Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-nk9cn Total loading time: 0 Render date: 2025-12-12T06:43:23.821Z Has data issue: false hasContentIssue false

9 - Prediction in Language Processing

Some Ideas about How It’s Done

from Part III - Language and Cognitive Plasticity and Processing

Published online by Cambridge University Press:  aN Invalid Date NaN

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

Anticipatory processes can influence how quickly comprehenders can process novel linguistic input and how they learn from linguistic surprises. This chapter outlines experimental evidence establishing the psychological reality of anticipatory processes and sketches some contemporary accounts that explain how comprehenders generate predictions from linguistic input. Accounts like Pickering & Gambi’s (2018) formulation suggest that comprehenders covertly engage language production mechanisms to generate predictions about future input and to know when it is time to stop processing current input. Kuperberg and colleagues’ (2021, 2023) formulation lays out a multi-layered network that produces predictions for several different types of linguistic and semantic information (phonological/orthographic, syntactic, lexical, event). N-gram accounts (Brennan, 2020; Hale, 2003, 2016) focus on word predictions and include formal metrics of entropy and surprisal derived from information-theoretic frameworks like Shallice’s. On this account, comprehenders store in long-term memory strings of words (N-grams) and these stored patterns serve as the basis for calculating entropy (how many different continuations are possible at a given point) and surprisal (how likely is a specific word in a specific context). We present a variety of evidence indicating that n-grams may not be the sole or main basis for predictions.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Altmann, G. T., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73, 247264.10.1016/S0010-0277(99)00059-1CrossRefGoogle ScholarPubMed
Altmann, G. T., & Kamide, Y. (2007). The real-time mediation of visual attention by language and world knowledge: Linking anticipatory (and other) eye movements to linguistic processing. Journal of Memory and Language, 57, 502518.10.1016/j.jml.2006.12.004CrossRefGoogle Scholar
Balota, D. A., Pollatsek, A., & Rayner, K. (1985). The interaction of contextual constraints and parafoveal visual information in reading. Cognitive Psychology, 17, 364390.10.1016/0010-0285(85)90013-1CrossRefGoogle ScholarPubMed
Bonhage, C. E., Mueller, J. L., Friederici, A. D., & Fiebach, C. J. (2015). Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension. Cortex, 68, 3347. https://doi.org/10.1016/j.cortex.2015.03.014CrossRefGoogle ScholarPubMed
Boudewyn, M. A., Long, D. L., & Swaab, T. Y. (2015). Graded expectations: Predictive processing and the adjustment of expectations during spoken language comprehension. Cognitive, Affective, & Behavioral Neuroscience, 15(3), 607624. https://doi.org/10.3758/s13415-015-0340-0CrossRefGoogle ScholarPubMed
Brennan, J. R., Dyer, C., Kuncoro, A., & Hale, J. T. (2020). Localizing syntactic predictions using recurrent neural network grammars. Neuropsychologia, 146, 107479.10.1016/j.neuropsychologia.2020.107479CrossRefGoogle ScholarPubMed
Brothers, T., & Kuperberg, G. R. (2021). Word predictability effects are linear, not logarithmic: Implications for probabilistic models of sentence comprehension. Journal of Memory and Language, 116, 104174.10.1016/j.jml.2020.104174CrossRefGoogle Scholar
Brothers, T., & Traxler, M. J. (2016). Anticipating syntax during reading: Evidence from the boundary change paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(12), 1894.Google ScholarPubMed
Brothers, T., Dave, S., Hoversten, L. J., Traxler, M. J., & Swaab, T. Y. (2019). Flexible predictions during listening comprehension: Speaker reliability affects anticipatory processes. Neuropsychologia, 135, 107225.10.1016/j.neuropsychologia.2019.107225CrossRefGoogle ScholarPubMed
Brothers, T., Swaab, T. Y., & Traxler, M. J. (2015). Effects of prediction and contextual support on lexical processing: Prediction takes precedence. Cognition, 136, 135149.10.1016/j.cognition.2014.10.017CrossRefGoogle ScholarPubMed
Brothers, T., Swaab, T. Y., & Traxler, M. J. (2017). Goals and strategies influence lexical prediction during sentence comprehension. Journal of Memory and Language, 93, 203216.10.1016/j.jml.2016.10.002CrossRefGoogle Scholar
Buac, M., Tauzin-Larché, A., Weisberg, E., & Kaushanskaya, M. (2019). Effect of speaker certainty on novel word learning in monolingual and bilingual children. Bilingualism: Language and Cognition, 22(4), 883895.10.1017/S1366728918000536CrossRefGoogle ScholarPubMed
Choi, W., Lowder, M. W., Ferreira, F., Swaab, T. Y., & Henderson, J. M. (2017). Effects of word predictability and preview lexicality on eye movements during reading: A comparison between young and older adults. Psychology and Aging, 32, 232242. https://doi.org/10.1037/pag0000160CrossRefGoogle Scholar
Clark, A. (2013). Expecting the world: Perception, prediction, and the origins of human knowledge. The Journal of Philosophy, 110(9), 469496. https://doi.org/10.5840/jphil20131109/2CrossRefGoogle Scholar
Clement, F, Koenig, M, & Harris, P. (2004). The ontogenesis of trust. Mind & Language, 19, 360379.10.1111/j.0268-1064.2004.00263.xCrossRefGoogle Scholar
Dave, S., Brothers, T. A., & Swaab, T. Y. (2018). 1/f neural noise and electrophysiological indices of contextual prediction in aging. Brain Research, 1691, 3443.10.1016/j.brainres.2018.04.007CrossRefGoogle ScholarPubMed
Dave, S., Brothers, T. A., Traxler, M. J., Ferreira, F., Henderson, J. M., & Swaab, T. Y. (2018). Electrophysiological evidence for preserved primacy of lexical prediction in aging. Neuropsychologia, 117, 135147.10.1016/j.neuropsychologia.2018.05.023CrossRefGoogle ScholarPubMed
Dave, S., Brothers, T., Hoversten, L. J., Traxler, M. J., & Swaab, T. Y. (2021). Cognitive control mediates age-related changes in flexible anticipatory processing during listening comprehension. Brain Research, 1768, 147573.CrossRefGoogle ScholarPubMed
Delaney-Busch, N., Morgan, E., Lau, E. F., & Kuperberg, G. R. (2017). Comprehenders rationally adapt semantic predictions to the statistics of the local environment: A Bayesian model of trial-by-trial N400 amplitudes. In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, London.Google Scholar
DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8, 11171121.10.1038/nn1504CrossRefGoogle ScholarPubMed
Drieghe, D., Rayner, K., & Pollatsek, A. (2005). Eye movements and word skipping during reading revisited. Journal of Experimental Psychology: Human Perception and Performance, 31, 954969.Google ScholarPubMed
Dussias, P. E., Kroff, J. R. V., Tamargo, R. E. G., & Gerfen, C. (2013). When gender and looking go hand in hand: Grammatical gender processing in L2 Spanish. Studies in Second Language Acquisition, 35(2), 353387. https://doi.org/10.1017/S0272263112000915CrossRefGoogle Scholar
Eddine, S. N., Brothers, T., & Kuperberg, G. R. (2022). The N400 in silico: A review of computational models. Psychology of Learning and Motivation, 76, 123206.Google Scholar
Elman, J. L. (2004). An alternative view of the mental lexicon. Trends in Cognitive Sciences, 8, 301306.10.1016/j.tics.2004.05.003CrossRefGoogle ScholarPubMed
Elman, J. L., & McClelland, J. L. (1988). Cognitive penetration of the mechanisms of perception: Compensation for coarticulation of lexically restored phonemes. Journal of Memory and Language, 27, 143165.10.1016/0749-596X(88)90071-XCrossRefGoogle Scholar
Fazekas, J., Jessop, A., Pine, J., & Rowland, C. (2020). Do children learn from their prediction mistakes? A registered report evaluating error-based theories of language acquisition. Royal Society Open Science, 7(11), 180877. https://doi.org/10.1098/rsos.180877CrossRefGoogle ScholarPubMed
Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology, 44(4), 491505.10.1111/j.1469-8986.2007.00531.xCrossRefGoogle ScholarPubMed
Federmeier, K. D., Wlotko, E. W., De Ochoa-Dewald, E., & Kutas, M. (2007). Multiple effects of sentential constraint on word processing. Brain Research, 1146, 7584.10.1016/j.brainres.2006.06.101CrossRefGoogle ScholarPubMed
Ferreira, F., & Chantavarin, S. (2018). Integration and prediction in language processing: A synthesis of old and new. Current Directions in Psychological Science, 27(6), 443448. https://doi.org/10.1177/0963721418794491CrossRefGoogle ScholarPubMed
Fitz, H., & Chang, F. (2019). Language ERPs reflect learning through prediction error propagation. Cognitive Psychology, 111, 1552. https://doi.org/10.1016/j.cogpsych.2019.03.002CrossRefGoogle ScholarPubMed
Friston, K. (2018). Does predictive coding have a future?Nature Neuroscience, 21(8), Article 8. https://doi.org/10.1038/s41593-018-0200-7CrossRefGoogle ScholarPubMed
Gibson, E., Bergen, L., & Piantadosi, S. T. (2013). Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proceedings of the National Academy of Sciences, 110, 80518056.10.1073/pnas.1216438110CrossRefGoogle ScholarPubMed
Gwilliams, L., Marantz, A., Poeppel, D., & King, J.-R. (2023). Top-down information shapes lexical processing when listening to continuous speech. Language, Cognition and Neuroscience, 39, 10451058.10.1080/23273798.2023.2171072CrossRefGoogle Scholar
Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Second meeting of the North American chapter of the Association for Computational Linguistics.10.3115/1073336.1073357CrossRefGoogle Scholar
Hale, J. (2003). The information conveyed by words in sentences. Journal of Psycholinguistic Research, 32, 101123.10.1023/A:1022492123056CrossRefGoogle ScholarPubMed
Hale, J. (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30, 643672.CrossRefGoogle ScholarPubMed
Hale, J. (2016). Information‐theoretical complexity metrics. Language and Linguistics Compass, 10(9), 397412.10.1111/lnc3.12196CrossRefGoogle Scholar
Heikel, E., Sassenhagen, J., & Fiebach, C. J. (2018). Decoding semantic predictions from EEG prior to word onset (p. 393066). bioRxiv. https://doi.org/10.1101/393066CrossRefGoogle Scholar
Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P., & de Lange, F. P. (2022). A hierarchy of linguistic predictions during natural language comprehension. Proceedings of the National Academy of Sciences, 119(32), e2201968119. https://doi.org/10.1073/pnas.2201968119CrossRefGoogle ScholarPubMed
Hess, D. J., Foss, D. J., & Carroll, P. (1995). Effects of global and local context on lexical processing during language comprehension. Journal of Experimental Psychology: General, 124, 62.10.1037/0096-3445.124.1.62CrossRefGoogle Scholar
Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411428.10.1037/0033-295X.93.4.411CrossRefGoogle Scholar
Huang, K. J., Arehalli, S., Kugemoto, M., Muxica, C., Prasad, G., Dillon, B., & Linzen, T. (2023). Surprisal does not explain syntactic disambiguation difficulty: Evidence from a large-scale benchmark. Preprint on PsyArXiv.10.31234/osf.io/z38u6CrossRefGoogle Scholar
Huettig, F. (2015). Four central questions about prediction in language processing. Brain Research, 1626, 118135. https://doi.org/10.1016/j.brainres.2015.02.014CrossRefGoogle ScholarPubMed
Jaswal, V. K., & Neely, L. A. (2006). Adults don’t always know best: Preschoolers use past reliability over age when learning new words. Psychological Science, 17(9), 757758.10.1111/j.1467-9280.2006.01778.xCrossRefGoogle ScholarPubMed
Johnson, K., & Sjerps, M. J. (2021). Speaker normalization in speech perception. In Pardo, J. S., Nygaard, L. C., Remez, R. E., & Pisoni, D. B., (Eds.), The Handbook of Speech Perception, 145176. John Wiley & Sons.10.1002/9781119184096.ch6CrossRefGoogle Scholar
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329354.10.1037/0033-295X.87.4.329CrossRefGoogle ScholarPubMed
Kamide, Y., Altmann, G. T., & Haywood, S. L. (2003). The time-course of prediction in incremental sentence processing: Evidence from anticipatory eye movements. Journal of Memory and Language, 49, 133156.10.1016/S0749-596X(03)00023-8CrossRefGoogle Scholar
Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95, 163.10.1037/0033-295X.95.2.163CrossRefGoogle ScholarPubMed
Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85, 363.10.1037/0033-295X.85.5.363CrossRefGoogle Scholar
Kinzler, K. D., Corriveau, K. H., & Harris, P. L. (2011). Children’s selective trust in native‐accented speakers. Developmental Science, 14(1), 106111.10.1111/j.1467-7687.2010.00965.xCrossRefGoogle ScholarPubMed
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2007). The native language of social cognition. Proceedings of the National Academy of Sciences, 104(30), 1257712580.10.1073/pnas.0705345104CrossRefGoogle ScholarPubMed
Koenig, M. A., & Harris, P. L. (2005). Preschoolers mistrust ignorant and inaccurate speakers. Child Development, 76, 12611277.10.1111/j.1467-8624.2005.00849.xCrossRefGoogle ScholarPubMed
Koenig, M. A., & Woodward, A. L. (2010). Sensitivity of 24-month-olds to the prior inaccuracy of the source: Possible mechanisms. Developmental Psychology, 46(4), 815.10.1037/a0019664CrossRefGoogle Scholar
Koenig, M. A., Clément, F., & Harris, P. L. (2004). Trust in testimony: Children’s use of true and false statements. Psychological Science, 15(10), 694698.10.1111/j.0956-7976.2004.00742.xCrossRefGoogle ScholarPubMed
Kroczek, L. O., & Gunter, T. C. (2021). The time course of speaker-specific language processing. Cortex, 141, 311321.10.1016/j.cortex.2021.04.017CrossRefGoogle ScholarPubMed
Kuperberg, G. R. (2021). Tea with milk? A hierarchical generative framework of sequential event comprehension. Topics in Cognitive Science, 13, 256298.10.1111/tops.12518CrossRefGoogle ScholarPubMed
Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31, 3259.10.1080/23273798.2015.1102299CrossRefGoogle ScholarPubMed
Kutas, M., DeLong, K. A., & Smith, N. J. (2011). A look around at what lies ahead: Prediction and predictability in language processing. Predictions in the Brain: Using Our Past to Generate a Future, 190207(10.1093).10.1093/acprof:oso/9780195395518.003.0065CrossRefGoogle Scholar
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203205. https://doi.org/10.1126/science.7350657CrossRefGoogle ScholarPubMed
Kutas, M., & Iragui, V. (1998). The N400 in a semantic categorization task across 6 decades. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108(5), 456471.10.1016/S0168-5597(98)00023-9CrossRefGoogle Scholar
Kutas, M., Van Petten, C. K., & Kluender, R. (2006). Psycholinguistics electrified II (1994–2005). In Handbook of Psycholinguistics (pp. 659724). Academic Press.10.1016/B978-012369374-7/50018-3CrossRefGoogle Scholar
Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid syntactic analysis. Brain and Language, 98(1), 7488.CrossRefGoogle ScholarPubMed
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211.10.1037/0033-295X.104.2.211CrossRefGoogle Scholar
Levelt, W. J. (1992). Accessing words in speech production: Stages, processes and representations. Cognition, 42, 122.10.1016/0010-0277(92)90038-JCrossRefGoogle ScholarPubMed
Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106, 11261177.10.1016/j.cognition.2007.05.006CrossRefGoogle ScholarPubMed
Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203208.CrossRefGoogle Scholar
Lupyan, G., & Clark, A. (2015). Words and the World: Predictive Coding and the Language-Perception-Cognition Interface. Current Directions in Psychological Science, 24(4), 279284. https://doi.org/10.1177/0963721415570732CrossRefGoogle Scholar
MacDonald, M. C., Pearlmutter, N. J., & Seidenberg, M. S. (1994). The lexical nature of syntactic ambiguity resolution. Psychological Review, 101(4), 676.10.1037/0033-295X.101.4.676CrossRefGoogle ScholarPubMed
Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1–2), 71102.10.1016/0010-0277(87)90005-9CrossRefGoogle ScholarPubMed
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375.10.1037/0033-295X.88.5.375CrossRefGoogle Scholar
Metusalem, R., Kutas, M., Urbach, T. P., Hare, M., McRae, K., & Elman, J. L. (2012). Generalized event knowledge activation during online sentence comprehension. Journal of Memory and Language, 66(4), 545567.10.1016/j.jml.2012.01.001CrossRefGoogle ScholarPubMed
Morales, L., Paolieri, D., Dussias, P. E., Kroff, J. R. V., Gerfen, C., & Bajo, M. T. (2016). The gender congruency effect during bilingual spoken-word recognition. Bilingualism: Language and Cognition, 19(2), 294310. https://doi.org/10.1017/S1366728915000176CrossRefGoogle ScholarPubMed
Morris, R. K. (1994). Lexical and message-level sentence context effects on fixation times in reading. Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 92103.Google ScholarPubMed
Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165178.10.1037/h0027366CrossRefGoogle Scholar
Ness, T., & Meltzer‐Asscher, A. (2021a). From pre‐activation to pre‐updating: A threshold mechanism for commitment to strong predictions. Psychophysiology, 58(5), e13797.10.1111/psyp.13797CrossRefGoogle ScholarPubMed
Ness, T., & Meltzer-Asscher, A. (2021b). Rational adaptation in lexical prediction: The influence of prediction strength. Frontiers in Psychology, 12, 622873.10.3389/fpsyg.2021.622873CrossRefGoogle ScholarPubMed
Nieuwland, M. S., Arkhipova, Y., & Rodríguez-Gómez, P. (2020). Anticipating words during spoken discourse comprehension: A large-scale, pre-registered replication study using brain potentials. Cortex, 133, 136.10.1016/j.cortex.2020.09.007CrossRefGoogle ScholarPubMed
Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., & Ito, A. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. ELife, 7, e33468.10.7554/eLife.33468CrossRefGoogle ScholarPubMed
Perdomo, M., & Kaan, E. (2021). Prosodic cues in second-language speech processing: A visual world eye-tracking study. Second Language Research, 37, 349375.10.1177/0267658319879196CrossRefGoogle Scholar
Pickering, M. J., & Gambi, C. (2018). Predicting while comprehending language: A theory and review. Psychological Bulletin, 144(10), 1002. https://doi.org/10.1037/bul0000158CrossRefGoogle Scholar
Pickering, M. J., & Garrod, S. (2007). Do people use language production to make predictions during comprehension?Trends in Cognitive Sciences, 11, 105110.CrossRefGoogle ScholarPubMed
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329392. https://doi.org/10.1017/S0140525X12003238CrossRefGoogle ScholarPubMed
Pickering, M. J., & Traxler, M. J. (1998). Plausibility and recovery from garden paths: An eye-tracking study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 940961.Google Scholar
Poulton, V. R., & Nieuwland, M. S. (2022). Can you hear what’s coming? Failure to replicate ERP evidence for phonological prediction. Neurobiology of Language, 3, 556574.10.1162/nol_a_00078CrossRefGoogle ScholarPubMed
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), Article 1. https://doi.org/10.1038/4580CrossRefGoogle ScholarPubMed
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical Conditioning II: Current Research and Theory (Vol. 2, pp. 6499). Appleton-Century-Crofts.Google Scholar
Ryskin, R., Levy, R. P., & Fedorenko, E. (2020). Do domain-general executive resources play a role in linguistic prediction? Re-evaluation of the evidence and a path forward. Neuropsychologia, 136, 107258.10.1016/j.neuropsychologia.2019.107258CrossRefGoogle Scholar
Ryskin, R., & Nieuwland, M. S. (2023). Prediction during language comprehension: What is next?Trends in Cognitive Sciences, 27(11). https://doi.org/10.1016/j.tics.2023.08.003CrossRefGoogle ScholarPubMed
Sabbagh, M. A., & Baldwin, D. A. (2001). Learning words from knowledgeable versus ignorant speakers: Links between preschoolers’ theory of mind and semantic development. Child Development, 72(4), 10541070.10.1111/1467-8624.00334CrossRefGoogle ScholarPubMed
Schwanenflugel, P. J. (1991). Contextual constraint and lexical processing. In Advances in Psychology (Vol. 77, pp. 2345). North-Holland.Google Scholar
Schwanenflugel, P. J., & LaCount, K. L. (1988). Semantic relatedness and the scope of facilitation for upcoming words in sentences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 344354.Google Scholar
Schwanenflugel, P. J., & Shoben, E. J. (1985). The influence of sentence constraint on the scope of facilitation for upcoming words. Journal of Memory and Language, 24, 232252.10.1016/0749-596X(85)90026-9CrossRefGoogle Scholar
Scofield, J., & Behrend, D. A. (2008). Learning words from reliable and unreliable speakers. Cognitive Development, 23(2), 278290.10.1016/j.cogdev.2008.01.003CrossRefGoogle Scholar
Singleton, J. L., & Newport, E. L. (2004). When learners surpass their models: The acquisition of American Sign Language from inconsistent input. Cognitive Psychology, 49(4), 370407.10.1016/j.cogpsych.2004.05.001CrossRefGoogle ScholarPubMed
Steedman, M., & Altmann, G. (1989). Ambiguity in context: A reply. Language and Cognitive Processes, 4(3–4), SI105SI122. https://doi.org/10.1080/01690968908406365CrossRefGoogle Scholar
Stoet, G., (2017). PsyToolkit: A novel web-based method for running online questionnaires and reaction-time experiments. Teaching of Psychology, 44, 2431.10.1177/0098628316677643CrossRefGoogle Scholar
Stroop, J. R., (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643.10.1037/h0054651CrossRefGoogle Scholar
Swanson, L. R. (2016). The predictive processing paradigm has roots in Kant. Frontiers in Systems Neuroscience, 10. www.frontiersin.org/articles/10.3389/fnsys.2016.0007910.3389/fnsys.2016.00079CrossRefGoogle ScholarPubMed
Szewczyk, J. M., & Schriefers, H. (2013). Prediction in language comprehension beyond specific words: An ERP study on sentence comprehension in Polish. Journal of Memory and Language, 68(4), 297314.10.1016/j.jml.2012.12.002CrossRefGoogle Scholar
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 16321634.10.1126/science.7777863CrossRefGoogle ScholarPubMed
Trammel, T., Khodayari, N., Luck, S. J., Traxler, M. J., & Swaab, T. Y. (2023). Decoding semantic relatedness and prediction from EEG: A classification method comparison. NeuroImage, 277, 120268.10.1016/j.neuroimage.2023.120268CrossRefGoogle Scholar
Traxler, M. J. (2014). Trends in syntactic parsing: Anticipation, Bayesian estimation, and good-enough parsing. Trends in Cognitive Sciences, 18, 605611. https://doi.org/10.1016/j.tics.2014.08.001CrossRefGoogle ScholarPubMed
Traxler, M. J. (2023). Introduction to Psycholinguistics: Understanding Language Science (2nd ed.). Wiley-Blackwell.Google Scholar
Traxler, M. J., Foss, D. J., Seely, R. E., Kaup, B., & Morris, R. K. (2000). Priming in sentence processing: Intralexical spreading activation, schemas, and situation models. Journal of Psycholinguistic Research, 29, 581595.10.1023/A:1026416225168CrossRefGoogle ScholarPubMed
Van Berkum, J. J., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443.Google ScholarPubMed
Van Wonderen, E., & Nieuwland, M. S. (2023). Lexical prediction does not rationally adapt to prediction error: ERP evidence from pre-nominal articles. Journal of Memory and Language, 132, 104435.10.1016/j.jml.2023.104435CrossRefGoogle Scholar
Wang, L., Schoot, L., Brothers, T., Alexander, E., Warnke, L., Kim, M., … & Kuperberg, G. R. (2023). Predictive coding across the left fronto-temporal hierarchy during language comprehension. Cerebral Cortex, 33, 44784497.10.1093/cercor/bhac356CrossRefGoogle ScholarPubMed
Wang, L., Wlotko, E., Alexander, E., Schoot, L., Kim, M., Warnke, L., & Kuperberg, G. R. (2020). Neural evidence for the prediction of animacy features during language comprehension: Evidence from MEG and EEG representational similarity analysis. Journal of Neuroscience, 40(16), 32783291. https://doi.org/10.1523/JNEUROSCI.1733-19.2020CrossRefGoogle ScholarPubMed
Wicha, N. Y., Moreno, E. M., & Kutas, M. (2004). Anticipating words and their gender: An event-related brain potential study of semantic integration, gender expectancy, and gender agreement in Spanish sentence reading. Journal of Cognitive Neuroscience, 16(7), 12721288.10.1162/0898929041920487CrossRefGoogle ScholarPubMed
Wlotko, E. W., & Federmeier, K. D. (2012). So that’s what you meant! Event-related potentials reveal multiple aspects of context use during construction of message-level meaning. NeuroImage, 62(1), 356366.CrossRefGoogle ScholarPubMed
Zipf, G. K. (1935). (reprinted 1965). The Psycho-Biology of Language. MIT Press.Google Scholar

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×