Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-rgmxm Total loading time: 0 Render date: 2025-12-18T16:55:33.407Z Has data issue: false hasContentIssue false

12 - Longitudinal fMRI Analyses of Second Language Acquisition

Expanding the Repertoire of Imaging Techniques and Proficiency Measures in Future Studies

from Part IVA - Building Cognitive Brain Reserve and the Importance of Proficiency

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

Since the late 1990s, thousands of fMRI studies have been conducted on different aspects of language processing in the human brain. The earlier studies were generally devoted to first language or monolingual processing, but the field has continued to expand to include both studies of a single first language, and bi/multilingual language processing in the brain. A modest number of fMRI longitudinal studies of second language acquisition began to emerge over the past 13 years. The following analysis uses the findings of these BOLD fMRI longitudinal studies of second language acquisition, including comparison with cross-sectional studies of L2 acquisition, to make recommendations for enhancing the research design and empirical measurements to facilitate new methodologies and approaches. Conclusions include a discussion of the utility of longitudinal studies, elucidation of the theoretical foundation of dynamic modeling underlying individual user variation in L1/L2 language processing, inclusion of a broader array of imaging techniques (structural DTI, resting state fMRI and functional connectivity), and the importance of proficiency measurements and proficiency testing as a part of research design.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abutalebi, J. (2008). Neural processing of second language representation and control. Acta Psychologica, 128, 466478. http://dx.doi.org/10.1016/j.actpsy.2008.03.014CrossRefGoogle Scholar
Abutalebi, J., Della Rosa, P. A., Ding, G., Weekes, B., Costa, A., & Green, D. W. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49, 905911. https://doi.org/10.1016/j.cortex.2012.08.018CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 2076e2086.10.1093/cercor/bhr287CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. W. (2007). Bilingual language production: the neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275. https://doi.org/10.1016/j.jneuroling.2006.10.003CrossRefGoogle Scholar
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(4), 689698. https://doi.org/10.1017/S1366728916000225CrossRefGoogle Scholar
Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain and Language, 109, 5154. http://dx.doi.org/10.1016/j.bandl.2009.04.001CrossRefGoogle ScholarPubMed
Andrews, E. (2011). Language and brain: Recasting meaning in the definition of human language. Semiotica, 184(1/4), 1132. https://doi.org/10.1515/semi.2011.020Google Scholar
Andrews, E. (2014). Neuroscience and Multilingualism. Cambridge University Press.10.1017/CBO9781139567770CrossRefGoogle Scholar
Andrews, E. (2019). Cognitive neuroscience and multilingualism. In Schwieter, J. W. (Ed.), The Handbook of The Neuroscience of Multilingualism. Wiley Blackwell.Google Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Sci, 11, 67.10.3390/brainsci11010067CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2023). DTI analysis of white matter integrity and cognitive brain reserve in lifelong musicians and controls. J Psychiatry Psychiatric Disord, 7(2), 6779.10.26502/jppd.2572-519X0187CrossRefGoogle Scholar
Andrews, E., Frigau, L., Voyvodic-Casabo, C., Voyvodic, J., & Wright, J. (2013). Multilingualism and fMRI: Longitudinal study of second language acquisition. Brain Sciences, 3(2), 849876. https://doi.org/10.3390%2Fbrainsci3020849CrossRefGoogle ScholarPubMed
Andrews, E., Harshbarger, T., & Rammell, C. S. (2019). Multilingual listening and reading: An fMRI study of Russian/ English and Spanish/English bilinguals. Glossos, 14.Google Scholar
Bialystok, E. (2011). Coordination of executive functions in monolingual and bilingual children. Journal of Experimental Child Psychology, 110, 461468. https://doi.org/10.1016%2Fj.jecp.2011.05.005CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459464. https://doi.org/10.1016/j.neuropsychologia.2006.10.009CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240250. https://doi.org/10.1016%2Fj.tics.2012.03.001CrossRefGoogle ScholarPubMed
Birdsong, D. (2006). Age and second language acquisition and processing: A selective overview. Language Learning, 56, 949. https://doi.org/10.1111/j.1467-9922.2006.00353.xCrossRefGoogle Scholar
Bolinger, D. (1949/1965). The sign is not arbitrary. Reprinted in Abe, I. & Kanekiyo, T. (Eds.), Forms of English: Accent, Morpheme, Order. Harvard University Press.Google Scholar
Bolinger, D. (1986). Intonation and Its Parts: Melody in Spoken English. Stanford University Press.Google Scholar
Bolinger, D. (1989). Intonation and Its Uses: Melody in Grammar and Discourse. Stanford University Press.10.1515/9781503623125CrossRefGoogle Scholar
Breiner-Sanders, K. E., Swender, E., & Terry, R. (2002). ACTFL proficiency guidelines (revised). Foreign Language Annuals, 35(1), 915.Google Scholar
Brice, H., Frost, S., Bick, A. S., Molfese, P. J., Rueckl, J. G., Pugh, K. R., & Frost, R. (2021). Tracking second language immersion across time: Evidence from a bi-directional longitudinal cross-linguistic fMRI study. Neuropsychologia, 154(3), 107796. https://doi.org/10.1016/j.neuropsychologia.2021.107796CrossRefGoogle ScholarPubMed
Calvin, W. H., & Ojemann, G. A. (1994). Conversations with Neil’s Brain: The Neural Nature of Thought and Language. Addison-Wesley/Harper & Row.Google Scholar
Child, J., Clifford, R.T., & Lowe, P. Jr. (1993). Proficiency and performance in language testing. Applied Language Learning, 4(1&2), 1954.Google Scholar
Claussenius-Kalman, H., Hernandez, A. E., & Li, P. (2021). Expertise, ecosystem, and emergentism: Dynamic developmental bilingualism. Brain and Language, 222, 105013. https://doi.org/10.1016/j.bandl.2021.105013CrossRefGoogle ScholarPubMed
Corina, D. P, Loudermilk, B. C., Detwiler, L., Martin, R. F., Brinkley, J. F., & Ojemann, G. A. (2010). Analysis of naming errors during cortical stimulation mapping: Implications for models of language representation. Brain and Language, 115, 101112. https://doi.org/10.1016/j.bandl.2010.04.001CrossRefGoogle ScholarPubMed
Cox, R. (2019). Equitable thresholding and clustering: A novel method for fMRI clustering in AFNI. Brain Connectivity, 9(7). https://doi.org/10.1089/brain.2019.0666CrossRefGoogle ScholarPubMed
Craik, F. I. M, Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: Bilingualism as a form of cognitive reserve. Neurology, 75(19), 17261729. https://doi.org/10.1212/wnl.0b013e3181fc2a1cCrossRefGoogle ScholarPubMed
Dash, T., Joanette, Y., Ansaldo, A. I. (2022). Exploring attention in the bilingualism continuum: A resting-state functional connectivity study. Brain and Language, 224, 105048. https://doi.org/10.1016/j.bandl.2021.105048CrossRefGoogle ScholarPubMed
Davis, J. McE., Norris, J. M., Malone, M. E., McKay, T. H., & Son, Y.-A. (Eds.) (2018). Useful Assessment and Evaluation in Language Education. Georgetown University Press. https://doi.org/10.2307/j.ctvvngrqCrossRefGoogle Scholar
de Bot, K. (2008). The imaging of what in the bilingual mind? Second Language Research, 24(1), 111133. http://dx.doi.org/10.1177/0267658307083034CrossRefGoogle Scholar
de Bot, K. (2009). Multilingualism and aging. In Ritchie, W. C. & Bhatia, T. K. (Eds.), The New Handbook of Second Language Acquisition (pp. 425442). Emerald Group Publishing Ltd.Google Scholar
de Bot, K. (2019). Defining and assessing multilingualism. In Schwieter, J. W. (Ed.), The Handbook of The Neuroscience of Multilingualism. Wiley Blackwell.Google Scholar
Demirci, O., Clark, V. P., Magnotta, V. A., et al. (2008). A review of challenges in the use of fMRI for disease classification / characterization and a projection pursuit application from a multi-site fMRI schizophrenia study. Brain Imaging and Behavior, 2, 207226. https://psycnet.apa.org/doi/10.1007/s11682–008-9028-1CrossRefGoogle Scholar
Eierud, C., Michael, A., Banks, D., & Andrews, E. (2023). Resting-state functional connectivity in lifelong musicians. Psychoradiology, 3, 18.10.1093/psyrad/kkad003CrossRefGoogle ScholarPubMed
Eklund, A., et al. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. PNAS, 113(28), 79007905. https://doi.org/10.1073/pnas.1602413113CrossRefGoogle ScholarPubMed
Elmer, S. & Jäncke, L. (2018). Relationships between music training, speech processing, and word learning: A network perspective. Ann. N. Y. Acad. Sci., 2018(1423), 1018.10.1111/nyas.13581CrossRefGoogle Scholar
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3/4), 455479. https://doi.org/10.1080/02643290442000310CrossRefGoogle ScholarPubMed
Gallo, F., DeLuca, V., Prystauka, Y., Voits, T., Rothman, J., & Abutalebi, J. (2022). Bilingualism and aging: Implications for (delaying) neurocognitive decline. Frontiers in Human Neuroscience, 16.10.3389/fnhum.2022.819105CrossRefGoogle ScholarPubMed
Gallo, F., Novitskiy, N., Myachykov, A., & Shtyrov, Y. (2021). Individual differences in bilingual experience modulate executive control network and performance: Behavioral and structural neuroimaging evidence. Bilingualism: Language and Cognition, 24(2), 293304. https://doi.org/DOI:10.1017/S1366728920000486CrossRefGoogle Scholar
García-Pentón, L., Fernández García, Y., Costello, B., Andoni Duñabeitia, J., & Carreiras, M. (2016). The neuroanatomy of bilingualism: How to turn a hazy view into the full picture. Language, Cognition and Neuroscience, 31(3), 303327. https://doi.org/10.1080/23273798.2015.1068944CrossRefGoogle Scholar
Ghazi-Saidi, L., & Ansaldo, A. I. (2017). Second language word learning through repetition and imitation: Functional networks as a function of learning phase and language distance. Frontiers in Human Neuroscience, 11(463). https://doi.org/10.3389/fnhum.2017.00463CrossRefGoogle ScholarPubMed
Ghazi-Saidi, L., Perlbarg, V., Marrelec, G., Pelegrini-Issac, M., Benali, H., & Ansaldo, A. I. (2013). Functional connectivity changes in second language vocabulary learning. Brain and Language, 124, 5665. https://doi.org/10.1016/j.bandl.2012.11.008CrossRefGoogle ScholarPubMed
Grant, A., et al. (2015). Second language lexical development and cognitive control: A longitudinal fMRI study. Brain and Language, 144, 3547. https://doi.org/10.1016/j.bandl.2015.03.010CrossRefGoogle ScholarPubMed
Green, D. W., Crinion, J., & Price, C. J. (2006). Convergence, degeneracy and control. Language Learning, 56(1), 99125. https://doi.org/10.1111%2Fj.1467-9922.2006.00357.xCrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201. https://doi.org/10.1111/nyas.13333CrossRefGoogle ScholarPubMed
Guzmán-Vélez, E., & Tranel, D. (2015). Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives. Neuropsychology, 29, 139150. https://doi.org/10.1037%2Fneu0000105CrossRefGoogle ScholarPubMed
Hagoort, P. (2006). What we cannot learn from neuroanatomy about language learning and language processing: Commentary on Uylings. In Gullberg, M. & Indefrey, P. (Eds.), The Cognitive Neuroscience of Second Language Acquisition. Blackwell Publishers. https://doi.org/10.1111/j.1467-9922.2006.00356.xGoogle Scholar
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 6799. https://doi.org/10.1016/j.cognition.2003.10.011CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews, 8, 393402. https://doi.org/10.1038/nrn2113CrossRefGoogle ScholarPubMed
Hodgson, V. J., Ralph, M. A. L., & Jackson, R. L. (2021). Multiple dimensions underlying the functional organization of the language network. NeuroImage, 241, 118444. https://doi.org/10.1016/j.neuroimage.2021.118444CrossRefGoogle ScholarPubMed
Huettel, S., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sinauer Associates.Google ScholarPubMed
Jafari, Z., Perani, D., Kolb, B. E, & Mohajerani, M. H. (2021). Bilingual experience and intrinsic functional connectivity in adults, aging, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1, nyas.14666. https://doi.org/10.1111/nyas.14666Google Scholar
Jakobson, R. (1956/1985). Metalanguage as a linguistic problem. In Rudy, S. (Ed.), Selected Writings VII (pp. 113121). Mouton.Google Scholar
Jakobson, R. (1957/1987). Linguistics and poetics. In Pomorska, K. & Rudy, S. (Eds.), Language in Literature (pp. 6294). Belknap Press of Harvard University Press.Google Scholar
Jakobson, R. (1967/1985). Language and culture. In Rudy, S. (Ed.), Selected Writings VII (pp. 101112). Mouton.Google Scholar
Liu, X., Tu, L., Chen, X., Wang, J., Li, M., Lu, Z., & Huang, R. (2021). Effects of AoA-L2 on L1 and L2 networks in early and late bilinguals. International Journal of Bilingualism, 25(6). https://doi.org/10.1177/13670069211033026CrossRefGoogle Scholar
Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74(3), 347357. https://doi.org/10.1016/j.bandc.2010.09.004CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. J. Neurosci., 31, 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102(1–3), 5970. https://doi.org/10.1016/j.jphysparis.2008.03.004Google Scholar
Marek, S., et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603, 654660. https://doi.org/10.1038/s41586–022-04492-9CrossRefGoogle ScholarPubMed
Mårtensson, J,, Eriksson, J,, Bodammer, N. C., Lindgren, M., Johansson, M., Nyberg, L., & Lövdén, M. (2012). Growth of language-related brain areas after foreign language learning. Neuroimage, 63(1), 240244. https://doi.org/10.1016/j.neuroimage.2012.06.043CrossRefGoogle ScholarPubMed
North, B. (2000). The Development of a Common Framework Scale of Language Proficiency. P. Lang. https://doi.org/10.3726/978-1-4539-1059-7CrossRefGoogle Scholar
Ojemann, G. A, Corina, D. P., Corrigan, N., Schoenfield-McNeill, J., Poliakov, A., Zamora, L., & Zanos, S. (2010). Neuronal correlates of functional magnetic resonance imaging in human temporal cortex. Brain, 33(1), 4659. https://doi.org/10.1093%2Fbrain%2Fawp227CrossRefGoogle Scholar
Paradis, M. (2000). The neurolinguistics of bilingualism in the next decades. Brain and Language, 71, 178180. https://doi.org/10.1006/brln.1999.2245CrossRefGoogle ScholarPubMed
Paradis, M. (2004). The Neurolinguistics of Bilingualism. John Benjamins.10.1075/sibil.18CrossRefGoogle Scholar
Paradis, M. (2019). Special forward. In Schwieter, J. W. (Ed.), The Handbook of the Neuroscience of Multilingualism. Wiley Blackwell.Google Scholar
Pavlenko, A. (2005). Emotions and Multilingualism. Cambridge University Press.Google Scholar
Pliatsikas, C. (2019). Multilingualism and brain plasticity. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (pp. 230251). Wiley Publishers.10.1002/9781119387725.ch11CrossRefGoogle Scholar
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The dynamic restructuring model. Bilingualism: Language and Cognition, 23(2), 459471. https://doi.org/10.1017/S1366728919000130CrossRefGoogle Scholar
Pliatsikas, C. 2023. Bilingualism and brain structure: Insights from healthy ageing and progressive neurodenegerative disease. In Luk, G. et al. (Eds.), Understanding Language and Cognition through Bilingualism: In Honor of Ellen Bialystok (pp. 301317). John Benjamins.10.1075/sibil.64.14pliCrossRefGoogle Scholar
Pliatsikas, C., Deluca, V., & Volts, T. (2020). The many shades of bilingualism: Language experiences modulate adaptations in brain structure. Language Learning, 70(52), 133149. https://doi.org/10.1111/lang.12386CrossRefGoogle Scholar
Pliatsikas, C., & Luk, G. (2016). Executive control in bilinguals: A concise review on fMRI studies. Bilingualism: Language and Cognition, 19, 699705. https://doi.org/10.1017/S1366728916000249CrossRefGoogle Scholar
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. PNAS, 112(5). https://doi.org/10.1073/pnas.1414183112CrossRefGoogle ScholarPubMed
Pliatsikas, C., Pereira Soares, S. M., Volts, T., Deluca, V., & Rothman, J. (2021). Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain. Scientific Reports, 11(1), 112. https://doi.org/10.1038/s41598–021-86443-4CrossRefGoogle ScholarPubMed
Poeppel, D. (2008). The cartographic imperative: Confusing localization and explanation in human brain mapping. Bildwelten des Wissens (Ikonographie des Gehirns), 6(1), 121. https://doi.org/10.1515/9783110548778-003Google Scholar
Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92, 112. https://doi.org/10.1016/j.cognition.2003.11.001CrossRefGoogle ScholarPubMed
Price, C. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 6288. https://doi.org/10.1111/j.1749-6632.2010.05444.xCrossRefGoogle Scholar
Raboyeau, G., Marcotte, K., Adrover-Roig, D., & Ansaldo, A. I. (2010). Brain activation and lexical learning: The impact of learning phase and word type. NeuroImage, 49, 28502861. https://doi.org/10.1016/j.neuroimage.2009.10.007CrossRefGoogle ScholarPubMed
Raichle, M. (2001). Functional neuroimaging: A historical and physiological perspective. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 326). MIT Press.Google Scholar
Raichle, M. (2006). The brain’s dark energy. Science, 314, 12491250. https://doi.org/10.1126/science.1134405Google ScholarPubMed
Raichle, M. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180190. https://doi.org/10.1016/j.tics.2010.01.008CrossRefGoogle ScholarPubMed
Raichle, M. (2011). The restless brain. Brain Connectivity, 1, 312. https://doi.org/10.1089%2Fbrain.2011.0019CrossRefGoogle ScholarPubMed
Raichle, M. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. https://doi.org/10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Reverberi, C., Kuhlen, A., Abutalebi, J., Greulich, R. S., Costa, A., Seyed-Allaei, S., Haynes, J. D. (2015). Language control in bilinguals: Intention to speak vs. execution. Brain & Language, 144, 19. https://doi.org/10.1016/j.bandl.2015.03.004CrossRefGoogle ScholarPubMed
Schrimer, A., Fox, P. M., & Grandjean, D. (2012). On the spatial organization of sound processing in the human temporal lobe: A meta-analysis. Neuroimage, 63(1), 137147. https://doi.org/10.1016/j.neuroimage.2012.06.025CrossRefGoogle Scholar
Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., Brandeis, D., & Dierks, T. (2012). Structural plasticity in the language system related to increased second language proficiency. Cortex, 48(4), 458465. https://doi.org/10.1016/j.cortex.2010.10.007CrossRefGoogle ScholarPubMed
Stowe, L. A., Haverkort, M., & Zwarts, F. (2005). Rethinking the neurological basis of language. Lingua, 115, 9971042. https://doi.org/10.1016/j.lingua.2004.01.013CrossRefGoogle Scholar
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36, 441454. https://doi.org/10.1017/s0033291705006264CrossRefGoogle ScholarPubMed
Van Horn, J. D., & Toga, A. W. (2009). Multisite neuroimaging trials. Current Opinion in Neurology, 22(4), 370378. https://doi.org/10.1097/wco.0b013e32832d92deCrossRefGoogle ScholarPubMed
Vygotsky, L. S. (1934/1987). Thinking and speech. In Rieber, R. W. & Carton, A. S. (Eds.), The Collected Works of L. S. Vygotsky. Plenum Press.Google Scholar
Wang, R., Ike, S., Zhang, Q., Zhou, K., Li, P., & Yang, J. (2020). Functional and structural neuroplasticity associated with second language proficiency: An MRI study of Chinese-English bilinguals. Journal of Neurolinguistics, 56, 100940. https://doi.org/10.1016/j.jneuroling.2020.100940CrossRefGoogle Scholar
Weinreich, U. (1953/1968). Languages in Contact: Findings and Problems. Mouton.Google Scholar
Weiss, M. W., & Bidelman, G. M. (2015). Listening to the brainstem: Musicianship enhances intelligibility of subcortical representations for speech. The Journal of Neuroscience, 35(4), 16871691.10.1523/JNEUROSCI.3680-14.2015CrossRefGoogle Scholar
Zou, L., Guosheng, D., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of left caudate in bimodal bilinguals. Cortex, 48(9), 1197e1206.10.1016/j.cortex.2011.05.022CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×