Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-12-12T07:18:11.721Z Has data issue: false hasContentIssue false

4 - TMS as a Tool for Mapping the Dynamic Properties of Language in the Brain

from Part II - Neuroimaging Studies of Brain and Language

Published online by Cambridge University Press:  aN Invalid Date NaN

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

Lateralization and localization of language in the brain is a critical component of surgical planning for patients with epilepsy or brain tumors who require neurosurgical intervention. Accurate language mapping allows the surgeon to conduct the most aggressive surgery possible, enhancing the chance for cure, while avoiding regions critical for language function; striking this balance is critical for maximizing the patient’s quality of life. A range of invasive and non-invasive language mapping techniques are available. This chapter provides a comparative analysis of these techniques and offers a detailed discussion on a newer, non-invasive method called transcranial magnetic stimulation (TMS). Using a superficial coil placed on the scalp, TMS generates a magnetic field that creates a temporary “virtual lesion” in the brain, thereby delineating eloquent cortex. TMS is a safe and well-tolerated procedure for both pediatric and adult populations which closely mimics the “gold-standard” invasive mapping techniques. TMS is becoming an integral component of neurosurgical planning and also shows promise as a research tool for studying typical language development and function in healthy populations.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Amirian, E., Liu, Y., Scheurer, M. E., El-Zein, R., M. R. Gilbert, M. R., & Bondy, M. L. (2010). Genetic variants in inflammation pathway genes and asthma in glioma susceptibility. Neuro Oncol, 12(5), 444452.Google ScholarPubMed
Ardila, A., Bernal, B., & Rosselli, M. (2016). How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch Clin Neuropsychol, 31(1), 112122.10.1093/arclin/acv081CrossRefGoogle Scholar
Aungaroon, G., Zea Vera, A., Horn, P. S., Byars, A. W., Greiner, H. M., Tenney, J. R., Arthur, T. M., Crone, N. E., Holland, K. D., Mangano, F. T., & Arya, R. (2017). After-discharges and seizures during pediatric extra-operative electrical cortical stimulation functional brain mapping: Incidence, thresholds, and determinants. Clin Neurophysiol, 128(10), 20782086.10.1016/j.clinph.2017.06.259CrossRefGoogle ScholarPubMed
Bae, E. H., Schrader, L. M., Machii, K., Alonso-Alonso, M., Riviello, J. J., Pascual-Leone, A., & Rotenberg, A. (2007). Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: A review of the literature. Epilepsy Behav, 10(4), 521528.10.1016/j.yebeh.2007.03.004CrossRefGoogle ScholarPubMed
Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran), 3(2), 4849.Google ScholarPubMed
Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1(8437), 11061107.10.1016/S0140-6736(85)92413-4CrossRefGoogle ScholarPubMed
Bernal, B., Grossman, S., Gonzalez, R., & Altman, N. (2012). FMRI under sedation: What is the best choice in children? J Clin Med Res, 4(6), 363370.Google Scholar
Berro, D. H., Lemée, J. M., Leiber, L. M., Emery, E., Menei, P., & Ter Minassian, A. (2021). Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: An fMRI study. BMC Neurosci, 22(1), 74.10.1186/s12868-021-00671-yCrossRefGoogle Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. J Neurosci, 17(1), 353362.10.1523/JNEUROSCI.17-01-00353.1997CrossRefGoogle ScholarPubMed
Birg, L., Narayana, S., Rezaie, R., & Papanicolaou, A. (2013). Technical tips: MEG and EEG with sedation. Neurodiagn J, 53(3), 229240.10.1080/21646821.2013.11079909CrossRefGoogle ScholarPubMed
Bowyer, S. M., Zillgitt, A., Greenwald, M., & Lajiness-O’Neill, R. (2020). Language mapping with magnetoencephalography: An update on the current state of clinical research and practice with considerations for clinical practice guidelines. J Clin Neurophysiol, 37(6), 554563.10.1097/WNP.0000000000000489CrossRefGoogle ScholarPubMed
Braden, A. A., Weatherspoon, S. E., Boardman, T., Williard, T., Adkins, A., Gibbs, S. K., Wheless, J. W., & Narayana, S. (2022). Image-guided TMS is safe in a predominately pediatric clinical population. Clin Neurophysiol, 137, 193206.10.1016/j.clinph.2022.01.133CrossRefGoogle Scholar
Cascino, G. (2002). Functional MRI for language localization. Epilepsy Curr, 2(6), 178179.10.1111/j.1535-7597.2002.00065.xCrossRefGoogle ScholarPubMed
Cattaneo, L. (2013). Language. Handb Clin Neurol, 116, 681691.Google ScholarPubMed
Chang, E. F., Clark, A., Smith, J. S., Polley, M. Y., Chang, S. M., Barbaro, N. M., Parsa, A. T., McDermott, M. W., & Berger, M. S. (2011). Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: Improvement of long-term survival. Clinical article. J Neurosurg, 114(3), 566573.10.3171/2010.6.JNS091246CrossRefGoogle ScholarPubMed
Chou, N., Serafini, S., & Muh, C. R. (2018). Cortical language areas and plasticity in pediatric patients with epilepsy: A review. Pediatr Neurol, 78, 312.10.1016/j.pediatrneurol.2017.10.001CrossRefGoogle ScholarPubMed
Cohen, L. G., & Hallett, M. (1988). Noninvasive mapping of human motor cortex. Neurology, 38(6), 904909.10.1212/WNL.38.6.904CrossRefGoogle ScholarPubMed
Corina, D. P., Loudermilk, B. C., Detwiler, L. R., Martin, F., Brinkley, J. F., & Ojemann, G. (2010). Analysis of naming errors during cortical stimulation mapping: Implications for models of language representation. Brain Lang, 115(2), 101112.10.1016/j.bandl.2010.04.001CrossRefGoogle ScholarPubMed
Cuello Oderiz, C., von Ellenrieder, N., Dubeau, F., Eisenberg, A., Gotman, J., Hall, J., Hincapié, A. S., Hoffmann, D., Job, A. S., Khoo, H. M., Minotti, L., Olivier, A., Kahane, P., & Frauscher, B. (2019). Association of cortical stimulation-induced seizure with surgical outcome in patients with focal drug-resistant epilepsy. JAMA Neurol, 76(9), 10701078.10.1001/jamaneurol.2019.1464CrossRefGoogle ScholarPubMed
Deng, Z. D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul, 6(1), 113.10.1016/j.brs.2012.02.005CrossRefGoogle ScholarPubMed
Dikker, S., Assaneo, M. F., Gwilliams, L., Wang, L., & Kösem, A. (2020). Magnetoencephalography and language. Neuroimaging Clin N Am, 30(2), 229238.10.1016/j.nic.2020.01.004CrossRefGoogle ScholarPubMed
Duchowny, M., Jayakar, P., Harvey, A. S., Resnick, T., Alvarez, L., Dean, P., & Levin, B. (1996). Language cortex representation: Effects of developmental versus acquired pathology. Ann Neurol, 40(1), 3138.10.1002/ana.410400108CrossRefGoogle ScholarPubMed
Epstein, C. M., Woodard, J. L., Stringer, A. Y., Bakay, R. A., Henry, T. R., Pennell, P. B., & Litt, B. (2000). Repetitive transcranial magnetic stimulation does not replicate the Wada test. Neurology, 55(7), 10251027.10.1212/WNL.55.7.1025CrossRefGoogle Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Hum Brain Mapp, 29(5), 581593.10.1002/hbm.20422CrossRefGoogle ScholarPubMed
Frye, R. E., Rotenberg, A., Ousley, M., & Pascual-Leone, A. (2008). Transcranial magnetic stimulation in child neurology: Current and future directions. J Child Neurol, 23(1), 7996.10.1177/0883073807307972CrossRefGoogle ScholarPubMed
Gaillard, W. D., Berl, M. M., Moore, E. N., Ritzl, E. K., Rosenberger, L. R., Weinstein, S. L., Conry, J. A., Pearl, P. L., Ritter, F. F., Sato, S., Vezina, L. G., Vaidya, C. J., Wiggs, E., Fratalli, C., Risse, G., Ratner, N. B., Gioia, G., & Theodore, W. H. (2007). Atypical language in lesional and nonlesional complex partial epilepsy. Neurology, 69(18), 17611771.10.1212/01.wnl.0000289650.48830.1aCrossRefGoogle ScholarPubMed
Gibb, W. R., Kong, N. W., & Tate, M. C. (2020). Direct evidence of plasticity within human primary motor and somatosensory cortices of patients with glioblastoma. Neural Plast, 2020, 8893708.10.1155/2020/8893708CrossRefGoogle ScholarPubMed
Glover, G. H. (2011). Overview of functional magnetic resonance imaging. Neurosurg Clin N Am, 22(2), 133139, vii.10.1016/j.nec.2010.11.001CrossRefGoogle ScholarPubMed
Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L. G., Mall, V., Kaelin-Lang, A., Mima, T., Rossi, S., Thickbroom, G. W., Rossini, P. M., Ziemann, U., Valls-Solé, J., & Siebner, H. R. (2012). A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol, 123(5), 858882.10.1016/j.clinph.2012.01.010CrossRefGoogle ScholarPubMed
Guzzetta, A., Pecini, C., Biagi, L., Tosetti, M., Brizzolara, D., Chilosi, A., Cipriani, P., Petacchi, E., & Cioni, G. (2008). Language organisation in left perinatal stroke. Neuropediatrics, 39(3): 157163.10.1055/s-0028-1085465CrossRefGoogle ScholarPubMed
Hadley, D., Anderson, B. S., Borckardt, J. J., Arana, A., Li, X., Nahas, Z., & George, M. S. (2011). Safety, tolerability, and effectiveness of high doses of adjunctive daily left prefrontal repetitive transcranial magnetic stimulation for treatment-resistant depression in a clinical setting. J ECT, 27(1), 1825.10.1097/YCT.0b013e3181ce1a8cCrossRefGoogle ScholarPubMed
Hamberger, M. J., & Cole, J. (2011). Language organization and reorganization in epilepsy. Neuropsychol Rev, 21(3), 240251.10.1007/s11065-011-9180-zCrossRefGoogle ScholarPubMed
Han, Y., Tong, X., Wang, X., Teng, F., Deng, Q., Zhou, J., Guan, Y., Yan, Z., Chen, L., Luan, G., & Wang, M. (2021). A concordance study determining language dominance between navigated transcranial magnetic stimulation and the Wada test in patients with drug-resistant epilepsy. Epilepsy Behav, 117, 107711.10.1016/j.yebeh.2020.107711CrossRefGoogle ScholarPubMed
Hauck, T., Probst, M., Zimmer, C., Ringel, F., Meyer, B., Wohlschlaeger, A., & Krieg, S. M. (2019). Language function shows comparable cortical patterns by functional MRI and repetitive nTMS in healthy volunteers. Brain Imaging Behav, 13(4), 10711092.10.1007/s11682-018-9921-1CrossRefGoogle ScholarPubMed
Hernandez-Pavon, J. C., Mäkelä, N., Lehtinen, H., Lioumis, P., & Mäkelä, J. P. (2014). Effects of navigated TMS on object and action naming. Front Hum Neurosci, 8, 660.10.3389/fnhum.2014.00660CrossRefGoogle ScholarPubMed
Hett, D., Rogers, J., Humpston, C., & Marwaha, S. (2021). Repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression in adolescence: A systematic review. J Affect Disord, 278, 460469.10.1016/j.jad.2020.09.058CrossRefGoogle ScholarPubMed
Hickok, G. (2009). The functional neuroanatomy of language. Phys Life Rev, 6(3), 121143.10.1016/j.plrev.2009.06.001CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393402.10.1038/nrn2113CrossRefGoogle ScholarPubMed
Holmes, N. P., & Meteyard, L. (2018). Subjective discomfort of TMS predicts reaction times differences in published studies. Front Psychol, 9, 1989.10.3389/fpsyg.2018.01989CrossRefGoogle ScholarPubMed
Ille, S., Engel, L., Albers, L., Schroeder, A., Kelm, A., Meyer, B., & Krieg, S. M. (2019). Functional reorganization of cortical language function in glioma patients: A preliminary study. Front Oncol, 9, 446.10.3389/fonc.2019.00446CrossRefGoogle ScholarPubMed
Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., Negwer, C., Droese, D., Boeckh-Behrens, T., Meyer, B., Ringel, F., & Krieg, S. M. (2015). Impairment of preoperative language mapping by lesion location: A functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg, 123(2), 314324.10.3171/2014.10.JNS141582CrossRefGoogle ScholarPubMed
Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., Negwer, C., Droese, D., Zimmer, C., Meyer, B., Ringel, F., & Krieg, S. M. (2015). Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg, 123(1), 212225.10.3171/2014.9.JNS14929CrossRefGoogle ScholarPubMed
Jacola, L. M., Schapiro, M. B., Schmithorst, V. J., Byars, A. W., Strawsburg, R. H., Szaflarski, J. P., Plante, E., & Holland, S. K. (2006). Functional magnetic resonance imaging reveals atypical language organization in children following perinatal left middle cerebral artery stroke. Neuropediatrics, 37(1), 4652.10.1055/s-2006-923934CrossRefGoogle ScholarPubMed
Jeltema, H. R., Ohlerth, A. K., de Wit, A., Wagemakers, M., Rofes, A., Bastiaanse, R., & Drost, G. (2021). Comparing navigated transcranial magnetic stimulation mapping and “gold standard” direct cortical stimulation mapping in neurosurgery: A systematic review. Neurosurg Rev, 44(4), 19031920.10.1007/s10143-020-01397-xCrossRefGoogle ScholarPubMed
Kilteni, K., Andersson, B. J., Houborg, C., & Ehrsson, H. H. (2018). Motor imagery involves predicting the sensory consequences of the imagined movement. Nat Commun, 9(1), 1617.10.1038/s41467-018-03989-0CrossRefGoogle ScholarPubMed
Kim, J. A., & Davis, K. D. (2021). Magnetoencephalography: Physics, techniques, and applications in the basic and clinical neurosciences. J Neurophysiol, 125(3), 938956.10.1152/jn.00530.2020CrossRefGoogle Scholar
Kline, A., Pittman, D., Ronsky, J., & Goodyear, B. (2020). Differentiating the brain’s involvement in executed and imagined stepping using fMRI. Behav Brain Res, 394, 112829.10.1016/j.bbr.2020.112829CrossRefGoogle ScholarPubMed
Krieg, S. M., Lioumis, P., Mäkelä, J. P., Wilenius, J., Karhu, J., Hannula, H., Savolainen, P., Lucas, C. W., Seidel, K., Laakso, A., Islam, M., Vaalto, S., Lehtinen, H., Vitikainen, A. M., Tarapore, P. E., & Picht, T. (2017). Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers: Workshop report. Acta Neurochir (Wien), 159(7), 11871195.10.1007/s00701-017-3187-zCrossRefGoogle ScholarPubMed
Krieg, S. M., Sollmann, N., Hauck, T., Ille, S., Foerschler, A., Meyer, B., & F. Ringel, F. (2013). Functional language shift to the right hemisphere in patients with language-eloquent brain tumors. PLoS ONE, 8(9), e75403.10.1371/journal.pone.0075403CrossRefGoogle Scholar
Krieg, S. M., Tarapore, P. E., Picht, T., Tanigawa, N., Houde, J., Sollmann, N., Meyer, B., Vajkoczy, P., Berger, M. S., Ringel, F., & Nagarajan, S. (2014). Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage, 100, 219236.10.1016/j.neuroimage.2014.06.016CrossRefGoogle ScholarPubMed
Krings, T., Chiappa, K. H., Foltys, H., Reinges, M. H., Cosgrove, G. R., & Thron, A. (2001). Introducing navigated transcranial magnetic stimulation as a refined brain mapping methodology. Neurosurg Rev, 24(4), 171179.10.1007/s101430100151CrossRefGoogle ScholarPubMed
Kwiecien, R., Kopp-Schneider, A., & Blettner, M. (2011). Concordance analysis: Part 16 of a series on evaluation of scientific publications. Dtsch Arztebl Int, 108(30), 515521.Google ScholarPubMed
Lancaster, J. L., Narayana, S., Wenzel, D., Luckemeyer, J., Roby, J., & P. Fox, P. (2004). Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Hum Brain Mapp, 22(4), 329340.10.1002/hbm.20041CrossRefGoogle ScholarPubMed
Laux, P., Tralau, T., Tentschert, J., Blume, A., Dahouk, S. A., Bäumler, W., Bernstein, E., Bocca, B., Alimonti, A., Colebrook, H., de Cuyper, C., Dähne, L., Hauri, U., Howard, P. C., Janssen, P., Katz, L., Klitzman, B., Kluger, N., Krutak, L., Platzek, T., Scott-Lang, V., Serup, J., Teubner, W., Schreiver, I., Wilkniß, E., & Luch, A. (2016). A medical-toxicological view of tattooing. Lancet, 387(10016), 395402.10.1016/S0140-6736(15)60215-XCrossRefGoogle ScholarPubMed
Lehtinen, H., Mäkelä, J. P., Mäkelä, T., Lioumis, P., Metsähonkala, L., Hokkanen, L., Wilenius, J., & Gaily, E. (2018). Language mapping with navigated transcranial magnetic stimulation in pediatric and adult patients undergoing epilepsy surgery: Comparison with extraoperative direct cortical stimulation. Epilepsia Open, 3(2), 224235.10.1002/epi4.12110CrossRefGoogle ScholarPubMed
Lidzba, K., Küpper, H., Kluger, G., & Staudt, M. (2017). The time window for successful right-hemispheric language reorganization in children. Eur J Paediatr Neurol, 21(5), 715721.10.1016/j.ejpn.2017.06.001CrossRefGoogle ScholarPubMed
Lin, Y. Y., Chen, R. S., & Huang, Y. Z. (2022). Impact of operator experience on transcranial magnetic stimulation. Clin Neurophysiol Pract, 7, 4248.10.1016/j.cnp.2022.01.002CrossRefGoogle ScholarPubMed
Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., & Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. J Cogn Neurosci, 11(5), 491501.10.1162/089892999563553CrossRefGoogle ScholarPubMed
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 10011010.10.1016/j.neuron.2007.06.004CrossRefGoogle ScholarPubMed
Madhavan, K. M., McQueeny, T., Howe, S. R., Shear, P., & Szaflarski, J. (2014). Superior longitudinal fasciculus and language functioning in healthy aging. Brain Res, 1562, 1122.10.1016/j.brainres.2014.03.012CrossRefGoogle ScholarPubMed
Maizey, L., Allen, C. P., Dervinis, M., Verbruggen, F., Varnava, A., Kozlov, M., Adams, R. C., Stokes, M., Klemen, J., Bungert, A., Hounsell, C. A., & Chambers, C. D. (2013). Comparative incidence rates of mild adverse effects to transcranial magnetic stimulation. Clin Neurophysiol, 124(3), 536544.10.1016/j.clinph.2012.07.024CrossRefGoogle ScholarPubMed
McClintock, S. M., Reti, I. M., Carpenter, L. L., McDonald, W. M., Dubin, M., Taylor, S. F., Cook, I. A., O’Reardon, J., Husain, M. M., Wall, C., Krystal, A. D., Sampson, S. M., Morales, O., Nelson, B. G., Latoussakis, V., George, M. S., Lisanby, S. H., N. N. o. D. C. r. T. Group and A. P. A. C. o. R. T. F. o. N. B. a. Treatments (2018). Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J Clin Psychiatry, 79(1).10.4088/JCP.16cs10905CrossRefGoogle ScholarPubMed
Meteyard, L., & Holmes, N. P. (2018). TMS SMART: Scalp mapping of annoyance ratings and twitches caused by transcranial magnetic stimulation. J Neurosci Methods, 299, 3444.10.1016/j.jneumeth.2018.02.008CrossRefGoogle ScholarPubMed
Monaghan, T. F., Rahman, S. N., Agudelo, C. W., Wein, A. J., Lazar, J. M., K. Everaert, K., & Dmochowski, R. R. (2021). Foundational statistical principles in medical research: Sensitivity, specificity, positive predictive value, and negative predictive value. Medicina (Kaunas), 57(5).Google ScholarPubMed
Mueller-Sarnowski, F., Sollmann, N., Schröder, A., Houri, L., Ille, S., Grimmer, T., Krieg, S. M., & Diehl-Schmid, J. (2022). Neuronavigated repetitive transcranial magnetic stimulation as novel mapping technique provides insights into language function in primary progressive aphasia. Brain Imaging Behav, 16(3), 12081216.10.1007/s11682-021-00605-6CrossRefGoogle ScholarPubMed
Muir, M., Patel, R., Traylor, J., de Almeida Bastos, D. C., Prinsloo, S., Liu, H. L., Noll, K., Wefel, J., Tummala, S., Kumar, V., & Prabhu, S. (2022). Validation of non-invasive language mapping modalities for eloquent tumor resection: A pilot study. Front Neurosci, 16, 833073.10.3389/fnins.2022.833073CrossRefGoogle ScholarPubMed
Najib, U., Bashir, S., Edwards, D., Rotenberg, A., & Pascual-Leone, A. (2011). Transcranial brain stimulation: Clinical applications and future directions. Neurosurg Clin N Am, 22(2), 233251, ix.10.1016/j.nec.2011.01.002CrossRefGoogle ScholarPubMed
Narayana, S., Gibbs, S. K., Fulton, S. P., McGregor, A. L., Mudigoudar, B., Weatherspoon, S. E., Boop, F. A., & Wheless, J. W. (2021). Clinical utility of transcranial magnetic stimulation (TMS) in the presurgical evaluation of motor, speech, and language functions in young children with refractory epilepsy or brain tumor: Preliminary evidence. Front Neurol, 12, 650830.10.3389/fneur.2021.650830CrossRefGoogle ScholarPubMed
Narayana, S., Papanicolaou, A. C., McGregor, A., Boop, F. A., & Wheless, J. W. (2015). Clinical applications of transcranial magnetic stimulation in pediatric neurology. J Child Neurol, 30(9), 11111124.10.1177/0883073814553274CrossRefGoogle ScholarPubMed
Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res, 25(3), 668677.10.1016/j.cogbrainres.2005.08.014CrossRefGoogle ScholarPubMed
Packheiser, J., Schmitz, J., Arning, L., Beste, C., Güntürkün, O., & S. Ocklenburg, S. (2020). A large-scale estimate on the relationship between language and motor lateralization. Sci Rep, 10(1), 13027.10.1038/s41598-020-70057-3CrossRefGoogle ScholarPubMed
Pak, R. W., Hadjiabadi, D. H., Senarathna, J., Agarwal, S., Thakor, N. V., Pillai, J. J., & Pathak, A. P. (2017). Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors. J Cereb Blood Flow Metab, 37(11), 34753487.10.1177/0271678X17707398CrossRefGoogle ScholarPubMed
Papadelis, C., & Chen, Y. H. (2020). Pediatric magnetoencephalography in clinical practice and research. Neuroimaging Clin N Am, 30(2), 239248.10.1016/j.nic.2020.02.002CrossRefGoogle ScholarPubMed
Papanicolaou, A. C., Rezaie, R., Narayana, S., Choudhri, A. F., Wheless, J. W., Castillo, E. M., Baumgartner, J. E., & Boop, F. A. (2014). Is it time to replace the Wada test and put awake craniotomy to sleep? Epilepsia, 55(5), 629632.10.1111/epi.12569CrossRefGoogle ScholarPubMed
Papanicolaou, A. C., Simos, P. G., Castillo, E. M., Breier, J. I., Sarkari, S., Pataraia, E., Billingsley, R. L., Buchanan, S., Wheless, J., Maggio, V., & Maggio, W. W. (2004). Magnetocephalography: A noninvasive alternative to the Wada procedure. J Neurosurg, 100(5), 867876.10.3171/jns.2004.100.5.0867CrossRefGoogle Scholar
Partovi, S., Konrad, F., Karimi, S., Rengier, F., Lyo, J. K., Zipp, L., Nennig, E., & Stippich, C. (2012). Effects of covert and overt paradigms in clinical language fMRI. Acad Radiol, 19(5), 518525.10.1016/j.acra.2011.12.017CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Gates, J. R., & Dhuna, A. (1991). Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology, 41(5), 697702.10.1212/WNL.41.5.697CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience: Virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol, 10(2), 232237.10.1016/S0959-4388(00)00081-7CrossRefGoogle ScholarPubMed
Pasquini, L., Di Napoli, A., Rossi-Espagnet, M. C., Visconti, E., Napolitano, A., A. Romano, A., Bozzao, A., Peck, K. K., & Holodny, A. I. (2022). Understanding Language reorganization with neuroimaging: How language adapts to different focal lesions and insights into clinical applications. Front Hum Neurosci, 16, 747215.10.3389/fnhum.2022.747215CrossRefGoogle ScholarPubMed
Pereira, L. S., Müller, V. T., da Mota Gomes, M., A. Rotenberg, A., & Fregni, F. (2016). Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review. Epilepsy Behav, 57(Pt A), 167176.10.1016/j.yebeh.2016.01.015CrossRefGoogle ScholarPubMed
Picht, T., Krieg, S. M., Sollmann, N., Rösler, J., Niraula, B., Neuvonen, T., Savolainen, P., Lioumis, P., Mäkelä, J. P., Deletis, V., Meyer, B., Vajkoczy, P., & Ringel, F. (2013). A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery, 72(5), 808819.10.1227/NEU.0b013e3182889e01CrossRefGoogle ScholarPubMed
Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92(1–2), 112.10.1016/j.cognition.2003.11.001CrossRefGoogle ScholarPubMed
Proix, T., Delgado Saa, J., Christen, A., Martin, S., Pasley, B. N., Knight, R. T., Tian, X., Poeppel, D., Doyle, W. K., Devinsky, O., Arnal, L. H., Mégevand, P., & Giraud, A. L. (2022). Imagined speech can be decoded from low- and cross-frequency intracranial EEG features. Nat Commun, 13(1), 48.10.1038/s41467-021-27725-3CrossRefGoogle ScholarPubMed
Raffa, G., Quattropani, M. C., Scibilia, A., Conti, A., Angileri, F. F., Esposito, F., Sindorio, C., Cardali, S. M., Germanò, A., & Tomasello, F. (2018). Surgery of language-eloquent tumors in patients not eligible for awake surgery: The impact of a protocol based on navigated transcranial magnetic stimulation on presurgical planning and language outcome, with evidence of tumor-induced intra-hemispheric plasticity. Clin Neurol Neurosurg, 168, 127139.10.1016/j.clineuro.2018.03.009CrossRefGoogle Scholar
Rezaie, R., Schiller, K. K., Embury, L., Boop, F. A., Wheless, J. W., & Narayana, S. (2020). The clinical utility of transcranial magnetic stimulation in determining hemispheric dominance for language: A magnetoencephalography comparison Study. J Clin Neurophysiol, 37(2), 90103.10.1097/WNP.0000000000000499CrossRefGoogle Scholar
Rösler, J., Niraula, B., Strack, V., Zdunczyk, A., Schilt, S., Savolainen, P., Lioumis, P., Mäkelä, J., Vajkoczy, P., Frey, D., & Picht, T. (2014). Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: Evidence of tumor-induced plasticity. Clin Neurophysiol, 125(3), 526536.10.1016/j.clinph.2013.08.015CrossRefGoogle ScholarPubMed
Rossi, S., Antal, A., Bestmann, S., Bikson, M., Brewer, C., Brockmöller, J., Carpenter, L. L., Cincotta, M., Chen, R., Daskalakis, J. D., Di Lazzaro, V., Fox, M. D., George, M. S., Gilbert, D., Kimiskidis, V. K., Koch, G., Ilmoniemi, R. J., Lefaucheur, J. P., Leocani, L., Lisanby, S. H., Miniussi, C., Padberg, F., Pascual-Leone, A., Paulus, W., Peterchev, A. V., Quartarone, A., Rotenberg, A., Rothwell, J., Rossini, P. M., Santarnecchi, E., Shafi, M. M., Siebner, H. R., Ugawa, Y., Wassermann, E. M., Zangen, A., Ziemann, U. Hallett, M., & F. o. T. S. The basis of this article began with a Consensus Statement from the IFCN Workshop on “Present, Ethical Guidelines”, Siena, October 17–20, 2018, updating through April 2020 (2021). Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol, 132(1), 269306.10.1016/j.clinph.2020.10.003CrossRefGoogle ScholarPubMed
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & S. o. T. C. Group (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol, 120(12), 20082039.10.1016/j.clinph.2009.08.016CrossRefGoogle ScholarPubMed
Rothwell, J. C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., & Paulus, W. (1999). Magnetic stimulation: Motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 52, 97103.Google ScholarPubMed
Ruohonen, J., & Karhu, J. (2010). Navigated transcranial magnetic stimulation. Neurophysiol Clin, 40(1), 717.10.1016/j.neucli.2010.01.006CrossRefGoogle ScholarPubMed
Sanai, N., Mirzadeh, Z., & Berger, M. S. (2008). Functional outcome after language mapping for glioma resection. N Engl J Med, 358(1), 1827.10.1056/NEJMoa067819CrossRefGoogle ScholarPubMed
Schiller, K., Choudhri, A. F., Jones, T., Holder, C., Wheless, J. W., & Narayana, S. (2020). Concordance between transcranial magnetic stimulation and functional magnetic resonance imaging (MRI) derived localization of language in a clinical cohort. J Child Neurol, 35(6), 363379.10.1177/0883073820901415CrossRefGoogle Scholar
Schrader, L. M., Stern, J. M., Koski, L., Nuwer, M. R., & Engel, J. (2004). Seizure incidence during single- and paired-pulse transcranial magnetic stimulation (TMS) in individuals with epilepsy. Clin Neurophysiol, 115(12), 27282737.10.1016/j.clinph.2004.06.018CrossRefGoogle ScholarPubMed
Singh, S. P. (2014). Magnetoencephalography: Basic principles. Ann Indian Acad Neurol, 17(Suppl 1), S107112.10.4103/0972-2327.128676CrossRefGoogle ScholarPubMed
Sollmann, N., Fuss-Ruppenthal, S., Zimmer, C., Meyer, B., & Krieg, S. M. (2018). Investigating stimulation protocols for language mapping by repetitive navigated transcranial magnetic stimulation. Front Behav Neurosci, 12, 197.10.3389/fnbeh.2018.00197CrossRefGoogle ScholarPubMed
Sollmann, N., Hauck, T., Hapfelmeier, A., Meyer, B., Ringel, F., & Krieg, S. M. (2013). Intra- and interobserver variability of language mapping by navigated transcranial magnetic brain stimulation. BMC Neurosci, 14, 150.10.1186/1471-2202-14-150CrossRefGoogle ScholarPubMed
Sollmann, N., Ille, S., Boeckh-Behrens, T., Ringel, F., Meyer, B., & Krieg, S. M. (2016). Mapping of cortical language function by functional magnetic resonance imaging and repetitive navigated transcranial magnetic stimulation in 40 healthy subjects. Acta Neurochir (Wien), 158(7), 13031316.10.1007/s00701-016-2819-zCrossRefGoogle ScholarPubMed
Sollmann, N., Ille, S., Negwer, C., Boeckh-Behrens, T., Ringel, F., Meyer, B., & Krieg, S. M. (2017). Cortical time course of object naming investigated by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav, 11(4), 11921206.10.1007/s11682-016-9574-xCrossRefGoogle ScholarPubMed
Sondergaard, R. E., Martino, D., Kiss, Z. H. T., & Condliffe, E. G. (2021). TMS motor mapping methodology and reliability: A structured review. Front Neurosci, 15, 709368.10.3389/fnins.2021.709368CrossRefGoogle ScholarPubMed
Sparing, R., Buelte, D., Meister, I. G., Paus, T., & Fink, G. R. (2008). Transcranial magnetic stimulation and the challenge of coil placement: A comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp, 29(1), 8296.10.1002/hbm.20360CrossRefGoogle ScholarPubMed
Starbuck, V. N., Kay, G. G., Platenberg, R. C., Lin, C. S., & Zielinski, B. A. (2000). Functional magnetic resonance imaging reflects changes in brain functioning with sedation. Hum Psychopharmacol, 15(8), 613618.10.1002/hup.221CrossRefGoogle ScholarPubMed
Szaflarski, J. P., Binder, J. R., Possing, E. T., McKiernan, K. A., Ward, B. D., & Hammeke, T. A. (2002). Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology, 59(2), 238244.10.1212/WNL.59.2.238CrossRefGoogle ScholarPubMed
Szaflarski, J. P., Gloss, D., Binder, J. R., Gaillard, W. D., Golby, A. J., Holland, S. K., Ojemann, J., Spencer, D. C., Swanson, S. J., French, J. A., & Theodore, W. H. (2017). Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology, 88(4), 395402.10.1212/WNL.0000000000003532CrossRefGoogle Scholar
Tarapore, P. E., Findlay, A. M., Honma, S. M., Mizuiri, D., Houde, J. F., Berger, M. S., & Nagarajan, S. S. (2013). Language mapping with navigated repetitive TMS: Proof of technique and validation. Neuroimage, 82, 260272.10.1016/j.neuroimage.2013.05.018CrossRefGoogle ScholarPubMed
Tarapore, P. E., Picht, T., Bulubas, L., Shin, Y., Kulchytska, N., Meyer, B., Berger, M. S., Nagarajan, S. S., & Krieg, S. M. (2016). Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol, 127(3), 18951900.10.1016/j.clinph.2015.11.042CrossRefGoogle ScholarPubMed
Tarapore, P. E., Tate, M. C., Findlay, A. M., Honma, S. M., Mizuiri, D., Berger, M. S., & Nagarajan, S. S. (2012). Preoperative multimodal motor mapping: A comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg, 117(2), 354362.10.3171/2012.5.JNS112124CrossRefGoogle ScholarPubMed
Thickbroom, G. W., Sammut, R., & Mastaglia, F. L. (1998). Magnetic stimulation mapping of motor cortex: Factors contributing to map area. Electroencephalogr Clin Neurophysiol, 109(2), 7984.10.1016/S0924-980X(98)00006-XCrossRefGoogle ScholarPubMed
Tieleman, A., Deblaere, K., Van Roost, D., Van Damme, O., & Achten, E. (2009). Preoperative fMRI in tumour surgery. Eur Radiol, 19(10), 25232534.10.1007/s00330-009-1429-zCrossRefGoogle ScholarPubMed
Ueno, S., & Sekino, M. (2021). Figure-eight coils for magnetic stimulation: From focal stimulation to deep stimulation. Front Hum Neurosci, 15, 805971.10.3389/fnhum.2021.805971CrossRefGoogle ScholarPubMed
Wagner, T., Rushmore, J., Eden, U., & Valero-Cabre, A. (2009). Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex, 45(9), 10251034.10.1016/j.cortex.2008.10.002CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×