Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-gtc7z Total loading time: 0.001 Render date: 2025-12-12T06:29:36.799Z Has data issue: false hasContentIssue false

5 - Functional Connectivity and Recovery from Aphasia

from Part III - Language and Cognitive Plasticity and Processing

Published online by Cambridge University Press:  aN Invalid Date NaN

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

This chapter explores the role of functional connectivity (FC), as measured by FMRI, in the neural processes involved in the recovery from aphasia following left hemisphere strokes. It distinguishes between normalization (restoration of typical connectivity patterns) and compensation (reorganization and recruitment of new regions and connections). The chapter organization is based on two methodological dimensions. One is the type of connectivity measured: resting-state vs. task-based FC. The second is the study design: a single time-point scan, examining the correlation between connectivity and language performance across individuals; or a pre/post-treatment design, examining changes in connectivity within participants. While the results of many studies show that normalization of left hemisphere connectivity contributes to language performance, there is also evidence for compensatory processes in both hemispheres and in interhemispheric connectivity, as involved in language recovery. The chapter also highlights the role of connectivity with domain general networks in aphasia studies, beyond the language network. Studies measuring large scale networks show mixed evidence regarding the contribution of integration across networks vs. segregation and specialization of networks to language recovery. The chapter emphasizes the importance of considering factors like patient heterogeneity, lesion characteristics, and the type of FC analysis when interpreting results.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abel, S., Weiller, C., Huber, W., Willmes, K., & Specht, K. (2015). Therapy-induced brain reorganization patterns in aphasia. Brain, 138, 10971112.10.1093/brain/awv022CrossRefGoogle ScholarPubMed
Abo, M., Senoo, A., Watanabe, S., Miyano, S., Doseki, K., Sasaki, N., Kobayashi, K., Kikuchi, Y., & Yonemoto, K. (2004). Language-related brain function during word repetition in post-stroke aphasics. Neuroreport, 15(12), 18911894.10.1097/00001756-200408260-00011CrossRefGoogle ScholarPubMed
Albert, M. L., Sparks, R. W., & Helm, N. A. (1973). Melodic intonation therapy for aphasia. Archives of Neurology, 29(2), 130131.10.1001/archneur.1973.00490260074018CrossRefGoogle ScholarPubMed
Baliki, M. N., Babbitt, E. M., & Cherney, L. R. (2018). Brain network topology influences response to intensive comprehensive aphasia treatment. Neurorehabilitation, 43(1), 6376.10.3233/NRE-182428CrossRefGoogle ScholarPubMed
Bitan, T., Simic, T., Saverino, C., Jones, C., Glazer, J., Collela, B., Wiseman-Hakes, C., Green, R., & Rochon, E. (2018). Changes in resting-state connectivity following melody-based therapy in a patient with aphasia. Neural Plasticity, 2018, 13.10.1155/2018/6214095CrossRefGoogle Scholar
Callan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H., & Turner, R. (2006). Song and speech: Brain regions involved with perception and covert production. Neuroimage, 31(3), 13271342.10.1016/j.neuroimage.2006.01.036CrossRefGoogle Scholar
Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences, 111(46), E4997E5006.10.1073/pnas.1415122111CrossRefGoogle ScholarPubMed
Chu, R., Meltzer, J. A., & Bitan, T. (2018). Interhemispheric interactions during sentence comprehension in patients with aphasia. Cortex, 109, 7491.10.1016/j.cortex.2018.08.022CrossRefGoogle ScholarPubMed
Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48), 1208312094.10.1523/JNEUROSCI.2965-15.2016CrossRefGoogle ScholarPubMed
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12(1), 4356.10.1038/nrn2961CrossRefGoogle ScholarPubMed
Duncan, E. S., & Small, S. L. (2018). Changes in dynamic resting state network connectivity following aphasia therapy. Brain Imaging and Behavior, 12(4), 11411149.10.1007/s11682-017-9771-2CrossRefGoogle ScholarPubMed
Durand, E., Masson-Trottier, M., Sontheimer, A., & Ansaldo, A. I. (2021). Increased links between language and motor areas: A proof-of-concept study on resting-state functional connectivity following personalized observation, execution and mental imagery therapy in chronic aphasia. Brain and Cognition, 148.10.1016/j.bandc.2020.105659CrossRefGoogle ScholarPubMed
Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18(3), 120126.10.1016/j.tics.2013.12.006CrossRefGoogle ScholarPubMed
Fridriksson, J. (2010). Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. Journal of Neuroscience, 30(35), 1155811564.10.1523/JNEUROSCI.2227-10.2010CrossRefGoogle ScholarPubMed
Fridriksson, J., Baker, J. M., & Moser, D. (2009). Cortical mapping of naming errors in aphasia. Human Brain Mapping, 30(8), 24872498.10.1002/hbm.20683CrossRefGoogle ScholarPubMed
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 12731302.10.1016/S1053-8119(03)00202-7CrossRefGoogle ScholarPubMed
Geranmayeh, F., Leech, R., & Wise, R. J. S. (2016). Network dysfunction predicts speech production after left hemisphere stroke. Neurology, 86(14), 1296.10.1212/WNL.0000000000002537CrossRefGoogle ScholarPubMed
Gili, T., Fiori, V., De Pasquale, G., Sabatini, U., Caltagirone, C., & P. Marangolo, P. (2017). Right sensory-motor functional networks subserve action observation therapy in aphasia. Brain Imaging Behav, 11(5), 13971411.10.1007/s11682-016-9635-1CrossRefGoogle ScholarPubMed
Harvey, D. Y., Wei, T., Ellmore, T. M., Hamilton, A. C., & Schnur, T. T. (2013). Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control. Neuropsychologia, 51(5), 789801.10.1016/j.neuropsychologia.2013.01.028CrossRefGoogle ScholarPubMed
Heiss, W. D., Karbe, H., WeberLuxenburger, G., Herholz, K., Kessler, J., Pietrzyk, U., & Pawlik, G. (1997). Speech-induced cerebral metabolic activation reflects recovery from aphasia. Journal of Neuroscience, 145(2), 213217.Google ScholarPubMed
Heiss, W. D., Thiel, A., Kessler, J., & Herholz, K. (2003). Disturbance and recovery of language function: Correlates in PET activation studies. Neuroimage, 20, Supplement 1, S42S49.10.1016/j.neuroimage.2003.09.005CrossRefGoogle ScholarPubMed
Hope, T. M. H., Leff, A. P., & Price, C. J. (2018). Predicting language outcomes after stroke: Is structural disconnection a useful predictor? Neuroimage-Clinical, 19, 2229.10.1016/j.nicl.2018.03.037CrossRefGoogle ScholarPubMed
Johnson, J. P., Meier, E. L., Pan, Y., & Kiran, S. (2020). Pre-treatment graph measures of a functional semantic network are associated with naming therapy outcomes in chronic aphasia. Brain and Language, 207.10.1016/j.bandl.2020.104809CrossRefGoogle ScholarPubMed
Johnson, J. P., Meier, E. L., Pan, Y., & Kiran, S. (2021). Abnormally weak functional connections get stronger in chronic stroke patients who benefit from naming therapy. Brain and Language, 223.10.1016/j.bandl.2021.105042CrossRefGoogle ScholarPubMed
Keator, L. M., Yourganov, G., Basilakos, A., Hillis, A. E., Hickok, G., Bonilha, L., Rorden, C., & Fridriksson, J. (2021). Independent contributions of structural and functional connectivity: Evidence from a stroke model. Network Neuroscience, 5(4), 911928.10.1162/netn_a_00207CrossRefGoogle ScholarPubMed
Klingbeil, J., Wawrzyniak, M., Stockert, A., & Saur, D. (2019). Resting-state functional connectivity: An emerging method for the study of language networks in post-stroke aphasia. Brain and Cognition, 131, 2233.10.1016/j.bandc.2017.08.005CrossRefGoogle Scholar
Marcotte, K., Perlbarg, V., Marrelec, G., Benali, H., & Ansaldo, A. I. (2013). Default-mode network functional connectivity in aphasia: Therapy-induced neuroplasticity. Brain and Language, 124(1), 4555.10.1016/j.bandl.2012.11.004CrossRefGoogle ScholarPubMed
Masson-Trottier, M., Sontheimer, A., Durand, E., & Ansaldo, A. I. (2021). Resting-state functional connectivity following phonological component analysis: The combined action of phonology and visual orthographic cues.” Brain sciences, 11(11), 1458.10.3390/brainsci11111458CrossRefGoogle ScholarPubMed
Meier, E. L., Johnson, J. P., & Kiran, S. (2018). Left frontotemporal effective connectivity during semantic feature judgments in patients with chronic aphasia and age-matched healthy controls. Cortex, 108, 173192.10.1016/j.cortex.2018.08.006CrossRefGoogle ScholarPubMed
Meier, E. L., Johnson, J. P, Pan, Y. & Kiran, S. (2019). “A lesion and connectivity-based hierarchical model of chronic aphasia recovery dissociates patients and healthy controls.” Neuroimage-Clinical, 23.10.1016/j.nicl.2019.101919CrossRefGoogle ScholarPubMed
Meltzer, J. A., Wagage, S., Ryder, J., Solomon, B., & Braun, A. R. (2013). Adaptive significance of right hemisphere activation in aphasic language comprehension. Neuropsychologia, 51(7), 12481259.10.1016/j.neuropsychologia.2013.03.007CrossRefGoogle ScholarPubMed
Naeser, M. A., Martin, P. I., Baker, E. H., Hodge, S. M., Sczerzenie, S. E., Nicholas, M., Palumbo, C. L., Goodglass, H., Wingfield, A., Samaraweera, R., Harris, G., Baird, A., Renshaw, P., & Yurgelun-Todd, D. (2004). Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method. Neuroimage, 22(1), 2941.10.1016/j.neuroimage.2003.11.016CrossRefGoogle ScholarPubMed
New, A. B., Robin, D. A., Parkinson, A. L., Duffy, J. R., McNeil, M. R., O. Piguet, O., Hornberger, M., Price, C. J., Eickhoff, S. B., & Ballard, K. J. (2015). Altered resting-state network connectivity in stroke patients with and without apraxia of speech. NeuroImage: Clinical, 8, 429439.10.1016/j.nicl.2015.03.013CrossRefGoogle ScholarPubMed
Postman-Caucheteux, W. A., Birn, R. M., Pursley, R. H., Butman, J. A., Solomon, J. M., Picchioni, D., McArdle, J., & Braun, A. R. (2010). Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. Journal of Cognitive Neuroscience, 22(6), 12991318.10.1162/jocn.2009.21261CrossRefGoogle ScholarPubMed
Price, C. J., & Crinion, J. (2005). The latest on functional imaging studies of aphasic stroke. Current Opinion in Neurology, 18(4), 429434.10.1097/01.wco.0000168081.76859.c1CrossRefGoogle ScholarPubMed
Sandberg, C. W. (2017). Hypoconnectivity of resting-state networks in persons with aphasia compared with healthy age-matched adults. Frontiers in Human Neuroscience, 11.10.3389/fnhum.2017.00091CrossRefGoogle ScholarPubMed
Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129(6), 13711384.10.1093/brain/awl090CrossRefGoogle ScholarPubMed
Siegel, J. S., Ramsey, L. E., Snyder, A. Z., Metcalf, N. V., Chacko, R. V., Weinberger, K., Baldassarre, A., Hacker, C. D., Shulman, G. L., & Corbetta, M. (2016). Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proceedings of the National Academy of Sciences, 113(30), E4367E4376.10.1073/pnas.1521083113CrossRefGoogle ScholarPubMed
Siegel, J. S., Seitzman, B. A., Ramsey, L. E., Ortega, M., Gordon, E. M., Dosenbach, N. U. F., Petersen, S. E., Shulman, G. L., & Corbetta, M. (2018). Re-emergence of modular brain networks in stroke recovery. Cortex, 101, 4459.10.1016/j.cortex.2017.12.019CrossRefGoogle ScholarPubMed
Sparks, R., Helm, N., & Albert, M. (1974). Aphasia rehabilitation resulting from melodic intonation therapy. Cortex, 10(4), 303316.10.1016/S0010-9452(74)80024-9CrossRefGoogle ScholarPubMed
Thiel, A., Herholz, K., Koyuncu, A., Ghaemi, M., Kracht, L. W., Habedank, B., & Heiss, W. D. (2001). Plasticity of language networks in patients with brain tumors: A positron emission tomography activation study. Annals of Neurology, 50(5), 620629.10.1002/ana.1253CrossRefGoogle ScholarPubMed
Tinaz, S., Lauro, P., Hallett, M., & Horovitz, S. G. (2016). Deficits in task-set maintenance and execution networks in Parkinson’s disease. Brain Structure and Function, 221(3), 14131425.10.1007/s00429-014-0981-8CrossRefGoogle ScholarPubMed
Truzman, T., Rochon, E., Meltzer, J., Leonard, C., & Bitan, T. (2021). Simultaneous normalization and compensatory changes in right hemisphere connectivity during aphasia therapy. Brain Sciences, 11(10), 1330.10.3390/brainsci11101330CrossRefGoogle ScholarPubMed
van Hees, S., McMahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D. A. (2014). A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Human Brain Mapping, 35(8), 39193931.10.1002/hbm.22448CrossRefGoogle ScholarPubMed
Wilson, S. M., Eriksson, D. K., Yen, M., Demarco, A. T., Schneck, S. M., & Lucanie, J. M. (2019). Language mapping in aphasia. Journal of Speech, Language, and Hearing Research, 62(11), 39373946.10.1044/2019_JSLHR-L-RSNP-19-0031CrossRefGoogle ScholarPubMed
Xu, L., Huang, L., Cui, W., & Yu, Q. (2020). Reorganized functional connectivity of language centers as a possible compensatory mechanism for basal ganglia aphasia. Brain Injury, 34(3), 430437.10.1080/02699052.2020.1716995CrossRefGoogle ScholarPubMed
Yang, H. Q., Bai, L., Zhou, Y., Kang, S., Liang, P. P., Wang, L. H., & Zhu, Y. F. (2017). Increased inter-hemispheric resting-state functional connectivity in acute lacunar stroke patients with aphasia. Experimental Brain Research, 235(3), 941948.10.1007/s00221-016-4851-xCrossRefGoogle ScholarPubMed
Zhang, C., Xia, Y. Y., Feng, T., Yu, K., Zhang, H. Y., Sami, M. U., Xiang, J., & Xu, K. (2021). Disrupted functional connectivity within and between resting-state networks in the subacute stage of post-stroke aphasia. Frontiers in Neuroscience, 15.10.3389/fnins.2021.746264CrossRefGoogle ScholarPubMed
Zhu, D., Chang, J., Freeman, S., Tan, Z., Xiao, J., Gao, Y., & Kong, J. (2014). Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Frontiers in Behavioral Neuroscience, 8.10.3389/fnbeh.2014.00167CrossRefGoogle ScholarPubMed
Zhu, L., Fan, Y., Zou, Q., Wang, J., Gao, J.-H., & Niu, Z. (2014). Temporal reliability and lateralization of the resting-state language network. PLoS ONE, 9(1).Google ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×