Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-bvshn Total loading time: 0 Render date: 2025-12-12T16:12:00.004Z Has data issue: false hasContentIssue false

17 - Music and Language in the Brain

Balancing Domain-Specific and Domain-General Mechanisms

from Part V - Brain, Language, and Music

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

Music & spoken language share many features by combining smaller units (e.g., words, notes) into larger structures (e.g., sentences, musical phrases). This hierarchical organization of sound is culturally contingent & communicates meaning to listeners. Comparisons of music & language from a cognitive neuroscience perspective provide several insights into commonalities & differences between these systems, how they are represented in the brain. The cognitive neuroscience research of music & language, emphasizes the pitfalls & promises identified, including (1) the apparent acoustic & structural similarities between these systems, (2) how both systems convey meaning to listeners, (3) how these systems are learned over the course of development, & (4) the ways in which experience in one domain influences processing in the other domain. We conclude that searching for similarities in how these complex systems are structured (e.g., comparing musical syntax to linguistic syntax) represents a pitfall that researchers should approach with caution. A promising approach in this area of research is to examine how general cognitive mechanisms underlie the learning & maintenance of both systems

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adger, D. (2015). Syntax: Syntax. Wiley Interdisciplinary Reviews: Cognitive Science, 6(2), 131147. https://doi.org/10.1002/wcs.1332Google ScholarPubMed
Albouy, P., Benjamin, L., Morillon, B., & Zatorre, R. J. (2020). Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science, 367(6481), 10431047. https://doi.org/10.1126/science.aaz3468CrossRefGoogle ScholarPubMed
Alexander, E., Van Hedger, S. C., & Batterink, L. J. (2023). Learning words without trying: Daily second language podcasts support word-form learning in adults. Psychonomic Bulletin & Review, 30(2), 751762. https://doi.org/10.3758/s13423-022-02190-1CrossRefGoogle ScholarPubMed
Andrews, E. (2014). Neuroscience and Multilingualism. Cambridge University Press.10.1017/CBO9781139567770CrossRefGoogle Scholar
Andrews, E. (2019). Cognitive neuroscience and multilingualism. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 1947). Wiley. https://doi.org/10.1002/9781119387725.ch2CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Sciences, 11(1), 67. https://doi.org/10.3390/brainsci11010067CrossRefGoogle Scholar
Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 83(2), 111130. https://doi.org/10.1016/S0022-0965(02)00124-8CrossRefGoogle ScholarPubMed
Asano, R., & Boeckx, C. (2015). Syntax in language and music: What is the right level of comparison? Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00942CrossRefGoogle Scholar
Bachem, A. (1955). Absolute pitch. The Journal of the Acoustical Society of America, 27(6), 11801185. https://doi.org/10.1121/1.1908155CrossRefGoogle Scholar
Benitez, V. L., & Saffran, J. R. (2021). Two for the price of one: Concurrent learning of words and phonotactic regularities from continuous speech. PLoS ONE, 16(6), e0253039. https://doi.org/10.1371/journal.pone.0253039CrossRefGoogle Scholar
Besson, M., Chobert, J., & Marie, C. (2011). Transfer of training between music and speech: Common processing, attention, and memory. Frontiers in Psychology, 2, 94. https://doi.org/10.3389/fpsyg.2011.00094CrossRefGoogle ScholarPubMed
Besson, M., & Macar, F. (1987). An event-related potential analysis of incongruity in music and other non-linguistic contexts. Psychophysiology, 24(1), 1425. https://doi.org/10.1111/j.1469-8986.1987.tb01853.xCrossRefGoogle ScholarPubMed
Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565. https://doi.org/10.1037/a0012735Google ScholarPubMed
Bidelman, G. M., Hutka, S., & Moreno, S. (2013). Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. PLoS ONE, 8(4), e60676. https://doi.org/10.1371/journal.pone.0060676CrossRefGoogle ScholarPubMed
Bidelman, G. M., & Krishnan, A. (2010). Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Research, 1355, 112125. https://doi.org/10.1016/j.brainres.2010.07.100CrossRefGoogle ScholarPubMed
Bidelman, G. M., & Yoo, J. (2020). Musicians show improved speech segregation in competitive, multi-talker cocktail party scenarios. Frontiers in Psychology, 11. www.frontiersin.org/articles/10.3389/fpsyg.2020.0192710.3389/fpsyg.2020.01927CrossRefGoogle ScholarPubMed
Bigand, E., Delbé, C., Poulin-Charronnat, B., Leman, M., & Tillmann, B. (2014). Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory. Frontiers in Systems Neuroscience, 8. https://doi.org/10.3389/fnsys.2014.00094CrossRefGoogle ScholarPubMed
Bolinger, D. (1949). The sign is not arbitrary. Boletín del Instituto Caro y Cuervo (= Thesaurus), 5, 5262.Google Scholar
Bolinger, D. (1983). Intonation and gesture. American Speech, 58(2), 156. https://doi.org/10.2307/455326CrossRefGoogle Scholar
Brown, R. (1957). Linguistic determinism and the part of speech. The Journal of Abnormal and Social Psychology, 55(1), 15. https://doi.org/10.1037/h0041199CrossRefGoogle ScholarPubMed
Brown, R. (1973). A First Language: The Early Stages. Harvard University Press.10.4159/harvard.9780674732469CrossRefGoogle Scholar
Brown, S. (2017). A joint prosodic origin of language and music. Frontiers in Psychology, 8, 1894. https://doi.org/10.3389/fpsyg.2017.01894CrossRefGoogle ScholarPubMed
Chartrand, J. P., & Belin, P. (2006). Superior voice timbre processing in musicians. Neuroscience Letters, 405(3), 164167. https://doi.org/10.1016/j.neulet.2006.06.053CrossRefGoogle ScholarPubMed
Cole, J. (2015). Prosody in context: A review. Language, Cognition and Neuroscience, 30(1–2), 131. https://doi.org/10.1080/23273798.2014.963130CrossRefGoogle Scholar
Conboy, B. T., & Kuhl, P. K. (2011). Impact of second‐language experience in infancy: Brain measures of first‐and second‐language speech perception. Developmental Science, 14(2), 242248. https://doi.org/10.1111/j.1467-7687.2010.00973.xCrossRefGoogle ScholarPubMed
Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00222CrossRefGoogle ScholarPubMed
Corrigall, K. A., & Trainor, L. J. (2011). Associations between length of music training and reading skills in children. Music Perception, 29(2), 147155. https://doi.org/10.1525/mp.2011.29.2.147CrossRefGoogle Scholar
Cox, A. (2001). The mimetic hypothesis and embodied musical meaning. Musicae Scientiae, 5(2), 195212. https://doi.org/10.1177/102986490100500204CrossRefGoogle Scholar
Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930(1), 2842. https://doi.org/10.1111/j.1749-6632.2001.tb05723.xCrossRefGoogle ScholarPubMed
Crozier, J. B. (1997). Absolute pitch: Practice makes perfect, the earlier the better. Psychology of Music, 25(2), 110119. https://doi.org/10.1177/0305735697252002CrossRefGoogle Scholar
Crystal, D. (1981). Semantics. In Arnold, G. E., Winckel, F., & Wyke, B. D. (Eds.), Clinical Linguistics (Vol. 3, pp. 131191). Springer Vienna. https://doi.org/10.1007/978-3-7091-4001-7_5CrossRefGoogle Scholar
Curtis, M. E., & Bharucha, J. J. (2010). The minor third communicates sadness in speech, mirroring its use in music. Emotion, 10(3), 335348. https://doi.org/10.1037/a0017928CrossRefGoogle ScholarPubMed
Ćwiek, A., Fuchs, S., Draxler, C., Asu, E. L., Dediu, D., Hiovain, K., … & Winter, B. (2022). The bouba/kiki effect is robust across cultures and writing systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1841), 20200390. https://doi.org/10.1098/rstb.2020.0390CrossRefGoogle ScholarPubMed
Darwin, C. (2007/1874). The Descent of Man: The Concise Edition. Penguin.Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., … & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8(17), 38093815.10.1097/00001756-199712010-00030CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Hertz-Pannier, L., & Dubois, J. (2006). Nature and nurture in language acquisition: Anatomical and functional brain-imaging studies in infants. Trends in Neurosciences, 29(7), 367373. https://doi.org/10.1016/j.tins.2006.05.011CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., & Dehaene, S. (2008). How does early brain organization promote language acquisition in humans? European Review, 16(4), 399411. doi:10.1017/S1062798708000513CrossRefGoogle Scholar
Dehaene-Lambertz, G., & Pena, M. (2001). Electrophysiological evidence for automatic phonetic processing in neonates. Neuroreport, 12(14), 31553158.10.1097/00001756-200110080-00034CrossRefGoogle ScholarPubMed
Deutsch, D. (2013). Absolute pitch. In The Psychology of Music (pp. 141182). Elsevier. https://doi.org/10.1016/B978-0-12-381460-9.00005-5CrossRefGoogle Scholar
Deutsch, D., Henthorn, T., & Dolson, M. (2004). Absolute pitch, speech, and tone language: Some experiments and a proposed framework. Music Perception, 21(3), 339356. https://doi.org/10.1525/mp.2004.21.3.339CrossRefGoogle Scholar
Deutsch, D., Henthorn, T., Marvin, E., & Xu, H. (2006). Absolute pitch among American and Chinese conservatory students: Prevalence differences, and evidence for a speech-related critical period. The Journal of the Acoustical Society of America, 119(2), 719722. https://doi.org/10.1121/1.2151799CrossRefGoogle ScholarPubMed
Deutsch, D., Lapidis, R., & Henthorn, T. (2008). The speech‐to‐song illusion. The Journal of the Acoustical Society of America, 124(4), 24712471. https://doi.org/10.1121/1.4808987CrossRefGoogle Scholar
Diedrich, C. G. (2015). “Neanderthal bone flutes”: Simply products of Ice Age spotted hyena scavenging activities on cave bear cubs in European cave bear dens. Royal Society Open Science, 2(4), 140022. https://doi.org/10.1098/rsos.140022CrossRefGoogle ScholarPubMed
Ding, N., Patel, A. D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience & Biobehavioral Reviews, 81, 181187. https://doi.org/10.1016/j.neubiorev.2017.02.011CrossRefGoogle ScholarPubMed
Dollmann, J., Kogan, I., & Weißmann, M. (2020). Speaking accent-free in L2 beyond the critical period: The compensatory role of individual abilities and opportunity structures. Applied Linguistics, 41(5), 787809. https://doi.org/10.1093/applin/amz029CrossRefGoogle Scholar
Elmer, S., Meyer, M., Marrama, L., & Jäncke, L. (2011). Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. European Journal of Neuroscience, 34(1), 165175. https://doi.org/10.1111/j.1460-9568.2011.07728.xCrossRefGoogle ScholarPubMed
Embick, D., Marantz, A., Miyashita, Y., O’Neil, W., & Sakai, K. L. (2000). A syntactic specialization for Broca’s area. Proceedings of the National Academy of Sciences, 97(11), 61506154. https://doi.org/10.1073/pnas.100098897CrossRefGoogle ScholarPubMed
Escoffier, N., Zhong, J., Schirmer, A., & Qiu, A. (2013). Emotional expressions in voice and music: Same code, same effect? Human Brain Mapping, 34(8), 17961810. https://doi.org/10.1002/hbm.22029CrossRefGoogle ScholarPubMed
Falk, S., Rathcke, T., & Dalla Bella, S. (2014). When speech sounds like music. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 14911506. https://doi.org/10.1037/a0036858Google ScholarPubMed
Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108(39), 1642816433. https://doi.org/10.1073/pnas.1112937108CrossRefGoogle ScholarPubMed
Fedorenko, E., McDermott, J. H., Norman-Haignere, S., & Kanwisher, N. (2012). Sensitivity to musical structure in the human brain. Journal of Neurophysiology, 108(12), 32893300. https://doi.org/10.1152/jn.00209.2012CrossRefGoogle ScholarPubMed
Fedorenko, E., Patel, A., Casasanto, D., Winawer, J., & Gibson, E. (2009). Structural integration in language and music: Evidence for a shared system. Memory & Cognition, 37(1), 19. https://doi.org/10.3758/MC.37.1.1CrossRefGoogle ScholarPubMed
Fiebach, C. J., Schlesewsky, M., Lohmann, G., von Cramon, D. Y., & Friederici, A. D. (2005). Revisiting the role of Broca’s area in sentence processing: Syntactic integration versus syntactic working memory. Human Brain Mapping, 24(2), 7991. https://doi.org/10.1002/hbm.20070CrossRefGoogle ScholarPubMed
Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499504. https://doi.org/10.1111/1467-9280.003CrossRefGoogle ScholarPubMed
François, C., Jaillet, F., Takerkart, S., & Schön, D. (2014). Faster sound stream segmentation in musicians than in nonmusicians. PLoS ONE, 9(7), e101340. https://doi.org/10.1371/journal.pone.0101340CrossRefGoogle ScholarPubMed
François, C., & Schön, D. (2014). Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: The role of musical practice. Hearing Research, 308, 122128. https://doi.org/10.1016/j.heares.2013.08.018CrossRefGoogle ScholarPubMed
Francois, C., & Schön, D. (2011). Musical expertise boosts implicit learning of both musical and linguistic structures. Cerebral Cortex, 21(10), 23572365. https://doi.org/10.1093/cercor/bhr022CrossRefGoogle ScholarPubMed
Friederici, A. D. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension: Localizing syntactic and semantic processes. Cerebral Cortex, 13(2), 170177. https://doi.org/10.1093/cercor/13.2.170CrossRefGoogle ScholarPubMed
Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., Friederici, A. D., & Koelsch, S. (2009). Universal recognition of three basic emotions in music. Current Biology, 19(7), 573576. https://doi.org/10.1016/j.cub.2009.02.058CrossRefGoogle ScholarPubMed
Furl, N., Kumar, S., Alter, K., Durrant, S., Shawe-Taylor, J., & Griffiths, T. D. (2011). Neural prediction of higher-order auditory sequence statistics. Neuroimage, 54(3), 22672277. https://doi.org/10.1016/j.neuroimage.2010.10.038CrossRefGoogle ScholarPubMed
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3–4), 455479. https://doi.org/10.1080/02643290442000310CrossRefGoogle ScholarPubMed
Ganis, G., Kutas, M., & Sereno, M. I. (1996). The search for “common sense”: An electrophysiological study of the comprehension of words and pictures in reading. Journal of Cognitive Neuroscience, 8(2), 89106. https://doi.org/10.1162/jocn.1996.8.2.89CrossRefGoogle ScholarPubMed
Gervain, J., Vines, B. W., Chen, L. M., Seo, R. J., Hensch, T. K., Werker, J. F., & Young, A. H. (2013). Valproate reopens critical-period learning of absolute pitch. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00102CrossRefGoogle ScholarPubMed
Geschwind, N. (1970). The organization of language and the brain: Language disorders after brain damage help in elucidating the neural basis of verbal behavior. Science, 170(3961), 940944. https://doi.org/10.1126/science.170.3961.940CrossRefGoogle Scholar
Gibbs, R. W. (2003). Embodied experience and linguistic meaning. Brain and Language, 84(1), 115. https://doi.org/10.1016/S0093–934X(02)00517-5CrossRefGoogle ScholarPubMed
Gleitman, L. (1990). The structural sources of verb meanings. Language Acquisition, 1(1), 355.10.1207/s15327817la0101_2CrossRefGoogle Scholar
Glucksberg, S., & Keysar, B. (1990). Understanding metaphorical comparisons: Beyond similarity. Psychological Review, 97(1), 318. https://doi.org/10.1037/0033-295X.97.1.3CrossRefGoogle Scholar
Grodzinsky, Y., & Friederici, A. D. (2006). Neuroimaging of syntax and syntactic processing. Current Opinion in Neurobiology, 16(2), 240246. https://doi.org/10.1016/j.conb.2006.03.007CrossRefGoogle ScholarPubMed
Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28, 136141. https://doi.org/10.1016/j.conb.2014.07.013CrossRefGoogle ScholarPubMed
Hedger, S. C., Nusbaum, H. C., & Hoeckner, B. (2013). Conveying movement in music and prosody. PLoS ONE, 8(10), e76744. https://doi.org/10.1371/journal.pone.0076744CrossRefGoogle ScholarPubMed
Higham, T., Basell, L., Jacobi, R., Wood, R., Ramsey, C. B., & Conard, N. J. (2012). Τesting models for the beginnings of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle. Journal of Human Evolution, 62(6), 664676. https://doi.org/10.1016/j.jhevol.2012.03.003CrossRefGoogle ScholarPubMed
Hockett, C. F. (1958). A course in modern linguistics. Language Learning, 8(3–4), 7375. https://doi.org/10.1111/j.1467-1770.1958.tb00870.xCrossRefGoogle Scholar
Hockett, C. F. (1960). The origin of speech. Scientific American, 203(3), 8896. https://doi.org/10.1038/scientificamerican0960–88CrossRefGoogle ScholarPubMed
Honing, H., ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140088. https://doi.org/10.1098/rstb.2014.0088CrossRefGoogle ScholarPubMed
Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50(3), 12021211. https://doi.org/10.1016/j.neuroimage.2010.01.046CrossRefGoogle ScholarPubMed
Imai, M., & Kita, S. (2014). The sound symbolism bootstrapping hypothesis for language acquisition and language evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651), 20130298. https://doi.org/10.1098/rstb.2013.0298CrossRefGoogle ScholarPubMed
Jakobson, R. (1965). Quest for the essence of language. Diogenes, 13(51), 2137. https://doi.org/10.1177/039219216501305103CrossRefGoogle Scholar
Jakobson, R. (1995). On Language (ed. Waugh, L. R.). Harvard University Press.Google Scholar
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21(1), 6099. https://doi.org/10.1016/0010-0285(89)90003-0CrossRefGoogle ScholarPubMed
Jusczyk, P. W., & Bertoncini, J. (1988). Viewing the development of speech perception as an innately guided learning process. Language and Speech, 31(3), 217238. https://doi.org/10.1177/002383098803100301CrossRefGoogle Scholar
Juslin, P. N. (2000). Cue utilization in communication of emotion in music performance: Relating performance to perception. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 17971812. https://doi.org/10.1037/0096-1523.26.6.1797Google ScholarPubMed
Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388(6638), 171174. https://doi.org/10.1038/40623CrossRefGoogle ScholarPubMed
Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., & Friederici, A. D. (2004). Music, language and meaning: Brain signatures of semantic processing. Nature Neuroscience, 7(3), 302307. https://doi.org/10.1038/nn1197CrossRefGoogle ScholarPubMed
Köhler, W. (1929). Gestalt Psychology: An Introduction to New Concepts in Modern Psychology. Liveright.Google Scholar
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599605. https://doi.org/10.1038/nrn2882CrossRefGoogle ScholarPubMed
Kuhl, P. K., Conboy, B. T., Padden, D., Nelson, T., & Pruitt, J. (2005). Early speech perception and later language development: Implications for the “critical period”. Language Learning and Development, 1(3–4), 237264. https://doi.org/10.1080/15475441.2005.9671948CrossRefGoogle Scholar
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13F21. https://doi.org/10.1111/j.1467-7687.2006.00468.xCrossRefGoogle ScholarPubMed
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, 100(15), 90969101. https://doi.org/10.1073/pnas.1532872100CrossRefGoogle ScholarPubMed
Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., & Hagoort, P. (2015). Music and language syntax interact in Broca’s Area: An fMRI study. PLoS ONE, 10(11), e0141069. https://doi.org/10.1371/journal.pone.0141069CrossRefGoogle ScholarPubMed
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62(1), 621647. https://doi.org/10.1146/annurev.psych.093008.131123CrossRefGoogle ScholarPubMed
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203205. https://doi.org/10.1126/science.7350657CrossRefGoogle ScholarPubMed
Landau, B., & Gleitman, L. R. (2009/1985). Language and Experience: Evidence from the Blind Child (Vol. 8). Harvard University Press.Google Scholar
Landau, B., Gleitman, L. R., & Landau, B. (2009). Language and Experience: Evidence from the Blind Child (Vol. 8). Harvard University Press.Google Scholar
Larrouy-Maestri, P., Harrison, P. M. C., & Müllensiefen, D. (2019). The mistuning perception test: A new measurement instrument. Behavior Research Methods, 51(2), 663675. https://doi.org/10.3758/s13428-019-01225-1CrossRefGoogle Scholar
Lenneberg, E. H. (1967). Biological Foundations of Language. John Wiley & Sons.10.1080/21548331.1967.11707799CrossRefGoogle Scholar
Lerdahl, F. (2013). Musical syntax and its relation to linguistic syntax. In Arbib, M. A. (Ed.), Language, Music, and the Brain (pp. 257272). The MIT Press. https://doi.org/10.7551/mitpress/9780262018104.003.0010CrossRefGoogle Scholar
Lerdahl, F., & Jackendoff, R. (1983). A Generative Theory of Tonal Music (Repr.). MIT Press.Google Scholar
Liu, J., Hilton, C. B., Bergelson, E., & Mehr, S. A. (2023). Language experience predicts music processing in a half-million speakers of fifty-four languages. Current Biology, 33(10), 19161925.10.1016/j.cub.2023.03.067CrossRefGoogle Scholar
Lupyan, G., & Winter, B. (2018). Language is more abstract than you think, or, why aren’t languages more iconic? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170137. https://doi.org/10.1098/rstb.2017.0137CrossRefGoogle ScholarPubMed
Luria, A. R., Tsvetkova, L. S., & Futer, D. S. (1965). Aphasia in a composer. Journal of the Neurological Sciences, 2(3), 288292. https://doi.org/10.1016/0022-510X(65)90113-9CrossRefGoogle Scholar
Lynch, M. P., & Eilers, R. E. (1992). A study of perceptual development for musical tuning. Perception & Psychophysics, 52(6), 599608. https://doi.org/10.3758/BF03211696CrossRefGoogle ScholarPubMed
Lynch, M. P., Eilers, R. E., Oller, D. K., & Urbano, R. C. (1990). Innateness, experience, and music perception. Psychological Science, 1(4), 272276. https://doi.org/10.1111/j.1467-9280.1990.tb00213.xCrossRefGoogle Scholar
Lytle, S. R., Garcia-Sierra, A., & Kuhl, P. K. (2018). Two are better than one: Infant language learning from video improves in the presence of peers. Proceedings of the National Academy of Sciences, 115(40), 98599866. https://doi.org/10.1073/pnas.1611621115CrossRefGoogle ScholarPubMed
Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4(5), 540545. https://doi.org/10.1038/87502CrossRefGoogle ScholarPubMed
Magne, C., Schön, D., & Besson, M. (2006). Musician children detect pitch violations in both music and language better than nonmusician children: Behavioral and electrophysiological approaches. Journal of Cognitive Neuroscience, 18(2), 199211. https://doi.org/10.1162/jocn.2006.18.2.199CrossRefGoogle ScholarPubMed
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 1312913134. https://doi.org/10.1073/pnas.1811793115CrossRefGoogle ScholarPubMed
Mattock, K., & Burnham, D. (2006). Chinese and English infants’ tone perception: Evidence for perceptual reorganization. Infancy, 10(3), 241265. https://doi.org/10.1207/s15327078in1003_3CrossRefGoogle Scholar
Mattock, K., Molnar, M., Polka, L., & Burnham, D. (2008). The developmental course of lexical tone perception in the first year of life. Cognition, 106(3), 13671381. https://doi.org/10.1016/j.cognition.2007.07.002CrossRefGoogle ScholarPubMed
McDermott, J., & Hauser, M. (2005). The origins of music: Innateness, uniqueness, and evolution. Music Perception, 23(1), 2959. https://doi.org/10.1525/mp.2005.23.1.29CrossRefGoogle Scholar
McMullen, E., & Saffran, J. R. (2004). Music and language: A developmental comparison. Music Perception, 21(3), 289311. https://doi.org/10.1525/mp.2004.21.3.289CrossRefGoogle Scholar
Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29(2), 143178. https://doi.org/10.1016/0010-0277(88)90035-2CrossRefGoogle ScholarPubMed
Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … & Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468), eaax0868. https://doi.org/10.1126/science.aax0868CrossRefGoogle ScholarPubMed
Meisel, J. M. (2013). Language Acquisition and Change: A Morphosyntactic Perspective. Edinburgh University Press.Google Scholar
Meyer, L. B. (1956). Emotion and Meaning in Music (Paperback ed., [Nachdr.]). University of Chicago Press.Google Scholar
Miller, J. L., & Volaitis, L. E. (1989). Effect of speaking rate on the perceptual structure of a phonetic category. Perception & Psychophysics, 46(6), 505512. https://doi.org/10.3758/BF03208147CrossRefGoogle ScholarPubMed
Mithen, S. J. (2005). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. Weidenfeld & Nicolson.Google Scholar
Monaghan, P., Shillcock, R. C., Christiansen, M. H., & Kirby, S. (2014). How arbitrary is language? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651), 20130299. https://doi.org/10.1098/rstb.2013.0299CrossRefGoogle ScholarPubMed
Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011a). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 14251433. https://doi.org/10.1177/095679761141699CrossRefGoogle ScholarPubMed
Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 8497. https://doi.org/10.1016/j.heares.2013.09.012ACrossRefGoogle ScholarPubMed
Moreno, S., Friesen, D., & Bialystok, E. (2011b). Effect of music training on promoting preliteracy skills: Preliminary causal evidence. Music Perception, 29(2), 165172. https://doi.org/10.1525/mp.2011.29.2.165CrossRefGoogle Scholar
Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cerebral Cortex, 19(3), 712723. https://doi.org/10.1093/cercor/bhn120ACrossRefGoogle ScholarPubMed
Murphy, G. L. (1996). On metaphoric representation. Cognition, 60(2), 173204. https://doi.org/10.1016/0010-0277(96)00711-1CrossRefGoogle ScholarPubMed
Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences, 104(40), 1589415898. https://doi.org/10.1073/pnas.0701498104CrossRefGoogle ScholarPubMed
Naigles, L. (1990). Children use syntax to learn verb meanings. Journal of Child Language, 17(2), 357374.10.1017/S0305000900013817CrossRefGoogle ScholarPubMed
Naigles, L. R., & Swensen, L. D. (2007). Syntactic supports for word learning. In Hoff, E. & Shatz, M. (Eds.), Blackwell Handbook of Language Development (pp. 212231). Blackwell Publishing. https://doi.org/10.1002/9780470757833.ch11CrossRefGoogle Scholar
Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. University of Chicago Press.Google Scholar
Nazzi, T., Bertoncini, J., & Mehler, J. (1998). Language discrimination by newborns: Toward an understanding of the role of rhythm. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 756.Google ScholarPubMed
Nazzi, T., & Ramus, F. (2003). Perception and acquisition of linguistic rhythm by infants. Speech Communication, 41(1), 233243. https://doi.org/10.1016/S0167-6393(02)00106-1CrossRefGoogle Scholar
Nettl, B. (1999). An ethnomusicologist contemplates universals in musical sound and musical culture. In Wallin, N. L., Merker, B., & Brown, S. (Eds.), The Origins of Music (pp. 463472). The MIT Press. https://doi.org/10.7551/mitpress/5190.003.0032CrossRefGoogle Scholar
Neville, H., Nicol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically based sentence processing classes: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 3(2), 151165. https://doi.org/10.1162/jocn.1991.3.2.151CrossRefGoogle ScholarPubMed
Neville, H. J., Coffey, S. A., Lawson, D. S., Fischer, A., Emmorey, K., & Bellugi, U. (1997). Neural systems mediating American Sign Language: Effects of sensory experience and age of acquisition. Brain and Language, 57(3), 285308. https://doi.org/10.1006/brln.1997.1739CrossRefGoogle ScholarPubMed
Newport, E. (2006). Language development, critical periods in. In Nadel, L. (Ed.), Encyclopedia of Cognitive Science (p. s00506). John Wiley & Sons, Ltd.https://doi.org/10.1002/0470018860.s00506Google Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 1128. https://doi.org/10.1016/0364-0213(90)90024-QCrossRefGoogle Scholar
Niedeggen, M., & Rösler, F. (1999). N400 effects reflect activation spread during retrieval of arithmetic facts. Psychological Science, 10(3), 271276. https://doi.org/10.1111/1467-9280.00149CrossRefGoogle Scholar
Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H. (2015). Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88(6), 12811296. https://doi.org/10.1016/j.neuron.2015.11.035CrossRefGoogle ScholarPubMed
Nygaard, L. C., Cook, A. E., & Namy, L. L. (2009). Sound to meaning correspondences facilitate word learning. Cognition, 112(1), 181186. https://doi.org/10.1016/j.cognition.2009.04.001CrossRefGoogle ScholarPubMed
Oyama, S. (1976). A sensitive period for the acquisition of a nonnative phonological system. Journal of Psycholinguistic Research, 5, 261283. https://doi.org/10.1007/BF01067377CrossRefGoogle Scholar
Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6(7), 674681. https://doi.org/10.1038/nn1082CrossRefGoogle ScholarPubMed
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00142CrossRefGoogle ScholarPubMed
Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717733. https://doi.org/10.1162/089892998563121CrossRefGoogle ScholarPubMed
Patel, A. D., Iversen, J. R., Wassenaar, M., & Hagoort, P. (2008). Musical syntactic processing in agrammatic Broca’s aphasia. Aphasiology, 22(7–8), 776789. https://doi.org/10.1080/02687030701803804CrossRefGoogle Scholar
Patel, A. D., Peretz, I., Tramo, M., & Labreque, R. (1998). Processing prosodic and musical patterns: A neuropsychological investigation. Brain and Language, 61(1), 123144. https://doi.org/10.1006/brln.1997.1862CrossRefGoogle ScholarPubMed
Paulmann, S., & Uskul, A. K. (2014). Cross-cultural emotional prosody recognition: Evidence from Chinese and British listeners. Cognition and Emotion, 28(2), 230244. https://doi.org/10.1080/02699931.2013.812033CrossRefGoogle ScholarPubMed
Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00320CrossRefGoogle ScholarPubMed
Penfield, W. (1965). Conditioning the uncommitted cortex for language learning. Brain, 88(4), 787798.10.1093/brain/88.4.787CrossRefGoogle ScholarPubMed
Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, E., … & Mehler, J. (1996). Brain processing of native and foreign languages. NeuroReport – International Journal for Rapid Communications of Research in Neuroscience, 7(15), 24392444.10.1097/00001756-199611040-00007CrossRefGoogle ScholarPubMed
Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7(8), 362367. https://doi.org/10.1016/S1364-6613(03)00150-5CrossRefGoogle ScholarPubMed
Peretz, I., Kolinsky, R., Tramo, M., Labrecque, R., Hublet, C., Demeurisse, G., & Belleville, S. (1994). Functional dissociations following bilateral lesions of auditory cortex. Brain, 117(6), 12831301. https://doi.org/10.1093/brain/117.6.1283CrossRefGoogle ScholarPubMed
Peretz, I., Saffran, J., Schön, D., & Gosselin, N. (2012). Statistical learning of speech, not music, in congenital amusia. Annals of the New York Academy of Sciences, 1252(1), 361366. https://doi.org/10.1111/j.1749-6632.2011.06429.xCrossRefGoogle Scholar
Perniss, P., Thompson, R. L., & Vigliocco, G. (2010). Iconicity as a general property of language: Evidence from spoken and signed languages. Frontiers in Psychology, 1. https://doi.org/10.3389/fpsyg.2010.00227CrossRefGoogle ScholarPubMed
Perruchet, P., & Poulin-Charronnat, B. (2013). Challenging prior evidence for a shared syntactic processor for language and music. Psychonomic Bulletin & Review, 20(2), 310317. https://doi.org/10.3758/s13423-012-0344-5CrossRefGoogle ScholarPubMed
Pichon, S., & Kell, C. A. (2013). Affective and sensorimotor components of emotional prosody generation. The Journal of Neuroscience, 33(4), 16401650. https://doi.org/10.1523/JNEUROSCI.3530-12.2013CrossRefGoogle ScholarPubMed
Pinker, S. (1997). Words and rules in the human brain. Nature, 387(6633), 547548. https://doi.org/10.1038/42347CrossRefGoogle ScholarPubMed
Pinker, S. (1999). How the Mind Works (1. publ). Norton.Google ScholarPubMed
Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95(2), 201236. https://doi.org/10.1016/j.cognition.2004.08.004CrossRefGoogle Scholar
Querleu, D., Renard, X., Versyp, F., Paris-Delrue, L., & Crèpin, G. (1988). Fetal hearing. European Journal of Obstetrics & Gynecology and Reproductive Biology, 28(3), 191212. https://doi.org/10.1016/0028-2243(88)90030-5CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia: A window into perception, thought and language. Journal of Consciousness Studies, 8(12), 334.Google Scholar
Rivera-Gaxiola, M., Silva-Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non-native speech contrasts in 7- and 11-month-old American infants. Developmental Science, 8(2), 162172. https://doi.org/10.1111/j.1467-7687.2005.00403.xCrossRefGoogle ScholarPubMed
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 906914. https://doi.org/10.1002/wcs.78Google ScholarPubMed
Saffran, J. R. (2001). Words in a sea of sounds: The output of infant statistical learning. Cognition, 81(2), 149169. https://doi.org/10.1016/S0010-0277(01)00132-9CrossRefGoogle Scholar
Saffran, J. R. (2003). Musical learning and language development. Annals of the New York Academy of Sciences, 999(1), 397401. https://doi.org/10.1196/annals.1284.050CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996a). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928. https://doi.org/10.1126/science.274.5294.1926CrossRefGoogle ScholarPubMed
Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 2752. https://doi.org/10.1016/S0010-0277(98)00075-4CrossRefGoogle Scholar
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181203. https://doi.org/10.1146/annurev-psych-122216-011805CrossRefGoogle ScholarPubMed
Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996b). Word segmentation: The role of distributional cues. Journal of Memory and Language, 35(4), 606621. https://doi.org/10.1006/jmla.1996.0032CrossRefGoogle Scholar
Scherer, K. R. (1995). Expression of emotion in voice and music. Journal of Voice, 9(3), 235248. https://doi.org/10.1016/S0892-1997(05)80231-0CrossRefGoogle ScholarPubMed
Shepherd, J., & Wicke, P. (1997). Music and Cultural Theory. Polity Press.Google Scholar
Shintel, H., Nusbaum, H. C., & Okrent, A. (2006). Analog acoustic expression in speech communication. Journal of Memory and Language, 55(2), 167177. https://doi.org/10.1016/j.jml.2006.03.002CrossRefGoogle Scholar
Sidhu, D. M., Westbury, C., Hollis, G., & Pexman, P. M. (2021). Sound symbolism shapes the English language: The maluma/takete effect in English nouns. Psychonomic Bulletin & Review, 28(4), 13901398. https://doi.org/10.3758/s13423-021-01883-3CrossRefGoogle ScholarPubMed
Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177, 198213. https://doi.org/10.1016/j.cognition.2018.04.011CrossRefGoogle ScholarPubMed
Silvén, M., Voeten, M., Kouvo, A., & Lundén, M. (2014). Speech perception and vocabulary growth: A longitudinal study of Finnish-Russian bilinguals and Finnish monolinguals from infancy to three years. International Journal of Behavioral Development, 38(4), 323332. https://doi.org/10.1177/0165025414533748CrossRefGoogle Scholar
Slevc, L. R., & Patel, A. D. (2011). Meaning in music and language: Three key differences. Physics of Life Reviews, 8(2), 110111. https://doi.org/10.1016/j.plrev.2011.05.003Google ScholarPubMed
Slevc, L. R., Rosenberg, J. C., & Patel, A. D. (2009). Making psycholinguistics musical: Self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychonomic Bulletin & Review, 16(2), 374381. https://doi.org/10.3758/16.2.374CrossRefGoogle ScholarPubMed
Smit, E. A., Milne, A. J., Sarvasy, H. S., & Dean, R. T. (2022). Emotional responses in Papua New Guinea show negligible evidence for a universal effect of major versus minor music. PLoS ONE, 17(6), e0269597. https://doi.org/10.1371/journal.pone.0269597CrossRefGoogle ScholarPubMed
Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 8790. https://doi.org/10.1038/416087aCrossRefGoogle ScholarPubMed
Sohail, J., & Johnson, E. K. (2016). How transitional probabilities and the edge effect contribute to listeners’ phonological bootstrapping success. Language Learning and Development, 12(2), 105115. https://doi.org/10.1080/15475441.2015.1073153CrossRefGoogle Scholar
Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 18(8), 13801393. https://doi.org/10.1162/jocn.2006.18.8.1380CrossRefGoogle ScholarPubMed
Strait, D. L., & Kraus, N. (2011). Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise. Frontiers in Psychology, 2, 113. https://doi.org/10.3389/fpsyg.2011.00113CrossRefGoogle ScholarPubMed
Strait, D. L., Kraus, N., Skoe, E., & Ashley, R. (2009). Musical experience and neural efficiency – effects of training on subcortical processing of vocal expressions of emotion. European Journal of Neuroscience, 29(3), 661668. https://doi.org/10.1111/j.1460-9568.2009.06617.xCrossRefGoogle ScholarPubMed
Stromswold, K., Caplan, D., Alpert, N., & Rauch, S. (1996). Localization of syntactic comprehension by positron emission tomography. Brain and Language, 52(3), 452473. https://doi.org/10.1006/brln.1996.0024CrossRefGoogle ScholarPubMed
Swaminathan, S., & Schellenberg, E. G. (2019). Music training and cognitive abilities: Associations, causes, and consequences. In Thaut, M. H. & Hodges, D. A. (Eds.), The Oxford Handbook of Music and the Brain (pp. 644670). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198804123.013.26Google Scholar
Swaminathan, S., & Schellenberg, E. G. (2020). Musical ability, music training, and language ability in childhood. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(12), 23402348. https://doi.org/10.1037/xlm0000798Google ScholarPubMed
Swingley, D. (2005). Statistical clustering and the contents of the infant vocabulary. Cognitive Psychology, 50(1), 86132. https://doi.org/10.1016/j.cogpsych.2004.06.001CrossRefGoogle ScholarPubMed
Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43(3), 231246. https://doi.org/10.1016/j.brainresrev.2003.08.004CrossRefGoogle ScholarPubMed
Thompson, W. F., Marin, M. M., & Stewart, L. (2012). Reduced sensitivity to emotional prosody in congenital amusia rekindles the musical protolanguage hypothesis. Proceedings of the National Academy of Sciences, 109(46), 1902719032. https://doi.org/10.1073/pnas.1210344109CrossRefGoogle ScholarPubMed
Tierney, A., Dick, F., Deutsch, D., & Sereno, M. (2013). Speech versus song: Multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. Cerebral Cortex, 23(2), 249254. https://doi.org/10.1093/cercor/bhs003CrossRefGoogle ScholarPubMed
Tillmann, B., Bharucha, J. J., & Bigand, E. (2000). Implicit learning of tonality: A self-organizing approach. Psychological Review, 107(4), 885. https://doi.org/10.1037/0033-295X.107.4.885CrossRefGoogle ScholarPubMed
Tillmann, B., Janata, P., & Bharucha, J. J. (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145161. https://doi.org/10.1016/S0926-6410(02)00245-8CrossRefGoogle ScholarPubMed
Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 6071. https://doi.org/10.1016/j.bandl.2016.08.004CrossRefGoogle ScholarPubMed
Tsang, C. D., & Conrad, N. J. (2011). Music training and reading readiness. Music Perception, 29(2), 157163. https://doi.org/10.1525/mp.2011.29.2.157CrossRefGoogle Scholar
Turk, M., Turk, I., & Otte, M. (2020). The neanderthal musical instrument from Divje Babe I Cave (Slovenia): A critical review of the discussion. Applied Sciences, 10(4), 1226. https://doi.org/10.3390/app10041226CrossRefGoogle Scholar
Uddin, S., Heald, S. L. M., Van Hedger, S. C., & Nusbaum, H. C. (2018). Hearing sounds as words: Neural responses to environmental sounds in the context of fluent speech. Brain and Language, 179, 5161. https://doi.org/10.1016/j.bandl.2018.02.004CrossRefGoogle ScholarPubMed
Van Hedger, S. C., Heald, S. L. M., & Nusbaum, H. C. (2019). Absolute pitch can be learned by some adults. PLoS ONE, 14(9), e0223047. https://doi.org/10.1371/journal.pone.0223047CrossRefGoogle ScholarPubMed
Van Hedger, S. C., Johnsrude, I. S., & Batterink, L. J. (2022). Musical instrument familiarity affects statistical learning of tone sequences. Cognition, 218, 104949. https://doi.org/10.1016/j.cognition.2021.104949CrossRefGoogle ScholarPubMed
Vasuki, P. R. M., Sharma, M., Demuth, K., & Arciuli, J. (2016). Musicians’ edge: A comparison of auditory processing, cognitive abilities and statistical learning. Hearing Research, 342, 112123. https://doi.org/10.1016/j.heares.2016.10.008CrossRefGoogle Scholar
Vasuki, P. R. M., Sharma, M., Ibrahim, R., & Arciuli, J. (2017). Statistical learning and auditory processing in children with music training: An ERP study. Clinical Neurophysiology, 128(7), 12701281. https://doi.org/10.1016/j.clinph.2017.04.010CrossRefGoogle Scholar
Wacewicz, S., & Żywiczyński, P. (2015). Language evolution: Why Hockett’s design features are a non-starter. Biosemiotics, 8(1), 2946. https://doi.org/10.1007/s12304-014-9203-2CrossRefGoogle ScholarPubMed
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21(1), 2125. https://doi.org/10.1177/0956797609354734CrossRefGoogle ScholarPubMed
Weiss, M. W., & Bidelman, G. M. (2015). Listening to the brainstem: Musicianship enhances intelligibility of subcortical representations for speech. Journal of Neuroscience, 35(4), 16871691. https://doi.org/10.1523/JNEUROSCI.3680-14.2015CrossRefGoogle Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 4963. https://doi.org/10.1016/S0163-6383(84)80022-3CrossRefGoogle Scholar
White, E. J., Hutka, S. A., Williams, L. J., & Moreno, S. (2013). Learning, neural plasticity and sensitive periods: Implications for language acquisition, music training and transfer across the lifespan. Frontiers in Systems Neuroscience, 7, 90. https://doi.org/10.3389/fnsys.2013.00090CrossRefGoogle ScholarPubMed
Wong, Y. K., Lui, K. F. H., Yip, K. H. M., & Wong, A. C.-N. (2020). Is it impossible to acquire absolute pitch in adulthood? Attention, Perception, & Psychophysics, 82(3), 14071430. https://doi.org/10.3758/s13414-019-01869-3CrossRefGoogle ScholarPubMed
Yetkin, O., Yetkin, F. Z., Haughton, V. M., & Cox, R. W. (1996). Use of functional MR to map language in multilingual volunteers. American Journal of Neuroradiology, 17(3), 473477.Google ScholarPubMed
Yumoto, M., Uno, A., Itoh, K., Karino, S., Saitoh, O., Kaneko, Y., … & Kaga, K. (2005). Audiovisual phonological mismatch produces early negativity in auditory cortex. Neuroreport, 16(8), 803806.10.1097/00001756-200505310-00005CrossRefGoogle ScholarPubMed
Zatorre, R. J., & Baum, S. R. (2012). Musical melody and speech intonation: Singing a different tune. PLOS Biology, 10(7), e1001372. https://doi.org/10.1371/journal.pbio.1001372CrossRefGoogle ScholarPubMed
Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences, 6(1), 3746. https://doi.org/10.1016/S1364-6613(00)01816-7CrossRefGoogle ScholarPubMed
Zatorre, R. J., Evans, A., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch discrimination in speech processing. Science, 256(5058), 846849. https://doi.org/10.1126/science.1589767CrossRefGoogle ScholarPubMed
Zhao, T. C., & Kuhl, P. K. (2016). Musical intervention enhances infants’ neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences, 113(19), 52125217. https://doi.org/10.1073/pnas.1603984113CrossRefGoogle ScholarPubMed
Zhao, T. C., Llanos, F., Chandrasekaran, B., & Kuhl, P. K. (2022). Language experience during the sensitive period narrows infants’ sensory encoding of lexical tones: Music intervention reverses it. Frontiers in Human Neuroscience, 16, 941853. https://doi.org/10.3389/fnhum.2022.941853CrossRefGoogle Scholar

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×