approaches to Bilingualism, 2, 124.10.1075/lab.2.1.01kroCrossRefGoogle Scholar
Kroll, J., Dussias, P., Bogulski, C., & ValdesKroff, J. (2012). Juggling two languages in one mind: What bilinguals tell us about language processing and its consequences for cognition. In Ross, B. (Ed.), The Psychology of Learning and Motivation (pp. 229262). Academic Press.Google Scholar
Kroll, J., & Gollan, T. (2014). Speech planning in two languages: what bilinguals tell us about language production. In Ferreira, V., Goldrick, M., & Miozzo, M. (Eds.), The Oxford Handbook of Language Production (pp. 165181). Oxford University Press.Google Scholar
Kroll, J., Gullifer, J., & Rossi, E. (2013). The multilingual lexicon: The cognitive and neural basis of lexical comprehension and production in two or more languages. Annual Review of Applied Linguistics, 33, 102127.10.1017/S0267190513000111CrossRefGoogle Scholar
Kroll, J., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33, 149174.10.1006/jmla.1994.1008CrossRefGoogle Scholar
Kroll, J., & Tokowicz, N. (2005). Models of bilingual representation and processing. In Kroll, J. & de Groot, A. (Eds.), The Handbook of Bilingualism: Psycholinguistic Approaches (pp. 531553). Oxford University Press.Google Scholar
Kutas, M., & Federmeier, K. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463470.10.1016/S1364-6613(00)01560-6CrossRefGoogle ScholarPubMed
Kutas, M., & Kluender, R. (1994). What is who violating? A reconsideration of linguistic violations in light of event-related brain potentials. In Heinze, H., Münte, T., & Mangun, G. (Eds.), Cognitive Electrophysiology (pp. 183210). Springer Science.10.1007/978-1-4612-0283-7_8CrossRefGoogle Scholar
Lee, Y., Jang, E., & Choi, W. (2018). L2-L1 translation priming effects in a lexical decision task: Evidence from low proficient Korean-English bilinguals. Frontiers in Psychology, 2(9), 267.10.3389/fpsyg.2018.00267CrossRefGoogle Scholar
Li, Q., Pasquini, L., Del Ferraro, G., Gene, M., Peck, K., Makse, H., & Holodny, A. (2021). Monolingual and bilingual language networks in healthy subjects using functional MRI and graph theory. Scientific Reports, 11(1), 10568.10.1038/s41598-021-90151-4CrossRefGoogle ScholarPubMed
Linck, J., Schwieter, J. W., & Sunderman, G. (2012). Inhibitory control predicts language switching performance in trilingual speech production. Bilingualism: Language and Cognition, 15(3), 651662.10.1017/S136672891100054XCrossRefGoogle Scholar
Liu, H., & Cao, F. (2016). L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain and Language, 159, 6073.10.1016/j.bandl.2016.05.013CrossRefGoogle Scholar
Liu, H., Hu, Z., Guo, T., & Peng, D. (2010). Speaking words in two languages with one brain: Neural overlap and dissociation. Brain Research, 1316, 7582.10.1016/j.brainres.2009.12.030CrossRefGoogle ScholarPubMed
Loebell, H., & Bock, K. (2003). Structural priming across languages. Linguistics, 41(5), 791824.10.1515/ling.2003.026CrossRefGoogle Scholar
Luk, G., Anderson, J., Craik, F., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74, 347357.10.1016/j.bandc.2010.09.004CrossRefGoogle ScholarPubMed
Luk, G., Green, D., Abutalebi, J., & Grady, C. (2012). Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27, 14791488.10.1080/01690965.2011.613209CrossRefGoogle Scholar
Luke, K., Liu, H., Wai, Y., Wan, Y., & Tan, L. (2002). Functional anatomy of syntactic and semantic processing in language comprehension. Human Brain Mapping, 16(3), 133–45.10.1002/hbm.10029CrossRefGoogle ScholarPubMed
Maguire, E., Gadian, D., Johnsrude, I., Good, C., Ashburner, J., Frackowiak, R., & Frith, C. (2000). Navigation-related structural change in the hippocampi of taxi drivers. PNAS, 97, 43984403.10.1073/pnas.070039597CrossRefGoogle ScholarPubMed
Marian, V., Blumenfeld, H., & Boukrina, O. (2008). Sensitivity to phonological similarity within and across languages. Journal of Psycholinguistic Research, 37(3), 141170.10.1007/s10936-007-9064-9CrossRefGoogle ScholarPubMed
Marian, V., & Spivey, M. (2003). Competing activation in bilingual language processing: Within-and between-language competition. Bilingualism: Language and Cognition, 6, 97115.10.1017/S1366728903001068CrossRefGoogle Scholar
Marian, V., Spivey, M., & Hirsch, J. (2003). Shared and separate systems in bilingual language processing: Converging evidence from eyetracking and brain imaging. Brain and Language, 86, 7082.10.1016/S0093-934X(02)00535-7CrossRefGoogle ScholarPubMed
Martin, C., Dering, B., Thomas, E., & Thierry, G. (2009). Brain potentials reveal semantic priming in both the “active” and the “non-attended” language in early bilinguals. NeuroImage, 47, 326333.10.1016/j.neuroimage.2009.04.025CrossRefGoogle Scholar
Martín, M., Macizo, P., & Bajo, T. (2010). Time course of inhibitory processes in bilingual language processing. British Journal of Psychology, 101(4), 679693.10.1348/000712609X480571CrossRefGoogle ScholarPubMed
Massol, S., Grainger, J., Dufau, S., & Holcomb, P. (2010). Masked priming from orthographic neighbors: An ERP investigation. Journal of Experimental Psychology. Human Perception and Performance, 36(1), 162174.10.1037/a0017614CrossRefGoogle ScholarPubMed
McLaughlin, J., Osterhout, L., & Kim, A. (2004). Neural correlates of second-language word learning: Minimal instruction produces rapid change. Nature Neuroscience, 7, 703704.10.1038/nn1264CrossRefGoogle ScholarPubMed
Meschyan, G., & Hernandez, A. (2006). Impact of language proficiency and orthographic transparency on bilingual word reading: An fMRI investigation. NeuroImage, 29, 11351140.10.1016/j.neuroimage.2005.08.055CrossRefGoogle ScholarPubMed
Meyer, D., Schvaneveldt, R., & Ruddy, M. (1975). Loci of contextual effects in visual word recognition. In Rabbitt, P. & Dornic, S. (Eds.), Attention and Performance V. Academic Press.Google Scholar
Meykadeh, A., Golfam, A., Batouli, S., & Sommer, W. (2021). Overlapping but language-specific mechanisms in morphosyntactic processing in highly competent L2 acquired at school entry: fMRI evidence from an alternating language switching task. Frontiers in Human Neuroscience, 15, 728549728549.10.3389/fnhum.2021.728549CrossRefGoogle ScholarPubMed
Midgley, K., Holcomb, P., van Heuven, W., & Grainger, J. (2008). An electrophysiological investigation of cross-language effects of orthographic neighborhood. Brain Research, 1248, 123135.10.1016/j.brainres.2008.09.078CrossRefGoogle Scholar
Minkowski, M. (1983). A clinical contribution to the study of polyglot aphasia especially with respect to Swiss-German. In Paradis, M. (Ed.), Readings on Aphasia in Bilinguals and Polyglots (pp. 205232). Didier. (Original work published 1927)Google Scholar
Morales, J., Yudes, C., Gómez-Ariza, C., & Bajo, M. (2015). Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia, 66, 157169.10.1016/j.neuropsychologia.2014.11.014CrossRefGoogle ScholarPubMed
Moreno, E., & Kutas, M. (2005). Processing semantic anomalies in two languages: An electrophysiological exploration in both languages of Spanish-English bilinguals. Cognitive Brain Research, 22, 205220.10.1016/j.cogbrainres.2004.08.010CrossRefGoogle ScholarPubMed
Moreno, E., Rodríguez-Fornells, A., & Laine, M. (2008). Event-related potentials (ERPs) in the study of bilingual language processing. Journal of Neurolinguistics, 21, 477508.10.1016/j.jneuroling.2008.01.003CrossRefGoogle Scholar
Moreno, S., Wodniecka, Z., Tays, W., Alain, C., & Bialystok, E. (2014). Inhibitory control in bilinguals and musicians: Event-related potential (ERP) evidence for experience-specific effects. PLoS ONE, 9, e94169.10.1371/journal.pone.0094169CrossRefGoogle ScholarPubMed
Morford, J., Wilkinson, E., Villwock, A., Piñar, P., & Kroll, J. (2011). When deaf signers read English: Do written words activate their sign translations? Cognition, 118, 286292.10.1016/j.cognition.2010.11.006CrossRefGoogle ScholarPubMed
Muylle, M., Bernolet, S., & Hartsuiker, R. (2021). The development of shared syntactic representations in late L2-learners: Evidence from structural priming in an artificial language. Journal of Memory and Language, 119, 104233.10.1016/j.jml.2021.104233CrossRefGoogle Scholar
Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3, 1726.10.3758/CABN.3.1.17CrossRefGoogle Scholar
Paradis, M. (1977). Bilingualism and aphasia. In Whitaker, H. & Whitaker, H. (Eds.), Studies in Neurolinguistics, Vol. 3. Academic Press.Google Scholar
Paradis, M. (2001). Bilingual and polyglot aphasia. In Berndt, R. (Ed.), Handbook of Neuropsychology (2nd ed., pp. 6991). Elsevier.Google Scholar
Paradis, M. (2004). A Neurolinguistic Theory of Bilingualism. Benjamins.10.1075/sibil.18CrossRefGoogle Scholar
Paradis, M., Goldblum, M., & Abidi, R. (1982). Alternate antagonism with paradoxical translation behavior in two bilingual aphasic patients. Brain and Language, 15, 5569.10.1016/0093-934X(82)90046-3CrossRefGoogle ScholarPubMed
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15(2), 202206.10.1016/j.conb.2005.03.007CrossRefGoogle ScholarPubMed
Perani, D., Paulesu, E., Galles, N., Dupoux, E., Dehaene, S., Bettindardi, V., Cappa, S., Fazio, F., & Mehler, J. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.10.1093/brain/121.10.1841CrossRefGoogle ScholarPubMed
Phillips, N., Klein, D., Mercier, J., & de Boysson, C. (2006). ERP measures of auditory word repetition and translation priming in bilinguals. Brain Research, 1125, 116131.10.1016/j.brainres.2006.10.002CrossRefGoogle ScholarPubMed
Poarch, G., & van Hell, J. (2012). Cross-language activation in children’s speech production: Evidence from second language learners, bilinguals, and trilinguals. Journal of Experimental Child Psychology, 111, 419438.10.1016/j.jecp.2011.09.008CrossRefGoogle ScholarPubMed
Połczyńska, M., & Bookheimer, S. (2021). General principles governing the amount of neuroanatomical overlap between languages in bilinguals. Neuroscience and Biobehavioral Reviews, 130, 114.10.1016/j.neubiorev.2021.08.005CrossRefGoogle ScholarPubMed
Pulvermüller, F., Shtyrov, Y., & Hauk, O. (2009). Understanding in an instant: Neurophysiological evidence for mechanistic language circuits in the brain. Brain and Language, 110, 8194.10.1016/j.bandl.2008.12.001CrossRefGoogle Scholar
Rüschemeyer, S-A., Zysset, S., & Friederici, A. (2006). Native and non-native reading of sentences: An fMRI experiment. NeuroImage, 31, 354365.10.1016/j.neuroimage.2005.11.047CrossRefGoogle ScholarPubMed
Sabourin, L., Brien, C., & Burkholder, M. (2014). The effect of age of L2 acquisition on the organization of the bilingual lexicon: Evidence from masked priming. Bilingualism, 17(3), 542555.10.1017/S1366728913000643CrossRefGoogle Scholar
Schweizer, T., Ware, J., Fischer, C., Craik, F., & Bialystok, E. (2012). Bilingualism as a contributor to cognitive reserve: Evidence from brain atrophy in Alzheimer’s disease. Cortex, 48, 991996.10.1016/j.cortex.2011.04.009CrossRefGoogle ScholarPubMed
Schwieter, J. W., & Sunderman, G. (2008). Language switching in bilingual speech production: In search of the language-specific selection mechanism. The Mental Lexicon, 3(2), 214238.10.1075/ml.3.2.06schCrossRefGoogle Scholar
Sebastian, R., Laird, A., & Kiran, S. (2011). Meta-analysis of the neural representation of first language and second language. Applied Psycholinguistics, 32, 799819.10.1017/S0142716411000075CrossRefGoogle Scholar
Shook, A., & Marian, V. (2013). The bilingual language interaction network for comprehension of speech. Bilingualism: Language and Cognition, 16, 304324.10.1017/S1366728912000466CrossRefGoogle Scholar
Spivey, M., & Marian, V. (1999). Cross talk between native and second languages: Partial activation of an irrelevant lexicon. Psychological Science, 10, 281284.10.1111/1467-9280.00151CrossRefGoogle Scholar
Strauß, A., Wöstmann, M., & Obleser, J. (2014). Cortical alpha oscillations as a tool for auditory selective inhibition. Frontiers in Human Neuroscience, 8, 350.Google ScholarPubMed
Tan, L., Spinks, J., Feng, C.-M., Siok, W., Perfetti, C., Xiong, J., Fox, P., & Gao, J.-H. (2003). Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18(3), 158166.10.1002/hbm.10089CrossRefGoogle ScholarPubMed
Thierry, G., & Wu, Y. (2004). Electrophysiological evidence for language interference in late bilinguals. Neuroreport, 15, 15551558.10.1097/01.wnr.0000134214.57469.c2CrossRefGoogle ScholarPubMed
Thierry, G., & Wu, Y. (2007). Brain potentials reveal unconscious translation during foreign-language comprehension. Proceedings of the National Academy of Sciences, 104, 1253012535.10.1073/pnas.0609927104CrossRefGoogle ScholarPubMed
Ullman, M. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews, 2, 717726.10.1038/35094573CrossRefGoogle ScholarPubMed
Van de Putte, E., De Baene, W., Brass, M., & Duyck, W. (2017). Neural overlap of L1 and L2 semantic representations in speech: A decoding approach. NeuroImage, 162, 106116.10.1016/j.neuroimage.2017.08.082CrossRefGoogle ScholarPubMed
van Gompel, R., & Arai, M. (2018). Structural priming in bilinguals. Bilingualism: Language and Cognition, 21(3), 448455.10.1017/S1366728917000542CrossRefGoogle Scholar
Van Hell, J., & Dijkstra, T. (2002). Foreign language knowledge can influence native language performance in exclusively native contexts. Psychonomic Bulletin & Review, 9, 780789.10.3758/BF03196335CrossRefGoogle ScholarPubMed
van Heuven, W., & Dijkstra, T. (2010). Language comprehension in the bilingual brain: fMRI and ERP support for psycholinguistic models. Brain Research Reviews, 64(1), 104122.10.1016/j.brainresrev.2010.03.002CrossRefGoogle ScholarPubMed
van Heuven, W., Schriefers, H., Dijkstra, T., & Hagoort, P. (2008). Language conflict in the bilingual brain. Cerebral Cortex, 18, 27062716.10.1093/cercor/bhn030CrossRefGoogle ScholarPubMed
Veríssimo, J., Heyer, V., Jacob, G., & Clahsen, H. (2018). Selective effects of age of acquisition on morphological priming: Evidence for a sensitive period. Language Acquisition, 25(3), 315326.10.1080/10489223.2017.1346104CrossRefGoogle Scholar
Vingerhoets, G., Van Borsel, J., Tesink, C., van den Noort, M., Deblaere, K., Seurinck, R., Vandemaele, P., & Achten, E. (2003). Multilingualism: An fMRI study. NeuroImage, 20, 21812196.10.1016/j.neuroimage.2003.07.029CrossRefGoogle ScholarPubMed
von Holzen, K., & Mani, N. (2012). Language nonselective lexical access in bilingual toddlers. Journal of Experimental Child Psychology, 113, 569586.10.1016/j.jecp.2012.08.001CrossRefGoogle ScholarPubMed
Voss, J., & Paller, K. (2008). Brain substrates of implicit and explicit memory: The importance of concurrently acquired neural signals of both memory types. Neuropsychologia, 46(13), 30213029.10.1016/j.neuropsychologia.2008.07.010CrossRefGoogle ScholarPubMed
Wartenburger, I., Heekeren, H., Abutalebi, J., Cappa, S., Vilringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159170.10.1016/S0896-6273(02)01150-9CrossRefGoogle ScholarPubMed
Weber, A., & Cutler, A. (2004). Lexical competition in non-native spoken-word recognition. Journal of Memory and Language, 50, 125.10.1016/S0749-596X(03)00105-0CrossRefGoogle Scholar
Weber-Fox, C., & Neville, H. (1996). Maturational constraints on functional specializations for language processing: ERP and behavioral evidence in bilingual speakers. Journal of Cognitive Neuroscience, 8, 231256.10.1162/jocn.1996.8.3.231CrossRefGoogle ScholarPubMed
Wu, Y., & Thierry, G. (2010). Chinese-English bilinguals reading English hear Chinese. Journal of Neuroscience, 30(22), 76467651.10.1523/JNEUROSCI.1602-10.2010CrossRefGoogle ScholarPubMed
Xu, M., Baldauf, D., Chang, C., Desimone, R., & Tan, L. (2017). Distinct distributed patterns of neural activity are associated with two languages in the bilingual brain. Science Advances, 3(7), e1603309e1603309.10.1126/sciadv.1603309CrossRefGoogle ScholarPubMed
Xue, G., Dong, Q., Jin, Z., Zhang, L., & Wang, Y. (2004). An fMRI study with semantic access in low proficiency second language learners. NeuroReport, 15, 791796.10.1097/00001756-200404090-00010CrossRefGoogle ScholarPubMed
Yang, Y., Wang, J., Bailer, C., Cherkassky, V., & Just, M. (2017). Commonalities and differences in the neural representations of English, Portuguese, and Mandarin sentences: When knowledge of the brain-language mappings for two languages is better than one. Brain and language, 175, 7785.10.1016/j.bandl.2017.09.007CrossRefGoogle Scholar
Yetkin, O., Yetkin, Z., Haughton, V., & Cox, R. (1996). Use of functional MR to map language in multilingual volunteers. American Journal of Neuroradiology, 17, 473477.Google ScholarPubMed
Zhao, X., & Li, P. (2013). Simulating cross-language priming with a dynamic computational model of the lexicon. Bilingualism: Language and Cognition, 16, 288303.10.1017/S1366728912000624CrossRefGoogle Scholar
Zou, L., Abutalebi, J., Zinszer, B., Yan, X., Shu, H., Peng, D., & Ding, G. (2012). Second language experience modulates functional brain network for the native language production in bimodal bilinguals. NeuroImage, 62, 13671375.10.1016/j.neuroimage.2012.05.062CrossRefGoogle Scholar

References

Abutalebi, J., Della Rosa, P. A., Ding, G., Weekes, B., Costa, A., & Green, D. W. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49(3), 905911.10.1016/j.cortex.2012.08.018CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Tettamanti, M., Green, D. W., & Cappa, S. F. (2009). Bilingual aphasia and language control: A follow-up fMRI and intrinsic connectivity study. Brain and Language, 109(2), 141156.10.1016/j.bandl.2009.03.003CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20(3), 242275.10.1016/j.jneuroling.2006.10.003CrossRefGoogle Scholar
Abutalebi, J., & Green, D. W. (2008). Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23(4), 557582.10.1080/01690960801920602CrossRefGoogle Scholar
Abutalebi, J., Miozzo, M., & Cappa, S. F. (2000). Do subcortical structures control “language selection” in polyglots? Evidence from pathological language mixing. Neurocase, 6, 5156.Google Scholar
Aglioti, S., Beltramello, A., Girardi, F., & Fabbro, F. (1996). Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia. Brain: A Journal of Neurology, 119, 15511564.10.1093/brain/119.5.1551CrossRefGoogle ScholarPubMed
Amberber, A. M. (2012). Language intervention in French–English bilingual aphasia: Evidence of limited therapy transfer. Journal of Neurolinguistics, 25(6), 588614.10.1016/j.jneuroling.2011.10.002CrossRefGoogle Scholar
Ansaldo, A. I., & Marcotte, K. (2007). Language switching and mixing in the context of bilingual aphasia. In Centeno, J. G., Obler, L. K., & Anderson, R. T. (Eds.), Studying Communication Disorders in Spanish Speakers: Theoretical, Research, and Clinical Aspects. Multilingual Matters.Google Scholar
Ansaldo, A. I., & Saidi, L. G. (2014). Aphasia therapy in the age of globalization: cross-linguistic therapy effects in bilingual aphasia. Behavioural Neurology, 603085. https://doi.org/10.1155/2014/603085Google Scholar
Ansaldo, A. I., Saidi, L. G., & Ruiz, A. (2010). Model‐driven intervention in bilingual aphasia: Evidence from a case of pathological language mixing. Aphasiology, 24(2), 309324.10.1080/02687030902958423CrossRefGoogle Scholar
Ardila, A., & Ramos, E. (2007). Speech and Language Disorders in Bilinguals. Nova Science Publishers.Google Scholar
Blanco-Elorrieta, E., & Caramazza, A. (2021). A common selection mechanism at each linguistic level in bilingual and monolingual language production. Cognition, 213, 104625.10.1016/j.cognition.2021.104625CrossRefGoogle ScholarPubMed
Bloem, I., & La Heij, W. (2003). Semantic facilitation and semantic interference in word translation: Implications for models of lexical access in language production. Journal of Memory and Language, 48(3), 468488.10.1016/S0749-596X(02)00503-XCrossRefGoogle Scholar
Blumenfeld, H. K., Bobb, S. C., & Marian, V. (2016). The role of language proficiency, cognate status and word frequency in the assessment of Spanish–English bilinguals’ verbal fluency. International Journal of Speech-Language Pathology, 18(2), 190201. https://doi.org/10.3109/17549507.2015.1081288CrossRefGoogle ScholarPubMed
Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39(4), 713726.10.1016/S0896-6273(03)00466-5CrossRefGoogle ScholarPubMed
Broersma, M., Carter, D., & Acheson, D. J. (2016). Cognate costs in bilingual speech production: Evidence from language switching. Frontiers in Psychology, 7, 1461.10.3389/fpsyg.2016.01461CrossRefGoogle ScholarPubMed
Brysbaert, M., & Ellis, A. W. (2016). Aphasia and age of acquisition: are early-learned words more resilient? Aphasiology, 30, 12401263.10.1080/02687038.2015.1106439CrossRefGoogle Scholar
Calabria, M., Costa, A., Green, D. W., & Abutalebi, J. (2018). Neural basis of bilingual language control. Annals of the New York Academy of Sciences, 1426(1), 221235.10.1111/nyas.13879CrossRefGoogle Scholar
Calabria, M., Grunden, N., Iaia, F., & García-Sánchez, C. (2020). Interference and facilitation in phonological encoding: Two sides of the same coin? Evidence from bilingual aphasia. Journal of Neurolinguistics, 56, 100935. https://doi.org/10.1016/j.jneuroling.2020.100935CrossRefGoogle Scholar
Calabria, M., Grunden, N., Serra, M., García-Sánchez, C., & Costa, A. (2019). Semantic processing in bilingual aphasia: Evidence of language dependency. Frontiers in Human Neuroscience, 13, 205. https://doi.org/10.3389/fnhum.2019.00205CrossRefGoogle ScholarPubMed
Carpenter, E., Rao, L., Peñaloza, C., & Kiran, S. (2020). Verbal fluency as a measure of lexical access and cognitive control in bilingual persons with aphasia. Aphasiology, 34(11), 13411362.10.1080/02687038.2020.1759774CrossRefGoogle ScholarPubMed
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological review, 82(6), 407.10.1037/0033-295X.82.6.407CrossRefGoogle Scholar
Colomé, À. (2001). Lexical activation in bilinguals’ speech production: Language-specific or language-independent? Journal of Memory and Language, 45(4), 721736.10.1006/jmla.2001.2793CrossRefGoogle Scholar
Conner, P. S., Goral, M., Anema, I., Borodkin, K., Haendler, Y., Knoph, M., Mustelier, C., Paluska, E., Melnikova, Y., & Moeyaert, M. (2018). The role of language proficiency and linguistic distance in cross-linguistic treatment effects in aphasia. Clinical Linguistics & Phonetics, 32(8), 739757.10.1080/02699206.2018.1435723CrossRefGoogle ScholarPubMed
Costa, A. (2005). Lexical access in bilingual production. In Kroll, J. F., & De Groot, A. M. B. (Eds.), Handbook of Bilingualism: Psycholinguistic Approaches (pp. 308325). Oxford University Press.Google Scholar
Costa, A., Miozzo, M., & Caramazza, A. (1999). Lexical selection in bilinguals: Do words in the bilingual’s two lexicons compete for selection? Journal of Memory and Language, 41(3), 365397. https://doi.org/10.1006/jmla.1999.2651CrossRefGoogle Scholar
Costa, A., & Santesteban, M. (2004). Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language, 50(4), 491511.10.1016/j.jml.2004.02.002CrossRefGoogle Scholar
Dash, T., & Kar, B. R. (2014). Bilingual language control and general purpose cognitive control among individuals with bilingual aphasia: Evidence based on negative priming and flanker tasks. Behavioural Neurology, 2014(1), 679706.10.1155/2014/679706CrossRefGoogle ScholarPubMed
de Groot, A. M. (1992). Determinants of word translation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 10011018. https://doi.org/10.1037/0278-7393.18.5.1001Google Scholar
de Groot, A. M., Dannenburg, L., & Vanhell, J. G. (1994). Forward and backward word translation by bilinguals. Journal of Memory and Language, 33(5), 600629.10.1006/jmla.1994.1029CrossRefGoogle Scholar
Delgado, P., Guerrero, G., Goggin, J. P., Ellis, B. B., Goggin, J. P., & Ellis, B. B. (1999). Behavioral sciences self-assessment of linguistic skills. Hispanic Journal of Behavioral Sciences, 21, 3146.10.1177/0739986399211003CrossRefGoogle Scholar
Dijkstra, T., & Van Heuven, W. J. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5(3), 175197.10.1017/S1366728902003012CrossRefGoogle Scholar
Edmonds, L. A., & Kiran, S. (2006). Effect of Semantic Naming Treatment on Crosslinguistic Generalization in Bilingual Aphasia. Journal of Speech, Language, and Hearing Research, 49, 729749.10.1044/1092-4388(2006/053)CrossRefGoogle ScholarPubMed
Fabbro, F. (2001). The bilingual brain: Bilingual aphasia. Brain and Language, 79(2), 201210. https://doi.org/10.1006/brln.2001.2480CrossRefGoogle ScholarPubMed
Fabbro, F., Skrap, M., & Aglioti, S. (2000). Pathological switching between languages after frontal lesions in a bilingual patient. Journal of Neurology, Neurosurgery, and Psychiatry, 68 (5), 650652.10.1136/jnnp.68.5.650CrossRefGoogle Scholar
Faroqi-Shah, Y., Sampson, M., Pranger, M., & Baughman, S. (2018). Cognitive control, word retrieval and bilingual aphasia: Is there a relationship? Journal of Neurolinguistics, 45, 95109.10.1016/j.jneuroling.2016.07.001CrossRefGoogle Scholar
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101135.10.1037/0096-3445.133.1.101CrossRefGoogle ScholarPubMed
Fucetola, R., Connor, L. T., Strube, M. J., & Corbetta, M. (2009). Unravelling nonverbal cognitive performance in acquired aphasia. Aphasiology, 23(12), 14181426.10.1080/02687030802514938CrossRefGoogle Scholar
Gollan, T. H., Montoya, R. I., & Werner, G. A. (2002). Semantic and letter fluency in Spanish-English bilinguals. Neuropsychology, 16(4), 562576. https://doi.org/10.1037/0894-4105.16.4.562CrossRefGoogle ScholarPubMed
Goral, M., & Lerman, A. (2020). Variables and mechanisms affecting response to language treatment in multilingual people with aphasia. Behavioral Sciences, 10(9), 144.10.3390/bs10090144CrossRefGoogle ScholarPubMed
Goral, M., Levy, E. S., & Kastl, R. (2010). Cross‐language treatment generalisation: A case of trilingual aphasia. Aphasiology, 24(2), 170187.10.1080/02687030902958308CrossRefGoogle Scholar
Goral, M., Naghibolhosseini, M., & Conner, P. S. (2013). Asymmetric inhibitory treatment effects in multilingual aphasia. Cognitive Neuropsychology, 30(7–8), 564577.10.1080/02643294.2013.878692CrossRefGoogle ScholarPubMed
Goral, M., Norvik, M. I., Antfolk, J., Agrotou, I., & Lehtonen, M. (2023). Cross-language generalization of language treatment in multilingual people with post-stroke aphasia: A meta-analysis. Brain and Language, 246, 105326.10.1016/j.bandl.2023.105326CrossRefGoogle ScholarPubMed
Goral, M., Norvik, M., & Jensen, B. U. (2019). Variation in language mixing in multilingual aphasia. Clinical Linguistics & Phonetics, 33(10–11), 915929.10.1080/02699206.2019.1584646CrossRefGoogle ScholarPubMed
Goral, M., Rosas, J., Conner, P. S., Maul, K. K., & Obler, L. K. (2012). Effects of language proficiency and language of the environment on aphasia therapy in a multilingual. Journal of neurolinguistics, 25(6), 538551.10.1016/j.jneuroling.2011.06.001CrossRefGoogle Scholar
Grasso, S. M., Cruz, D. F., Benavidez, R., Peña, E. D., & Henry, M. L. (2019). Video-implemented script training in a bilingual Spanish-English speaker with aphasia. Journal of Speech, Language, and Hearing Research, 62(7), 22952316.10.1044/2018_JSLHR-L-18-0048CrossRefGoogle Scholar
Gray, T. (2020). The relationship between language control, semantic control and nonverbal control. Behavioral Sciences, 10(11), 169. https://doi.org/10.3390/bs10110169CrossRefGoogle ScholarPubMed
Gray, T., & Kiran, S. (2013). A theoretical account of lexical and semantic naming deficits in bilingual aphasia. Journal of Speech, Language, and Hearing Research, 56(4), 13141327.10.1044/1092-4388(2012/12-0091)CrossRefGoogle ScholarPubMed
Gray, T., & Kiran, S. (2016). The relationship between language control and cognitive control in bilingual aphasia. Bilingualism: Language and Cognition, 19(3), 433452.10.1017/S1366728915000061CrossRefGoogle Scholar
Gray, T., & Kiran, S. (2019). The effect of task complexity on linguistic and non-linguistic control mechanisms in bilingual aphasia. Bilingualism: Language and Cognition, 22(2), 266284.10.1017/S1366728917000712CrossRefGoogle Scholar
Gray, T., Palevich, J., & Sandberg, C. (2023). Bilingual abstract semantic associative network training (BAbSANT): A Russian-English case study. Bilingualism: Language and Cognition, 27(2), 117. https://doi.org/10.1017/S1366728923000500Google Scholar
Green, D. W. (1986). Control, activation, and resource: A framework and a model for the control of speech in bilinguals. Brain and Language, 27(2), 210223.10.1016/0093-934X(86)90016-7CrossRefGoogle Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1(2), 6781.10.1017/S1366728998000133CrossRefGoogle Scholar
Green, D. W., & Abutalebi, J. (2008). Understanding the link between bilingual aphasia and language control. Journal of Neurolinguistics, 21(6), 558576.10.1016/j.jneuroling.2008.01.002CrossRefGoogle Scholar
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25(5), 515530.10.1080/20445911.2013.796377CrossRefGoogle ScholarPubMed
Green, D. W., Grogan, A., Crinion, J., Ali, N., Sutton, C., & Price, C. J. (2010). Language control and parallel recovery of language in individuals with aphasia. Aphasiology, 24(2), 188209.10.1080/02687030902958316CrossRefGoogle ScholarPubMed
Grosjean, F. (1992). Another view of bilingualism. In Harris, R. (Ed.), Cognitive Processing in Bilinguals, vol. 13 (pp. 5162). North-Holland.10.1016/S0166-4115(08)61487-9CrossRefGoogle Scholar
Grunden, N., Piazza, G., García-Sánchez, C., & Calabria, M. (2020). Voluntary language switching in the context of bilingual aphasia. Behavioral Sciences, 10(9), 141.10.3390/bs10090141CrossRefGoogle ScholarPubMed
Hermans, D., Bongaerts, T., De Bot, K., & Schreuder, R. (1998). Producing words in a foreign language: Can speakers prevent interference from their first language? Bilingualism: Language and Cognition, 1(3), 213229.10.1017/S1366728998000364CrossRefGoogle Scholar
Kastenbaum, J. G., Bedore, L. M., Peña, E. D., Sheng, L., Mavis, I., Sebastian-Vaytadden, R., … & Kiran, S. (2019). The influence of proficiency and language combination on bilingual lexical access. Bilingualism: Language and Cognition, 22(2), 300330.10.1017/S1366728918000366CrossRefGoogle ScholarPubMed
Kaushanskaya, M., & Marian, V. (2007). Bilingual language processing and interference in bilinguals: Evidence from eye tracking and picture naming. Language Learning, 57(1), 119163.10.1111/j.1467-9922.2007.00401.xCrossRefGoogle Scholar
Keane, C., & Kiran, S. (2015). The nature of facilitation and interference in the multilingual language system: Insights from treatment in a case of trilingual aphasia. Cognitive Neuropsychology, 32(3–4), 169194.10.1080/02643294.2015.1061982CrossRefGoogle Scholar
Kiran, S., Balachandran, I., & Lucas, J. (2014). The nature of lexical-semantic access in bilingual aphasia. Behavioural Neurology. https://doi.org/10.1155/2014/389565CrossRefGoogle Scholar
Kiran, S., & Iakupova, R. (2011). Understanding the relationship between language proficiency, language impairment and rehabilitation: Evidence from a case study. Clinical Linguistics & Phonetics, 25(6–7), 565583.10.3109/02699206.2011.566664CrossRefGoogle ScholarPubMed
Kiran, S., & Roberts, P. M. (2010). Semantic feature analysis treatment in Spanish-English and French-English bilingual aphasia. Aphasiology, 24(2), 231261.10.1080/02687030902958365CrossRefGoogle Scholar
Kiran, S., Sandberg, C., Gray, T., Ascenso, E., & Kester, E. (2013). Rehabilitation in bilingual aphasia: Evidence for within- and between-language generalization. American Journal of Speech Language Pathology, 22(2), 298310.10.1044/1058-0360(2013/12-0085)CrossRefGoogle ScholarPubMed
Knoph, M. I. K. (2013). Language intervention in Arabic-English bilingual aphasia: A case study. Aphasiology, 27(12), 14401458.10.1080/02687038.2013.832139CrossRefGoogle Scholar
Kohnert, K. J., Hernandez, A. E., & Bates, E. (1998). Bilingual performance on the Boston Naming Test: Preliminary norms in Spanish and English. Brain and Language, 65(3), 422440.10.1006/brln.1998.2001CrossRefGoogle ScholarPubMed
Kong, A. P. H., Abutalebi, J., Lam, K. S. Y., & Weekes, B. (2014). Executive and language control in the multilingual brain. Behavioural Neurology. https://doi.org/10.1155/2014/527951CrossRefGoogle Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33(2), 149174.10.1006/jmla.1994.1008CrossRefGoogle Scholar
Kurland, J., & Falcon, M. (2011). Effects of cognate status and language of therapy during intensive semantic naming treatment in a case of severe nonfluent bilingual aphasia. Clinical Linguistics & Phonetics, 25(6–7), 584600.10.3109/02699206.2011.565398CrossRefGoogle Scholar
Lalor, E., & Kirsner, K. (2001). The role of cognates in bilingual aphasia: Implications for assessment and treatment. Aphasiology, 15(10–11), 10471056.10.1080/02687040143000384CrossRefGoogle Scholar
Lee, B., & Pyun, S. B. (2014). Characteristics of cognitive impairment in patients with post-stroke aphasia. Annals of Rehabilitation Medicine, 38(6), 759765.10.5535/arm.2014.38.6.759CrossRefGoogle ScholarPubMed
Lerman, A., Goral, M., Edmonds, L. A., & Obler, L. K. (2022). Strengthening the semantic verb network in multilingual people with aphasia: Within- and cross-language treatment effects. Bilingualism: Language and Cognition, 25(4), 645659.10.1017/S1366728921001036CrossRefGoogle Scholar
Li, P., Sepanski, S., & Zhao, X. (2006). Language history questionnaires: A web-based interface for bilingual research. Behavior Research Methods, 38(2), 202210.10.3758/BF03192770CrossRefGoogle ScholarPubMed
Linck, J. A., Hoshino, N., & Kroll, J. F. (2008). Cross-language lexical processes and inhibitory control. The Mental Lexicon, 3(3), 349374.10.1075/ml.3.3.06linCrossRefGoogle ScholarPubMed
Linck, J. A., Kroll, J. F., & Sunderman, G. (2009). Losing access to the native language while immersed in a second language: Evidence for the role of inhibition in second-language learning. Psychological Science, 20(12), 15071515.10.1111/j.1467-9280.2009.02480.xCrossRefGoogle Scholar
Luo, L., Luk, G., & Bialystok, E. (2010). Effect of language proficiency and executive control on verbal fluency performance in bilinguals. Cognition, 114(1), 2941.10.1016/j.cognition.2009.08.014CrossRefGoogle ScholarPubMed
MacIntyre, P. D., Noels, K. A., & Clément, R. (1997). Biases in self‐ratings of second language proficiency: The role of language anxiety. Language Learning, 47(2), 265287.10.1111/0023-8333.81997008CrossRefGoogle Scholar
Marte, M. J., Peñaloza, C., & Kiran, S. (2023). The cognate facilitation effect on lexical access in bilingual aphasia: Evidence from the Boston Naming Test. Bilingualism: Language and Cognition, 26(5), 10091025. https://doi.org/10.1017/S1366728923000251CrossRefGoogle ScholarPubMed
Mathuranath, P. S., George, A., Cherian, P. J., Alexander, A. L., Sarma, S. G., & Sarma, P. S. (2003). Effects of age, education and gender on verbal fluency. Journal of Clinical and Experimental Neuropsychology, 25(8), 10571064.10.1076/jcen.25.8.1057.16736CrossRefGoogle ScholarPubMed
Michael, E. B., & Gollan, T. H. (2005). Being and becoming bilingual: Individual differences and consequences for language production. In Kroll, J. F. & de Groot, A. M. B. (Eds.), Handbook of Bilingualism: Psycholinguistic Approach (pp. 389407). Oxford University Press.Google Scholar
Miertsch, B., Meisel, J. M., & Isel, F. (2009). Non-treated languages in aphasia therapy of polyglots benefit from improvement in the treated language. Journal of Neurolinguistics, 22(2), 135150.10.1016/j.jneuroling.2008.07.003CrossRefGoogle Scholar
Miller, E. K. (2000). The prefontral cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 5965.10.1038/35036228CrossRefGoogle Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167202.10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Muñoz, M., & Marquardt, T. (2003). Picture naming and identification in bilingual speakers of Spanish and English with and without aphasia. Aphasiology, 17(12), 11151132.10.1080/02687030344000427CrossRefGoogle Scholar
Nair, V. K., Rayner, T., Siyambalapitiya, S., & Biedermann, B. (2021). Domain-general cognitive control and domain-specific language control in bilingual aphasia: A systematic quantitative literature review. Journal of Neurolinguistics, 60, 101021.10.1016/j.jneuroling.2021.101021CrossRefGoogle Scholar
Paradis, M. (2004). A Neurolinguistic Theory of Bilingualism. John Benjamins Publishing.10.1075/sibil.18CrossRefGoogle Scholar
Paradis, M., Goldblum, M., & Abidi, R. (1982). Alternate anatagonism with paradoxical translation behaviour in two bilingual aphasic patients. Brain and Language, 15, 5569.10.1016/0093-934X(82)90046-3CrossRefGoogle Scholar
Patra, A., Bose, A., & Marinis, T. (2020). Lexical and cognitive underpinnings of verbal fluency: Evidence from Bengali-English bilingual aphasia. Behavioral Sciences, 10(10), 155.10.3390/bs10100155CrossRefGoogle ScholarPubMed
Patra, A., Marinis, T., & Bose, A. (in-review). Cognate picture naming in bilingual aphasia. International Journal of Language and Communication Disorders.Google Scholar
Peñaloza, C., & Kiran, S. (2019). Recovery and rehabilitation patterns in bilingual and multilingual aphasia. The Handbook of the Neuroscience of Multilingualism, 553–571.10.1002/9781119387725.ch27CrossRefGoogle Scholar
Peñaloza, C., Barrett, K., & Kiran, S. (2020). The influence of prestroke proficiency on poststroke lexical-semantic performance in bilingual aphasia. Aphasiology, 34(10), 12231240.10.1080/02687038.2019.1666082CrossRefGoogle ScholarPubMed
Potter, M. C., So, K. F., Von Eckardt, B., & Feldman, L. B. (1984). Lexical and conceptual representation in beginning and proficient bilinguals. Journal of Verbal Learning and Verbal Behavior, 23(1), 2338.10.1016/S0022-5371(84)90489-4CrossRefGoogle Scholar
Radman, N., Mouthon, M., Di Pietro, M., Gaytanidis, C., Leemann, B., Abutalebi, J., & Annoni, J. M. (2016). The role of the cognitive control system in recovery from bilingual aphasia: A multiple single-case fMRI study. Neural Plasticity. http://dx.doi.org/10.1155/2016/8797086CrossRefGoogle Scholar
Roberts, P. M., & Deslauriers, L. (1999). Picture naming of cognate and non-cognate nouns in bilingual aphasia. Journal of Communication Disorders, 32(1), 123.10.1016/S0021-9924(98)00026-4CrossRefGoogle ScholarPubMed
Sandberg, C. W., Zacharewicz, M., & Gray, T. (2021). Bilingual abstract semantic associative network training (BAbSANT): A Polish-English case study. Journal of Communication Disorders, 93, 106143. https://doi.org/10.1016/j.jcomdis.2021.106143CrossRefGoogle ScholarPubMed
Schnur, T. T., Schwartz, M. F., Brecher, A., & Hodgson, C. (2006). Semantic interference during blocked-cyclic naming: Evidence from aphasia. Journal of Memory and Language, 54(2), 199227.10.1016/j.jml.2005.10.002CrossRefGoogle Scholar
Schriefers, H., Meyer, A. S., & Levelt, W. J. (1990). Exploring the time course of lexical access in language production: Picture-word interference studies. Journal of Memory and Language, 29(1), 86102.10.1016/0749-596X(90)90011-NCrossRefGoogle Scholar
Shao, Z., Janse, E., Visser, K., & Meyer, A. S. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Frontiers in Psychology, 5, 772. https://doi.org/10.3389/fpsyg.2014.00772CrossRefGoogle ScholarPubMed
Tomoschuk, B., Ferreira, V. S., & Gollan, T. H. (2019). When a seven is not a seven: Self-ratings of bilingual language proficiency differ between and within language populations. Bilingualism: Language and Cognition, 22(3), 516536.10.1017/S1366728918000421CrossRefGoogle Scholar
Van der Linden, L., Verreyt, N., De Letter, M., Hemelsoet, D., Mariën, P., Santens, P., Stevens, M., Szmalec, A., & Duyck, W. (2018). Cognate effects and cognitive control in patients with parallel and differential bilingual aphasia. International Journal of Language & Communication Disorders, 53(3), 515525.10.1111/1460-6984.12365CrossRefGoogle ScholarPubMed
Van Hell, J. G., & Tanner, D. (2012). Second language proficiency and cross-language lexical activation. Language Learning, 62 (2), 148171. https://doi.org/10.1111/j.1467-9922.2012.00710.xCrossRefGoogle Scholar
Van Heuven, W. J. B., Dijkstra, T., & Grainger, J. (1998). Orthographic neighborhood effects in bilingual word recognition. Journal of Memory & Language, 39, 458483.10.1006/jmla.1998.2584CrossRefGoogle Scholar
Veríssimo, J. (2021). Analysis of rating scales: A pervasive problem in bilingualism research and a solution with Bayesian ordinal models. Bilingualism: Language and Cognition, 24(5), 842848.10.1017/S1366728921000316CrossRefGoogle Scholar
Verreyt, N., De Letter, M., Hemelsoet, D., Santens, P., & Duyck, W. (2013). Cognate effects and executive control in a patient with differential bilingual aphasia. Applied Neuropsychology: Adult, 20(3), 221230.10.1080/09084282.2012.753074CrossRefGoogle Scholar
Wheeldon, L. R., & Monsell, S. (1994). Inhibition of spoken word production by priming a semantic competitor. Journal of Memory & Language, 33, 332356.10.1006/jmla.1994.1016CrossRefGoogle Scholar
Zied, K. M., Phillipe, A., Karine, P., Valerie, H. T., Ghislaine, A., & Arnaud, R. (2004). Bilingualism and adult differences in inhibitory mechanisms: Evidence from a bilingual Stroop task. Brain and Cognition, 54(3), 254256.10.1016/j.bandc.2004.02.036CrossRefGoogle Scholar

References

Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., … & Frith, U. (1999). The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. NeuroReport, 10, 16471651.10.1097/00001756-199906030-00005CrossRefGoogle ScholarPubMed
Alcántara, J. I., Cope, T. E., Cope, W., & Weisblatt, E. J. (2012). Auditory temporal-envelope processing in high-functioning children with autism spectrum disorder. Neuropsychologia, 50, 12351251.10.1016/j.neuropsychologia.2012.01.034CrossRefGoogle ScholarPubMed
Alcántara, J. I., Weisblatt, E. J., Moore, B. C., & Bolton, P. F. (2004). Speech-in-noise perception in high-functioning individuals with autism or Asperger’s syndrome. Journal of Child Psychology and Psychiatry, 45, 11071114.10.1111/j.1469-7610.2004.t01-1-00303.xCrossRefGoogle ScholarPubMed
American Psychiatric Association, D. S. M. T. F., & American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5. American Psychiatric Association.Google Scholar
Arutiunian, V., Gomozova, M., Minnigulova, A., Davydova, E., Pereverzeva, D., Sorokin, A., … & Dragoy, O. (2023). Structural brain abnormalities and their association with language impairment in school-aged children with autism spectrum disorder. Scientific Reports, 13, 1172.10.1038/s41598-023-28463-wCrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Lotspeich, L. J., & Reiss, A. L. (2010). Similar white matter aberrations in children with autism and their unaffected siblings: A diffusion tensor imaging study using tract-based spatial statistics. Archives of General Psychiatry, 67, 10521060.10.1001/archgenpsychiatry.2010.123CrossRefGoogle ScholarPubMed
Berman, J. I., Edgar, J. C., Blaskey, L., Kuschner, E. S., Levy, S. E., Ku, M., Dell, J., & Roberts, T. P. L. (2016). Multimodal diffusion-MRI and MEG assessment of auditory and language system development in autism spectrum disorder. Frontiers in Neuroanatomy, 10.10.3389/fnana.2016.00030CrossRefGoogle ScholarPubMed
Blasi, A., Lloyd-Fox, S., Sethna, V., Brammer, M. J., Mercure, E., Murray, L., … & Johnson, M. H. (2015). Atypical processing of voice sounds in infants at risk for autism spectrum disorder. Cortex, 71, 122133.10.1016/j.cortex.2015.06.015CrossRefGoogle ScholarPubMed
Briend, F., David, C., Silleresi, S., Malvy, J., Ferré, S., & Latinus, M. (2023). Voice acoustics allow classifying autism spectrum disorder with high accuracy. Translational Psychiatry, 13, 250.10.1038/s41398-023-02554-8CrossRefGoogle ScholarPubMed
Butler, L. K., Kiran, S., & Tager-Flusberg, H. (2020). Functional near-infrared spectroscopy (fNIRS) in the study of speech and language impairment across the lifespan: A systematic review. American Journal of Speech-Language Pathology, 29, 16741701.10.1044/2020_AJSLP-19-00050CrossRefGoogle Scholar
Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. Neuroimage, 16, 10381051.10.1006/nimg.2002.1099CrossRefGoogle ScholarPubMed
Cascio, C. J., Woynaroski, T., Baranek, G. T., & Wallace, M. T. (2016). Toward an interdisciplinary approach to understanding sensory function in autism spectrum disorder. Autism Research, 9, 920925.10.1002/aur.1612CrossRefGoogle ScholarPubMed
Cermak, C. A., Arshinoff, S., Ribeiro de Oliveira, L., Tendera, A., Beal, D. S., Brian, J., … & Sanjeevan, T. (2022). Brain and language associations in autism spectrum disorder: A scoping review. Journal of Autism and Developmental Disorders, 52, 725737.10.1007/s10803-021-04975-0CrossRefGoogle ScholarPubMed
Chenausky, K., Brignell, A., Morgan, A., & Tager-Flusberg, H. (2019). Motor speech impairment predicts expressive language in minimally verbal, but not low verbal, individuals with autism spectrum disorder. Autism & Developmental Language Impairments, 4. https://doi.org/2396941519856333CrossRefGoogle Scholar
Ciarrusta, J., Dimitrova, R., Batalle, D., O’Muircheartaigh, J., Cordero-Grande, L., Price, A., … & McAlonan, G. (2020). Emerging functional connectivity differences in newborn infants vulnerable to autism spectrum disorders. Translational Psychiatry, 10, 131.10.1038/s41398-020-0805-yCrossRefGoogle ScholarPubMed
Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10, 106111.10.1002/mrdd.20020CrossRefGoogle ScholarPubMed
Crutcher, J., Martin, A., & Wallace, G. L. (2018). Dissociations in the neural substrates of language and social functioning in autism spectrum disorder. Autism Research, 11, 11751186.10.1002/aur.1969CrossRefGoogle ScholarPubMed
Donkers, F. C., Carlson, M., Schipul, S. E., Belger, A., & Baranek, G. T. (2020). Auditory event-related potentials and associations with sensory patterns in children with autism spectrum disorder, developmental delay, and typical development. Autism, 24, 10931110.10.1177/1362361319893196CrossRefGoogle ScholarPubMed
Duan, H., Eyler, L., Pierce, K., Lombardo, M., Datko, M., Hagler, D. et al. (2023). Language, social and face regions are affected in toddlers with autism and predictive of language outcome. Res Sq [Preprint]. https://doi.org/10.21203/rs.3.rs-2451837/v1CrossRefGoogle Scholar
Dunlop, W. A., Enticott, P. G., & Rajan, R. (2016). Speech discrimination difficulties in high-functioning autism spectrum disorder are likely independent of auditory hypersensitivity. Frontiers in Human Neuroscience, 10.10.3389/fnhum.2016.00401CrossRefGoogle ScholarPubMed
Dunn, M. A., & Bates, J. C. (2005). Developmental change in neutral processing of words by children with autism. Journal of Autism and Developmental Disorders, 35, 361376.10.1007/s10803-005-3304-3CrossRefGoogle ScholarPubMed
Edwards, L. A., Wagner, J. B., Tager-Flusberg, H., & Nelson, C. A. (2017). Differences in neural correlates of speech perception in 3 month olds at high and low risk for autism spectrum disorder. Journal of Autism and Developmental Disorders, 47, 31253138.10.1007/s10803-017-3222-1CrossRefGoogle ScholarPubMed
Eigsti, I. M., Schuh, J., Mencl, E., Schultz, R. T., & Paul, R. (2012). The neural underpinnings of prosody in autism. Child Neuropsychology, 18, 600617.10.1080/09297049.2011.639757CrossRefGoogle ScholarPubMed
Eigsti, I. M., Stevens, M. C., Schultz, R. T., Barton, M., Kelley, E., Naigles, L., … & Fein, D. A. (2016). Language comprehension and brain function in individuals with an optimal outcome from autism. NeuroImage: Clinical, 10, 182191.10.1016/j.nicl.2015.11.014CrossRefGoogle ScholarPubMed
Feldman, J. I., Dunham, K., Cassidy, M., Wallace, M. T., Liu, Y., & Woynaroski, T. G. (2018). Audiovisual multisensory integration in individuals with autism spectrum disorder: A systematic review and meta-analysis. Neuroscience Biobehavioral Reviews, 95, 220234.10.1016/j.neubiorev.2018.09.020CrossRefGoogle ScholarPubMed
Finch, K. H., Seery, A. M., Talbott, M. R., Nelson, C. A., & Tager-Flusberg, H. (2017). Lateralization of ERPs to speech and handedness in the early development of autism spectrum disorder. Journal of Neurodevelopmental Disorders, 9, 114.10.1186/s11689-017-9185-xCrossRefGoogle ScholarPubMed
Floris, D. L., Wolfers, T., Zabihi, M., Holz, N. E., Zwiers, M. P., Charman, T., … & Wooldridge, C. (2021). Atypical brain asymmetry in autism: A candidate for clinically meaningful stratification. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 802812.Google ScholarPubMed
Foss-Feig, J. H., Adkinson, B. D., Ji, J. L., Yang, G., Srihari, V. H., McPartland, J. C., Krystal, J. H., Murray, J. D., & Anticevic, A. (2017). Searching for cross-diagnostic convergence: Neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders. Biological Psychiatry, 81, 848861.10.1016/j.biopsych.2017.03.005CrossRefGoogle ScholarPubMed
Franich, K., Wong, H. Y., Yu, A. C., & To, C. K. (2021). Temporal coordination and prosodic structure in autism spectrum disorder: Timing across speech and non-speech motor domains. Journal of Autism and Developmental Disorders, 51, 29292949.10.1007/s10803-020-04758-zCrossRefGoogle ScholarPubMed
Funabiki, Y., Murai, T., & Toichi, M. (2012). Cortical activation during attention to sound in autism spectrum disorders. Research in Developmental Disabilities, 33, 518524.10.1016/j.ridd.2011.10.016CrossRefGoogle ScholarPubMed
Gage, N. M., Siegel, B., Callen, M., & Roberts, T. P. L. (2003). Cortical sound processing in children with autism disorder: An MEG investigation. NeuroReport, 14, 20472051.10.1097/00001756-200311140-00008CrossRefGoogle ScholarPubMed
Gao, Y., Linke, A., Jao Keehn, R. J., Punyamurthula, S., Jahedi, A., Gates, K., … & Müller, R. A. (2019). The language network in autism: Atypical functional connectivity with default mode and visual regions. Autism Research, 12, 13441355.10.1002/aur.2171CrossRefGoogle ScholarPubMed
Hardan, A. Y., Muddasani, S., Vemulapalli, M., Keshavan, M. S., & Minshew, N. J. (2006). An MRI study of increased cortical thickness in autism. American Journal of Psychiatry, 163, 12901292.10.1176/ajp.2006.163.7.1290CrossRefGoogle ScholarPubMed
Hazlett, H. C., Gu, H., McKinstry, R. C., Shaw, D. W., Botteron, K. N., Dager, S. R., … & IBIS network. (2012). Brain volume findings in 6-month-old infants at high familial risk for autism. American Journal of Psychiatry, 169, 601608.10.1176/appi.ajp.2012.11091425CrossRefGoogle ScholarPubMed
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … & Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542, 348351.10.1038/nature21369CrossRefGoogle ScholarPubMed
Hazlett, H. C., Poe, M. D., Gerig, G., Smith, R. G., & Piven, J. (2006). Cortical gray and white brain tissue volume in adolescents and adults with autism. Biological Psychiatry, 59, 16.10.1016/j.biopsych.2005.06.015CrossRefGoogle ScholarPubMed
Herringshaw, A. J., Ammons, C. J., DeRamus, T. P., & Kana, R. K. (2016). Hemispheric differences in language processing in autism spectrum disorders: A meta-analysis of neuroimaging studies. Autism Research, 9, 10461057.10.1002/aur.1599CrossRefGoogle ScholarPubMed
Hwang, B. H., & Lee, D. (2022). Association between motor and language skills development in children with autism spectrum disorder: A scoping review. International Journal of Disability, Development and Education, 71(2), 115.Google Scholar
Icht, M., Zukerman, G., Ben-Itzchak, E., & Ben-David, B. M. (2021). Keep it simple: Identification of basic vs. complex emotions in spoken language in individuals with autism spectrum disorder without intellectual disability: A meta-analysis study. Autism Research, 14, 19481964.10.1002/aur.2551CrossRefGoogle ScholarPubMed
Jouravlev, O., Kell, A. J., Mineroff, Z., Haskins, A. J., Ayyash, D., Kanwisher, N., & Fedorenko, E. (2020). Reduced language lateralization in autism and the broader autism phenotype as assessed with robust individual‐subjects analyses. Autism Research, 13, 17461761.10.1002/aur.2393CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 18111821.10.1093/brain/awh199CrossRefGoogle ScholarPubMed
Kamio, Y., & Toichi, M. (2000). Dual access to semantics in autism: Is pictorial access superior to verbal access? Journal of Child Psychology and Psychiatry, 41, 859867.10.1111/1469-7610.00673CrossRefGoogle ScholarPubMed
Keehn, B., Wagner, J. B., Tager-Flusberg, H., & Nelson, C. A. (2013). Functional connectivity in the first year of life in infants at-risk for autism: A preliminary near-infrared spectroscopy study. Frontiers in Human Neuroscience, 7, 444.10.3389/fnhum.2013.00444CrossRefGoogle ScholarPubMed
Key, A. P., & D’Ambrose Slaboch, K. (2021). Speech processing in autism spectrum disorder: An integrative review of auditory neurophysiology findings. Journal of Speech, Language and Hearing Research, 64, 41924212.10.1044/2021_JSLHR-20-00738CrossRefGoogle ScholarPubMed
Khalfa, S., Bruneau, N., Rogé, B., Georgieff, N., Veuillet, E., Adrien, J.-L., Barthélémy, C., & Collet, L. (2004). Increased perception of loudness in autism. Hearing Research, 198, 8792.10.1016/j.heares.2004.07.006CrossRefGoogle ScholarPubMed
Kjelgaard, M. M., & Tager-Flusberg, H. (2001). An investigation of language impairment in autism: Implications for genetic subgroups. Language and Cognitive Processes, 16, 287308.10.1080/01690960042000058CrossRefGoogle ScholarPubMed
Knaus, T., Silver, A., Lindgren, K., Hadjikhani, N., & Tager-Flusberg, H. (2008). fMRI activation during a language task in adolescents with autism spectrum disorder. Journal of the International Neuropsychological Society, 14, 967979.10.1017/S1355617708081216CrossRefGoogle Scholar
Lai, G., Pantazatos, S. P., Schneider, H., & Hirsch, J. (2012). Neural systems for speech and song in autism. Brain, 135, 961975.10.1093/brain/awr335CrossRefGoogle Scholar
Levin, A. R., Varcin, K. J., O’Leary, H. M., Tager-Flusberg, H., & Nelson, C. A. (2017). EEG power at 3 months in infants at high familial risk for autism. Journal of Neurodevelopmental Disorders, 9, 113.10.1186/s11689-017-9214-9CrossRefGoogle Scholar
Li, D., Karnath, H. O., & Xu, X. (2017). Candidate biomarkers in children with autism spectrum disorder: A review of MRI studies. Neuroscience Bulletin, 33, 219237.10.1007/s12264-017-0118-1CrossRefGoogle ScholarPubMed
Lindell, A. K., & Hudry, K. (2013). Atypicalities in cortical structure, handedness, and functional lateralization for language in autism spectrum disorders. Neuropsychology Review, 23, 257270.10.1007/s11065-013-9234-5CrossRefGoogle ScholarPubMed
Lindgren, K. A., Folstein, S. E., Tomblin, J. B., & Tager‐Flusberg, H. (2009). Language and reading abilities of children with autism spectrum disorders and specific language impairment and their first‐degree relatives. Autism Research, 2, 2238.10.1002/aur.63CrossRefGoogle ScholarPubMed
Liu, J., Okada, N. J., Cummings, K. K., Jung, J., Patterson, G., Bookheimer, S. Y., … & Dapretto, M. (2020). Emerging atypicalities in functional connectivity of language-related networks in young infants at high familial risk for ASD. Developmental Cognitive Neuroscience, 45, 100814.10.1016/j.dcn.2020.100814CrossRefGoogle Scholar
Liu, J., Tsang, T., Jackson, L., Ponting, C., Jeste, S. S., Bookheimer, S. Y., & Dapretto, M. (2019). Altered lateralization of dorsal language tracts in 6‐week‐old infants at risk for autism. Developmental Science, 22, e12768.10.1111/desc.12768CrossRefGoogle ScholarPubMed
Liu, J., Tsang, T., Ponting, C., Jackson, L., Jeste, S. S., Bookheimer, S. Y., & Dapretto, M. (2021). Lack of neural evidence for implicit language learning in 9‐month‐old infants at high risk for autism. Developmental Science, 24, e13078.10.1111/desc.13078CrossRefGoogle ScholarPubMed
Lloyd-Fox, S., Blasi, A., Pasco, G., Gliga, T., Jones, E. J. H., Murphy, D. G. M., Elwell, C. E., Charman, T., & Johnson, M. H. (2018). Cortical responses before 6 months of life associate with later autism. European Journal of Neuroscience, 47, 114.10.1111/ejn.13757CrossRefGoogle ScholarPubMed
Lu, C., Qi, Z., Harris, A., Wisman Weil, L., Han, M., Halverson, K., Perrachione, T. K., Kjelgaard, M., Wexler, K., Tager-Flusberg, H., & Gabrieli, J. D. (2016). Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 169177.Google ScholarPubMed
Matsuzaki, J., Ku, M., Dipiero, M., Chiang, T., Saby, J., Blaskey, L., Kuschner, E. S., Kim, M., Berman, J. I., Bloy, L., Chen, Y.-h., Dell, J., Liu, S., Brodkin, E. S., Embick, D., & Roberts, T. P. (2020). Delayed auditory evoked responses in autism spectrum disorder across the life span. Developmental Neuroscience, 41, 223233.10.1159/000504960CrossRefGoogle Scholar
Matsuzaki, J., Kuschner, E. S., Blaskey, L., Bloy, L., Kim, M., Ku, M., Edgar, J. C., Embick, D., & Roberts, T. P. L. (2019). Abnormal auditory mismatch fields are associated with communication impairment in both verbal and minimally verbal/nonverbal children who have autism spectrum disorder. Autism Research, 12, 12251235.10.1002/aur.2136CrossRefGoogle ScholarPubMed
McCleery, J. P., Ceponienè, R., Burner, K. M., Townsend, J., Kinnear, M., & Schreibman, L. (2010). Neural correlates of verbal and nonverbal semantic integration in children with autism spectrum disorders. Journal of Child Psychology and Psychiatry, 51(3), 277286.10.1111/j.1469-7610.2009.02157.xCrossRefGoogle ScholarPubMed
Messinger, D. S., Young, G. S., Webb, S. J., Ozonoff, S., Bryson, S. E., Carter, A., … & Zwaigenbaum, L. (2015). Early sex differences are not autism-specific: A Baby Siblings Research Consortium (BSRC) study. Molecular Autism, 6, 112.10.1186/s13229-015-0027-yCrossRefGoogle ScholarPubMed
Minnigulova, A., Davydova, E., Pereverzeva, D., Sorokin, A., Tyushkevich, S., Mamokhina, U., … & Arutiunian, V. (2023). Corpus callosum organization and its implication to core and co-occurring symptoms of autism spectrum disorder. Brain Structure and Function, 228, 775785.10.1007/s00429-023-02617-yCrossRefGoogle ScholarPubMed
Nagae, L. M., Zarnow, D. M., Blaskey, L., Dell, J., Khan, S. Y., Qasmieh, S., … & Roberts, T. P. L. (2012). Elevated mean diffusivity in the left hemisphere superior longitudinal fasciculus in autism spectrum disorders increases with more profound language impairment. American Journal of Neuroradiology, 33, 17201725.10.3174/ajnr.A3037CrossRefGoogle ScholarPubMed
Naigles, L. R., Johnson, R., Mastergeorge, A., Ozonoff, S., Rogers, S. J., Amaral, D. G., & Nordahl, C. W. (2017). Neural correlates of language variability in preschool‐aged boys with autism spectrum disorder. Autism Research, 10, 11071119.10.1002/aur.1756CrossRefGoogle ScholarPubMed
Nair, A., Jalal, R., Liu, J., Tsang, T., McDonald, N. M., Jackson, L., … & Dapretto, M. (2021). Altered thalamocortical connectivity in 6-week-old infants at high familial risk for autism spectrum disorder. Cerebral Cortex, 31, 41914205.10.1093/cercor/bhab078CrossRefGoogle ScholarPubMed
Norbury, C. F. (2013). Are you speaking my language? Raising awareness of language learning impairments in developmental psychopathology. Journal of Child Psychology and Psychiatry, 54, 705706.10.1111/jcpp.12110CrossRefGoogle ScholarPubMed
O’Brien, A. M., Perrachione, T. K., Wisman Weil, L., Sanchez Araujo, Y., Halverson, K., Harris, A., Ostrovskaya, I., Kjelgaard, M., Wexler, K., Tager-Flusberg, H., Gabrieli, J. D., & Qi, Z. (2023). Altered engagement of the speech motor network is associated with reduced phonological working memory in autism. NeuroImage: Clinical, 37, 103299.10.1016/j.nicl.2022.103299CrossRefGoogle ScholarPubMed
Okada, N. J., Liu, J., Tsang, T., Nosco, E., McDonald, N. M., Cummings, K. K., Jung, J., Patterson, G., Bookheimer, S. Y., Green, S. A., Jeste, S. S., & Dapretto, M. (2022). Atypical cerebellar functional connectivity at 9 months of age predicts delayed socio‐communicative profiles in infants at high and low risk for autism. Journal of Child Psychology and Psychiatry, 63(9), 10021016.10.1111/jcpp.13555CrossRefGoogle ScholarPubMed
Olivé, G., Slušná, D., Vaquero, L., Muchart-López, J., Rodríguez-Fornells, A., & Hinzen, W. (2022). Structural connectivity in ventral language pathways characterizes non-verbal autism. Brain Structure and Function, 227, 18171829.10.1007/s00429-022-02474-1CrossRefGoogle ScholarPubMed
Pang, E. W., Valica, T., MacDonald, M. J., Taylor, M. J., Brian, J., Lerch, J. P., & Anagnostou, E. (2016). Abnormal brain dynamics underlie speech production in children with autism spectrum disorder. Autism Research, 9, 249261.10.1002/aur.1526CrossRefGoogle ScholarPubMed
Pecukonis, M., Perdue, K. L., Wong, J., Tager-Flusberg, H., & Nelson, C. A. (2021). Exploring the relation between brain response to speech at 6-months and language outcomes at 24-months in infants at high and low risk for autism spectrum disorder: A preliminary functional near-infrared spectroscopy study. Developmental Cognitive Neuroscience, 47, 100897.10.1016/j.dcn.2020.100897CrossRefGoogle ScholarPubMed
Peterson, D., Mahajan, R., Crocetti, D., Mejia, A., & Mostofsky, S. (2015). Left‐hemispheric microstructural abnormalities in children with high‐functioning autism spectrum disorder. Autism Research, 8, 6172.10.1002/aur.1413CrossRefGoogle ScholarPubMed
Phan, L., Tariq, A., Lam, G., Pang, E. W., & Alain, C. (2021). The neurobiology of semantic processing in autism spectrum disorder: An activation likelihood estimation analysis. Journal of Autism and Developmental Disorders, 51, 32663279.10.1007/s10803-020-04794-9CrossRefGoogle ScholarPubMed
Pickles, A., Anderson, D. K., & Lord, C. (2014). Heterogeneity and plasticity in the development of language: A 17‐year follow‐up of children referred early for possible autism. Journal of Child Psychology and Psychiatry, 55, 13541362.10.1111/jcpp.12269CrossRefGoogle Scholar
Pijnacker, J., Geurts, B., Van Lambalgen, M., Buitelaar, J., & Hagoort, P. (2010). Exceptions and anomalies: An ERP study on context sensitivity in autism. Neuropsychologia, 48(10), 29402951.10.1016/j.neuropsychologia.2010.06.003CrossRefGoogle Scholar
Pote, I., Wang, S., Sethna, V., Blasi, A., Daly, E., Kuklisova‐Murgasova, M., … & BASIS Team. (2019). Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood. Autism Research, 12, 614627.10.1002/aur.2083CrossRefGoogle ScholarPubMed
Ribeiro, T. C., Valasek, C. A., Minati, L., & Boggio, P. S. (2013). Altered semantic integration in autism beyond language: A cross-modal event-related potentials study. Neuroreport, 24(8), 414418.10.1097/WNR.0b013e328361315eCrossRefGoogle Scholar
Righi, G., Tierney, A. L., Tager-Flusberg, H., & Nelson, C. A. (2014). Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study. PLoS ONE, 9, e105176.10.1371/journal.pone.0105176CrossRefGoogle ScholarPubMed
Roberts, T. P. L., Bloy, L., Ku, M., Blaskey, L., Jackel, C. R., Edgar, J. C., & Berman, J. I. (2020). A multimodal study of the contributions of conduction velocity to the auditory evoked neuromagnetic response: Anomalies in autism spectrum disorder. Autism Research, 13, 17301745.10.1002/aur.2369CrossRefGoogle Scholar
Roberts, T. P., Khan, S. Y., Rey, M., Monroe, J. F., Cannon, K., Blaskey, L., Woldoff, S., Qasmieh, S., Gandal, M., Schmidt, G. L., Zarnow, D. M., Levy, S. E., & Edgar, J. C. (2010). MEG detection of delayed auditory evoked responses in autism spectrum disorders: Towards an imaging biomarker for autism. Autism Research, 3, 818.10.1002/aur.111CrossRefGoogle ScholarPubMed
Romeo, R. R., Choi, B., Gabard-Durnam, L. J., Wilkinson, C. L., Levin, A. R., Rowe, M. L., … & Nelson, C. A. III (2022). Parental language input predicts neuroscillatory patterns associated with language development in toddlers at risk of autism. Journal of Autism and Developmental Disorders, 52, 27172731.10.1007/s10803-021-05024-6CrossRefGoogle ScholarPubMed
Ruser, T., Arin, D., Dowd, M., Putnam, S., Winklosky, B., Rosen-Sheidley, B., Tomblin, B., Tager-Flusberg, H., & Folstein, S. (2007). Communicative competence in parents of children with autism and parents of children with specific language impairment. Journal of Autism and Developmental Disorders, 37, 13231336.10.1007/s10803-006-0274-zCrossRefGoogle ScholarPubMed
Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., … & Courchesne, E. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal of Neuroscience, 30, 44194427.10.1523/JNEUROSCI.5714-09.2010CrossRefGoogle ScholarPubMed
Schwartz, S., Shinn-Cunningham, B., & Tager-Flusberg, H. (2018). Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neuroscience Biobehavioral Reviews, 87, 106117.10.1016/j.neubiorev.2018.01.008CrossRefGoogle ScholarPubMed
Schwartz, S., Wang, L., Shinn‐Cunningham, B. G., & Tager‐Flusberg, H. (2020). Atypical perception of sounds in minimally and low verbal children and adolescents with autism as revealed by behavioral and neural measures. Autism Research, 13, 17181729.10.1002/aur.2363CrossRefGoogle ScholarPubMed
Seery, A., Tager-Flusberg, H., & Nelson, C. A. (2014). Event-related potentials to repeated speech in 9-month-old infants at risk for autism spectrum disorder. Journal of Neurodevelopmental Disorders, 6, 112.10.1186/1866-1955-6-43CrossRefGoogle ScholarPubMed
Seery, A. M., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2013). Atypical lateralization of ERP response to native and non-native speech in infants at risk for autism spectrum disorder. Developmental Cognitive Neuroscience, 5, 1024.10.1016/j.dcn.2012.11.007CrossRefGoogle ScholarPubMed
Shen, M. D., Nordahl, C. W., Young, G. S., Wootton-Gorges, S. L., Lee, A., Liston, S. E., … & Amaral, D. G. (2013). Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain, 136, 28252835.10.1093/brain/awt166CrossRefGoogle ScholarPubMed
Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., & Lawrie, S. M. (2008). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23, 289299.10.1016/j.eurpsy.2007.05.006CrossRefGoogle ScholarPubMed
Swanson, M. R., Shen, M. D., Wolff, J. J., Elison, J. T., Emerson, R. W., Styner, M. A., … & Gu, H. (2017). Subcortical brain and behavior phenotypes differentiate infants with autism versus language delay. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 664672.Google ScholarPubMed
Tager-Flusberg, H., & Joseph, R. M. (2003). Identifying neurocognitive phenotypes in autism. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 303314.10.1098/rstb.2002.1198CrossRefGoogle ScholarPubMed
Tager‐Flusberg, H., & Kasari, C. (2013). Minimally verbal school‐aged children with autism spectrum disorder: The neglected end of the spectrum. Autism Research, 6, 468478.10.1002/aur.1329CrossRefGoogle ScholarPubMed
Talbott, M. R., Nelson, C. A., & Tager-Flusberg, H. (2015). Diary reports of concerns in mothers of infant siblings of children with autism across the first year of life. Journal of Autism and Developmental Disorders, 45, 21872199.10.1007/s10803-015-2383-zCrossRefGoogle ScholarPubMed
Taylor, L. J., Maybery, M. T., Grayndler, L., & Whitehouse, A. J. (2014). Evidence for distinct cognitive profiles in autism spectrum disorders and specific language impairment. Journal of Autism and Developmental Disorders, 44, 1930.10.1007/s10803-013-1847-2CrossRefGoogle ScholarPubMed
Thye, M. D., Bednarz, H. M., Herringshaw, A. J., Sartin, E. B., & Kana, R. K. (2018). The impact of atypical sensory processing on social impairments in autism spectrum disorder. Developmental Cognitive Neuroscience, 29, 151167.10.1016/j.dcn.2017.04.010CrossRefGoogle ScholarPubMed
Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: An endophenotype of autism spectrum disorder. PLoS ONE, 7, e39127.10.1371/journal.pone.0039127CrossRefGoogle ScholarPubMed
Toichi, M., & Kamio, Y. (2002). Long-term memory and levels-of-processing in autism. Neuropsychologia, 40, 964969.10.1016/S0028-3932(01)00163-4CrossRefGoogle ScholarPubMed
Toichi, M., & Kamio, Y. (2003). Long-term memory in high-functioning autism: Controversy on episodic memory in autism reconsidered. Journal of Autism and Developmental Disorders, 33, 15116110.1023/A:1022935325843CrossRefGoogle ScholarPubMed
Tomblin, B. (2011). Co‐morbidity of autism and SLI: Kinds, kin and complexity. International Journal of Language & Communication Disorders, 46, 127137.10.1111/j.1460-6984.2011.00017.xCrossRefGoogle ScholarPubMed
Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59, 431438.10.1016/j.neuroimage.2011.07.044CrossRefGoogle ScholarPubMed
Wan, C. Y., Marchina, S., Norton, A., & Schlaug, G. (2012). Atypical hemispheric asymmetry in the arcuate fasciculus of completely nonverbal children with autism. Annals of the New York Academy of Science, 1252, 332337.10.1111/j.1749-6632.2012.06446.xCrossRefGoogle ScholarPubMed
Wang, Z., Wang, Y., Sweeney, J. A., Gong, Q., Lui, S., & Mosconi, M. W. (2019). Resting-state brain network dysfunctions associated with visuomotor impairments in autism spectrum disorder. Frontiers in Integrative Neuroscience, 13, 17.10.3389/fnint.2019.00017CrossRefGoogle ScholarPubMed
Wilkinson, C. L., Gabard-Durnam, L. J., Kapur, K., Tager-Flusberg, H., Levin, A. R., & Nelson, C. A. (2020). Use of longitudinal EEG measures in estimating language development in infants with and without familial risk for autism spectrum disorder. Neurobiology of Language, 1, 3353.10.1162/nol_a_00002CrossRefGoogle ScholarPubMed
Williams, Z. J., Abdelmessih, P. G., Key, A. P., & Woynaroski, T. G. (2021a). Cortical auditory processing of simple stimuli is altered in autism: A meta-analysis of auditory evoked responses. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 767781.Google ScholarPubMed
Williams, Z. J., Suzman, E., & Woynaroski, T. G. (2021b). Prevalence of decreased sound tolerance (hyperacusis) in individuals with autism spectrum disorder: A meta-analysis. Ear and Hearing, 42, 11371150.10.1097/AUD.0000000000001005CrossRefGoogle ScholarPubMed
Yerys, B. E., Jankowski, K. F., Shook, D., Rosenberger, L. R., Barnes, K. A., Berl, M. M., … & Gaillard, W. D. (2009). The fMRI success rate of children and adolescents: Typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Human Brain Mapping, 30, 34263435.10.1002/hbm.20767CrossRefGoogle ScholarPubMed
Zhang, F., Moerman, F., Niu, H., Warreyn, P., & Roeyers, H. (2022). Atypical brain network development of infants at elevated likelihood for autism spectrum disorder during the first year of life. Autism Research, 15, 22232237.10.1002/aur.2827CrossRefGoogle ScholarPubMed
Zhang, Y., Qin, B., Wang, L., Chen, J., Cai, J., & Li, T. (2022). Sex differences of language abilities of preschool children with autism spectrum disorder and their anatomical correlation with Broca and Wernicke areas. Frontiers in Pediatrics, 10, 762621.10.3389/fped.2022.762621CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×