Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-c8jtx Total loading time: 0 Render date: 2025-12-12T06:35:18.653Z Has data issue: false hasContentIssue false

Part II - Neuroimaging Studies of Brain and Language

Hemodynamic and Electrophysiological Studies

Published online by Cambridge University Press:  aN Invalid Date NaN

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abutalebi, J., Canini, M., Della Rosa, P. A., Green, D. W., & Weekes, B. S. (2015). The neuroprotective effects of bilingualism upon the inferior parietal lobule: A structural neuroimaging study in aging Chinese bilinguals. Journal of Neurolinguistics, 33, 313. https://doi.org/10.1016/j.jneuroling.2014.09.008CrossRefGoogle Scholar
Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35(9), 21262133. https://doi.org/10.1016/j.neurobiolaging.2014.03.010CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Castro Gonzaga, A. K., Keim, R., Costa, A., & Perani, D. (2013). The role of the left putamen in multilingual language production. Brain and Language, 125(3), 307315. https://doi.org/10.1016/j.bandl.2012.03.009CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., Cappa, S. F., & Costa, A. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 20762086. https://doi.org/10.1093/cercor/bhr287CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20(3), 242275. https://doi.org/10.1016/j.jneuroling.2006.10.003CrossRefGoogle Scholar
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism, 19(4), 689698. https://doi.org/10.1017/S1366728916000225CrossRefGoogle Scholar
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P. A., Parris, B. A., & Weekes, B. S. (2015). Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201210. https://doi.org/10.1016/j.neuropsychologia.2015.01.040CrossRefGoogle ScholarPubMed
Alladi, S., Bak, T. H., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A. K., Chaudhuri, J. R., & Kaul, S. (2013). Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology, 81(22), 19381944. https://doi.org/10.1212/01.wnl.0000436620.33155.a4CrossRefGoogle ScholarPubMed
Alladi, S., Bak, T. H., Mekala, S., Rajan, A., Chaudhuri, J. R., Mioshi, E., Krovvidi, R., Surampudi, B., Duggirala, V., & Kaul, S. (2016). Impact of bilingualism on cognitive outcome after stroke. Stroke, 47(1), 258261. https://doi.org/10.1161/STROKEAHA.115.010418CrossRefGoogle ScholarPubMed
Anderson, J. A. E., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. NeuroImage, 167, 143150. https://doi.org/10.1016/j.neuroimage.2017.11.038CrossRefGoogle Scholar
Anderson, J. A. E., Hawrylewicz, K., & Grundy, J. G. (2020). Does bilingualism protect against dementia? A meta-analysis. Psychonomic Bulletin & Review, 27(5), 952965. https://doi.org/10.3758/s13423–020-01736-5CrossRefGoogle ScholarPubMed
Ansaldo, A. I., Ghazi-Saidi, L., & Adrover-Roig, D. (2015). Interference control in elderly bilinguals: Appearances can be misleading. Journal of Clinical and Experimental Neuropsychology, 37(5), 455470. https://doi.org/10.1080/13803395.2014.990359CrossRefGoogle ScholarPubMed
Apostolova, L. G., Steiner, C. A., Akopyan, G. G., Dutton, R. A., Hayashi, K. M., Toga, A. W., Cummings, J. L., & Thompson, P. M. (2007). Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease. Archives of Neurology, 64(10), 14891495. https://doi.org/10.1001/archneur.64.10.1489CrossRefGoogle ScholarPubMed
Arce Rentería, M., Casalletto, K., Tom, S., Pa, J., Harrati, A., Armstrong, N., Rajan, K. B., Manly, J., Mungas, D., & Zahodne, L. (2019). The contributions of active Spanish-English bilingualism to cognitive reserve among older Hispanic adults living in California. Archives of Clinical Neuropsychology, 34(7), 12351235. https://doi.org/10.1093/arclin/acz029.02CrossRefGoogle Scholar
Aveledo, F., Higueras, Y., Marinis, T., Bose, A., Pliatsikas, C., Meldaña, A., Martínez-Guinés, M. L., García-Domínguez, J. M., Lozano-Ros, A., Cuello, J. P., & Goicochea-Briceño, H. (2020). Multiple sclerosis and bilingualism: Some initial findings. Linguistic Approaches to Bilingualism, 10(January), 130. https://doi.org/10.1075/lab.18037.aveGoogle Scholar
Bak, T. H., Nissan, J. J., Allerhand, M. M., & Deary, I. J. (2014). Does bilingualism influence cognitive aging? Annals of Neurology, 75(6), 959963. https://doi.org/10.1002/ana.24158CrossRefGoogle ScholarPubMed
Baum, S., & Titone, D. (2014). Moving toward a neuroplasticity view of bilingualism, executive control, and aging. Applied Psycholinguistics, 35(5), 857894. https://doi.org/DOI:10.1017/S0142716414000174CrossRefGoogle Scholar
Berkes, M., Calvo, N., Anderson, J. A. E., Bialystok, E., & Initiative for Alzheimer’s Disease Neuroimaging. (2021). Poorer clinical outcomes for older adult monolinguals when matched to bilinguals on brain health. Brain Structure and Function, 226(2), 415424. https://doi.org/10.1007/s00429–020-02185-5CrossRefGoogle ScholarPubMed
Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233262. https://doi.org/10.1037/bul0000099CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., Binns, M. A., Ossher, L., & Freedman, M. (2014). Effects of bilingualism on the age of onset and progression of MCI and AD: Evidence from executive function tests. Neuropsychology, 28(2), 290304. https://doi.org/10.1037/neu0000023CrossRefGoogle Scholar
Bialystok, E., Craik, F. I. M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45(2), 459464. https://doi.org/10.1016/j.neuropsychologia.2006.10.009CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging, and cognitive control: Evidence from the Simon task. Psychology and Aging, 19(2), 290303. https://doi.org/10.1037/0882-7974.19.2.290CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F., & Luk, G. (2008). Cognitive control and lexical access in younger and older bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 859873. https://doi.org/10.1037/0278-7393.34.4.859Google ScholarPubMed
Bialystok, E., Craik, F. I. M., & Ryan, J. (2006). Executive control in a modified antisaccade task: Effects of aging and bilingualism. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 13411354. https://doi.org/10.1037/0278-7393.32.6.1341Google Scholar
Bialystok, E., Poarch, G., Luo, L., & Craik, F. I. M. (2014). Effects of bilingualism and aging on executive function and working memory. Psychology and Aging, 29(3), 696705. https://doi.org/10.1037/a0037254CrossRefGoogle ScholarPubMed
Brini, S., Sohrabi, H. R., Hebert, J. J., Forrest, M. R. L., Laine, M., Hämäläinen, H., Karrasch, M., Peiffer, J. J., Martins, R. N., & Fairchild, T. J. (2020). Bilingualism is associated with a delayed onset of dementia but not with a lower risk of developing it: A systematic review with meta-analyses. Neuropsychology Review, 30(1), 124. https://doi.org/10.1007/s11065–020-09426-8CrossRefGoogle Scholar
Canadian Institute for Health Information. (2022). National health expenditure trends [release summary]. www.cihi.ca/en/national-health-expenditure-trends-2022-snapshotGoogle Scholar
Cheng, S. (2016). Cognitive reserve and the prevention of dementia: The role of physical and cognitive activities. Current Psychiatry Reports, 18(9), 85.CrossRefGoogle ScholarPubMed
Chertkow, H., Whitehead, V., Phillips, N., Wolfson, C., Atherton, J., & Bergman, H. (2010). Multilingualism (but not always bilingualism) delays the onset of Alzheimer disease: Evidence from a bilingual community. Alzheimer Disease & Associated Disorders, 24(2). https://journals.lww.com/alzheimerjournal/Fulltext/2010/04000/Multilingualism__But_Not_Always_Bilingualism_.2.aspx10.1097/WAD.0b013e3181ca1221CrossRefGoogle Scholar
Chin, A. L., Negash, S., & Hamilton, R. (2011). Diversity and disparity in dementia: The impact of ethnoracial differences in Alzheimer disease. Alzheimer Disease and Associated Disorders, 25(3), 187195. https://doi.org/10.1097/WAD.0b013e318211c6c9CrossRefGoogle ScholarPubMed
Costumero, V., Marin-Marin, L., Calabria, M., Belloch, V., Escudero, J., Baquero, M., Hernandez, M., Ruiz de Miras, J., Costa, A., Parcet, M.-A., & Ávila, C. (2020). A cross-sectional and longitudinal study on the protective effect of bilingualism against dementia using brain atrophy and cognitive measures. Alzheimer’s Research & Therapy, 12(1), 11. https://doi.org/10.1186/s13195–020-0581-1CrossRefGoogle ScholarPubMed
Craik, F. I. M., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: Bilingualism as a form of cognitive reserve. Neurology, 75(19), 17261729. https://doi.org/10.1212/WNL.0b013e3181fc2a1cCrossRefGoogle ScholarPubMed
Dash, T., Berroir, P., Joanette, Y., & Ansaldo, A. I. (2019). Alerting, orienting, and executive control: The effect of bilingualism and age on the subcomponents of attention. Frontiers in Neurology, 10, 1122. www.frontiersin.org/article/10.3389/fneur.2019.01122CrossRefGoogle ScholarPubMed
Dause, T. J., & Kirby, E. D. (2019). Aging gracefully: Social engagement joins exercise and enrichment as a key lifestyle factor in resistance to age-related cognitive decline. Neural Regeneration Research, 14(1), 3942. https://doi.org/10.4103/1673-5374.243698Google ScholarPubMed
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Qué PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 12011209. https://doi.org/10.1093/cercor/bhm155CrossRefGoogle ScholarPubMed
De Baene, W., Duyck, W., Brass, M., & Carreiras, M. (2015). Brain circuit for cognitive control is shared by task and language switching. Journal of Cognitive Neuroscience, 27(9), 17521765. https://doi.org/10.1162/jocn_a_00817CrossRefGoogle ScholarPubMed
De Frutos-Lucas, J., López-Sanz, D., Cuesta, P., Bruña, R., De La Fuente, S., Serrano, N., López, M. E., Delgado-Losada, M. L., López-Higes, R., Marcos, A., & Maestú, F. (2020). Enhancement of posterior brain functional networks in bilingual older adults. Bilingualism, 23(2), 387400. https://doi.org/10.1017/S1366728919000178CrossRefGoogle Scholar
De Houwer, A. (2021). Bilingual Development in Childhood. Cambridge University Press. https://doi.org/DOI:10.1017/9781108866002CrossRefGoogle Scholar
de Leon, J., Grasso, S. M., Welch, A., Miller, Z., Shwe, W., Rabinovici, G. D., Miller, B. L., Henry, M. L., & Gorno-Tempini, M. L. (2020). Effects of bilingualism on age at onset in two clinical Alzheimer’s disease variants. Alzheimer’s & Dementia, 16(12), 17041713. https://doi.org/https://doi.org/10.1002/alz.12170CrossRefGoogle ScholarPubMed
Del Maschio, N., Sulpizio, S., Gallo, F., Fedeli, D., Weekes, B. S., & Abutalebi, J. (2018). Neuroplasticity across the lifespan and aging effects in bilinguals and monolinguals. Brain and Cognition, 125. https://doi.org/10.1016/j.bandc.2018.06.007CrossRefGoogle ScholarPubMed
Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2013). A neural interactive location for multilingual talent. Cortex, 49(2), 605608. https://doi.org/10.1016/j.cortex.2012.12.001CrossRefGoogle ScholarPubMed
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2019). Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116(15), 75657574. https://doi.org/10.1073/pnas.1811513116CrossRefGoogle ScholarPubMed
DeLuca, V., Rothman, J., & Pliatsikas, C. (2019). Linguistic immersion and structural effects on the bilingual brain: A longitudinal study. Bilingualism: Language and Cognition, 22(5), 11601175. https://doi.org/DOI:10.1017/S1366728918000883CrossRefGoogle Scholar
Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In The Handbook of Aging and Cognition, 3rd ed. (pp. 154). Psychology Press.Google Scholar
Duñabeitia, J. A., Hernández, J. A., Antón, E., Macizo, P., Estévez, A., Fuentes, L. J., & Carreiras, M. (2014). The inhibitory advantage in bilingual children revisited. Experimental Psychology, 61(3), 234251. https://doi.org/10.1027/1618-3169/a000243CrossRefGoogle ScholarPubMed
Dyer, S. M., Harrison, S. L., Laver, K., Whitehead, C., & Crotty, M. (2018). An overview of systematic reviews of pharmacological and non-pharmacological interventions for the treatment of behavioral and psychological symptoms of dementia. International Psychogeriatrics, 30(3), 295309. https://doi.org/10.1017/S1041610217002344CrossRefGoogle ScholarPubMed
Estanga, A., Ecay-Torres, M., Ibañez, A., Izagirre, A., Villanua, J., Garcia-Sebastian, M., Iglesias Gaspar, M. T., Otaegui-Arrazola, A., Iriondo, A., Clerigue, M., & Martinez-Lage, P. (2017). Beneficial effect of bilingualism on Alzheimer’s disease CSF biomarkers and cognition. Neurobiology of Aging, 50, 144151. https://doi.org/10.1016/j.neurobiolaging.2016.10.013CrossRefGoogle ScholarPubMed
Farokhian, F., Yang, C., Beheshti, I., Matsuda, H., & Wu, S. (2017). Age-related gray and white matter changes in normal adult brains. Aging and Disease, 8(6), 899909. https://doi.org/10.14336/AD.2017.0502CrossRefGoogle ScholarPubMed
Filippi, R., Richardson, F. M., Dick, F., Leech, R., Green, D. W., Thomas, M. S. C., & Price, C. J. (2011). The right posterior paravermis and the control of language interference. Journal of Neuroscience, 31(29), 1073210740. https://doi.org/10.1523/JNEUROSCI.1783-11.2011CrossRefGoogle ScholarPubMed
Frisoni, G. B., Geroldi, C., Beltramello, A., Bianchetti, A., Binetti, G., Bordiga, G., DeCarli, C., Laakso, M. P., Soininen, H., Testa, C., Zanetti, O., & Trabucchi, M. (2002). Radial width of the temporal horn: A sensitive measure in Alzheimer disease. AJNR. American Journal of Neuroradiology, 23(1), 3547.Google ScholarPubMed
Frisoni, G., Rossi, R., & Beltramello, A. (2002). The radial width of the temporal horn in mild cognitive impairment. Journal of Neuroimaging, 12(4), 351354.10.1111/j.1552-6569.2002.tb00143.xCrossRefGoogle ScholarPubMed
Gallo, F., & Abutalebi, J. (2024). The unique role of bilingualism among cognitive reserve-enhancing factors. Bilingualism: Language and Cognition, 27(2), 287294.10.1017/S1366728923000317CrossRefGoogle Scholar
Gallo, F., DeLuca, V., Prystauka, Y., Voits, T., Rothman, J., & Abutalebi, J. (2022). Bilingualism and aging: Implications for (delaying) neurocognitive decline. Frontiers in Human Neuroscience, 16. www.frontiersin.org/article/10.3389/fnhum.2022.81910510.3389/fnhum.2022.819105CrossRefGoogle ScholarPubMed
Gallo, F., Kubiak, J., & Myachykov, A. (2022). Add bilingualism to the mix: L2 proficiency modulates the effect of cognitive reserve proxies on executive performance in healthy aging. Frontiers in Psychology, 13. https://www.frontiersin.org/article/10.3389/fpsyg.2022.780261CrossRefGoogle Scholar
Gallo, F., Myachykov, A., Shtyrov, Y., & Abutalebi, J. (2020). Cognitive and brain reserve in bilinguals: Field overview and explanatory mechanisms. Journal of Cultural Cognitive Science, 4(2), 127143. https://doi.org/10.1007/s41809–020-00058-1CrossRefGoogle Scholar
Gallo, F., Novitskiy, N., Myachykov, A., & Shtyrov, Y. (2021). Individual differences in bilingual experience modulate executive control network and performance: Behavioral and structural neuroimaging evidence. Bilingualism: Language and Cognition, 24(2), 293304. https://doi.org/DOI:10.1017/S1366728920000486CrossRefGoogle Scholar
Ghazi-Saidi, L. (2019). Bilingual speakers postpone symptoms of cognitive deficit in Parkinson’s disease. GSA 2019 Annual Scientific Meeting, 3, 661662.Google Scholar
Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., De Stefano, N., & Johansen-Berg, H. (2010). Age-related changes in grey and white matter structure throughout adulthood. NeuroImage, 51(3), 943951. https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.03.004CrossRefGoogle ScholarPubMed
Goh, J. O., & Park, D. C. (2009). Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restorative Neurology and Neuroscience, 27, 391403. https://doi.org/10.3233/RNN-2009-0493CrossRefGoogle ScholarPubMed
Gold, B. T., Johnson, N. F., & Powell, D. K. (2013). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia, 51(13), 28412846. https://doi.org/10.1016/j.neuropsychologia.2013.09.037CrossRefGoogle ScholarPubMed
Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., & Smith, C. D. (2013). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33(2), 387396. https://doi.org/10.1523/JNEUROSCI.3837-12.2013CrossRefGoogle ScholarPubMed
Gollan, T. H., Salmon, D. P., Montoya, R. I., & Galasko, D. R. (2011). Degree of bilingualism predicts age of diagnosis of Alzheimer’s disease in low-education but not in highly educated Hispanics. Neuropsychologia, 49(14), 38263830. https://doi.org/10.1016/j.neuropsychologia.2011.09.041CrossRefGoogle ScholarPubMed
Grady, C. L., Luk, G., Craik, F. I. M., & Bialystok, E. (2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170181. https://doi.org/10.1016/j.neuropsychologia.2014.10.042CrossRefGoogle ScholarPubMed
Grant, A., Dennis, N. A., & Li, P. (2014). Cognitive control, cognitive reserve, and memory in the aging bilingual brain. Frontiers in Psychology, 5(DEC), 1401. https://doi.org/10.3389/fpsyg.2014.01401CrossRefGoogle ScholarPubMed
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25(5), 515530. https://doi.org/10.1080/20445911.2013.796377CrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201. https://doi.org/10.1111/nyas.13333CrossRefGoogle ScholarPubMed
Gullifer, J. W., Chai, X. J., Whitford, V., Pivneva, I., Baum, S., Klein, D., & Titone, D. (2018). Bilingual experience and resting-state brain connectivity: Impacts of L2 age of acquisition and social diversity of language use on control networks. Neuropsychologia, 117, 123134. https://doi.org/10.1016/j.neuropsychologia.2018.04.037CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings. International Journal of Geriatric Psychiatry, 24(2), 109117. https://doi.org/10.1002/gps.2087CrossRefGoogle ScholarPubMed
Guzmán-Vélez, E., & Tranel, D. (2015). Does bilingualism contribute to cognitive reserve? Cognitive and Neural Perspectives. Neuropsychology, 29(1), 139150. https://doi.org/10.1037/neu0000105Google ScholarPubMed
Heim, S., Stumme, J., Bittner, N., Jockwitz, C., Amunts, K., & Caspers, S. (2019). Bilingualism and “brain reserve”: A matter of age. Neurobiology of Aging, 81, 157165. https://doi.org/10.1016/j.neurobiolaging.2019.05.021CrossRefGoogle ScholarPubMed
Henry, M. L., & Gorno-Tempini, M. L. (2010). The logopenic variant of primary progressive aphasia. Current Opinion in Neurology, 23(6), 633637. https://doi.org/10.1097/WCO.0b013e32833fb93eCrossRefGoogle ScholarPubMed
Hindle, J. V., Martin-Forbes, P. A., Martyr, A., Bastable, A. J. M., Pye, K. L., Mueller Gathercole, V. C., Thomas, E. M., & Clare, L. (2017). The effects of lifelong cognitive lifestyle on executive function in older people with Parkinson’s disease. International Journal of Geriatric Psychiatry, 32(12), e157e165. https://doi.org/10.1002/gps.4677CrossRefGoogle ScholarPubMed
Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9, Part B), 22432257. https://doi.org/10.1016/j.neubiorev.2013.04.005CrossRefGoogle ScholarPubMed
Houtzager, N., Lowie, W., Sprenger, S., & De Bot, K. (2017). A bilingual advantage in task switching? Age-related differences between German monolinguals and Dutch-Frisian bilinguals. Bilingualism: Language and Cognition, 20(1), 6979. https://doi.org/10.1017/S1366728915000498CrossRefGoogle Scholar
Incera, S., & McLennan, C. T. (2018). Bilingualism and age are continuous variables that influence executive function. Aging, Neuropsychology, and Cognition, 25(3), 443463. https://doi.org/10.1080/13825585.2017.1319902CrossRefGoogle ScholarPubMed
Jared, D., & Kroll, J. F. (2001). Do bilinguals activate phonological representations in one or both of their languages when naming words? Journal of Memory and Language, 44(1), 231. https://doi.org/10.1006/jmla.2000.2747CrossRefGoogle Scholar
Kalpouzos, G., Chételat, G., Baron, J. C., Landeau, B., Mevel, K., Godeau, C., Barré, L., Constans, J. M., Viader, F., Eustache, F., & Desgranges, B. (2009). Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging, 30(1), 112124. https://doi.org/10.1016/j.neurobiolaging.2007.05.019CrossRefGoogle ScholarPubMed
Klein, R. M., Christie, J., & Parkvall, M. (2016). Does multilingualism affect the incidence of Alzheimer’s disease? A worldwide analysis by country. SSM - Population Health, 2, 463467. https://doi.org/10.1016/j.ssmph.2016.06.002CrossRefGoogle ScholarPubMed
Kontis, V., Bennett, J. E., Mathers, C. D., Li, G., Foreman, K., & Ezzati, M. (2017). Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. The Lancet, 389(10076), 13231335. https://doi.org/10.1016/S0140–6736(16)32381-9CrossRefGoogle ScholarPubMed
Kowoll, M. E., Degen, C., Gorenc, L., Küntzelmann, A., Fellhauer, I., Giesel, F., Haberkorn, U., & Schröder, J. (2016). Bilingualism as a contributor to cognitive reserve? Evidence from cerebral glucose metabolism in mild cognitive impairment and Alzheimer’s disease. Frontiers in Psychiatry, 7(APR), 15. https://doi.org/10.3389/fpsyt.2016.00062CrossRefGoogle ScholarPubMed
Kroll, J. F., Bobb, S. C., Misra, M., & Guo, T. (2008). Language selection in bilingual speech: Evidence for inhibitory processes. Acta Psychologica, 128(3), 416430. https://doi.org/10.1016/j.actpsy.2008.02.001CrossRefGoogle ScholarPubMed
Kuhl, P. K., Stevenson, J., Corrigan, N. M., van den Bosch, J. J. F., Can, D. D., & Richards, T. (2016). Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain and Language, 162, 19. https://doi.org/10.1016/j.bandl.2016.07.004CrossRefGoogle Scholar
Leivada, E., Westergaard, M., Duñabeitia, J. A., & Rothman, J. (2021). On the phantom-like appearance of bilingualism effects on neurocognition: (How) should we proceed? Bilingualism: Language and Cognition, 24(1), 197210. https://doi.org/10.1017/S1366728920000358CrossRefGoogle Scholar
Li, L., Abutalebi, J., Emmorey, K., Gong, G., Yan, X., Feng, X., Zou, L., & Ding, G. (2017). How bilingualism protects the brain from aging: Insights from bimodal bilinguals. Human Brain Mapping, 38(8), 41094124. https://doi.org/10.1002/hbm.23652CrossRefGoogle ScholarPubMed
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324. https://doi.org/10.1016/j.cortex.2014.05.001CrossRefGoogle ScholarPubMed
Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., Ballard, C., Banerjee, S., Burns, A., Cohen-Mansfield, J., Cooper, C., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Larson, E. B., Ritchie, K., Rockwood, K., Sampson, E. L., … Mukadam, N. (2017). Dementia prevention, intervention, and care. The Lancet, 390(10113), 26732734. https://doi.org/10.1016/S0140–6736(17)31363-6CrossRefGoogle ScholarPubMed
Ljungberg, J. K., Hansson, P., Andrés, P., Josefsson, M., & Nilsson, L.-G. (2013). A longitudinal study of memory advantages in bilinguals. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0073029CrossRefGoogle ScholarPubMed
López Zunini, R. A., Morrison, C., Kousaie, S., & Taler, V. (2019). Task switching and bilingualism in young and older adults: A behavioral and electrophysiological investigation. Neuropsychologia, 133, 107186. https://doi.org/10.1016/j.neuropsychologia.2019.107186CrossRefGoogle Scholar
Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., & Bäckman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience & Biobehavioral Reviews, 37(9, Part B), 22962310. https://doi.org/10.1016/j.neubiorev.2013.02.014CrossRefGoogle ScholarPubMed
Luk, G., Anderson, J. A. E., Craik, F. I. M., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74(3), 347357. https://doi.org/10.1016/j.bandc.2010.09.004CrossRefGoogle ScholarPubMed
Luk, G., & Bialystok, E. (2013). Bilingualism is not a categorical variable: Interaction between language proficiency and usage. Journal of Cognitive Psychology, 25(5), 605621. https://doi.org/10.1080/20445911.2013.795574CrossRefGoogle Scholar
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Luo, D., Kwok, V. P. Y., Liu, Q., Li, W., Yang, Y., Zhou, K., Xu, M., Gao, J.-H., & Tan, L. H. (2019). Microstructural plasticity in the bilingual brain. Brain and Language, 196, 104654. https://doi.org/10.1016/j.bandl.2019.104654CrossRefGoogle ScholarPubMed
Luo, L., Craik, F. I. M., Moreno, S., & Bialystok, E. (2013). Bilingualism interacts with domain in a working memory task: Evidence from aging. Psychology and Aging, 28(1), 2834. https://doi.org/10.1037/a0030875CrossRefGoogle Scholar
MacPherson, S., & Cox, S. (2017). The frontal ageing hypothesis: Evidence from normal ageing and dementia. In Handbook of Gerontology Research Methods: Understanding Successful Ageing (pp. 139158). Routledge/Taylor & Francis Group.Google Scholar
Martínez-Horta, S., Moreu, A., Perez-Perez, J., Sampedro, F., Horta-Barba, A., Pagonabarraga, J., Gomez-Anson, B., Lozano-Martinez, G. A., Lopez-Mora, D. A., Camacho, V., Fernández-León, A., Carrió, I., & Kulisevsky, J. (2018). The impact of bilingualism on brain structure and function in Huntington’s disease. Parkinsonism & Related Disorders, 60, 9297. https://doi.org/10.1016/j.parkreldis.2018.09.017CrossRefGoogle ScholarPubMed
Maruszak, A., & Thuret, S. (2014). Why looking at the whole hippocampus is not enough: A critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer’s disease diagnosis. Frontiers in Cellular Neuroscience, 8, 95. www.frontiersin.org/article/10.3389/fncel.2014.0009510.3389/fncel.2014.00095CrossRefGoogle Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O’ Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Neurolinguistics: Structural plasticity in the bilingual brain. Nature, 431(7010), 757. https://doi.org/10.1038/431757aCrossRefGoogle ScholarPubMed
Mendez, M. F., Chavez, D., & Akhlaghipour, G. (2019). Bilingualism delays expression of Alzheimer’s clinical syndrome. Dementia and Geriatric Cognitive Disorders, 48(5–6), 281289. https://doi.org/10.1159/000505872CrossRefGoogle ScholarPubMed
Meng, X., & D’Arcy, C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: A systematic review with meta-analyses and qualitative analyses. PLoS ONE, 7(6), e38268e38268. https://doi.org/10.1371/journal.pone.0038268CrossRefGoogle ScholarPubMed
Mitchell, E. M. (2016). Concentration of Health Expenditures in the U.S. Civilian Noninstitutionalized Population, 2014. Agency for Healthcare Research and Quality (US), Rockville (MD). http://europepmc.org/abstract/MED/28422468Google Scholar
Nakamura, A., Cuesta, P., Kato, T., Arahata, Y., Iwata, K., Yamagishi, M., Kuratsubo, I., Kato, K., Bundo, M., Diers, K., Fernández, A., Maestú, F., & Ito, K. (2017). Early functional network alterations in asymptomatic elders at risk for Alzheimer’s disease. Scientific Reports, 7(1), 6517. https://doi.org/10.1038/s41598–017-06876-8CrossRefGoogle ScholarPubMed
Nichols, E. S., Wild, C. J., Stojanoski, B., Battista, M. E., & Owen, A. M. (2020). Bilingualism affords no general cognitive advantages: A population study of executive function in 11,000 people. Psychological Science, 31(5), 548567. https://doi.org/10.1177/0956797620903113CrossRefGoogle ScholarPubMed
Olsen, R. K., Pangelinan, M. M., Bogulski, C., Chakravarty, M. M., Luk, G., Grady, C. L., & Bialystok, E. (2015). The effect of lifelong bilingualism on regional grey and white matter volume. Brain Research, 1612, 128139. https://doi.org/10.1016/j.brainres.2015.02.034CrossRefGoogle ScholarPubMed
Olulade, O. A., Jamal, N. I., Koo, D. S., Perfetti, C. A., LaSasso, C., & Eden, G. F. (2016). Neuroanatomical evidence in support of the bilingual advantage theory. Cerebral Cortex, 26(7), 31963204. https://doi.org/10.1093/cercor/bhv152CrossRefGoogle ScholarPubMed
Ossher, L., Bialystok, E., Craik, F. I. M., Murphy, K. J., & Troyer, A. K. (2013). The effect of bilingualism on amnestic mild cognitive impairment. The Journals of Gerontology: Series B, 68(1), 812. https://doi.org/10.1093/geronb/gbs038CrossRefGoogle ScholarPubMed
Paap, K. R., Johnson, H. A., & Sawi, O. (2015). Bilingual advantages in executive functioning either do not exist or are restricted to very specific and undetermined circumstances. Cortex, 69, 265278. https://doi.org/10.1016/j.cortex.2015.04.014CrossRefGoogle ScholarPubMed
Paplikar, A., Mekala, S., Bak, T. H., Dharamkar, S., Alladi, S., & Kaul, S. (2018). Bilingualism and the severity of poststroke aphasia. Aphasiology, 33(1), 5872. https://doi.org/10.1080/02687038.2017.1423272CrossRefGoogle Scholar
Paulavicius, A. M., Mizzaci, C. C., Tavares, D. R. B., Rocha, A. P., Civile, V. T., Schultz, R. R., Pinto, A. C. P. N., & Trevisani, V. F. M. (2020). Bilingualism for delaying the onset of Alzheimer’s disease: A systematic review and meta-analysis. European Geriatric Medicine, 11(4), 651658. https://doi.org/10.1007/s41999–020-00326-xCrossRefGoogle ScholarPubMed
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., Magnani, G., March, A., & Abutalebi, J. (2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Sciences of the United States of America, 114(7), 16901695. https://doi.org/10.1073/pnas.1610909114CrossRefGoogle ScholarPubMed
Perquin, M., Vaillant, M., Schuller, A.-M., Pastore, J., Dartigues, J.-F., Lair, M.-L., & Diederich, N. (2013). Lifelong exposure to multilingualism: New evidence to support cognitive reserve hypothesis. PLoS ONE, 8(4), e62030. https://doi.org/10.1371/journal.pone.0062030CrossRefGoogle ScholarPubMed
Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L.-G., Ingvar, M., & Buckner, R. L. (2006). Structure–function correlates of cognitive decline in aging. Cerebral Cortex, 16(7), 907915. https://doi.org/10.1093/cercor/bhj036CrossRefGoogle ScholarPubMed
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The dynamic restructuring model. Bilingualism: Language and Cognition, 23(2), 459471. https://doi.org/10.1017/S1366728919000130CrossRefGoogle Scholar
Pliatsikas, C., DeLuca, V., Moschopoulou, E., & Saddy, J. D. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222(4), 17851795. https://doi.org/10.1007/s00429–016-1307-9CrossRefGoogle ScholarPubMed
Pliatsikas, C., DeLuca, V., & Voits, T. (2020). The many shades of bilingualism: Language experiences modulate adaptations in brain structure. Language Learning, 70(S2), 133149. https://doi.org/10.1111/lang.12386CrossRefGoogle Scholar
Pliatsikas, C., Johnstone, T., & Marinis, T. (2014). Grey matter volume in the cerebellum is related to the processing of grammatical rules in a second language: A structural voxel-based morphometry study. Cerebellum, 13(1), 5563. https://doi.org/10.1007/s12311–013-0515-6CrossRefGoogle Scholar
Prince, M. J., Comas-Herrera, A., Knapp, M., Guerchet, M. M., & Karagiannidou, M. (2016). World Alzheimer Report 2016 Improving healthcare for people living with dementia: Coverage, quality and costs now and in the future. Alzheimer’s Disease International. www.alz.co.uk/research/world-report-2016Google Scholar
Raftery, A. E., Chunn, J. L., Gerland, P., & Ševčíková, H. (2013). Bayesian probabilistic projections of life expectancy for all countries. Demography, 50(3), 777801. https://doi.org/10.1007/s13524–012-0193-xCrossRefGoogle ScholarPubMed
Ramakrishnan, S., Mekala, S., Mamidipudi, A., Yareeda, S., Mridula, R., Bak, T. H., Alladi, S., & Kaul, S. (2017). Comparative effects of education and bilingualism on the onset of mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 44(3–4), 222231. https://doi.org/10.1159/000479791CrossRefGoogle ScholarPubMed
Ressel, V., Pallier, C., Ventura-Campos, N., Díaz, B., Roessler, A., Ávila, C., & Sebastián-Gallés, N. (2012). An effect of bilingualism on the auditory cortex. The Journal of Neuroscience, 32(47), 16597 LP–16601. https://doi.org/10.1523/JNEUROSCI.1996-12.2012CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P. A., Festini, S. B., & Jantz, T. K. (2021). Chapter 5: Executive functions and neurocognitive aging. In Schaie, K. W. & Willis, S. (Eds.), Handbook of the Psychology of Aging (Ninth Edition) (pp. 6781). Academic Press. https://doi.org/10.1016/B978–0-12-816094-7.00019-2CrossRefGoogle Scholar
Robertson, I. H. (2013). A noradrenergic theory of cognitive reserve: Implications for Alzheimer’s disease. Neurobiology of Aging, 34(1), 298308. https://doi.org/10.1016/j.neurobiolaging.2012.05.019CrossRefGoogle ScholarPubMed
Rodríguez-Pujadas, A., Sanjuán, A., Fuentes, P., Ventura-Campos, N., Barrós-Loscertales, A., & Ávila, C. (2014). Differential neural control in early bilinguals and monolinguals during response inhibition. Brain and Language, 132, 4351. https://doi.org/10.1016/j.bandl.2014.03.003CrossRefGoogle ScholarPubMed
Sala, A., Malpetti, M., Farsad, M., Lubian, F., Magnani, G., Frasca Polara, G., Epiney, J.-B., Abutalebi, J., Assal, F., Garibotto, V., & Perani, D. (2022). Lifelong bilingualism and mechanisms of neuroprotection in Alzheimer dementia. Human Brain Mapping, 43(2), 581592. https://doi.org/10.1002/hbm.25605CrossRefGoogle ScholarPubMed
Sattler, C., Toro, P., Schönknecht, P., & Schröder, J. (2012). Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry Research, 196(1), 9095. https://doi.org/10.1016/j.psychres.2011.11.012CrossRefGoogle ScholarPubMed
Schweizer, T. A., Ware, J., Fischer, C. E., Craik, F. I. M., & Bialystok, E. (2012). Bilingualism as a contributor to cognitive reserve: Evidence from brain atrophy in Alzheimer’s disease. Cortex, 48(8), 991996. https://doi.org/10.1016/j.cortex.2011.04.009CrossRefGoogle ScholarPubMed
Seeman, T. E., Miller-Martinez, D. M., Stein Merkin, S., Lachman, M. E., Tun, P. A., & Karlamangla, A. S. (2011). Histories of social engagement and adult cognition: Midlife in the U.S. Study. The Journals of Gerontology: Series B, 66B(suppl_1), i141i152. https://doi.org/10.1093/geronb/gbq091CrossRefGoogle Scholar
Shearer, J., Green, C., Ritchie, C. W., & Zajicek, J. P. (2012). Health state values for use in the economic evaluation of treatments for Alzheimer’s disease. Drugs & Aging, 29(1), 3143. https://doi.org/10.2165/11597380-000000000-00000CrossRefGoogle ScholarPubMed
Soltani, M., Fatemeh Emami Dehcheshmeh, S., Moradi, N., Hajiyakhchali, A., Majdinasab, N., Mahmood Latifi, S., Hosseini beidokhti, M., Soltani, C. M., & Dehcheshmeh, E. S. (2018). Comparing executive functions in bilinguals and monolinguals suffering from relapsing-remitting multiple sclerosis. Journal of Modern Rehabilitation, 12(2), 133139.Google Scholar
Spivey, M. J., & Marian, V. (1999). Cross talk between native and second languages: Partial activation of an irrelevant lexicon. Psychological Science, 10(3), 281284. https://doi.org/10.1111/1467-9280.00151CrossRefGoogle Scholar
Stebbins, G. T., & Murphy, C. M. (2009). Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behavioural Neurology, 21(1–2), 3949.10.1155/2009/915041CrossRefGoogle ScholarPubMed
Steffener, J., Reuben, A., Rakitin, B. C., & Stern, Y. (2011). Supporting performance in the face of age-related neural changes: Testing mechanistic roles of cognitive reserve. Brain Imaging and Behavior, 5(3), 212221. https://doi.org/10.1007/s11682–011-9125-4CrossRefGoogle ScholarPubMed
Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., Brandeis, D., & Dierks, T. (2012). Structural plasticity in the language system related to increased second language proficiency. Cortex, 48(4), 458465. https://doi.org/10.1016/j.cortex.2010.10.007CrossRefGoogle ScholarPubMed
Stern, Y. (2003). The concept of cognitive reserve: A catalyst for research. Journal of Clinical and Experimental Neuropsychology, 25(5), 589593. https://doi.org/10.1076/jcen.25.5.589.14571CrossRefGoogle ScholarPubMed
Stern, Y. (Ed.). (2007). Cognitive reserve: Theory and applications. In Cognitive Reserve: Theory and Applications. (pp. xxi, 344–xxi, 344). Taylor & Francis.Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004CrossRefGoogle ScholarPubMed
Stern, Y. (Ed.). (2013). Cognitive Reserve: Theory and Applications. Psychology Press.10.4324/9780203783047CrossRefGoogle Scholar
Stern, Y., Arenaza‐Urquijo, E. M., Bartrés‐Faz, D., Belleville, S., Cantilon, M., Chetelat, G., Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W. S., Okonkwo, O., Scarmeas, N., Soldan, A., Udeh‐Momoh, C., Valenzuela, M., Vemuri, P., & Vuoksimaa, E. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s & Dementia, 16(9), 13051311. https://doi.org/10.1016/j.jalz.2018.07.219CrossRefGoogle ScholarPubMed
Stocco, A., Yamasaki, B., Natalenko, R., & Prat, C. S. (2014). Bilingual brain training: A neurobiological framework of how bilingual experience improves executive function. International Journal of Bilingualism, 18(1), 6792.10.1177/1367006912456617CrossRefGoogle Scholar
Sulpizio, S., Del Maschio, N., Del Mauro, G., Fedeli, D., & Abutalebi, J. (2020). Bilingualism as a gradient measure modulates functional connectivity of language and control networks. NeuroImage, 205, 116306. https://doi.org/10.1016/j.neuroimage.2019.116306CrossRefGoogle ScholarPubMed
Sumowski, J. F., Chiaravalloti, N., Wylie, G., & Deluca, J. (2009). Cognitive reserve moderates the negative effect of brain atrophy on cognitive efficiency in multiple sclerosis. Journal of the International Neuropsychological Society, 15(4), 606612. https://doi.org/10.1017/S1355617709090912CrossRefGoogle ScholarPubMed
Tucker, A. M., & Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8(4), 354360. https://doi.org/10.2174/156720511795745320CrossRefGoogle ScholarPubMed
Valian, V. (2015). Bilingualism and cognition. Bilingualism: Language and Cognition, 18(1), 324. https://doi.org/10.1017/S1366728914000522CrossRefGoogle Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., Machulda, M., Knopman, D. S., Mielke, M. M., Roberts, R. O., Geda, Y. E., Rocca, W. A., Petersen, R. C., & Jack, C. R. Jr (2014). Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurology, 71(8), 10171024. https://doi.org/10.1001/jamaneurol.2014.963CrossRefGoogle ScholarPubMed
Voits, T. (2020). Bilingualism as a neuroprotective factor in ageing: Insights from healthy and clinical populations (Issue September) [University of Reading]. https://doi.org/10.48683/1926.00097032CrossRefGoogle Scholar
Voits, T., Pliatsikas, C., Robson, H., & Rothman, J. (2020). Beyond Alzheimer’s disease: Can bilingualism be a more generalized protective factor in neurodegeneration? Neuropsychologia, 147(April), 107593. https://doi.org/10.1016/j.neuropsychologia.2020.107593CrossRefGoogle ScholarPubMed
Voits, T., Robson, H., Rothman, J., & Pliatsikas, C. (2022). The effects of bilingualism on hippocampal volume in ageing bilinguals. Brain Structure and Function, 227(3), 979994. https://doi.org/10.1007/s00429–021-02436-zCrossRefGoogle ScholarPubMed
Wilson, R. S., Boyle, P. A., Yang, J., James, B. D., & Bennett, D. A. (2015). Early life instruction in foreign language and music and incidence of mild cognitive impairment. Neuropsychology, 29(2), 292302. https://doi.org/10.1037/neu0000129CrossRefGoogle ScholarPubMed
Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, A. M., Winblad, B., Jönsson, L., Liu, Z., & Prince, M. (2017). The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 13(1), 17. https://doi.org/10.1016/j.jalz.2016.07.150CrossRefGoogle ScholarPubMed
Winblad, B., Amouyel, P., Andrieu, S., Ballard, C., Brayne, C., Brodaty, H., Cedazo-Minguez, A., Dubois, B., Edvardsson, D., Feldman, H., Fratiglioni, L., Frisoni, G. B., Gauthier, S., Georges, J., Graff, C., Iqbal, K., Jessen, F., Johansson, G., Jönsson, L., … Zetterberg, H. (2016). Defeating Alzheimer’s disease and other dementias: A priority for European science and society. The Lancet Neurology, 15(5), 455532. https://doi.org/10.1016/S1474–4422(16)00062-4CrossRefGoogle ScholarPubMed
Wodniecka, Z., Craik, F. I. M., Luo, L., & Bialystok, E. (2010). Does bilingualism help memory? Competing effects of verbal ability and executive control. International Journal of Bilingual Education and Bilingualism, 13(5), 575595. https://doi.org/10.1080/13670050.2010.488287CrossRefGoogle Scholar
Wong, W. (2020). Economic burden of Alzheimer disease and managed care considerations. The American Journal of Managed Care, 26(Suppl 8), S177S183. https://doi.org/10.37765/ajmc.2020.88482Google ScholarPubMed
World Health Organization. (2019). Dementia. www.who.int/news-room/fact-sheets/detail/dementiaGoogle Scholar
Woumans, E., Santens, P., Sieben, A., Versijpt, J., Stevens, M., & Duyck, W. (2015). Bilingualism delays clinical manifestation of Alzheimer’s disease. Bilingualism, 18(3), 568574. https://doi.org/10.1017/S136672891400087XCrossRefGoogle Scholar
Xu, J., Zhang, Y., Qiu, C., & Cheng, F. (2017). Global and regional economic costs of dementia: A systematic review. The Lancet, 390(S47). https://doi.org/10.1016/s0140–6736(17)33185-9CrossRefGoogle Scholar
Yaffe, K., Fiocco, A. J., Lindquist, K., Vittinghoff, E., Simonsick, E. M., Newman, A. B., Satterfield, S., Rosano, C., Rubin, S. M., Ayonayon, H. N., & Harris, T. B. (2009). Predictors of maintaining cognitive function in older adults. Neurology, 72(23), 2029 LP – 2035. https://doi.org/10.1212/WNL.0b013e3181a92c36CrossRefGoogle ScholarPubMed
Zhang, Y., Londos, E., Minthon, L., Wattmo, C., Liu, H., Aspelin, P., & Wahlund, L.-O. (2008). Usefulness of computed tomography linear measurements in diagnosing Alzheimer’s disease. Acta Radiologica, 49(1), 9197. https://doi.org/10.1080/02841850701753706CrossRefGoogle ScholarPubMed
Zheng, Y., Wu, Q., Su, F., Fang, Y., Zeng, J., & Pei, Z. (2018). The protective effect of Cantonese/Mandarin bilingualism on the onset of Alzheimer disease. Dementia and Geriatric Cognitive Disorders, 45(3–4), 210219. https://doi.org/10.1159/000488485CrossRefGoogle ScholarPubMed
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48(9), 11971206. https://doi.org/10.1016/j.cortex.2011.05.022CrossRefGoogle ScholarPubMed

References

Abutalebi, J. (2008). Neural processing of second language representation and control. Acta Psychologica, 128, 466478.CrossRefGoogle Scholar
Abutalebi, J., Canini, M., Della Rosa, P. A., Green, D. W., & Weekes, B. S. (2015). The neuroprotective effects of bilingualism upon the inferior parietal lobule: A structural neuroimaging study in aging Chinese bilinguals. Journal of Neurolinguistics, 33, 313.10.1016/j.jneuroling.2014.09.008CrossRefGoogle Scholar
Abutalebi, J., Della Rosa, P. A., Ding, G., Weekes, B., Costa, A., & Green, D. W. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49, 905911.10.1016/j.cortex.2012.08.018CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 20762086.10.1093/cercor/bhr287CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.10.1016/j.jneuroling.2006.10.003CrossRefGoogle Scholar
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(4): 689698.10.1017/S1366728916000225CrossRefGoogle Scholar
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P.A., Parris, B.A., & Weekes, B.S. (2015). Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201201.10.1016/j.neuropsychologia.2015.01.040CrossRefGoogle ScholarPubMed
Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain and Language, 109, 5154.10.1016/j.bandl.2009.04.001CrossRefGoogle ScholarPubMed
Anderson, J. A. E., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. Neuroimage, 167, 143150.CrossRefGoogle Scholar
Andrews, E. (2011). Language and brain: Recasting meaning in the definition of human language. Semiotica, 184(1/4), 1132.Google Scholar
Andrews, E. (2014). Neuroscience and Multilingualism. Cambridge University Press.10.1017/CBO9781139567770CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Sci, 11, 67.CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2023). DTI analysis of white matter integrity and cognitive brain reserve in lifelong musicians and controls. J Psychiatry Psychiatric Disord, 7(2), 6779.10.26502/jppd.2572-519X0187CrossRefGoogle Scholar
Andrews, E., Frigau, L., Voyvodic‐Casabo, C., Voyvodic, J., & Wright, J. (2013). Multilingualism and fMRI: Longitudinal study of second language acquisition. Brain Sciences, 3(2), 849876.10.3390/brainsci3020849CrossRefGoogle ScholarPubMed
Andrews, E., Harshbarger, T., & Rammell, C. S. (2019). Multilingual listening and reading: An fMRI study of Russian/English and Spanish/English bilinguals. Glossos, 14.Google Scholar
Ben Shalom, D., & D. Poeppel, D. (2008). Functional anatomic models of language: Assembling the pieces. The Neuroscientist, 14(1), 119127.10.1177/1073858407305726CrossRefGoogle Scholar
Bhatia, Tej K., & Ritchie, W. C. (2006). The Handbook of Bilingualism. Blackwell Publishing.10.1002/9780470756997CrossRefGoogle Scholar
Bialystok, E., Craik, F.I.M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459464.10.1016/j.neuropsychologia.2006.10.009CrossRefGoogle ScholarPubMed
Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353362.10.1523/JNEUROSCI.17-01-00353.1997CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796.10.1093/cercor/bhp055CrossRefGoogle Scholar
Binder, J. R., & Price, C. J. (2001). Functional neuroimaging of language. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 187251). MIT Press.Google Scholar
Billiet, T., Vandenbulcke, M., Madler, B., et al. (2015). Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiology of Aging, 36, 21072121.10.1016/j.neurobiolaging.2015.02.029CrossRefGoogle ScholarPubMed
Birdsong, D. (2006). Age and second language acquisition and processing: A selective overview. Language Learning, 56, 949.10.1111/j.1467-9922.2006.00353.xCrossRefGoogle Scholar
Bolinger, D. (1949/1965). The sign is not arbitrary. Reprinted in Bolinger, D., Forms of English: Accent, Morpheme, Order. Edited by Abe, Isamu and Kanekiyo, Tetsuya. Harvard University Press.Google Scholar
Bolinger, D. (1986). Intonation and Its Parts: Melody in Spoken English. Stanford University Press.Google Scholar
Bolinger, D. (1989). Intonation and Its Uses: Melody in Grammar and Discourse. Stanford University Press.10.1515/9781503623125CrossRefGoogle Scholar
Bookheimer, S. (2002). Function MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151188.10.1146/annurev.neuro.25.112701.142946CrossRefGoogle ScholarPubMed
Buchel, C., Price, C., & Friston, K. (1998). A multimodal language region in the ventral visual pathway. Nature, 394, 274277.10.1038/28389CrossRefGoogle ScholarPubMed
Cabeza, R., & Kingstone, A. (Eds.) (2001). Handbook of Functional Neuroimaging of Cognition (pp. 2748). MIT Press.Google Scholar
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 147.10.1162/08989290051137585CrossRefGoogle Scholar
Calvin, W. H., & Ojemann, G. A. (1994). Conversations with Neil’s Brain: The Neural Nature of Thought and Language. Addison-Wesley/Harper & Row.Google Scholar
Cargnelutti, E., Tomasino, B., & Fabbro, F. (2019). Language brain representation in bilinguals with different age of appropriation and proficiency of the second language: A meta-analysis of functional imaging studies. Frontiers in Human Neuroscience, 13, 154.10.3389/fnhum.2019.00154CrossRefGoogle Scholar
Coggins, P. E., Kennedy, T. J., & Armstrong, T. A. (2004). Bilingual corpus callosum variability. Brain Lang., 89, 6975.10.1016/S0093-934X(03)00299-2CrossRefGoogle ScholarPubMed
Corina, D. P., Loudermilk, B. C., Detwiler, L., Martin, R. F., Brinkley, J. F., & Ojemann, G. A. (2010). Analysis of naming erros during cortical stimulation mapping: Implications for models of language representation. Brain and Language, 115, 101112.10.1016/j.bandl.2010.04.001CrossRefGoogle Scholar
Cox, R. (2019). Equitable thresholding and clustering: A novel method for fMRI clustering in AFNI. Brain Connectivity, 9(7).10.1089/brain.2019.0666CrossRefGoogle ScholarPubMed
Craik, F. I., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: Bilingualism as a form of cognitive reserve. Neurology, 75(19), 17261729.10.1212/WNL.0b013e3181fc2a1cCrossRefGoogle ScholarPubMed
de Bot, K. (2006). The plastic bilingual brain: Synaptic pruning or growth? Commentary on Green et al. In Gullberg, M. & Indefrey, P. (Eds.), The Cognitive Neuroscience of Second Language Acquisition (pp. 127132). Blackwell.Google Scholar
de Bot, K. (2008). The imaging of what in the bilingual mind? Second Language Research, 24(1), 111133.10.1177/0267658307083034CrossRefGoogle Scholar
de Bot, K. (2009). Multilingualism and aging. In Ritchie, W. C. & Bhatia, Tej K. (Eds.), The New Handbook of Second Language Acquisition (pp. 425442). Emerald Group Publishing Ltd.Google Scholar
Donald, M. (2004). The definition of human nature. In Rees, D. & Rose, S. (Eds.), The New Brain Sciences: Perils and Prospects (pp. 3458). Cambridge University Press.10.1017/CBO9780511541698.003CrossRefGoogle Scholar
Eierud, C., Michael, A., Banks, D., & Andrews, E. (2023). Resting-state functional connectivity in lifelong musicians. Psychoradiology, 3, 18.10.1093/psyrad/kkad003CrossRefGoogle ScholarPubMed
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 79007905.10.1073/pnas.1602413113CrossRefGoogle ScholarPubMed
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P.T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 29072926.10.1002/hbm.20718CrossRefGoogle Scholar
ETS. (2007). The Official Guide to the New TOEFL IBT (3rd edition). McGraw Hill.Google Scholar
Fabbro, F. (1999). The Neurolinguistics of Bilingualism: An Introduction. Psychology Press.Google Scholar
Fabbro, F. (2001). The bilingual brain: Cerebral representation of languages. Brain and Language,79(2), 211222.10.1006/brln.2001.2481CrossRefGoogle ScholarPubMed
Felton, A., Vazquez, D., Ramos-Nunez, A. I., Greene, M. R., Macbeth, A., Hernandez, A. E., & Chiarello, C. (2017). Bilingualism influences structural indices of interhemispheric organization. Journal of Neurolinguistics, 2017(42), 111.10.1016/j.jneuroling.2016.10.004CrossRefGoogle Scholar
Friederici, A. D. (1998). The neurobiology of language comprehension. In Friederici, A. D. (Ed.), Language Comprehension: A Biological Perspective (pp. 263301). Springer.10.1007/978-3-642-97734-3_9CrossRefGoogle Scholar
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3/4), 455479.10.1080/02643290442000310CrossRefGoogle ScholarPubMed
Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., De Stefano, N., & Johansen-Berg, H. (2010). Age-related changes in grey and white matter structure throughout adulthood. Neuroimage, 51(3), 943951.10.1016/j.neuroimage.2010.03.004CrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201.CrossRefGoogle ScholarPubMed
Guzmán-Vélez, E., & Tranel, D. (2015). Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives. Neuropsychology, 29, 139150.10.1037/neu0000105CrossRefGoogle ScholarPubMed
Hernandez, A. (2009). Language switching in the bilingual brain: What’s next?Brain and Language, 109, 133140.10.1016/j.bandl.2008.12.005CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 6799.10.1016/j.cognition.2003.10.011CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews, 8, 393402.10.1038/nrn2113CrossRefGoogle ScholarPubMed
Hodgson, V. J., Ralph, M. A. L., & Jackson, R. L. (2021). Multiple dimensions underlying the functional organization of the language network. NeuroImage, 241, 118444.10.1016/j.neuroimage.2021.118444CrossRefGoogle ScholarPubMed
Humphreys, G. F., & Lambon Ralph, M. A. (2015). Fusion and fission of cognitive functions in the human parietal cortex. Cerebral Cortex, 25(10), 35473560.10.1093/cercor/bhu198CrossRefGoogle ScholarPubMed
Instituto Cervantes. (n.d.). Preparar la prueba DELE. Retrieved from https://examenes.cervantes.es/es/dele/preparar-pruebaGoogle Scholar
Jackson, R. L. (2021). The neural correlates of semantic control revisited. NeuroImage, 224, 117444.CrossRefGoogle Scholar
Jakobson, R. (1985/1956). Metalanguage as a linguistic problem. In Rudy, S. (Ed.), Selected Writings VII (pp. 113121). Mouton.Google Scholar
Jakobson, R. (1987/1957). Linguistics and poetics. In Pomorska, K. & Rudy, S. (Eds.), Language in Literature (pp. 6294). Belknap Press of Harvard University Press.Google Scholar
Jakobson, R. (1985/1967). Language and culture. In Rudy, S. (Ed.), Selected Writings VII (pp.101111. Mouton.Google Scholar
Kotz, S. A. (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain and Language, 109, 6874.CrossRefGoogle ScholarPubMed
Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392399.10.1016/j.tics.2010.06.005CrossRefGoogle ScholarPubMed
Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.Google Scholar
Lieberman, P. (2006). Towards an Evolutionary Biology of Language. Harvard University Press.Google Scholar
Liu, H., & Cao, F. (2016). L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain and Language, 159, 6073.10.1016/j.bandl.2016.05.013CrossRefGoogle Scholar
Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74(3), 347357.10.1016/j.bandc.2010.09.004CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31, 1680816813.10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 10011010.10.1016/j.neuron.2007.06.004CrossRefGoogle ScholarPubMed
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102(1–3), 5970.Google Scholar
Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603, 654660.10.1038/s41586-022-04492-9CrossRefGoogle ScholarPubMed
North, B. (2000). The Development of a Common Framework Scale of Language Proficiency. P. Lang.10.3726/978-1-4539-1059-7CrossRefGoogle Scholar
Ojemann, G. A. (1979). Individual variability in cortical localization of language. Brain and Language, 6, 239260.10.1016/0093-934X(78)90061-5CrossRefGoogle Scholar
Ojemann, G. A. (1983). Brain organization for language from the perspective of electrical stimulation mapping. Behavioral and Brain Sciences, 6(2), 189206.10.1017/S0140525X00015491CrossRefGoogle Scholar
Ojemann, G. A. (1987). Surgical therapy for medically intractable epilepsy. Journal of Neurosurgery, 66(4), 489499.10.3171/jns.1987.66.4.0489CrossRefGoogle ScholarPubMed
Ojemann, G. A. (1991). Cortical organization of language. The Journal of Neuroscience, 11(8), 22812287.10.1523/JNEUROSCI.11-08-02281.1991CrossRefGoogle ScholarPubMed
Ojemann, G. A. (1993). Functional mapping of cortical language areas in adults: Intraoperative approaches. Advances in Neurology, 63, 155163.Google ScholarPubMed
Ojemann, G. A. (2003). The neurobiology of language and verbal memory: Observations from awake neurosurgery. International Journal of Psychophysiology, 48(2), 141146.10.1016/S0167-8760(03)00051-5CrossRefGoogle ScholarPubMed
Ojemann, G. A., Corina, D. P., Corrigan, N., Schoenfield-McNeill, J., Poliakov, A., Zamora, L., Zanos, S. (2010). Neuronal correlates of functional magnetic resonance imaging in human temporal cortex. Brain, 33(I), 4659.10.1093/brain/awp227CrossRefGoogle Scholar
Ojemann, G. A., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 71(3), 316326.10.3171/jns.1989.71.3.0316CrossRefGoogle ScholarPubMed
Ojemann, G. A., & Whitaker, H. A. (1978). The bilingual brain. Archives of Neurology, 35(7), 409412.10.1001/archneur.1978.00500310011002CrossRefGoogle ScholarPubMed
Paradis, M. (2000). The neurolinguistics of bilingualism in the next decades. Brain and Language, 71, 178180.10.1006/brln.1999.2245CrossRefGoogle ScholarPubMed
Paradis, M. (2004). A Neurolinguistic Theory of Bilingualism. John Benjamins.10.1075/sibil.18CrossRefGoogle Scholar
Peirce, C. S. (1931–1958). Collected Papers of Charles Sanders Peirce, 1–8. Harvard University Press.Google Scholar
Peirce, C. S. (1957). Essays in the Philosophy of Science. Liberal Arts Press.Google Scholar
Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, E., et al. (1996). Brain processing of native and foreign languages. Neuroreport, 7(15), 24392444.10.1097/00001756-199611040-00007CrossRefGoogle ScholarPubMed
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., Magnani, G., March, A., & Abutalebi, J. (2017) The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Science of USA, 114(7), 16901695.10.1073/pnas.1610909114CrossRefGoogle ScholarPubMed
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., et al. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.10.1093/brain/121.10.1841CrossRefGoogle ScholarPubMed
Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., et al. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 1605616061.10.1073/pnas.1102991108CrossRefGoogle ScholarPubMed
Pliatsikas, C. (2019). Multilingualism and brain plasticity. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (pp. 230251). Wiley Publishers.10.1002/9781119387725.ch11CrossRefGoogle Scholar
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Bilingualism: Language and Cognition, 23(2), 459471.10.1017/S1366728919000130CrossRefGoogle Scholar
Pliatsikas, C. (2023). Bilingualism and brain structure: Insights from healthy ageing and progressive neurodenegerative disease. In Luk, G. et al. (Eds.), Understanding Language and Cognition through Bilingualism: In Honor of Ellen Bialystok (pp. 301317). John Benjamins.10.1075/sibil.64.14pliCrossRefGoogle Scholar
Pliatsikas, C., DeLuca, V., Moschopoulou, E. et al. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222, 17851795.10.1007/s00429-016-1307-9CrossRefGoogle ScholarPubMed
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. Proceedings of the National Academy of Sciences of the United States of America, 112, 13341337.10.1073/pnas.1414183112CrossRefGoogle ScholarPubMed
Poeppel, D. (1996). A critical review of PET studies of phonological processing. Brain and Language, 55(3), 317351.10.1006/brln.1996.0108CrossRefGoogle ScholarPubMed
Poeppel, D. (2008). The cartographic imperative: Confusing localization and explanation in human brain mapping. In Bredekamp, H., Bruhn, M., & Werner, G. (Eds.), Bildwelten des Wissens (Ikonographie des Gehirns) (pp. 121) Akademie Verlag.Google Scholar
Poeppel, D., & Embick, D. (2005). Defining the relation between linguistics and neuroscience. In Cutler, A. (Ed.), Twenty-First Century Psycholinguistics (pp. 103111). Four Cornerstones.Google Scholar
Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92, 112.10.1016/j.cognition.2003.11.001CrossRefGoogle ScholarPubMed
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335359.10.1046/j.1469-7580.2000.19730335.xCrossRefGoogle ScholarPubMed
Price, C. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 6288.10.1111/j.1749-6632.2010.05444.xCrossRefGoogle Scholar
Raichle, M. (2001). Functional neuroimaging: A historical and physiological perspective. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 326). MIT Press.Google Scholar
Raichle, M. (2006). The brain’s dark energy. Science, 314, 12491250.Google ScholarPubMed
Raichle, M. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180190.10.1016/j.tics.2010.01.008CrossRefGoogle ScholarPubMed
Raichle, M. (2011). The restless brain. Brain Connectivity, 1, 312.10.1089/brain.2011.0019CrossRefGoogle ScholarPubMed
Raichle, M. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447.10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Raichle, M. E., & Gusnard, D. A. (2005). Intrinsic brain activity sets the stage for expression of motivated behavior. Journal of Comparative Neurology, 493, 167176.10.1002/cne.20752CrossRefGoogle ScholarPubMed
Rammell, C. S., Cheng, H., Pisoni, D. B., & Newman, S. D. (2019). L2 speech perception in noise: An fMRI study of advanced Spanish learners. Brain Research, 1720, 146316.10.1016/j.brainres.2019.146316CrossRefGoogle ScholarPubMed
Rathee, R., Rallabandi, V. P., & Roy, P. K. (2016). Age-related differences in white matter integrity in healthy human brain: Evidence from structural MRI and diffusion tensor imaging. Magnetic Resonance Insights, 9, 920.10.4137/MRI.S39666CrossRefGoogle Scholar
Savan, D. (1980). Abduction and semiotics. In Rauch, I. & Carr, G. (Eds.), The Signifying Animal (pp. 252262). Indiana University Press.Google Scholar
Schirmer, A., Fox, P. M., & Grandjean, D. (2012). On the spatial organization of sound processing in the human temporal lobe: A meta-analysis. Neuroimage, 63(1), 137147.10.1016/j.neuroimage.2012.06.025CrossRefGoogle ScholarPubMed
Sebastian, R., Laird, A., & Kiran, S. (2011). Meta-analysis of the neural representation of first language and second language. Applied Psycholinguistics, 32(4), 799819.10.1017/S0142716411000075CrossRefGoogle Scholar
Sobolev, O., & Nesterova, T. (2014). Oral communication in the framework of cognitive fluency: Developing and testing spoken Russian within the TORFL system. Language Learning in Higher Education: Journal of the European Confederation of Language Centres in Higher Education (CercleS),3(2), 271282.Google Scholar
Stowe, L.A., Haverkort, M., & Zwarts, F. (2005). Rethinking the neurological basis of language. Lingua, 115, 9971042.10.1016/j.lingua.2004.01.013CrossRefGoogle Scholar
Sulpizio, S., Del Maschio, N., Fedeli, D., & Abutalebi, J. (2020). Bilingual language processing: A meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 108, 834853.10.1016/j.neubiorev.2019.12.014CrossRefGoogle ScholarPubMed
Tagarelli, K. M., Shattuck, K. F., Turkeltaub, P. E., & Ullman, M. T. (2019). Language learning in the adult brain: A neuroanatomical meta-analysis of lexical and grammatical learning. Neuroimage, 193, 178200.10.1016/j.neuroimage.2019.02.061CrossRefGoogle Scholar
Tang, Y., Nyengaard, J. R., Pakkenberg, B., & Gundersen, H. J. G. (1997). Age-induced white matter changes in the human brain: A stereological investigation. Neurobiology of Aging, 18(6), 609615.10.1016/S0197-4580(97)00155-3CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation. Neuroimage, 16, 765780.10.1006/nimg.2002.1131CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 113.10.1002/hbm.21186CrossRefGoogle ScholarPubMed
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36, 441454.10.1017/S0033291705006264CrossRefGoogle ScholarPubMed
Vigneau, M., Beaucousin, V., Hervé, P. Y., Duffau, H., Crivello, F., Houde, O., et al. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage, 30(4), 14141432.10.1016/j.neuroimage.2005.11.002CrossRefGoogle ScholarPubMed
Vigneau, M., Beaucousin, V., Hervé, P. Y., Jobard, G., Petit, L., Crivello, F., et al. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage, 54(1), 577593.10.1016/j.neuroimage.2010.07.036CrossRefGoogle ScholarPubMed
Westlye, L.T., Walhovd, K. B., Dale, A. M., Bjørnerud, A., Due-Tønnessen, A., Engvig, A., et al. (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20(9), 20552068.10.1093/cercor/bhp280CrossRefGoogle ScholarPubMed
Zatorre, R. J. (1989). On the representation of multiple languages in the brain: Old problems and new directions. Brain and Language, 36(1), 127147.10.1016/0093-934X(89)90056-4CrossRefGoogle ScholarPubMed
Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: Review, replication, and reanalysis. Cerebral Cortex, 6, 2130.10.1093/cercor/6.1.21CrossRefGoogle ScholarPubMed
Zou, L., Guosheng, D., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of left caudate in bimodal bilinguals. Cortex, 48(9), 11971206.10.1016/j.cortex.2011.05.022CrossRefGoogle ScholarPubMed

References

Amirian, E., Liu, Y., Scheurer, M. E., El-Zein, R., M. R. Gilbert, M. R., & Bondy, M. L. (2010). Genetic variants in inflammation pathway genes and asthma in glioma susceptibility. Neuro Oncol, 12(5), 444452.Google ScholarPubMed
Ardila, A., Bernal, B., & Rosselli, M. (2016). How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch Clin Neuropsychol, 31(1), 112122.10.1093/arclin/acv081CrossRefGoogle Scholar
Aungaroon, G., Zea Vera, A., Horn, P. S., Byars, A. W., Greiner, H. M., Tenney, J. R., Arthur, T. M., Crone, N. E., Holland, K. D., Mangano, F. T., & Arya, R. (2017). After-discharges and seizures during pediatric extra-operative electrical cortical stimulation functional brain mapping: Incidence, thresholds, and determinants. Clin Neurophysiol, 128(10), 20782086.10.1016/j.clinph.2017.06.259CrossRefGoogle ScholarPubMed
Bae, E. H., Schrader, L. M., Machii, K., Alonso-Alonso, M., Riviello, J. J., Pascual-Leone, A., & Rotenberg, A. (2007). Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: A review of the literature. Epilepsy Behav, 10(4), 521528.10.1016/j.yebeh.2007.03.004CrossRefGoogle ScholarPubMed
Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran), 3(2), 4849.Google ScholarPubMed
Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1(8437), 11061107.10.1016/S0140-6736(85)92413-4CrossRefGoogle ScholarPubMed
Bernal, B., Grossman, S., Gonzalez, R., & Altman, N. (2012). FMRI under sedation: What is the best choice in children? J Clin Med Res, 4(6), 363370.Google Scholar
Berro, D. H., Lemée, J. M., Leiber, L. M., Emery, E., Menei, P., & Ter Minassian, A. (2021). Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: An fMRI study. BMC Neurosci, 22(1), 74.10.1186/s12868-021-00671-yCrossRefGoogle Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. J Neurosci, 17(1), 353362.10.1523/JNEUROSCI.17-01-00353.1997CrossRefGoogle ScholarPubMed
Birg, L., Narayana, S., Rezaie, R., & Papanicolaou, A. (2013). Technical tips: MEG and EEG with sedation. Neurodiagn J, 53(3), 229240.10.1080/21646821.2013.11079909CrossRefGoogle ScholarPubMed
Bowyer, S. M., Zillgitt, A., Greenwald, M., & Lajiness-O’Neill, R. (2020). Language mapping with magnetoencephalography: An update on the current state of clinical research and practice with considerations for clinical practice guidelines. J Clin Neurophysiol, 37(6), 554563.10.1097/WNP.0000000000000489CrossRefGoogle ScholarPubMed
Braden, A. A., Weatherspoon, S. E., Boardman, T., Williard, T., Adkins, A., Gibbs, S. K., Wheless, J. W., & Narayana, S. (2022). Image-guided TMS is safe in a predominately pediatric clinical population. Clin Neurophysiol, 137, 193206.10.1016/j.clinph.2022.01.133CrossRefGoogle Scholar
Cascino, G. (2002). Functional MRI for language localization. Epilepsy Curr, 2(6), 178179.10.1111/j.1535-7597.2002.00065.xCrossRefGoogle ScholarPubMed
Cattaneo, L. (2013). Language. Handb Clin Neurol, 116, 681691.Google ScholarPubMed
Chang, E. F., Clark, A., Smith, J. S., Polley, M. Y., Chang, S. M., Barbaro, N. M., Parsa, A. T., McDermott, M. W., & Berger, M. S. (2011). Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: Improvement of long-term survival. Clinical article. J Neurosurg, 114(3), 566573.10.3171/2010.6.JNS091246CrossRefGoogle ScholarPubMed
Chou, N., Serafini, S., & Muh, C. R. (2018). Cortical language areas and plasticity in pediatric patients with epilepsy: A review. Pediatr Neurol, 78, 312.10.1016/j.pediatrneurol.2017.10.001CrossRefGoogle ScholarPubMed
Cohen, L. G., & Hallett, M. (1988). Noninvasive mapping of human motor cortex. Neurology, 38(6), 904909.10.1212/WNL.38.6.904CrossRefGoogle ScholarPubMed
Corina, D. P., Loudermilk, B. C., Detwiler, L. R., Martin, F., Brinkley, J. F., & Ojemann, G. (2010). Analysis of naming errors during cortical stimulation mapping: Implications for models of language representation. Brain Lang, 115(2), 101112.10.1016/j.bandl.2010.04.001CrossRefGoogle ScholarPubMed
Cuello Oderiz, C., von Ellenrieder, N., Dubeau, F., Eisenberg, A., Gotman, J., Hall, J., Hincapié, A. S., Hoffmann, D., Job, A. S., Khoo, H. M., Minotti, L., Olivier, A., Kahane, P., & Frauscher, B. (2019). Association of cortical stimulation-induced seizure with surgical outcome in patients with focal drug-resistant epilepsy. JAMA Neurol, 76(9), 10701078.10.1001/jamaneurol.2019.1464CrossRefGoogle ScholarPubMed
Deng, Z. D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul, 6(1), 113.10.1016/j.brs.2012.02.005CrossRefGoogle ScholarPubMed
Dikker, S., Assaneo, M. F., Gwilliams, L., Wang, L., & Kösem, A. (2020). Magnetoencephalography and language. Neuroimaging Clin N Am, 30(2), 229238.10.1016/j.nic.2020.01.004CrossRefGoogle ScholarPubMed
Duchowny, M., Jayakar, P., Harvey, A. S., Resnick, T., Alvarez, L., Dean, P., & Levin, B. (1996). Language cortex representation: Effects of developmental versus acquired pathology. Ann Neurol, 40(1), 3138.10.1002/ana.410400108CrossRefGoogle ScholarPubMed
Epstein, C. M., Woodard, J. L., Stringer, A. Y., Bakay, R. A., Henry, T. R., Pennell, P. B., & Litt, B. (2000). Repetitive transcranial magnetic stimulation does not replicate the Wada test. Neurology, 55(7), 10251027.10.1212/WNL.55.7.1025CrossRefGoogle Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Hum Brain Mapp, 29(5), 581593.10.1002/hbm.20422CrossRefGoogle ScholarPubMed
Frye, R. E., Rotenberg, A., Ousley, M., & Pascual-Leone, A. (2008). Transcranial magnetic stimulation in child neurology: Current and future directions. J Child Neurol, 23(1), 7996.10.1177/0883073807307972CrossRefGoogle ScholarPubMed
Gaillard, W. D., Berl, M. M., Moore, E. N., Ritzl, E. K., Rosenberger, L. R., Weinstein, S. L., Conry, J. A., Pearl, P. L., Ritter, F. F., Sato, S., Vezina, L. G., Vaidya, C. J., Wiggs, E., Fratalli, C., Risse, G., Ratner, N. B., Gioia, G., & Theodore, W. H. (2007). Atypical language in lesional and nonlesional complex partial epilepsy. Neurology, 69(18), 17611771.10.1212/01.wnl.0000289650.48830.1aCrossRefGoogle ScholarPubMed
Gibb, W. R., Kong, N. W., & Tate, M. C. (2020). Direct evidence of plasticity within human primary motor and somatosensory cortices of patients with glioblastoma. Neural Plast, 2020, 8893708.10.1155/2020/8893708CrossRefGoogle ScholarPubMed
Glover, G. H. (2011). Overview of functional magnetic resonance imaging. Neurosurg Clin N Am, 22(2), 133139, vii.10.1016/j.nec.2010.11.001CrossRefGoogle ScholarPubMed
Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L. G., Mall, V., Kaelin-Lang, A., Mima, T., Rossi, S., Thickbroom, G. W., Rossini, P. M., Ziemann, U., Valls-Solé, J., & Siebner, H. R. (2012). A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol, 123(5), 858882.10.1016/j.clinph.2012.01.010CrossRefGoogle ScholarPubMed
Guzzetta, A., Pecini, C., Biagi, L., Tosetti, M., Brizzolara, D., Chilosi, A., Cipriani, P., Petacchi, E., & Cioni, G. (2008). Language organisation in left perinatal stroke. Neuropediatrics, 39(3): 157163.10.1055/s-0028-1085465CrossRefGoogle ScholarPubMed
Hadley, D., Anderson, B. S., Borckardt, J. J., Arana, A., Li, X., Nahas, Z., & George, M. S. (2011). Safety, tolerability, and effectiveness of high doses of adjunctive daily left prefrontal repetitive transcranial magnetic stimulation for treatment-resistant depression in a clinical setting. J ECT, 27(1), 1825.10.1097/YCT.0b013e3181ce1a8cCrossRefGoogle ScholarPubMed
Hamberger, M. J., & Cole, J. (2011). Language organization and reorganization in epilepsy. Neuropsychol Rev, 21(3), 240251.10.1007/s11065-011-9180-zCrossRefGoogle ScholarPubMed
Han, Y., Tong, X., Wang, X., Teng, F., Deng, Q., Zhou, J., Guan, Y., Yan, Z., Chen, L., Luan, G., & Wang, M. (2021). A concordance study determining language dominance between navigated transcranial magnetic stimulation and the Wada test in patients with drug-resistant epilepsy. Epilepsy Behav, 117, 107711.10.1016/j.yebeh.2020.107711CrossRefGoogle ScholarPubMed
Hauck, T., Probst, M., Zimmer, C., Ringel, F., Meyer, B., Wohlschlaeger, A., & Krieg, S. M. (2019). Language function shows comparable cortical patterns by functional MRI and repetitive nTMS in healthy volunteers. Brain Imaging Behav, 13(4), 10711092.10.1007/s11682-018-9921-1CrossRefGoogle ScholarPubMed
Hernandez-Pavon, J. C., Mäkelä, N., Lehtinen, H., Lioumis, P., & Mäkelä, J. P. (2014). Effects of navigated TMS on object and action naming. Front Hum Neurosci, 8, 660.10.3389/fnhum.2014.00660CrossRefGoogle ScholarPubMed
Hett, D., Rogers, J., Humpston, C., & Marwaha, S. (2021). Repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression in adolescence: A systematic review. J Affect Disord, 278, 460469.10.1016/j.jad.2020.09.058CrossRefGoogle ScholarPubMed
Hickok, G. (2009). The functional neuroanatomy of language. Phys Life Rev, 6(3), 121143.10.1016/j.plrev.2009.06.001CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393402.10.1038/nrn2113CrossRefGoogle ScholarPubMed
Holmes, N. P., & Meteyard, L. (2018). Subjective discomfort of TMS predicts reaction times differences in published studies. Front Psychol, 9, 1989.10.3389/fpsyg.2018.01989CrossRefGoogle ScholarPubMed
Ille, S., Engel, L., Albers, L., Schroeder, A., Kelm, A., Meyer, B., & Krieg, S. M. (2019). Functional reorganization of cortical language function in glioma patients: A preliminary study. Front Oncol, 9, 446.10.3389/fonc.2019.00446CrossRefGoogle ScholarPubMed
Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., Negwer, C., Droese, D., Boeckh-Behrens, T., Meyer, B., Ringel, F., & Krieg, S. M. (2015). Impairment of preoperative language mapping by lesion location: A functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg, 123(2), 314324.10.3171/2014.10.JNS141582CrossRefGoogle ScholarPubMed
Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., Negwer, C., Droese, D., Zimmer, C., Meyer, B., Ringel, F., & Krieg, S. M. (2015). Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg, 123(1), 212225.10.3171/2014.9.JNS14929CrossRefGoogle ScholarPubMed
Jacola, L. M., Schapiro, M. B., Schmithorst, V. J., Byars, A. W., Strawsburg, R. H., Szaflarski, J. P., Plante, E., & Holland, S. K. (2006). Functional magnetic resonance imaging reveals atypical language organization in children following perinatal left middle cerebral artery stroke. Neuropediatrics, 37(1), 4652.10.1055/s-2006-923934CrossRefGoogle ScholarPubMed
Jeltema, H. R., Ohlerth, A. K., de Wit, A., Wagemakers, M., Rofes, A., Bastiaanse, R., & Drost, G. (2021). Comparing navigated transcranial magnetic stimulation mapping and “gold standard” direct cortical stimulation mapping in neurosurgery: A systematic review. Neurosurg Rev, 44(4), 19031920.10.1007/s10143-020-01397-xCrossRefGoogle ScholarPubMed
Kilteni, K., Andersson, B. J., Houborg, C., & Ehrsson, H. H. (2018). Motor imagery involves predicting the sensory consequences of the imagined movement. Nat Commun, 9(1), 1617.10.1038/s41467-018-03989-0CrossRefGoogle ScholarPubMed
Kim, J. A., & Davis, K. D. (2021). Magnetoencephalography: Physics, techniques, and applications in the basic and clinical neurosciences. J Neurophysiol, 125(3), 938956.10.1152/jn.00530.2020CrossRefGoogle Scholar
Kline, A., Pittman, D., Ronsky, J., & Goodyear, B. (2020). Differentiating the brain’s involvement in executed and imagined stepping using fMRI. Behav Brain Res, 394, 112829.10.1016/j.bbr.2020.112829CrossRefGoogle ScholarPubMed
Krieg, S. M., Lioumis, P., Mäkelä, J. P., Wilenius, J., Karhu, J., Hannula, H., Savolainen, P., Lucas, C. W., Seidel, K., Laakso, A., Islam, M., Vaalto, S., Lehtinen, H., Vitikainen, A. M., Tarapore, P. E., & Picht, T. (2017). Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers: Workshop report. Acta Neurochir (Wien), 159(7), 11871195.10.1007/s00701-017-3187-zCrossRefGoogle ScholarPubMed
Krieg, S. M., Sollmann, N., Hauck, T., Ille, S., Foerschler, A., Meyer, B., & F. Ringel, F. (2013). Functional language shift to the right hemisphere in patients with language-eloquent brain tumors. PLoS ONE, 8(9), e75403.10.1371/journal.pone.0075403CrossRefGoogle Scholar
Krieg, S. M., Tarapore, P. E., Picht, T., Tanigawa, N., Houde, J., Sollmann, N., Meyer, B., Vajkoczy, P., Berger, M. S., Ringel, F., & Nagarajan, S. (2014). Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage, 100, 219236.10.1016/j.neuroimage.2014.06.016CrossRefGoogle ScholarPubMed
Krings, T., Chiappa, K. H., Foltys, H., Reinges, M. H., Cosgrove, G. R., & Thron, A. (2001). Introducing navigated transcranial magnetic stimulation as a refined brain mapping methodology. Neurosurg Rev, 24(4), 171179.10.1007/s101430100151CrossRefGoogle ScholarPubMed
Kwiecien, R., Kopp-Schneider, A., & Blettner, M. (2011). Concordance analysis: Part 16 of a series on evaluation of scientific publications. Dtsch Arztebl Int, 108(30), 515521.Google ScholarPubMed
Lancaster, J. L., Narayana, S., Wenzel, D., Luckemeyer, J., Roby, J., & P. Fox, P. (2004). Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Hum Brain Mapp, 22(4), 329340.10.1002/hbm.20041CrossRefGoogle ScholarPubMed
Laux, P., Tralau, T., Tentschert, J., Blume, A., Dahouk, S. A., Bäumler, W., Bernstein, E., Bocca, B., Alimonti, A., Colebrook, H., de Cuyper, C., Dähne, L., Hauri, U., Howard, P. C., Janssen, P., Katz, L., Klitzman, B., Kluger, N., Krutak, L., Platzek, T., Scott-Lang, V., Serup, J., Teubner, W., Schreiver, I., Wilkniß, E., & Luch, A. (2016). A medical-toxicological view of tattooing. Lancet, 387(10016), 395402.10.1016/S0140-6736(15)60215-XCrossRefGoogle ScholarPubMed
Lehtinen, H., Mäkelä, J. P., Mäkelä, T., Lioumis, P., Metsähonkala, L., Hokkanen, L., Wilenius, J., & Gaily, E. (2018). Language mapping with navigated transcranial magnetic stimulation in pediatric and adult patients undergoing epilepsy surgery: Comparison with extraoperative direct cortical stimulation. Epilepsia Open, 3(2), 224235.10.1002/epi4.12110CrossRefGoogle ScholarPubMed
Lidzba, K., Küpper, H., Kluger, G., & Staudt, M. (2017). The time window for successful right-hemispheric language reorganization in children. Eur J Paediatr Neurol, 21(5), 715721.10.1016/j.ejpn.2017.06.001CrossRefGoogle ScholarPubMed
Lin, Y. Y., Chen, R. S., & Huang, Y. Z. (2022). Impact of operator experience on transcranial magnetic stimulation. Clin Neurophysiol Pract, 7, 4248.10.1016/j.cnp.2022.01.002CrossRefGoogle ScholarPubMed
Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., & Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. J Cogn Neurosci, 11(5), 491501.10.1162/089892999563553CrossRefGoogle ScholarPubMed
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 10011010.10.1016/j.neuron.2007.06.004CrossRefGoogle ScholarPubMed
Madhavan, K. M., McQueeny, T., Howe, S. R., Shear, P., & Szaflarski, J. (2014). Superior longitudinal fasciculus and language functioning in healthy aging. Brain Res, 1562, 1122.10.1016/j.brainres.2014.03.012CrossRefGoogle ScholarPubMed
Maizey, L., Allen, C. P., Dervinis, M., Verbruggen, F., Varnava, A., Kozlov, M., Adams, R. C., Stokes, M., Klemen, J., Bungert, A., Hounsell, C. A., & Chambers, C. D. (2013). Comparative incidence rates of mild adverse effects to transcranial magnetic stimulation. Clin Neurophysiol, 124(3), 536544.10.1016/j.clinph.2012.07.024CrossRefGoogle ScholarPubMed
McClintock, S. M., Reti, I. M., Carpenter, L. L., McDonald, W. M., Dubin, M., Taylor, S. F., Cook, I. A., O’Reardon, J., Husain, M. M., Wall, C., Krystal, A. D., Sampson, S. M., Morales, O., Nelson, B. G., Latoussakis, V., George, M. S., Lisanby, S. H., N. N. o. D. C. r. T. Group and A. P. A. C. o. R. T. F. o. N. B. a. Treatments (2018). Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J Clin Psychiatry, 79(1).10.4088/JCP.16cs10905CrossRefGoogle ScholarPubMed
Meteyard, L., & Holmes, N. P. (2018). TMS SMART: Scalp mapping of annoyance ratings and twitches caused by transcranial magnetic stimulation. J Neurosci Methods, 299, 3444.10.1016/j.jneumeth.2018.02.008CrossRefGoogle ScholarPubMed
Monaghan, T. F., Rahman, S. N., Agudelo, C. W., Wein, A. J., Lazar, J. M., K. Everaert, K., & Dmochowski, R. R. (2021). Foundational statistical principles in medical research: Sensitivity, specificity, positive predictive value, and negative predictive value. Medicina (Kaunas), 57(5).Google ScholarPubMed
Mueller-Sarnowski, F., Sollmann, N., Schröder, A., Houri, L., Ille, S., Grimmer, T., Krieg, S. M., & Diehl-Schmid, J. (2022). Neuronavigated repetitive transcranial magnetic stimulation as novel mapping technique provides insights into language function in primary progressive aphasia. Brain Imaging Behav, 16(3), 12081216.10.1007/s11682-021-00605-6CrossRefGoogle ScholarPubMed
Muir, M., Patel, R., Traylor, J., de Almeida Bastos, D. C., Prinsloo, S., Liu, H. L., Noll, K., Wefel, J., Tummala, S., Kumar, V., & Prabhu, S. (2022). Validation of non-invasive language mapping modalities for eloquent tumor resection: A pilot study. Front Neurosci, 16, 833073.10.3389/fnins.2022.833073CrossRefGoogle ScholarPubMed
Najib, U., Bashir, S., Edwards, D., Rotenberg, A., & Pascual-Leone, A. (2011). Transcranial brain stimulation: Clinical applications and future directions. Neurosurg Clin N Am, 22(2), 233251, ix.10.1016/j.nec.2011.01.002CrossRefGoogle ScholarPubMed
Narayana, S., Gibbs, S. K., Fulton, S. P., McGregor, A. L., Mudigoudar, B., Weatherspoon, S. E., Boop, F. A., & Wheless, J. W. (2021). Clinical utility of transcranial magnetic stimulation (TMS) in the presurgical evaluation of motor, speech, and language functions in young children with refractory epilepsy or brain tumor: Preliminary evidence. Front Neurol, 12, 650830.10.3389/fneur.2021.650830CrossRefGoogle ScholarPubMed
Narayana, S., Papanicolaou, A. C., McGregor, A., Boop, F. A., & Wheless, J. W. (2015). Clinical applications of transcranial magnetic stimulation in pediatric neurology. J Child Neurol, 30(9), 11111124.10.1177/0883073814553274CrossRefGoogle ScholarPubMed
Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res, 25(3), 668677.10.1016/j.cogbrainres.2005.08.014CrossRefGoogle ScholarPubMed
Packheiser, J., Schmitz, J., Arning, L., Beste, C., Güntürkün, O., & S. Ocklenburg, S. (2020). A large-scale estimate on the relationship between language and motor lateralization. Sci Rep, 10(1), 13027.10.1038/s41598-020-70057-3CrossRefGoogle ScholarPubMed
Pak, R. W., Hadjiabadi, D. H., Senarathna, J., Agarwal, S., Thakor, N. V., Pillai, J. J., & Pathak, A. P. (2017). Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors. J Cereb Blood Flow Metab, 37(11), 34753487.10.1177/0271678X17707398CrossRefGoogle ScholarPubMed
Papadelis, C., & Chen, Y. H. (2020). Pediatric magnetoencephalography in clinical practice and research. Neuroimaging Clin N Am, 30(2), 239248.10.1016/j.nic.2020.02.002CrossRefGoogle ScholarPubMed
Papanicolaou, A. C., Rezaie, R., Narayana, S., Choudhri, A. F., Wheless, J. W., Castillo, E. M., Baumgartner, J. E., & Boop, F. A. (2014). Is it time to replace the Wada test and put awake craniotomy to sleep? Epilepsia, 55(5), 629632.CrossRefGoogle ScholarPubMed
Papanicolaou, A. C., Simos, P. G., Castillo, E. M., Breier, J. I., Sarkari, S., Pataraia, E., Billingsley, R. L., Buchanan, S., Wheless, J., Maggio, V., & Maggio, W. W. (2004). Magnetocephalography: A noninvasive alternative to the Wada procedure. J Neurosurg, 100(5), 867876.10.3171/jns.2004.100.5.0867CrossRefGoogle Scholar
Partovi, S., Konrad, F., Karimi, S., Rengier, F., Lyo, J. K., Zipp, L., Nennig, E., & Stippich, C. (2012). Effects of covert and overt paradigms in clinical language fMRI. Acad Radiol, 19(5), 518525.10.1016/j.acra.2011.12.017CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Gates, J. R., & Dhuna, A. (1991). Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology, 41(5), 697702.10.1212/WNL.41.5.697CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience: Virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol, 10(2), 232237.10.1016/S0959-4388(00)00081-7CrossRefGoogle ScholarPubMed
Pasquini, L., Di Napoli, A., Rossi-Espagnet, M. C., Visconti, E., Napolitano, A., A. Romano, A., Bozzao, A., Peck, K. K., & Holodny, A. I. (2022). Understanding Language reorganization with neuroimaging: How language adapts to different focal lesions and insights into clinical applications. Front Hum Neurosci, 16, 747215.10.3389/fnhum.2022.747215CrossRefGoogle ScholarPubMed
Pereira, L. S., Müller, V. T., da Mota Gomes, M., A. Rotenberg, A., & Fregni, F. (2016). Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review. Epilepsy Behav, 57(Pt A), 167176.10.1016/j.yebeh.2016.01.015CrossRefGoogle ScholarPubMed
Picht, T., Krieg, S. M., Sollmann, N., Rösler, J., Niraula, B., Neuvonen, T., Savolainen, P., Lioumis, P., Mäkelä, J. P., Deletis, V., Meyer, B., Vajkoczy, P., & Ringel, F. (2013). A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery, 72(5), 808819.10.1227/NEU.0b013e3182889e01CrossRefGoogle ScholarPubMed
Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92(1–2), 112.10.1016/j.cognition.2003.11.001CrossRefGoogle ScholarPubMed
Proix, T., Delgado Saa, J., Christen, A., Martin, S., Pasley, B. N., Knight, R. T., Tian, X., Poeppel, D., Doyle, W. K., Devinsky, O., Arnal, L. H., Mégevand, P., & Giraud, A. L. (2022). Imagined speech can be decoded from low- and cross-frequency intracranial EEG features. Nat Commun, 13(1), 48.10.1038/s41467-021-27725-3CrossRefGoogle ScholarPubMed
Raffa, G., Quattropani, M. C., Scibilia, A., Conti, A., Angileri, F. F., Esposito, F., Sindorio, C., Cardali, S. M., Germanò, A., & Tomasello, F. (2018). Surgery of language-eloquent tumors in patients not eligible for awake surgery: The impact of a protocol based on navigated transcranial magnetic stimulation on presurgical planning and language outcome, with evidence of tumor-induced intra-hemispheric plasticity. Clin Neurol Neurosurg, 168, 127139.10.1016/j.clineuro.2018.03.009CrossRefGoogle Scholar
Rezaie, R., Schiller, K. K., Embury, L., Boop, F. A., Wheless, J. W., & Narayana, S. (2020). The clinical utility of transcranial magnetic stimulation in determining hemispheric dominance for language: A magnetoencephalography comparison Study. J Clin Neurophysiol, 37(2), 90103.10.1097/WNP.0000000000000499CrossRefGoogle Scholar
Rösler, J., Niraula, B., Strack, V., Zdunczyk, A., Schilt, S., Savolainen, P., Lioumis, P., Mäkelä, J., Vajkoczy, P., Frey, D., & Picht, T. (2014). Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: Evidence of tumor-induced plasticity. Clin Neurophysiol, 125(3), 526536.10.1016/j.clinph.2013.08.015CrossRefGoogle ScholarPubMed
Rossi, S., Antal, A., Bestmann, S., Bikson, M., Brewer, C., Brockmöller, J., Carpenter, L. L., Cincotta, M., Chen, R., Daskalakis, J. D., Di Lazzaro, V., Fox, M. D., George, M. S., Gilbert, D., Kimiskidis, V. K., Koch, G., Ilmoniemi, R. J., Lefaucheur, J. P., Leocani, L., Lisanby, S. H., Miniussi, C., Padberg, F., Pascual-Leone, A., Paulus, W., Peterchev, A. V., Quartarone, A., Rotenberg, A., Rothwell, J., Rossini, P. M., Santarnecchi, E., Shafi, M. M., Siebner, H. R., Ugawa, Y., Wassermann, E. M., Zangen, A., Ziemann, U. Hallett, M., & F. o. T. S. The basis of this article began with a Consensus Statement from the IFCN Workshop on “Present, Ethical Guidelines”, Siena, October 17–20, 2018, updating through April 2020 (2021). Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol, 132(1), 269306.10.1016/j.clinph.2020.10.003CrossRefGoogle ScholarPubMed
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & S. o. T. C. Group (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol, 120(12), 20082039.10.1016/j.clinph.2009.08.016CrossRefGoogle ScholarPubMed
Rothwell, J. C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., & Paulus, W. (1999). Magnetic stimulation: Motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 52, 97103.Google ScholarPubMed
Ruohonen, J., & Karhu, J. (2010). Navigated transcranial magnetic stimulation. Neurophysiol Clin, 40(1), 717.10.1016/j.neucli.2010.01.006CrossRefGoogle ScholarPubMed
Sanai, N., Mirzadeh, Z., & Berger, M. S. (2008). Functional outcome after language mapping for glioma resection. N Engl J Med, 358(1), 1827.10.1056/NEJMoa067819CrossRefGoogle ScholarPubMed
Schiller, K., Choudhri, A. F., Jones, T., Holder, C., Wheless, J. W., & Narayana, S. (2020). Concordance between transcranial magnetic stimulation and functional magnetic resonance imaging (MRI) derived localization of language in a clinical cohort. J Child Neurol, 35(6), 363379.10.1177/0883073820901415CrossRefGoogle Scholar
Schrader, L. M., Stern, J. M., Koski, L., Nuwer, M. R., & Engel, J. (2004). Seizure incidence during single- and paired-pulse transcranial magnetic stimulation (TMS) in individuals with epilepsy. Clin Neurophysiol, 115(12), 27282737.10.1016/j.clinph.2004.06.018CrossRefGoogle ScholarPubMed
Singh, S. P. (2014). Magnetoencephalography: Basic principles. Ann Indian Acad Neurol, 17(Suppl 1), S107112.10.4103/0972-2327.128676CrossRefGoogle ScholarPubMed
Sollmann, N., Fuss-Ruppenthal, S., Zimmer, C., Meyer, B., & Krieg, S. M. (2018). Investigating stimulation protocols for language mapping by repetitive navigated transcranial magnetic stimulation. Front Behav Neurosci, 12, 197.10.3389/fnbeh.2018.00197CrossRefGoogle ScholarPubMed
Sollmann, N., Hauck, T., Hapfelmeier, A., Meyer, B., Ringel, F., & Krieg, S. M. (2013). Intra- and interobserver variability of language mapping by navigated transcranial magnetic brain stimulation. BMC Neurosci, 14, 150.10.1186/1471-2202-14-150CrossRefGoogle ScholarPubMed
Sollmann, N., Ille, S., Boeckh-Behrens, T., Ringel, F., Meyer, B., & Krieg, S. M. (2016). Mapping of cortical language function by functional magnetic resonance imaging and repetitive navigated transcranial magnetic stimulation in 40 healthy subjects. Acta Neurochir (Wien), 158(7), 13031316.10.1007/s00701-016-2819-zCrossRefGoogle ScholarPubMed
Sollmann, N., Ille, S., Negwer, C., Boeckh-Behrens, T., Ringel, F., Meyer, B., & Krieg, S. M. (2017). Cortical time course of object naming investigated by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav, 11(4), 11921206.10.1007/s11682-016-9574-xCrossRefGoogle ScholarPubMed
Sondergaard, R. E., Martino, D., Kiss, Z. H. T., & Condliffe, E. G. (2021). TMS motor mapping methodology and reliability: A structured review. Front Neurosci, 15, 709368.10.3389/fnins.2021.709368CrossRefGoogle ScholarPubMed
Sparing, R., Buelte, D., Meister, I. G., Paus, T., & Fink, G. R. (2008). Transcranial magnetic stimulation and the challenge of coil placement: A comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp, 29(1), 8296.10.1002/hbm.20360CrossRefGoogle ScholarPubMed
Starbuck, V. N., Kay, G. G., Platenberg, R. C., Lin, C. S., & Zielinski, B. A. (2000). Functional magnetic resonance imaging reflects changes in brain functioning with sedation. Hum Psychopharmacol, 15(8), 613618.10.1002/hup.221CrossRefGoogle ScholarPubMed
Szaflarski, J. P., Binder, J. R., Possing, E. T., McKiernan, K. A., Ward, B. D., & Hammeke, T. A. (2002). Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology, 59(2), 238244.10.1212/WNL.59.2.238CrossRefGoogle ScholarPubMed
Szaflarski, J. P., Gloss, D., Binder, J. R., Gaillard, W. D., Golby, A. J., Holland, S. K., Ojemann, J., Spencer, D. C., Swanson, S. J., French, J. A., & Theodore, W. H. (2017). Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology, 88(4), 395402.10.1212/WNL.0000000000003532CrossRefGoogle Scholar
Tarapore, P. E., Findlay, A. M., Honma, S. M., Mizuiri, D., Houde, J. F., Berger, M. S., & Nagarajan, S. S. (2013). Language mapping with navigated repetitive TMS: Proof of technique and validation. Neuroimage, 82, 260272.10.1016/j.neuroimage.2013.05.018CrossRefGoogle ScholarPubMed
Tarapore, P. E., Picht, T., Bulubas, L., Shin, Y., Kulchytska, N., Meyer, B., Berger, M. S., Nagarajan, S. S., & Krieg, S. M. (2016). Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol, 127(3), 18951900.10.1016/j.clinph.2015.11.042CrossRefGoogle ScholarPubMed
Tarapore, P. E., Tate, M. C., Findlay, A. M., Honma, S. M., Mizuiri, D., Berger, M. S., & Nagarajan, S. S. (2012). Preoperative multimodal motor mapping: A comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg, 117(2), 354362.10.3171/2012.5.JNS112124CrossRefGoogle ScholarPubMed
Thickbroom, G. W., Sammut, R., & Mastaglia, F. L. (1998). Magnetic stimulation mapping of motor cortex: Factors contributing to map area. Electroencephalogr Clin Neurophysiol, 109(2), 7984.10.1016/S0924-980X(98)00006-XCrossRefGoogle ScholarPubMed
Tieleman, A., Deblaere, K., Van Roost, D., Van Damme, O., & Achten, E. (2009). Preoperative fMRI in tumour surgery. Eur Radiol, 19(10), 25232534.10.1007/s00330-009-1429-zCrossRefGoogle ScholarPubMed
Ueno, S., & Sekino, M. (2021). Figure-eight coils for magnetic stimulation: From focal stimulation to deep stimulation. Front Hum Neurosci, 15, 805971.10.3389/fnhum.2021.805971CrossRefGoogle ScholarPubMed
Wagner, T., Rushmore, J., Eden, U., & Valero-Cabre, A. (2009). Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex, 45(9), 10251034.10.1016/j.cortex.2008.10.002CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×