Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-j6k2s Total loading time: 0 Render date: 2025-12-18T04:58:33.911Z Has data issue: false hasContentIssue false

6 - Recent Developments in Psycholinguistics and Neurolinguistics through the Lens of Aphasia

from Part III - Language and Cognitive Plasticity and Processing

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

For centuries, scientists have pondered how humans translate thought into language and where language processes occur in the brain. This chapter focuses on modern advances in both psycholinguistics (the field focused on specifying the psychological processes that mediate language behaviors) and neurolinguistics (the field focused on determining the neural correlates of linguistic skills), with a heavier emphasis on the latter, due to the recent tendency to combine psycholinguistic and neurolinguistic aspects into a single model. Given that both psycholinguistics and neurolinguistics have roots in work started by aphasiologists in the mid 19th century, the chapter begins with a historical overview of the neurobiology of language and aphasia before turning to developments in these fields within the last 20 years. The review centers on contemporary neurolinguistic and psycholinguistic models of semantics, phonology, and syntax and the corresponding evidence for these models drawn primarily from studies of neurologically healthy adults and individuals with aphasia.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Alyahya, R. S. W., Halai, A. D., Conroy, P., & Lambon Ralph, M. A. (2018). Noun and verb processing in aphasia: Behavioural profiles and neural correlates. NeuroImage: Clinical, 18, 215230. https://doi.org/10.1016/j.nicl.2018.01.023CrossRefGoogle ScholarPubMed
Alyahya, R. S. W., Halai, A. D., Conroy, P., & Lambon Ralph, M. A. (2020). A unified model of post-stroke language deficits including discourse production and their neural correlates. Brain, 143(5), 15411554. https://doi.org/10.1093/brain/awaa074CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617645. https://doi.org/10.1146/annurev.psych.59.103006.093639CrossRefGoogle ScholarPubMed
Berndt, R. S., Haendiges, A. N., Mitchum, C. C., & Sandson, J. (1997). Verb retrieval in aphasia. 2. Relationship to sentence processing. Brain and Language, 56(1), 107137. https://doi.org/10.1006/brln.1997.1728CrossRefGoogle ScholarPubMed
Berndt, R. S., Mitchum, C. C., & Haendiges, A. N. (1996). Comprehension of reversible sentences in “agrammatism”: A meta-analysis. Cognition, 58(3), 289308. https://doi.org/10.1016/0010-0277(95)00682-6CrossRefGoogle ScholarPubMed
Binder, J. R. (2016). Phoneme perception. In Neurobiology of Language (pp. 447461). Elsevier. https://doi.org/10.1016/B978-0-12-407794-2.00037-7CrossRefGoogle Scholar
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527536. https://doi.org/10.1016/j.tics.2011.10.001CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796. https://doi.org/10.1093/cercor/bhp055CrossRefGoogle Scholar
Bird, H., Howard, D., & Franklin, S. (2003). Verbs and nouns: The importance of being imageable. Journal of Neurolinguistics, 16(2–3), 113149. https://doi.org/10.1016/S0911-6044(02)00016-7CrossRefGoogle Scholar
Blumstein, S. E. (2016). Psycholinguistic approaches to the study of syndromes and symptoms of aphasia. In Neurobiology of Language (pp. 923933). Elsevier. https://doi.org/10.1016/B978-0-12-407794-2.00074-2CrossRefGoogle Scholar
Bolhuis, J. J., Tattersall, I., Chomsky, N., & Berwick, R. C. (2014). How could language have evolved?PLoS Biology, 12(8), e1001934. https://doi.org/10.1371/journal.pbio.1001934CrossRefGoogle ScholarPubMed
Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120153. https://doi.org/10.1016/j.plrev.2018.12.001CrossRefGoogle ScholarPubMed
Breier, J. I., Hasan, K. M., Zhang, W., Men, D., & Papanicolaou, A. C. (2008). Language dysfunction after stroke and damage to white matter tracts evaluated using diffusion tensor imaging. American Journal of Neuroradiology, 29(3), 483487. https://doi.org/10.3174/ajnr.A0846CrossRefGoogle Scholar
Breier, J. I., Juranek, J., & Papanicolaou, A. C. (2011). Changes in maps of language function and the integrity of the arcuate fasciculus after therapy for chronic aphasia. Neurocase, 17(6), 506517. https://doi.org/10.1080/13554794.2010.547505CrossRefGoogle ScholarPubMed
Broca, P. (1861). Nouvelle observation d’aphémie produite par une lésion de la moitié postérieure des deuxième et troisième circonvolution frontales gauches. Bull Soc Anat Paris, 36, 398407.Google Scholar
Bucur, M., & Papagno, C. (2021). An ALE meta-analytical review of the neural correlates of abstract and concrete words. Scientific Reports, 11(1), 15727. https://doi.org/10.1038/s41598-021-94506-9CrossRefGoogle ScholarPubMed
Butler, R. A., Lambon Ralph, M. A., & Woollams, A. M. (2014). Capturing multidimensionality in stroke aphasia: Mapping principal behavioural components to neural structures. Brain, 137(12), 32483266. https://doi.org/10.1093/brain/awu286CrossRefGoogle ScholarPubMed
Caplan, D. (1993). Toward a psycholinguistic approach to acquired neurogenic language disorders. American Journal of Speech-Language Pathology, 2(1), 5983. https://doi.org/10.1044/1058-0360.0201.59CrossRefGoogle Scholar
Caplan, D. (2015). The neural basis of syntatic processing. In Hillis, A. E. (Ed.), The Handbook of Adult Language Disorders (2nd ed., pp. 355374). Psychology Press.Google Scholar
Caplan, D., & Hanna, J. E. (1998). Sentence production by aphasic patients in a constrained task. Brain and Language, 63(2), 184218. https://doi.org/10.1006/brln.1998.1930CrossRefGoogle Scholar
Caplan, D., Michaud, J., & Hufford, R. (2013). Short-term memory, working memory, and syntactic comprehension in aphasia. Cognitive Neuropsychology, 30(2), 77109. https://doi.org/10.1080/02643294.2013.803958CrossRefGoogle ScholarPubMed
Caplan, D., & Waters, G. S. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22(01). https://doi.org/10.1017/S0140525X99001788CrossRefGoogle ScholarPubMed
Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10(1), 134. https://doi.org/10.1162/089892998563752CrossRefGoogle ScholarPubMed
Caramazza, A., & Zurif, E. B. (1976). Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia. Brain and Language, 3(4), 572582. https://doi.org/10.1016/0093-934X(76)90048-1CrossRefGoogle ScholarPubMed
Catani, M., & ffytche, D. H. (2005). The rises and falls of disconnection syndromes. Brain: A Journal of Neurology, 128(Pt 10), 22242239. https://doi.org/10.1093/brain/awh622CrossRefGoogle ScholarPubMed
Chang, F., Dell, G. S., & Bock, K. (2006). Becoming syntactic. Psychological Review, 113(2), 234272. https://doi.org/10.1037/0033-295X.113.2.234CrossRefGoogle ScholarPubMed
Chapman, C. A., Hasan, O., Schulz, P. E., & Martin, R. C. (2020). Evaluating the distinction between semantic knowledge and semantic access: Evidence from semantic dementia and comprehension-impaired stroke aphasia. Psychonomic Bulletin & Review, 27(4), 607639. https://doi.org/10.3758/s13423-019-01706-6CrossRefGoogle ScholarPubMed
Charidimou, A., Kasselimis, D., Varkanitsa, M., Selai, C., Potagas, C., & Evdokimidis, I. (2014). Why is it difficult to predict language impairment and outcome in patients with aphasia after stroke? Journal of Clinical Neurology, 10(2), 75. https://doi.org/10.3988/jcn.2014.10.2.75CrossRefGoogle ScholarPubMed
Cloutman, L., Gottesman, R., Chaudhry, P., Davis, C., Kleinman, J. T., Pawlak, M., Herskovits, E. H., Kannan, V., Lee, A., Newhart, M., Heidler-Gary, J., & Hillis, A. E. (2009). Where (in the brain) do semantic errors come from?Cortex, 45(5), 641649. https://doi.org/10.1016/j.cortex.2008.05.013CrossRefGoogle ScholarPubMed
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407428. https://doi.org/10.1037/0033-295X.82.6.407CrossRefGoogle Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204256. https://doi.org/10.1037/0033-295X.108.1.204CrossRefGoogle Scholar
Conca, F., Borsa, V. M., Cappa, S. F., & Catricalà, E. (2021). The multidimensionality of abstract concepts: A systematic review. Neuroscience & Biobehavioral Reviews, 127, 474491. https://doi.org/10.1016/j.neubiorev.2021.05.004CrossRefGoogle ScholarPubMed
DeLeon, J., Gottesman, R. F., Kleinman, J. T., Newhart, M., Davis, C., Heidler-Gary, J., Lee, A., & Hillis, A. E. (2007). Neural regions essential for distinct cognitive processes underlying picture naming. Brain, 130(5), 14081422. https://doi.org/10.1093/brain/awm011CrossRefGoogle ScholarPubMed
Dell, G. S., & O’Seaghdha, P. G. (1992). Stages of lexical access in language production. Cognition, 42(1–3), 287314. https://doi.org/10.1016/0010-0277(92)90046-KCrossRefGoogle ScholarPubMed
Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104(4), 801838.10.1037/0033-295X.104.4.801CrossRefGoogle ScholarPubMed
Dell, G. S., Schwartz, M. F., Nozari, N., Faseyitan, O., & Branch Coslett, H. (2013). Voxel-based lesion-parameter mapping: Identifying the neural correlates of a computational model of word production. Cognition, 128(3), 380396. https://doi.org/10.1016/j.cognition.2013.05.007CrossRefGoogle ScholarPubMed
den Ouden, D. B., Malyutina, S., Basilakos, A., Bonilha, L., Gleichgerrcht, E., Yourganov, G., Hillis, A. E., Hickok, G., Rorden, C., & Fridriksson, J. (2019). Cortical and structural‐connectivity damage correlated with impaired syntactic processing in aphasia. Human Brain Mapping, 40(7), 21532173. https://doi.org/10.1002/hbm.24514CrossRefGoogle ScholarPubMed
Desai, R. H., Reilly, M., & van Dam, W. (2018). The multifaceted abstract brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170122. https://doi.org/10.1098/rstb.2017.0122CrossRefGoogle ScholarPubMed
Devinsky, O. (2009). Norman Geschwind: Influence on his career and comments on his course on the neurology of behavior. Epilepsy & Behavior, 15(4), 413416. https://doi.org/10.1016/j.yebeh.2009.04.029CrossRefGoogle Scholar
Diveica, V., Koldewyn, K., & Binney, R. J. (2021). Establishing a role of the semantic control network in social cognitive processing: A meta-analysis of functional neuroimaging studies. NeuroImage, 245, 118702. https://doi.org/10.1016/j.neuroimage.2021.118702CrossRefGoogle ScholarPubMed
Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca’s historic cases: High resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(5), 14321441. https://doi.org/10.1093/brain/awm042CrossRefGoogle ScholarPubMed
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172179. https://doi.org/10.1016/j.tics.2010.01.004CrossRefGoogle ScholarPubMed
Ellis, A. W., & Young, A. W. (1988). Human Cognitive Neuropsychology. L. Erlbaum Associates, Publishers.Google Scholar
Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108(39), 1642816433. https://doi.org/10.1073/pnas.1112937108CrossRefGoogle ScholarPubMed
Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18(3), 120126. https://doi.org/10.1016/j.tics.2013.12.006CrossRefGoogle ScholarPubMed
Fodor, J. A. (1975). The Language of Thought (Digit. repr). Harvard University Press.Google Scholar
Fridriksson, J., Bonilha, L., & Rorden, C. (2007). Severe Broca’s aphasia without Broca’s area damage. Behavioural Neurology, 18(4), 237238. https://doi.org/10.1155/2007/785280CrossRefGoogle ScholarPubMed
Fridriksson, J., den Ouden, D.-B., Hillis, A. E., Hickok, G., Rorden, C., Basilakos, A., Yourganov, G., & Bonilha, L. (2018). Anatomy of aphasia revisited. Brain, 141(3), 848862. https://doi.org/10.1093/brain/awx363CrossRefGoogle ScholarPubMed
Fridriksson, J., Kjartansson, O., Morgan, P. S., Hjaltason, H., Magnusdottir, S., Bonilha, L., & Rorden, C. (2010). Impaired speech repetition and left parietal lobe damage. The Journal of Neuroscience, 30(33), 1105711061. https://doi.org/10.1523/JNEUROSCI.1120-10.2010CrossRefGoogle ScholarPubMed
Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 13571392. https://doi.org/10.1152/physrev.00006.2011CrossRefGoogle ScholarPubMed
Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind and brain. Nature Human Behaviour, 1(10), 713722. https://doi.org/10.1038/s41562-017-0184-4CrossRefGoogle ScholarPubMed
Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250254. https://doi.org/10.1016/j.conb.2012.10.002CrossRefGoogle ScholarPubMed
Gainotti, G. (2010). The influence of anatomical locus of lesion and of gender-related familiarity factors in category-specific semantic disorders for animals, fruits and vegetables: A review of single-case studies. Cortex, 46(9), 10721087. https://doi.org/10.1016/j.cortex.2010.04.002CrossRefGoogle ScholarPubMed
Garrett, M. F. (1975). The analysis of sentence production. In Psychology of Learning and Motivation (Vol. 9, pp. 133177). Elsevier. https://doi.org/10.1016/S0079-7421(08)60270-4Google Scholar
Geschwind, N. (1965a). Disconnexion syndromes in animals and man. Part I. Brain: A Journal of Neurology, 88(2), 237294. https://doi.org/10.1093/brain/88.2.237CrossRefGoogle Scholar
Geschwind, N. (1965b). Disconnexion syndromes in animals and man. Part II. Brain, 88(3), 585585. https://doi.org/10.1093/brain/88.3.585CrossRefGoogle Scholar
Geschwind, N. (1970). The organization of language and the brain. Science (New York, N.Y.), 170(3961), 940944. https://doi.org/10.1126/science.170.3961.940CrossRefGoogle ScholarPubMed
Geva, S., Correia, M. M., & Warburton, E. A. (2015). Contributions of bilateral white matter to chronic aphasia symptoms as assessed by diffusion tensor MRI. Brain and Language, 150, 117128. https://doi.org/10.1016/j.bandl.2015.09.001CrossRefGoogle ScholarPubMed
Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. Image, Language, Brain: Papers from the First Mind Articulation Project Symposium., 94–126.Google Scholar
Gibson, E., Sandberg, C., Fedorenko, E., Bergen, L., & Kiran, S. (2016). A rational inference approach to aphasic language comprehension. Aphasiology, 30(11), 13411360. https://doi.org/10.1080/02687038.2015.1111994CrossRefGoogle Scholar
Gleichgerrcht, E., Roth, R., Fridriksson, J., den Ouden, D., Delgaizo, J., Stark, B., Hickok, G., Rorden, C., Wilmskoetter, J., Hillis, A., & Bonilha, L. (2021). Neural bases of elements of syntax during speech production in patients with aphasia. Brain and Language, 222, 105025. https://doi.org/10.1016/j.bandl.2021.105025CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Ogar, J. M., Rohrer, J. D., Black, S., Boeve, B. F., Manes, F., Dronkers, N. F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B. L., Knopman, D. S., Hodges, J. R., Mesulam, M. M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014. https://doi.org/10.1212/WNL.0b013e31821103e6CrossRefGoogle ScholarPubMed
Grodzinsky, Y. (1995). A restrictive theory of agrammatic comprehension. Brain and Language, 50(1), 2751. https://doi.org/10.1006/brln.1995.1039CrossRefGoogle ScholarPubMed
Hagoort, P. (2013). MUC (memory, unification, control) and beyond. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00416CrossRefGoogle ScholarPubMed
Halai, A. D., Woollams, A. M., & Lambon Ralph, M. A. (2017). Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex, 86, 275289. https://doi.org/10.1016/j.cortex.2016.04.016CrossRefGoogle ScholarPubMed
Halai, A. D., Woollams, A. M., & Lambon Ralph, M. A. (2018). Predicting the pattern and severity of chronic post-stroke language deficits from functionally-partitioned structural lesions. NeuroImage: Clinical, 19, 113. https://doi.org/10.1016/j.nicl.2018.03.011CrossRefGoogle ScholarPubMed
Han, Z., Ma, Y., Gong, G., He, Y., Caramazza, A., & Bi, Y. (2013). White matter structural connectivity underlying semantic processing: Evidence from brain damaged patients. Brain, 136(10), 29522965. https://doi.org/10.1093/brain/awt205CrossRefGoogle ScholarPubMed
Henseler, I., Regenbrecht, F., & Obrig, H. (2014). Lesion correlates of patholinguistic profiles in chronic aphasia: Comparisons of syndrome-, modality- and symptom-level assessment. Brain, 137(3), 918930. https://doi.org/10.1093/brain/awt374CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 6799. https://doi.org/10.1016/j.cognition.2003.10.011CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393402. https://doi.org/10.1038/nrn2113CrossRefGoogle ScholarPubMed
Hillis, A. E., & Caramazza, A. (1995). Representation of grammatical categories of words in the brain. Journal of Cognitive Neuroscience, 7(3), 396407. https://doi.org/10.1162/jocn.1995.7.3.396CrossRefGoogle ScholarPubMed
Hillis, A. E., & Heidler, J. (2002). Mechanisms of early aphasia recovery. Aphasiology, 16(9), 885895. https://doi.org/10.1080/0268703CrossRefGoogle Scholar
Hillis, A. E., Kane, A., Tuffiash, E., Ulatowski, J. A., Barker, P. B., Beauchamp, N. J., & Wityk, R. J. (2001). Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke. Brain and Language, 79(3), 495510. https://doi.org/10.1006/brln.2001.2563CrossRefGoogle ScholarPubMed
Hillis, A. E., Kleinman, J. T., Newhart, M., Heidler-Gary, J., Gottesman, R., Barker, P. B., Aldrich, E., Llinas, R., Wityk, R., & Chaudhry, P. (2006). Restoring cerebral blood flow reveals neural regions critical for naming. Journal of Neuroscience, 26(31), 80698073. https://doi.org/10.1523/JNEUROSCI.2088-06.2006CrossRefGoogle ScholarPubMed
Hillis, A. E., Wityk, R. J., Tuffiash, E., Beauchamp, N. J., Jacobs, M. A., Barker, P. B., & Selnes, O. A. (2001). Hypoperfusion of Wernicke’s area predicts severity of semantic deficit in acute stroke. Annals of Neurology, 50(5), 561566. https://doi.org/10.1002/ana.1265CrossRefGoogle ScholarPubMed
Hodgson, V. J., Lambon Ralph, M. A., & Jackson, R. L. (2021). Multiple dimensions underlying the functional organization of the language network. NeuroImage, 241, 118444. https://doi.org/10.1016/j.neuroimage.2021.118444CrossRefGoogle ScholarPubMed
Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2015). Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex, 63, 250266. https://doi.org/10.1016/j.cortex.2014.09.001CrossRefGoogle ScholarPubMed
Hoffman, P., & Lambon Ralph, M. A. (2011). Reverse concreteness effects are not a typical feature of semantic dementia: Evidence for the hub-and-spoke model of conceptual representation. Cerebral Cortex, 21(9), 21032112. https://doi.org/10.1093/cercor/bhq288CrossRefGoogle Scholar
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101144. https://doi.org/10.1016/j.cognition.2002.06.001CrossRefGoogle ScholarPubMed
Ivanova, M. V., Isaev, D. Yu., Dragoy, O. V., Akinina, Y. S., Petrushevskiy, A. G., Fedina, O. N., Shklovsky, V. M., & Dronkers, N. F. (2016). Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex, 85, 165181. https://doi.org/10.1016/j.cortex.2016.04.019CrossRefGoogle ScholarPubMed
Jefferies, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129(8), 21322147. https://doi.org/10.1093/brain/awl153CrossRefGoogle ScholarPubMed
Kasselimis, D. S., Simos, P. G., Peppas, C., Evdokimidis, I., & Potagas, C. (2017). The unbridged gap between clinical diagnosis and contemporary research on aphasia: A short discussion on the validity and clinical utility of taxonomic categories. Brain and Language, 164, 6367. https://doi.org/10.1016/j.bandl.2016.10.005CrossRefGoogle Scholar
Kemmerer, D. (2014). Word classes in the brain: Implications of linguistic typology for cognitive neuroscience. Cortex, 58, 2751. https://doi.org/10.1016/j.cortex.2014.05.004CrossRefGoogle ScholarPubMed
Kemmerer, D. (2022). Cognitive Neuroscience of Language (2nd ed.). Routledge. https://doi.org/10.4324/9781138318427CrossRefGoogle Scholar
Kolk, H. (1995). A time-based approach to agrammatic production. Brain and Language, 50(3), 282303. https://doi.org/10.1006/brln.1995.1049CrossRefGoogle ScholarPubMed
Kolk, H. H. J., & Van Grunsven, M. M. F. (1985). Agrammatism as a variable phenomenon. Cognitive Neuropsychology, 2(4), 347384. https://doi.org/10.1080/02643298508252666CrossRefGoogle Scholar
Kummerer, D., Hartwigsen, G., Kellmeyer, P., Glauche, V., Mader, I., Klöppel, S., Suchan, J., Karnath, H.-O., Weiller, C., & Saur, D. (2013). Damage to ventral and dorsal language pathways in acute aphasia. Brain, 136(2), 619629. https://doi.org/10.1093/brain/aws354CrossRefGoogle ScholarPubMed
Lacey, E. H., Skipper-Kallal, L. M., Xing, S., Fama, M. E., & Turkeltaub, P. E. (2017). Mapping common aphasia assessments to underlying cognitive processes and their neural substrates. Neurorehabilitation and Neural Repair, 31(5), 442450. https://doi.org/10.1177/1545968316688797CrossRefGoogle ScholarPubMed
Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 4255. https://doi.org/10.1038/nrn.2016.150CrossRefGoogle Scholar
Landrigan, J.-F., Zhang, F., & Mirman, D. (2021). A data-driven approach to post-stroke aphasia classification and lesion-based prediction. Brain, awab010. https://doi.org/10.1093/brain/awab010CrossRefGoogle Scholar
Levelt, W. (2012). A History of Psycholinguistics: The Pre-Chomskyan Era. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199653669.001.0001CrossRefGoogle Scholar
Levelt, W. J. M. (1989). Speaking: From Intention to Articulation (pp. xiv, 566). The MIT Press.10.7551/mitpress/6393.003.0003CrossRefGoogle Scholar
Lichtheim, L. (1885). On aphasia. Brain, 7, 433484. https://doi.org/10.7551/mitpress/6393.001.0001CrossRefGoogle Scholar
Linebarger, M. C., Schwartz, M. F., & Saffran, E. M. (1983). Sensitivity to grammatical structure in so-called agrammatic aphasics. Cognition, 13(3), 361392. https://doi.org/10.1016/0010-0277(83)90015-XCrossRefGoogle ScholarPubMed
Lohndal, T. (2014). Introduction. In Lohndal, T., Phrase Structure and Argument Structure (1st ed., pp. 121). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199677115.003.0001CrossRefGoogle Scholar
Lorca-Puls, D. L., Gajardo-Vidal, A., White, J., Seghier, M. L., Leff, A. P., Green, D. W., Crinion, J. T., Ludersdorfer, P., Hope, T. M. H., Bowman, H., & Price, C. J. (2018). The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings. Neuropsychologia, 115, 101111. https://doi.org/10.1016/j.neuropsychologia.2018.03.014CrossRefGoogle ScholarPubMed
Love, T., & Oster, E. (2002). On the categorization of aphasic typologies: The SOAP (a test of syntactic complexity). Journal of Psycholinguistic Research, 31(5), 503529. https://doi.org/10.1023/A:1021208903394CrossRefGoogle ScholarPubMed
Lwi, S. J., Herron, T. J., Curran, B. C., Ivanova, M. V., Schendel, K., Dronkers, N. F., & Baldo, J. V. (2021). Auditory comprehension deficits in post-stroke aphasia: Neurologic and demographic correlates of outcome and recovery. Frontiers in Neurology, 12, 680248. https://doi.org/10.3389/fneur.2021.680248CrossRefGoogle ScholarPubMed
Madden, E., Kendall, D., & Riley, E. (2022). Acquired disorders of reading: Modeling, assessment, and treatment. In Papathanasiou, I. & Coppens, P. (Eds.), Aphasia and Related Neurogenic Communication Disorders (3rd ed.). Jones & Bartlett Learning.Google Scholar
Magnusdottir, S., Fillmore, P., den Ouden, D. B., Hjaltason, H., Rorden, C., Kjartansson, O., Bonilha, L., & Fridriksson, J. (2013). Damage to left anterior temporal cortex predicts impairment of complex syntactic processing: A lesion-symptom mapping study. Human Brain Mapping, 34(10), 27152723. https://doi.org/10.1002/hbm.22096CrossRefGoogle ScholarPubMed
Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological perspective. Annual Review of Psychology, 60(1), 2751. https://doi.org/10.1146/annurev.psych.60.110707.163532CrossRefGoogle ScholarPubMed
Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object knowledge in the brain?Trends in Cognitive Sciences, 15(3), 97103. https://doi.org/10.1016/j.tics.2011.01.004CrossRefGoogle ScholarPubMed
Martin, N. (2022). Disorders of word production. In Papathanasiou, I. & Coppens, P. (Eds.), Aphasia and Related Neurogenic Communication Disorders (3rd ed.). Jones & Bartlett Learning.Google Scholar
Martin, R. C., & Romani, C. (1994). Verbal working memory and sentence comprehension: A multiple-components view. Neuropsychology, 8(4), 506.10.1037/0894-4105.8.4.506CrossRefGoogle Scholar
Matchin, W., & Hickok, G. (2020). The cortical organization of syntax. Cerebral Cortex, 30(3), 14811498. https://doi.org/10.1093/cercor/bhz180CrossRefGoogle ScholarPubMed
McNeil, M. R., & Pratt, S. R. (2001). Defining aphasia: Some theoretical and clinical implications of operating from a formal definition. Aphasiology, 15(10–11), 901911. https://doi.org/10.1080/02687040143000276CrossRefGoogle Scholar
Meier, E. L., Sheppard, S. M., Goldberg, E. B., Kelly, C. R., Walker, A., Ubellacker, D. M., Vitti, E., Ruch, K., & Hillis, A. E. (2021). Dysfunctional tissue correlates of unrelated naming errors in acute left hemisphere stroke. Language, Cognition and Neuroscience, 1–18. https://doi.org/10.1080/23273798.2021.1980593Google Scholar
Mirman, D., Chen, Q., Zhang, Y., Wang, Z., Faseyitan, O. K., Coslett, H. B., & Schwartz, M. F. (2015). Neural organization of spoken language revealed by lesion-symptom mapping. Nature Communications, 6, 6762. https://doi.org/10.1038/ncomms7762CrossRefGoogle ScholarPubMed
Mirman, D., Landrigan, J.-F., & Britt, A. E. (2017). Taxonomic and thematic semantic systems. Psychological Bulletin, 143(5), 499520. https://doi.org/10.1037/bul0000092CrossRefGoogle ScholarPubMed
Mirman, D., Zhang, Y., Wang, Z., Coslett, H. B., & Schwartz, M. F. (2015). The ins and outs of meaning: Behavioral and neuroanatomical dissociation of semantically-driven word retrieval and multimodal semantic recognition in aphasia. Neuropsychologia, 76, 208219. https://doi.org/10.1016/j.neuropsychologia.2015.02.014CrossRefGoogle ScholarPubMed
Miyake, A., Carpenter, P. A., & Just, M. A. (1994). A capacity approach to syntactic comprehension disorders: Making normal adults perform like aphasic patients. Cognitive Neuropsychology, 11(6), 671717. https://doi.org/10.1080/02643299408251989CrossRefGoogle Scholar
Mohr, J. P., Pessin, M. S., Finkelstein, S., Funkenstein, H. H., Duncan, G. W., & Davis, K. R. (1978). Broca aphasia: Pathologic and clinical. Neurology, 28(4), 311311. https://doi.org/10.1212/WNL.28.4.311CrossRefGoogle ScholarPubMed
Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25(11), 18241850. https://doi.org/10.1162/jocn_a_00442CrossRefGoogle ScholarPubMed
Norris, D., & McQueen, J. M. (2008). Shortlist B: A Bayesian model of continuous speech recognition. Psychological Review, 115(2), 357395. https://doi.org/10.1037/0033-295X.115.2.357CrossRefGoogle Scholar
Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 263281. https://doi.org/10.3758/CABN.5.3.263CrossRefGoogle ScholarPubMed
Ostrin, R. K., & Schwartz, M. F. (1986). Reconstructing from a degraded trace: A study of sentence repetition in agrammatism. Brain and Language, 28(2), 328345. https://doi.org/10.1016/0093-934X(86)90109-4CrossRefGoogle Scholar
Paivio, A. (1971). Imagery and language. In Imagery (pp. 732). Elsevier. https://doi.org/10.1016/B978-0-12-635450-8.50008-XCrossRefGoogle Scholar
Pillay, S. B., Stengel, B. C., Humphries, C., Book, D. S., & Binder, J. R. (2014). Cerebral localization of impaired phonological retrieval during rhyme judgment. Annals of Neurology, 76(5), 738746. https://doi.org/10.1002/ana.24266CrossRefGoogle ScholarPubMed
Riccardi, N., Yourganov, G., Rorden, C., Fridriksson, J., & Desai, R. (2020). Degradation of praxis brain networks and impaired comprehension of manipulable nouns in stroke. Journal of Cognitive Neuroscience, 32(3), 467483. https://doi.org/10.1162/jocn_a_01495CrossRefGoogle ScholarPubMed
Rogalsky, C., Pitz, E., Hillis, A. E., & Hickok, G. (2008). Auditory word comprehension impairment in acute stroke: Relative contribution of phonemic versus semantic factors. Brain and Language, 107(2), 167169. https://doi.org/10.1016/j.bandl.2008.08.003CrossRefGoogle ScholarPubMed
Rolheiser, T., Stamatakis, E. A., & Tyler, L. K. (2011). Dynamic processing in the human language system: Synergy between the arcuate fascicle and extreme capsule. Journal of Neuroscience, 31(47), 1694916957. https://doi.org/10.1523/JNEUROSCI.2725-11.2011CrossRefGoogle ScholarPubMed
Saffran, E. M., & Martin, N. (1990). 16. Short-term memory impairment and sentence processing: A case study. Neuropsychological Impairments of Short-Term Memory, 428. https://doi.org/10.1017/CBO9780511665547.021CrossRefGoogle Scholar
Saffran, E. M., Schwartz, M. F., & Marin, O. S. (1980). The word order problem in agrammatism: II. Production. Brain and Language, 10(2), 263280. https://doi.org/10.1016/0093-934X(80)90056-5CrossRefGoogle Scholar
Sandberg, C. W., & Kiran, S. (2014). Analysis of abstract and concrete word processing in persons with aphasia and age-matched neurologically healthy adults using fMRI. Neurocase, 20(4), 361388. https://doi.org/10.1080/13554794.2013.770881CrossRefGoogle ScholarPubMed
Schumacher, R., Halai, A. D., & Lambon Ralph, M. A. (2019). Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain, 142(10), 32023216. https://doi.org/10.1093/brain/awz258CrossRefGoogle ScholarPubMed
Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(1), 82102. https://doi.org/10.1037/0278-7393.9.1.82Google Scholar
Schwartz, M. F. (1984). What the classical aphasia categories can’t do for us, and why. Brain and Language, 21(1), 38. https://doi.org/10.1016/0093-934X(84)90031-2CrossRefGoogle Scholar
Schwartz, M. F., Faseyitan, O., Kim, J., & Coslett, H. B. (2012). The dorsal stream contribution to phonological retrieval in object naming. Brain, 135(12), 37993814. https://doi.org/10.1093/brain/aws300CrossRefGoogle ScholarPubMed
Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Faseyitan, O., Brecher, A., Dell, G. S., & Coslett, H. B. (2009). Anterior temporal involvement in semantic word retrieval: Voxel-based lesion-symptom mapping evidence from aphasia. Brain, 132(12), 34113427. https://doi.org/10.1093/brain/awp284CrossRefGoogle ScholarPubMed
Schwartz, M. F., Saffran, E. M., & Marin, O. S. M. (1980). The word order problem in agrammatism. Brain and Language, 10(2), 249262. https://doi.org/10.1016/0093-934X(80)90055-3CrossRefGoogle ScholarPubMed
Shain, C., Blank, I. A., Fedorenko, E., Gibson, E., & Schuler, W. (2021). Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex [Preprint]. Neuroscience. https://doi.org/10.1101/2021.09.18.460917CrossRefGoogle Scholar
Sheppard, S. M., Meier, E. L., Kim, K. T., Breining, B. L., Keator, L. M., Tang, B., Caffo, B. S., & Hillis, A. E. (2022). Neural correlates of syntactic comprehension: A longitudinal study. Brain and Language, 225, 105068. https://doi.org/10.1016/j.bandl.2021.105068CrossRefGoogle ScholarPubMed
Thompson, C. K. (2003). Unaccusative verb production in agrammatic aphasia: The argument structure complexity hypothesis. Journal of Neurolinguistics, 16(2–3), 151167. https://doi.org/10.1016/S0911-6044(02)00014-3CrossRefGoogle ScholarPubMed
Thothathiri, M., Kimberg, D. Y., & Schwartz, M. F. (2012). The Neural basis of reversible sentence comprehension: Evidence from voxel-based lesion symptom mapping in aphasia. Journal of Cognitive Neuroscience, 24(1), 212222. https://doi.org/10.1162/jocn_a_00118CrossRefGoogle ScholarPubMed
Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 6071. https://doi.org/10.1016/j.bandl.2016.08.004CrossRefGoogle ScholarPubMed
Troche, J., Crutch, S., & Reilly, J. (2014). Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00360CrossRefGoogle ScholarPubMed
Tsapkini, K., Jarema, G., & Kehayia, E. (2002). A morphological processing deficit in verbs but not in nouns: A case study in a highly inflected language. Journal of Neurolinguistics, 15(3–5), 265288. https://doi.org/10.1016/S0911-6044(01)00039-2CrossRefGoogle Scholar
Ullman, M. T. (2013). The role of declarative and procedural memory in disorders of language. Linguistic Variation, 13(2), 133154. https://doi.org/10.1075/lv.13.2.01ullCrossRefGoogle Scholar
Varkanitsa, M., & Caplan, D. (2018). On the association between memory capacity and sentence comprehension: Insights from a systematic review and meta-analysis of the aphasia literature. Journal of Neurolinguistics, 48, 425. https://doi.org/10.1016/j.jneuroling.2018.03.003CrossRefGoogle Scholar
Walenski, M., Europa, E., Caplan, D., & Thompson, C. K. (2019). Neural networks for sentence comprehension and production: An ALE‐based meta‐analysis of neuroimaging studies. Human Brain Mapping, 40(8), 22752304. https://doi.org/10.1002/hbm.24523CrossRefGoogle ScholarPubMed
Walker, G. M., Schwartz, M. F., Kimberg, D. Y., Faseyitan, O., Brecher, A., Dell, G. S., & Coslett, H. B. (2011). Support for anterior temporal involvement in semantic error production in aphasia: New evidence from VLSM. Brain and Language, 117(3), 110122. https://doi.org/10.1016/j.bandl.2010.09.008CrossRefGoogle ScholarPubMed
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 14591468. https://doi.org/10.1002/hbm.20950CrossRefGoogle ScholarPubMed
Warrington, E. K. (1975). The selective impairment of semantic memory. Quarterly Journal of Experimental Psychology, 27(4), 635657. https://doi.org/10.1080/14640747508400525CrossRefGoogle ScholarPubMed
Warrington, E. K., & Mccarthy, R. A. (1987). Categories of knowledge. Further fractionations and an attempted integration. Brain, 110(5), 12731296. https://doi.org/10.1093/brain/110.5.1273CrossRefGoogle Scholar
Webster, J., & Whitworth, A. (2012). Treating verbs in aphasia: Exploring the impact of therapy at the single word and sentence levels: Verb therapy in aphasia. International Journal of Language & Communication Disorders, 47(6), 619636. https://doi.org/10.1111/j.1460-6984.2012.00174.xCrossRefGoogle ScholarPubMed
Wernicke, C. (1874). Der Aphasische Symptomencomplex: Eine Psychologische Studie auf Anatomischer Basis. Cohn & Weigert.Google Scholar
Willmes, K., & Poeck, K. (1993). To what extent can aphasic syndromes be localized?Brain, 116(6), 15271540. https://doi.org/10.1093/brain/116.6.1527CrossRefGoogle ScholarPubMed
Woollams, A. M., Halai, A., & Lambon Ralph, M. A. (2018). Mapping the intersection of language and reading: The neural bases of the primary systems hypothesis. Brain Structure and Function, 223(8), 37693786. https://doi.org/10.1007/s00429-018-1716-zCrossRefGoogle ScholarPubMed
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wagner, T. D. (2011). NeuroSynth: A new platform for large-scale automated synthesis of human functional neuroimaging data. Frontiers in Neuroinformatics, 5. https://doi.org/10.3389/conf.fninf.2011.08.00058Google Scholar
Yourganov, G., Fridriksson, J., Rorden, C., Gleichgerrcht, E., & Bonilha, L. (2016). Multivariate connectome-based symptom mapping in post-stroke patients: Networks supporting language and speech. Journal of Neuroscience, 36(25), 66686679. https://doi.org/10.1523/JNEUROSCI.4396-15.2016CrossRefGoogle ScholarPubMed
Yourganov, G., Smith, K. G., Fridriksson, J., & Rorden, C. (2015). Predicting aphasia type from brain damage measured with structural MRI. Cortex, 73, 203215. https://doi.org/10.1016/j.cortex.2015.09.005CrossRefGoogle ScholarPubMed
Zhao, Y., Halai, A. D., & Lambon Ralph, M. A. (2020). Evaluating the granularity and statistical structure of lesions and behaviour in post-stroke aphasia. Brain Communications, 2(2), fcaa062. https://doi.org/10.1093/braincomms/fcaa062CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×