Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-c8jtx Total loading time: 0 Render date: 2025-12-15T03:45:49.163Z Has data issue: false hasContentIssue false

11 - Factors in Variable Outcomes in Second Language Acquisition

from Part IVA - Building Cognitive Brain Reserve and the Importance of Proficiency

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

Variability in ultimate learning outcomes is a conspicuous trait of second language (L2) acquisition. After enumerating well-studied conditioning factors in L2 attainment, the present chapter identifies five for particular attention: working memory, attitudes, music background, genetic makeup, and age of acquisition. Along with detailing the factors’ individual roles in L2 attainment, we demonstrate inter-relationships between them. For example, the aptitude factor of working memory ability is subject to genetic variation and may decline over age of L2 learning. We examine variable outcomes from two distinct perspectives: magnitude (i.e., how the identified factors contribute to higher or lower levels of L2 attainment) and dispersion (i.e., how the factors contribute to greater or lesser variability of L2 attainment). Notably, later ages of L2 learning are associated with both lower L2 attainment levels and greater L2 attainment variability. In this vein, we consider the possibility that magnitudes and variability of L2 outcomes over age of learning may be isomorphic with working memory levels and dispersion over the lifespan. In addition, we underscore the transitory nature of individual-level L2 outcomes, which are subject to destabilization following shifts of dominance between the L1 (first language) and the L2.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Al-Hoorie, A., Oga-Baldwin, W. L. Q., Hiver, P., & Vitta, J. P. (2022). Self-determination mini-theories in second language learning: A systematic review of three decades of research. Language Teaching Research, 0(0). https://doi.org/10.1177/13621688221102686Google Scholar
Anderson, J. A. E., Yurtsever, A., Fisher-Skau, O., Cherep, L. A., MacPhee, I., Luk, G., & Grundy, J. G. (2023). Consistency in bilingualism and white matter research: A meta-analysis. Bilingualism – Mind – Brain Lab Talk, University of California-Irvine, June 19, 2023.Google Scholar
Ando, J., Ono, Y., & Wright, M. J. (2001). Genetic structure of spatial and working memory. Behavior Genetics, 31(6), 615624. https://doi.org/10.1023/A:1013353613591CrossRefGoogle ScholarPubMed
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Science, 11(67). https://doi.org/10.3390/brainsci11010067CrossRefGoogle Scholar
Asano, R., & Boecks, C. (2015). Syntax in language and music: What is the right level of comparision. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00942CrossRefGoogle Scholar
Baddeley, A. D. (2012). Working memory: Theories, models and controversies. Annual Review of Psychology, 63, 130. https://doi.org/10.1146/annurev-psych-120710-100422CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2015). Working memory in second language learning. In Wen, Z., Mota, M., & McNeill, A. (Eds.), Working Memory in Second Language Acquisition and Processing (pp. 1728). Multilingual Matters.Google Scholar
Baddeley, A. D., & Hitch, M. (1974). Working memory. Psychology of Learning and Motivation, 8, 4789. https://doi.org/10.1016/S0079-7421(08)60452-1CrossRefGoogle Scholar
Baddeley, A., Hitch, G., & Allen, R. (2021). A multicomponent model of working memory. In Logie, R., Camos, V., & Cowan, N. (Eds.), Working Memory: The State of the Science (pp. 1043). Oxford Academic.Google Scholar
Balcom, P. (2003). Cross-linguistic influence of L2 English on middle constructions in L1 French. In Cook, V. (Ed.), Effects of the Second Language on the First (pp. 168192). Multilingual Matters.Google Scholar
Ballinger, E., Ananth, M., Talmage, D. A., & Role, L. (2016). Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron, 91(6), 11991218. https://doi.org/10.1016/j.neuron.2016.09.006CrossRefGoogle ScholarPubMed
Barbeau, E. B., Kousaie, S., Brass, K., Descoteaux, M., Petrides, D., & Klein, D. (2023). The importance of the dorsal branch of the arcuate fasciculus in phonological working memory, Cerebral Cortex, 33 (16), 95549565. https://doi.org/10.1093/cercor/bhad226CrossRefGoogle ScholarPubMed
Bauer, J.-R., Martinez, J. E., Roe, M. A., & Church, J. A. (2017). Consistent performance differences between children and adults despite manipulation of cue-target variables. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01304CrossRefGoogle ScholarPubMed
Berry, A. S., Blakely, R. D., Sarter, M., & Lustig, C. (2015). Cholinergic capacity mediates prefrontal engagement during challenges to attention: Evidence from imaging genetics. NeuroImage, 108, 386395. https://doi.org/10.1016/j.neuroimage.2014.12.036CrossRefGoogle ScholarPubMed
Besson, D., & Schön, D. (2001). Comparison between language and music. Annals of the New York Academy of Sciences, 930(1), 232258. https://doi.org/10.1111/j.1749-6632.2001.tb05736.xCrossRefGoogle ScholarPubMed
Bialystok, E., & Hakuta, K. (1999). Confounded age: Linguistic and cognitive factors in age differences for second language acquisition. In Birdsong, D. (Ed.), Second Language Acquisition and the Critical Period Hypothesis (pp. 161181). Erlbaum.Google Scholar
Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2010). Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 23, 425434. https://doi.org/10.1162/jocn.2009.21362CrossRefGoogle Scholar
Bidelman, G. M., Hutka, S., & Moreno, S. (2013). Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. PLoS ONE, 8, e60676. https://doi.org/10.1371/journal.pone.0060676CrossRefGoogle ScholarPubMed
Biedroń, A., & Birdsong, D. (2019). Highly proficient and gifted bilinguals. In Ortega, L. & De Houwer, A. (Eds.), Cambridge Handbook of Bilingualism (pp. 307323). Cambridge University Press.Google Scholar
Birdsong, D. (1992). Ultimate attainment in second language acquisition. Language, 68, 706755. https://doi.org/10.2307/416851CrossRefGoogle Scholar
Birdsong, D. (2005). Interpreting age effects in second language acquisition. In Kroll, J. & DeGroot, A. (Eds.), Handbook of Bilingualism: Psycholinguistic Perspectives (pp. 109127). Oxford University Press.Google Scholar
Birdsong, D. (2006). Age and second language acquisition and processing: A selective overview. Language Learning, 56, 949. https://doi.org/10.1111/j.1467-9922.2006.00353.xCrossRefGoogle Scholar
Birdsong, D. (2009). Age and the end state of second language acquisition. In Ritchie, W. & Bhatia, T. (Eds.), The New Handbook of Second Language Acquisition (pp. 401424). Emerald.Google Scholar
Birdsong, D. (2012). Three perspectives on non-uniform linguistic attainment. Linguistic Approaches to Bilingualism, 2, 255259. https://doi.org/10.1075/lab.2.3.02birCrossRefGoogle Scholar
Birdsong, D. (2014a). Dominance and age in bilingualism. Applied Linguistics, 35, 374392. https://doi.org/10.1093/applin/amu031CrossRefGoogle Scholar
Birdsong, D. (2014b). The Critical Period Hypothesis for second language acquisition: Tailoring the coat of many colors. In Pawlak, M. & Aronin, L. (Eds.), Essential Topics in Applied Linguistics and Multilingualism. Studies in Honor of David Singleton (pp. 4350). Springer.10.1007/978-3-319-01414-2_3CrossRefGoogle Scholar
Birdsong, D. (2016). Dominance in bilingualism: Foundations of measurement, with insights from the study of handedness. In Silva-Corvalán, C. & Treffers-Daller, J. (Eds.), Language Dominance in Bilinguals: Issues of Operationalization and Measurement (pp. 85105). Cambridge University Press.Google Scholar
Birdsong, D. (2018). Plasticity, variability and age in second language acquisition and bilingualism. Frontiers in Psychology, 9: 81. https://doi.org/10.3389/fpsyg.2018.00081CrossRefGoogle ScholarPubMed
Birdsong, D. (2021). Analyzing variability in L2 ultimate attainment. Language, Interaction and Acquisition, 12, 133156. https://doi.org/10.1075/lia.21001.birCrossRefGoogle Scholar
Birdsong, D. (2022). Critical Periods. In Aronoff, M. (Ed.), Oxford Bibliographies in Linguistics. Oxford University Press. www.oxfordbibliographies.com/browse?module_0=obo-9780199772810Google Scholar
Birdsong, D. (2023). Whither bilinguals, natives, and variability? A commentary on Janet van Hell “The neurocognitive underpinnings of second language processing: Knowledge gains from the past and future outlook.” Language Learning, 73(S2), 147150.10.1111/lang.12597CrossRefGoogle Scholar
Birdsong, D. (Ed). (1999). Second Language Acquisition and the Critical Period Hypothesis. Lawrence Erlbaum.10.4324/9781410601667CrossRefGoogle Scholar
Birdsong, D., & Gertken, L. M. (2013). In faint praise of folly: A critical review of native/non-native comparisons, with examples from native and bilingual processing of French complex syntax. Language, Interaction and Acquisition, 4, 107133. https://doi.org/10.1075/lia.4.2.01birCrossRefGoogle Scholar
Birdsong, D., & Molis, M. (2001). On the evidence for maturational effects in second language acquisition. Journal of Memory and Language, 44, 235249. https://doi.org/10.1006/jmla.2000.2750CrossRefGoogle Scholar
Birdsong, D., & Vanhove, J. (2016). Age of second language acquisition: Critical periods and social concerns. In Nicoladis, E. & Montanari, S. (Eds.), Bilingualism across the Lifespan (pp. 163181). APA/De Gruyter.Google Scholar
Bolibaugh, C., & Foster, P. (2021). Implicit statistical learning in naturalistic and instructed morphosyntactic attainment: An aptitude‐treatment interaction design. Language Learning, 71(4), 9591003. https://doi.org/10.1111/lang.12465CrossRefGoogle Scholar
Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 212(4498), 10551059. https://doi.org/10.1126/science.7195071CrossRefGoogle ScholarPubMed
Bowden, H. W., Sanz, C., & Stafford, C. A. (2005). Individual differences: Age, sex, working memory, and prior knowledge. In Sanz, C. (Ed.), Mind and Context in Adult Second Language Acquisition: Methods, Theory, and Practice (pp. 105140). Georgetown University Press.Google Scholar
Bueno, D. (2019) Genetics and learning: How the genes influence educational attainment. Frontiers in Psychology, 10, 1622. https://doi.org/10.3389/fpsyg.2019.01622CrossRefGoogle ScholarPubMed
Buttelmann, F., Könen, T., Hadley, L. V., Meaney, J. A., Auyeung, B., Morey, C. C., Chevalier, N., & Karbach, J. (2020). Age-related differentiation in verbal and visuospatial working memory processing in childhood. Psychological Research, 84(8), 23542360. https://doi.org/10.1007/s00426-019-01219CrossRefGoogle ScholarPubMed
Caplan, D., & Waters, G. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22(1), 7794. https://doi.org/10.1017/S0140525X99001788CrossRefGoogle ScholarPubMed
Carstensen, L. L., & Hartel, C. R. (Eds.) (2006). When I’m 64. National Research Council (US) Committee on Aging Frontiers in Social Psychology, Personality, and Adult Developmental Psychology. National Academies Press (US).Google Scholar
Cesarini, D., & Visscher, P. M. (2017). Genetics and educational attainment. npj Science of Learning, 2(4). https://doi.org/10.1038/s41539-017-0005-6CrossRefGoogle ScholarPubMed
Chan, A. S., Ho, Y. C., & Cheung, M. C. (1998). Music training improves verbal memory. Nature, 396 (6707), 128. https://doi.org/10.1038/24075CrossRefGoogle ScholarPubMed
Chang, C. B. (2012). Rapid and multifaceted effects of second-language learning on first-language speech production. Journal of Phonetics, 40(2), 249268.10.1016/j.wocn.2011.10.007CrossRefGoogle Scholar
Chang, D., Hedberg, N., & Wang, Y. (2016). Effects of musical and linguistic experience on categorization of lexical and melodic tones. Journal of the Acoustical Society of America, 139, 24322447. https://doi.org/10.1121/1.4947497CrossRefGoogle ScholarPubMed
Chen, S., Yang, Y., & Wayland, R. (2021). Categorical perception of Mandarin pitch directions by Cantonese-speaking musicians and non-musicians. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.713949Google ScholarPubMed
Chobert, J., & Besson, M. (2013). Musical expertise and second language learning. Brain Sciences, 3(2), 923940. https://doi.org/10.3390/brainsci3020923CrossRefGoogle ScholarPubMed
Choi, W. (2021). Musicianship influences language effect on musical pitch perception. Frontiers in Pyschology, 12. https://doi.org/10.3389/fpsyg.2021.712753Google ScholarPubMed
Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769786. https://doi.org/10.3758/BF03196772CrossRefGoogle ScholarPubMed
Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive growth? Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11(2), 239264. https://doi.org/10.1177/1745691615621279CrossRefGoogle ScholarPubMed
Craik, F. I. M., & Salthouse, T. A. (Eds.) (2000). The Handbook of Aging and Cognition II. Erlbaum.Google Scholar
Csizér, K., & Dörnyei, Z. (2005). The internal structure of language learning motivation and its relationship with language choice and learning effort. Modern Language Journal, 89, 1936. https://doi.org/10.1111/j.0026-7902.2005.00263.xCrossRefGoogle Scholar
Cunnings, I. (2017). Parsing and working memory in bilingual sentence processing.Bilingualism: Language and Cognition, 20(4), 659678. https://doi.org/10.1017/S1366728916000675CrossRefGoogle Scholar
Dąbrowska, E. (2018). Experience, aptitude and individual differences in native language ultimate attainment. Cognition, 178, 222235. https://doi.org/10.1016/j.cognition.2018.05.018CrossRefGoogle ScholarPubMed
Dąbrowska, E. (2019). Experience, aptitude, and individual differences in linguistic attainment: A comparison of native and nonnative speakers. Language Learning, 69, 72100. https://doi.org/10.1111/lang.12323CrossRefGoogle Scholar
Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicontinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699-729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214CrossRefGoogle Scholar
Daselaar, S., & Cabeza, R. (2013). Age-related-decline in working memory and episodic memory: Contributions of the prefrontal cortex and medial temporal lobes. In Ochsner, K. N. & Kosslyn, S. (Eds.), The Oxford Handbook of Cognitive Neuroscience, Volume 1: Core Topics (pp. 456472). Oxford University Press.Google Scholar
De Bot, K., Lowie, W., & Verspoor, M. (2007). A dynamic systems theory approach to second language acquisition. Bilingualism: Language and Cognition, 10(1), 721. https://doi.org/10.1017/S1366728906002732CrossRefGoogle Scholar
DeKeyser, R. (2012). Age effects in second language learning. In Gass, S. M. & Mackey, A. (Eds.), The Routledge Handbook of Second Language Acquisition (pp. 442460). Routledge.Google Scholar
DeKeyser, R., Alfi-Shabtay, I., & Ravid, D. (2010). Cross-linguistic evidence for the nature of age effects in second language acquisition. Applied Psycholinguistics, 31(3), 413438. https://doi.org/10.1017/S0142716410000056CrossRefGoogle Scholar
DeLuca, V., Miller, D., Pliatsikas, C., & Rothman, J. (2019). Brain adaptations and neurological indices of processing in adult second language acquisition: Challenges to the critical period hypothesis. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 170196). Wiley.10.1002/9781119387725.ch8CrossRefGoogle Scholar
Dijkstra, T., & van Heuven, W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5(3), 175197. https://doi.org/10.1017/S1366728902003012CrossRefGoogle Scholar
Dörnyei, Z. (2005). Psychology of the Language Learner: Individual Differences in Second Language Acquisition. Erlbaum.Google Scholar
Dörnyei, Z. (2009). The L2 motivational self system. In Dörnyei, Z. & Ushioda, E. (Eds.), Motivation, Language Identity and the L2 Self (pp. 942). Multilingual Matters.10.21832/9781847691293-003CrossRefGoogle Scholar
Dörnyei, Z. (2019). From integrative motivation to directed motivational currents: The evolution of the understanding of L2 motivation over three decades. In Lamb, M. et al. (Eds.), The Palgrave Handbook of Motivation for Language Learning (pp. 3969). Palgrave Macmillan.10.1007/978-3-030-28380-3_3CrossRefGoogle Scholar
Dörnyei, Z., & Mentzelopoulos, K. (2022). Lessons from Exceptional Language Learners Who Have Achieved Nativelike Proficiency. Multilingual Matters.Google Scholar
Dörnyei, Z., & Ushioda, E. (2021). Teaching and Researching Motivation (3rd ed.) Routledge.10.4324/9781351006743CrossRefGoogle Scholar
Dörnyei, Z., MacIntyre, P. D., & Henry, A. (2015). Introduction: Applying complex dynamic systems principles to empirical research on L2 motivation. In Dörnyei, Z., MacIntyre, P. D., & Henry, A. (Eds.), Motivational Dynamics in Language Learning (pp. 17). Multilingual Matters.Google Scholar
English, B. A., Hahn, M. K., Gizer, I. R., Mazei-Robison, M., Steele, A., Kurnik, D. M., Stein, M. A., Waldman, I. D., & Blakely, R. D. (2009). Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. Journal of Neurodevelopmental Disorders, 1, 252263. https://doi.org/10.1007/s11689-009-9033-8CrossRefGoogle ScholarPubMed
Ettlinger, M., Bradlow, A., & Wong, P. C. M. (2014). Variability in the learning of complex morphophonology. Applied Psycholinguistics, 35, 807831. https://doi.org/10.1017/S0142716412000586CrossRefGoogle Scholar
Farmer, T. A., Misyak, J. B., & Christiansen, M. H. (2012). Individual differences in sentence processing. In Spivey, M. J., McRae, K., & Joanisse, M. F. (Eds.), The Cambridge Handbook of Psycholinguistics (pp. 353364). Cambridge University Press.10.1017/CBO9781139029377.018CrossRefGoogle Scholar
Felser, C., & Roberts, L. (2007). Processing wh-dependencies in a second language: A cross-modal priming study. Second Language Research, 23(1), 936. https://doi.org/10.1177/0267658307071600CrossRefGoogle Scholar
Feng, L., & Papi, M. (2020). Persistence in language learning: The role of grit and future self-guides. Learning and Individual Differences, 81, 101904. https://doi.org/10.1016/j.lindif.2020.101904CrossRefGoogle Scholar
Fenk-Oczlon, G. (2022). Iconic associations between vowel acoustics and musical patterns, and the Musical Protolanguage Hypothesis. Frontiers in Communication, 7. https://doi.org/10.3389/fcomm.2022.887739CrossRefGoogle Scholar
Fenk-Oczlon, G., & Fenk, A. (2009). Some parallels between language and music from a cognitive and evolutionary perspective. Musicae Scientiae, 13, 201226. https://doi.org/10.1177/1029864909013002101CrossRefGoogle Scholar
Flege, J. E., & Bohn, O.-S. (2021). The revised speech learning model (SLM-r). In Wayland, R. (Ed.), Second Language Speech Learning: Theoretical and Empirical Progress (pp. 383). Cambridge University Press.10.1017/9781108886901.002CrossRefGoogle Scholar
Flege, J. E., & Eefting, W. (1987a). Cross-language switching in stop consonant perception and production by Dutch speakers of English. Speech Communication, 6, 185202. https://doi.org/10.1016/0167-6393(87)90025-2CrossRefGoogle Scholar
Flege, J. E., & Eefting, W. (1987b). Production and perception of English stops by native Spanish speakers. Journal of Phonetics, 15, 6783.10.1016/S0095-4470(19)30538-8CrossRefGoogle Scholar
Flege, J. E., Schirru, C., & MacKay, I. R. A. (2003). Interaction between the native and second language phonetic subsystems. Speech Communication, 40(4), 467491. https://doi.org/10.1016/S0167-6393(02)00128-0CrossRefGoogle Scholar
Flege, J. E., Yeni-Komshian, G. H., & Liu, S. (1999). Age constraints on second-language acquisition. Journal of Memory and Language, 41, 78104. https://doi.org/10.1006/jmla.1999.2638CrossRefGoogle Scholar
François, C., Chobert, J., Besson, M., & Schön, D. (2012) Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 20382043. https://doi.org/10.1093/cercor/bhs180CrossRefGoogle ScholarPubMed
Franklin, M. S., Sledge Moore, K., Yip, C.-Y., Jonides, J., Rattray, K., & Moher, J. (2008). The effects of musical training on verbal memory. Psychology of Music, 36(3), 353365. https://doi.org/10.1177/0305735607086044CrossRefGoogle Scholar
Freeman, G. B., & Gibson, G. E. (1988). Dopamine, acetylcholine, and glutamate interactions in aging. Behavioral and neurochemical correlates. Annals of the New York Academy of Sciences, 515, 191202. https://doi.org/10.1111/j.1749-6632.1988.tb32984.x.CrossRefGoogle ScholarPubMed
Fritz, J., Poeppel, D., Trainor, L. et al. (2013). The neurobiology of language, speech, and music. In Arbib, M. A. (Ed.), Language, Music, and the Brain: A Mysterious Relationship. MIT Press. https://doi.org/10.7551/mitpress/9780262018104.003.0017Google Scholar
Gallo, F., Bermudez-Margaretto, B., Shtyrov, Y., Abutalebi, J., Kreiner, H., Chitaya, T., Petrova, A., & Myachykov, A. (2021). First language attrition: What it is, what it isn’t and what it can be. Frontiers in Human Neurosicence, 07. https://doi.org/10.3389/fnhum.2021.686388Google Scholar
Gardner, R. C., & Lambert, W. E. (1972). Attitudes and Motivation in Second-Language Learning. Newbury House.Google Scholar
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40, 177190. https://doi.org/10.1037/0012-1649.40.2.177CrossRefGoogle ScholarPubMed
Gottfried, T. L., Staby, A. M., & Ziemer, C. J. (2004). Musical experience and Mandarin tone discrimination and imitation. Journal of the Acoustical Society of America, 115, 2545. https://doi.org/10.1121/1.4783674CrossRefGoogle Scholar
Gottfried, T. L., & Ouyang, G. Y.-H. (2005). Production of Mandarin tone contrasts by musicians and non-musicians. Journal of the Acoustical Society of America, 118, 2025. https://doi.org/10.1121/1.4785767CrossRefGoogle Scholar
Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23(1), 4351. https://doi.org/10.1016/j.conb.2012.11.006CrossRefGoogle ScholarPubMed
Grosjean, F. (1989). Neurolinguists, beware! The bilingual is not two monolinguals in one person. Brain and Language, 36, 315. https://doi.org/10.1016/0093-934X(89)90048-5CrossRefGoogle Scholar
Grosjean, F. (2010). Bilingual: Life and Reality. Harvard University Press.10.4159/9780674056459CrossRefGoogle Scholar
Hakuta, K., Bialystok, E., & Wiley, E. (2003). Critical evidence: A test of the critical-period hypothesis for second-language acquisition. Psychological Science, 14, 3138. https://doi.org/10.1111/1467-9280.01415CrossRefGoogle ScholarPubMed
Halliday, D. W. R., Gawryluk, J. R., Garcia-Barrera, M. A., & MacDonald, S. W. S. (2019). White matter integrity is associated with intraindividual variability in neuropsychological test performance in healthy older adults. Frontiers in Human Neuroscience, 13, 352. https://doi.org/10.3389/fnhum.2019.00352CrossRefGoogle ScholarPubMed
Hamrick, P., Graff, C., & Finch, B. (2019). Contributions of episodic memory to novel word learning. The Mental Lexicon, 14(3), 381398. https://doi.org/10.1075/ml.19019.hamCrossRefGoogle Scholar
Han, J.-I., Kim, J.-Y., & Tsukada, K. (2023). Foreign accent in L1 (first language): Case of Korean immigrants in North America. Linguistic Approaches to Bilingualism, 14(5), 740758. https://doi.org/10.1075/lab.22028.hanCrossRefGoogle Scholar
Harrington, M. (2006). The lexical decision task as a measure of L2 proficiency. EUROSLA Yearbook, 6, 147168. https://doi.org/10.1075/eurosla.6.10harCrossRefGoogle Scholar
Hartshorne, J. K. (2022). When do children lose the language instinct? A critical review of the critical periods literature. Annual Review of Linguistics, 8, 143151. https://doi.org/10.1146/annurev-linguistics-032521-053234CrossRefGoogle Scholar
Hartshorne, J. K., Tenenbaum, J. B., & Pinker, S. (2018). A critical period for second language acquisition: Evidence from 2/3 million English speakers. Cognition, 177, 263277. https://doi.org/10.1016/j.cognition.2018.04.007CrossRefGoogle ScholarPubMed
Harvey, L. (2017). Language learning motivation as ideological becoming. System, 65, 6977. https://doi.org/10.1016/j.system.2016.12.009CrossRefGoogle Scholar
Hasselmo, M. E. (2006) The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710715. https://doi.org/10.1016/j.conb.2006.09.002CrossRefGoogle ScholarPubMed
Havik, E., Roberts, L., Van Hout, R., Schreuder, R., & Haverkort, M. (2009). Processing subject-object ambiguities in the L2: A self-paced reading study with German L2 learners of Dutch. Language Learning, 59, 73112. https://doi.org/10.1111/j.1467-9922.2009.00501.xCrossRefGoogle Scholar
Haworth, C. M., Wright, M. J., Luciano, M., et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15(11),11121120. https://doi.org/10.1038/mp.2009.55CrossRefGoogle ScholarPubMed
Henry, A. (2017). L2 motivation and multilingual identities. The Modern Language Journal, 101(3), 548565. https://doi.org/10.1111/modl.12412CrossRefGoogle Scholar
Hernandez, A. E., Bodet, J. P. III, Gehm, K., & Shen, S. (2021). What does a critical period for second language acquisition mean? Reflections on Hartshorne et al. (2018). Cognition, 206, 104478. https://doi.org/10.1016/j.cognition.2020.104478CrossRefGoogle Scholar
Hernandez, A. E., Claussenius-Kalman, H. L., Ronderos, J., Castilla-Earls, A. P., Sun, L., Weiss, S. D., et al. (2019). Neuroemergentism: Response to commentaries. Journal of Neurolinguistics, 49, 258262. https://doi.org/10.1016/j.jneuroling.2018.06.001CrossRefGoogle ScholarPubMed
Ho, Y.-C., Cheung, M.-C., & Chan, A. S. (2003). Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children. Neuropsychology, 17(3), 439450. https://doi.org/10.1037/0894-4105.17.3.439CrossRefGoogle Scholar
Hopp, H. (2014). Working memory effects in the L2 processing of ambiguous relative clauses. Language Acquisition, 21(3), 250278. https://doi.org/10.1080/10489223.2014.892943CrossRefGoogle Scholar
Huang, Q., Liao, C., Ge, F., Aoi, J., & Liu, T. (2022). Acetylcholine bidirectionally regulates learning and memory. Journal of Neurorestoratology, 10(2), 100002. https://doi.org/10.1016/j.jnrt.2022.100002CrossRefGoogle Scholar
Hulstijn, J. H., van Gelderen, A., & Schoonen, R. (2009). Automatization in second language acquisition: What does the coefficient of variation tell us? Applied Psycholinguistics, 30(4), 555582. https://doi.org/10.1017/S0142716409990014CrossRefGoogle Scholar
Hyltenstam, K. (Ed.) (2016). Advanced Proficiency and Exceptional Ability in Second Language. Mouton de Gruyter.10.1515/9781614515173CrossRefGoogle Scholar
Hyltenstam, K., & Abrahamsson, N. (2000). Who can become native-like in a second language? All, some, or none? On the maturational constraints controversy in second language acquisition. Studia Linguistica, 54, 150166. https://doi.org/10.1111/1467-9582.00056CrossRefGoogle Scholar
Indefrey, P. (2006). It is time to work toward explicit processing models for native and second language speakers. Applied Psycholinguistics, 27, 6669. https://doi.org/10.1017/S0142716406280032Google Scholar
Jänke, L. (2012). The relationship between music and language. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00123Google Scholar
Jantzen, M. G., Howe, B. M., & Jantzen, K. J. (2014) Neurophysiological evidence that musical training influences the recruitment of right hemispheric homologues for speech perception. Frontiers in Psychology, 3(5), 171. https://doi.org/10.3389/fpsyg.2014.00171Google Scholar
Jiang, N., & Forster, K. (2001). Cross-language priming asymmetries in lexical decision and episodic recognition. Journal of Memory and Language, 44, 3251. https://doi.org/10.1006/jmla.2000.2737CrossRefGoogle Scholar
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21, 6099. https://doi.org/10.1016/0010-0285(89)90003-0CrossRefGoogle ScholarPubMed
Juffs, A., & Harrington, M. (2011). Aspects of working memory in L2 learning. Language Teaching, 44, 137166. https://doi.org/10.1017/S0261444810000509CrossRefGoogle Scholar
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122149. https://doi.org/10.1037/0033-295X.99.1.122CrossRefGoogle ScholarPubMed
Kane, M. J., Conway, A. R. A., Hambrick, D. Z., & Engle, R. W. (2007). Variation in working memory capacity as variation in executive attention and control. In Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. N. (Eds.), Variation in Working Memory (pp. 2149). Oxford University Press.Google Scholar
Karlsgodt, K. H., Bachman, P., Winkler, A. M., Bearden, C. E., & Glahn, D. C. (2011). Genetic influence on the working memory circuitry: Behavior, structure, function and extensions to illness. Behavioral and Brain Research, 225(2), 610622. https://doi.org/10.1016/j.bbr.2011.08.016CrossRefGoogle ScholarPubMed
Karlsgodt, K. H., Kochunov, P., Winkler, A. M, … & Glahn, D. C. (2010). A multimodal assessment of the genetic control over working memory. Journal of Neuroscience, 30(24), 81978202. https://doi.org/10.1523/JNEUROSCI.0359-10.2010CrossRefGoogle ScholarPubMed
Kidd, E., Donnelly, S., & Christiansen, M. H. (2018). Individual differences in language acquisition and processing. Trends in Cognitive Sciences, 22(2), 154169. https://doi.org/10.1016/j.tics.2017.11.006CrossRefGoogle ScholarPubMed
Kim, A. E., Oines, L., & Miyake, A. (2018). Individual differences in verbal working memory underlie a tradeoff between semantic and structural processing difficulty during language comprehension: An ERP investigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 406420. https://doi.org/10.1037/xlm0000457Google ScholarPubMed
Kim, J. H., & Christianson, K. (2013). Sentence complexity and working memory effects in ambiguity resolution. Journal of Psycholinguistic Research, 42(5), 393411. https://doi.org/10.1007/s10936-012-9224-4CrossRefGoogle ScholarPubMed
Klencklen, G., Lavenex, P. B., Grandner, C., & Lavenex, P. (2017). Working memory decline in normal aging: Is it really worse in space than in color? Learning and Motivation, 57, 4860. https://doi.org/10.1016/j.lmot.2017.01.007CrossRefGoogle Scholar
Knowles, E. E., Mathias, S. R., McKay, D. R., Sprooten, E., Blangero, J., Almasy, L., & Glahn, D. C. (2014). Genome-wide analyses of working-memory ability: A review. Current Behavioral Neuroscience Reports, 1(4), 224233. https://doi.org/10.1007/s40473-014-0028-8CrossRefGoogle ScholarPubMed
Köpke, B., & Genevska-Hanke, D. (2018). First language attrition and dominance: Same same or different? Frontiers in Psychology, 9, 1963. https://doi.org/10.3389/fpsyg.2018.01963CrossRefGoogle ScholarPubMed
Köpke, B., & Schmid, M. S. (2004). Language attrition: The next phase. In Schmid, M. S., Köpke, B., Keijzer, M., & Weilemar, L. (Eds.), First Language Attrition: Interdisciplinary Perspectives on Methodological Issues (pp. 145). John Benjamins. https://doi.org/10.1075/sibil.28.02kopGoogle Scholar
Kormos, J., & Csizér, K. (2014). The interaction of motivation, self‐regulatory strategies, and autonomous learning behavior in different learner groups. TESOL Quarterly, 48(2), 275299. https://doi.org/10.1002/tesq.129CrossRefGoogle Scholar
Kornder, L., & Mennen, I. (2021). Longitudinal developments in bilingual second language acquisition and first language attrition of speech: The case of Arnold Schwarzenegger. Languages, 6(2), 61, 1–25. https://doi.org/10.3390/languages6020061CrossRefGoogle Scholar
Kousaie, S., Chen, J. K., Baum, S. R., Phillips, N. A., Titone, D., & Klein, D. (2021). Bilingual language experience and the neural underpinnings of working memory. Neuropsychologia, 163, 19. https://doi.org/10.1016/j.neuropsychologia.2021.108081CrossRefGoogle ScholarPubMed
Kovas, Y., Voronin, I., Kaydalov, A., Malykh, S. B., Dale, P. S., & Plomin, R. (2013). Literacy and numeracy are more heritable than intelligence in primary school. Psychological Science, 24(10), 20482056. https://doi.org/10.1177/0956797613486982CrossRefGoogle ScholarPubMed
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11, 599605.10.1038/nrn2882CrossRefGoogle ScholarPubMed
Kremen, W. S., Jacobsen, K. C., Xian, H., Eisen, S. A., Eaves, L. J., Tsuang, M. T., & Lyons, M. J. (2007). Genetics of verbal working memory processes: A twin study of middle-aged men. Neuropsychology, 21(5), 569580. https://doi.org/10.1037/0894-4105.21.5.569CrossRefGoogle ScholarPubMed
Kroll, J. F., Bogulski, C. A., & McClain, R. (2012). Psycholinguistic perspectives on second language learning and bilingualism: The course and consequence of cross-language competition. Linguistic Approaches to Bilingualism, 2(1), 124. https://doi.org/10.1075/lab.2.1.01kroCrossRefGoogle Scholar
Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519523. https://doi.org/10.1038/35097076CrossRefGoogle Scholar
Lamb, M., Csizér, K., Henry, A., & Ryan, S. (2019). The Palgrave Handbook of Motivation for Language Learning. Palgrave Macmillan.10.1007/978-3-030-28380-3CrossRefGoogle Scholar
Laufer, B. (2003). The influence of L2 on L1 collocational knowledge and on L1 lexical diversity in free written expression. In Cook, V. (Ed.), Effects of the Second Language on the First (pp. 1931). Multilingual Matters.Google Scholar
Leaderbrand, K., Chen, H. J., Corcoran, K. A., Guedea, A. L., Jovasevic, V., Wess, J., & Radulovic, J. (2016). Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory. Learning & Memory, 23(11), 631638. https://doi.org/10.1101/lm.043133.116CrossRefGoogle ScholarPubMed
Lee, C.Y., & Hung, T. H. (2008). Identification of Mandarin tones by English-speaking musicians and non-musicians. Journal of the Acoustical Society of America, 124, 32353248. https://doi.org/10.1121/1.2990713CrossRefGoogle Scholar
Li, S., Hiver, P., & Papi, M. (2022). The Routledge Handbook of Second Language Acquisition and Individual Differences. Routledge. https://doi.org/10.4324/9781003270546CrossRefGoogle Scholar
Li, W., & Hartshorne, J. K. (2022). Even simultaneous bilinguals do not reach monolingual levels of proficiency in syntax. Languages, 7, 293. https://doi.org/10.3390/languages7040293CrossRefGoogle Scholar
Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F. (2014). Working memory and second language comprehension and production: A meta-analysis. Psychonomic Bulletin & Review, 21(4), 861883. https://doi.org/10.3758/s13423-013-0565-2CrossRefGoogle ScholarPubMed
Logie, R. H., Belletier, C., & Doherty, J. M. (2021). Integrating theories of working memory. In Logie, R., Camos, V., & Cowan, N. (Eds.), Working Memory: The State of the Science (pp. 389430). Oxford Academic. https://doi.org/10.1093/oso/9780198842286.003.0014Google Scholar
Long, M. H. (1990). Maturational constraints on language development. Studies in Second Language Acquisition, 12, 251285. https://doi.org/10.1017/S0272263100009165CrossRefGoogle Scholar
Lybeck, K. (2002). Cultural identification and second language pronunciation of Americans in Norway. The Modern Language Journal, 86(2), 174191. https://doi.org/10.1111/1540-4781.00143CrossRefGoogle Scholar
MacIntyre, P. D., & Serroul, A. (2014). Motivation on a per-second timescale: Examining approach-avoidance motivation during L2 task performance. In Dörnyei, Z., Macintyre, P. D., & Henry, A. (Eds.), Motivational Dynamics in Language Learning (pp. 109138). Multilingual Matters.Google Scholar
MacWhinney, B. (2001). The competition model: The input, the context, and the brain. In Robinson, P. (Ed.), Cognition and Second Language Instruction (pp. 6990). Cambridge University Press. https://doi.org/10.1017/CBO9781139524780.005CrossRefGoogle Scholar
Madden, D. J., Bennett, I. J., Burzynska, A., Potter, G. G., Chen, N. K., & Song, A. W. (2012) Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochimica et Biophysica Acta (BBA): Molecular Basis of Disease, 1822(3), 386400. https://doi.org/10.1016/j.bbadis.2011.08.003CrossRefGoogle ScholarPubMed
Magnusson, J. E., & Stroud, C. (2012). High proficiency in markets of performance: A sociocultural approach to nativelikeness. Studies in Second Language Acquisition, 34(2), 321345. https://doi.org/10.1017/S0272263112000071CrossRefGoogle Scholar
Mamiya, P. C., Richards, T. L., Coe, B. P., & Kuhl, P. K. (2016). Brain white matter structure and COMT gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences, 113(26), 72497254. https://doi.org/10.1073/pnas.1606602113CrossRefGoogle ScholarPubMed
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 1312913134. https://doi.org/10.1073/pnas.1811793115CrossRefGoogle ScholarPubMed
Marie, C., Delogu, F., Lampis, G., Olivetti Belardinelli, M., & Besson, M. (2011). Influence of musical expertise on segmental and tonal processing in Mandarin Chinese. Journal of Cognitive Neuroscience, 23, 27012715. https://doi.org/10.1162/jocn.2010.21585CrossRefGoogle ScholarPubMed
Marques, C., Moreno, S., Luís Castro, S., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19,14531463. https://doi.org/10.1162/jocn.2007.19.9.1453CrossRefGoogle Scholar
Masgoret, A. M., & Gardner, R. C. (2003). Attitudes, motivation and second language learning: A meta-analysis of studies conducted by Gardner and his associates. Language Learning, 53(1), 123163. https://doi.org/10.1111/1467-9922.00212CrossRefGoogle Scholar
Mashburn, C.A., Tsukahara, J. S., & Engle, R. W. (2021). Individual differences in attention control: Implications for the relationship between working memory capacity and fluid intelligence (pp. 175211). Oxford Academic. https://doi.org/10.1093/oso/9780198842286.003.0007Google Scholar
Mayberry, R. I., & Kluender, R. (2018). Rethinking the critical period for language: New insights into an old question from American Sign Language. Bilingualism: Language and Cognition, 21, 886905. https://doi.org/10.1017/S1366728917000724CrossRefGoogle ScholarPubMed
McMullen, E., & Saffran, J. R. (2004). Music and language: A developmental comparison. Music Perception, 21(3), 289311. https://doi.org/0.1525/mp.2004.21.3.289CrossRefGoogle Scholar
McNab, F., Zeidman, P., Rutledge, R. B. …, & Dolan, R. J. (2015). Age-related changes in working memory and the ability to ignore distraction. Publications of the National Academy of Sciences, 112(20), 65156518. https://doi.org/10.1073/pnas.1504162112CrossRefGoogle Scholar
Meulman, N., Wieling, M., Sprenger, S. A., Stowe, L. A., & Schmid, M. S. (2015). Age effects in L2 grammar processing as revealed by ERPs and how (not) to study them. PLoS ONE, 10(12). https://doi.org/10.1371.journal.pone.0143328CrossRefGoogle Scholar
Michalczyk, K., Malstädt, N., Worgt, M., Könen, T., & Hasselhorn, M. (2013). Age differences and measurement invariance of working memory in 5- to 12-year-old children. European Journal of Psychological Assessment, 29(3), 220229. https://doi.org/10.1027/1015-5759/a000149CrossRefGoogle Scholar
Mountford, H. S., Braden, R., Newbury, D. F., & Morgan, A. T. (2022). The genetic and molecular basis of developmental language disorder: A review. Children, 9(5), 586. https://doi.org/10.3390/children9050586CrossRefGoogle ScholarPubMed
Muñoz-Pradas, R., Díaz-Palacios, M., Rodriguez-Martinez, E., & Gómez, C. M. (2021). Order of maturation of the components of working memory from childhood to emerging adulthood. Current Research in Behavioral Sciences, 2, 100062. https://doi.org/10.1016/j.crbeha.2021.100062CrossRefGoogle Scholar
Naiman, N., Fröhlich, M., Stern, H. H., & Todesco, A. (1978). The Good Language Learner. Ontario Institute for Studies in Education (OISE).Google Scholar
Newbury, D. F., & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68(2), 309320. https://doi.org/10.1016/j.neuron.2010.10.001CrossRefGoogle Scholar
Newman, A. J., Tremblay, A., Nichols, E. S., Neville, H. J., & Ullman, M. T. (2012). The influence of language proficiency on lexical semantic processing in native and late learners of English. Journal of Cognitive Neuroscience, 24(5), 12051223. https://doi.org/10.1162/jocn_a_00143CrossRefGoogle ScholarPubMed
Newman, E. L., Gupta, K., Climer, J. R., Monaghan, C. K., & Hasselmo, M. E. (2012). Cholinergic modulation of cognitive processing: Insights drawn from computational models. Frontiers in Behavioral Neuroscience, 6(24). https://doi.org/10.3389/fnbeh.2012.00024CrossRefGoogle ScholarPubMed
Newport, E. L., Bavelier, D., & Neville, H. J. (2001). Critical thinking about critical periods: Perspectives on a critical period for language acquisition. In Dupoux, E. (Ed.), Language, Brain and Cognitive Development: Essays in Honor of Jacques Mehler (pp. 481502). MIT Press.Google Scholar
Nie, P., Wang, C., Rong, G., Du, B., Lu, J., Li, S., Putkinen, V., Tao, S., & Tervaniemi, M. (2022). Effects of music training on the auditory working memory of Chinese-speaking school-aged children: A longitudinal study. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.770425CrossRefGoogle Scholar
Noels, K. A., Lou, N. M., Lascano, D. I. V., Chaffee, K. E., Dincer, A., Zhang, Y. S. D., & Zhang, X. (2019). Self-determination and motivated engagement in language learning. In Lamb, M., Csizér, K., Henry, A., & Ryan, S. (Eds.), The Palgrave Handbook of Motivation for Language Learning (pp. 95115). Palgrave Macmillan.10.1007/978-3-030-28380-3_5CrossRefGoogle Scholar
Norton, B. (2000). Identity and Language Learning: Gender, Ethnicity and Educational Change. Longman.Google Scholar
Novén, M., Olsson, H., Helms, G., Horne, M., Nilsson, M., & Roll, M. (2021). Cortical and white matter correlates of language-learning aptitudes. Human Brain Mapping, 42(15), 50375050.10.1002/hbm.25598CrossRefGoogle ScholarPubMed
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., and Bäckman, L. (2012). Memory, aging and brain maintenance. Trends in Cognitive Sciences, 16, 292305. https://doi.org/10.1016/j.tics.2012.04.005CrossRefGoogle ScholarPubMed
Ogg, M., & Slevc, R. L. (2019). Neural mechanisms of music and language. In de Zubicary, G. I. & Schiller, N. O. (Eds.), The Oxford Handbook of Neurolinguistics (pp. 907952). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190672027.013.35Google Scholar
Okbay, A., Beauchamp, J., Fontana, M., et al. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542. https://doi.org/10.1038/nature17671CrossRefGoogle ScholarPubMed
Papi, M., & Hiver, P. (2020). Language learning motivation as a complex dynamic system: A global perspective of truth, control and value. The Modern Language Journal, 104(1), 209232. https://doi.org/10.1111/modl.12624CrossRefGoogle Scholar
Papi, M., & Teimouri, Y. (2012). Dynamics of selves and motivation: A cross-sectional study in the EFL context of Iran. IRAL: International Journal of Applied Linguistics, 22(3), 287309. https://doi.org/10.1111/j.1473-4192.2012.00312.xGoogle Scholar
Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009b). Musician enhancement for speech in noise. Ear and Hearing, 30, 653661. https://doi.org/10.1097/AUD.0b013e3181b412e9CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., and Kraus, N. (2011b). Musical experience and the aging auditory system: Implications for cognitive abilities and hearing speech in noise. PLoS ONE, 6(5), e10182.https://doi.org/10.1371/journal.pone.0018082CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Strait, D. L., & Kraus, N. (2011a). Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia, 49, 33383345. https://doi.org/10.1016/j.neuropsychologia.2011.08.007CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Tierney, A., Strait, D. L., and Kraus, N. (2012). Musicians have fine-tuned neural distinction of speech syllables. Neuroscience, 219, 111119. https://doi.org/10.1016/j.neuroscience.2012.05.042CrossRefGoogle ScholarPubMed
Park, D. C. (1999). The basic mechanisms accounting for age-related decline in cognitive function. In Park, D. & Schwarz, N. (Eds.), Cognitive Aging: A Primer (pp. 321). Psychology Press. https://doi.org/10.4324/9780203727027Google Scholar
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 114. https://doi.org/10.3389/fpsyg.2011.00142CrossRefGoogle ScholarPubMed
Patel, A. D. (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research, 308, 98108. https://doi.org/10.1016/j.heares.2013.08.011CrossRefGoogle ScholarPubMed
Peretz, I., Nguyen, S., & Cummings, S. (2011). Tone language fluency impairs pitch discrimination. Frontiers in Psychology, 2.https://doi.org/10.3389/fpsyg.2011.00145CrossRefGoogle ScholarPubMed
Pesnot Lerousseau, J., Hidalgo, C., & Schön, D. (2020). Musical training for auditory rehabilitation in hearing loss. Journal of Clinical Medicine, 9(4), 1058. https://doi.org/10.3390/jcm9041058CrossRefGoogle ScholarPubMed
Pfenninger, S. E., & Singleton, D. (2019). Starting age overshadowed: The primacy of differential environmental and family support effects on second language attainment in an instructional context. Language Learning, 69(S1), 207234. https://doi.org/10.1111/lang.12318CrossRefGoogle Scholar
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron, 76(1), 116129. https://doi.org/10.1016/j.neuron.2012.08.036CrossRefGoogle ScholarPubMed
Piller, I. (2002). Passing for a native speaker: Identity and success in second language learning. Journal of Sociolinguistics, 6, 179206. https://doi.org/10.1111/1467-9481.00184CrossRefGoogle Scholar
Pliatsikas, C., Veríssimo, J., Babcock, L., Pullman, M. Y., Glei, D. A., Weinstein, M., Goldman, N., & Ullman, M. T. (2019). Working memory in older adults declines with age, but is modulated by sex and education. Quarterly Journal of Experimental Psychology, 72(6), 13081327. https://doi.org/10.1177/1747021818791994CrossRefGoogle ScholarPubMed
Prins, N., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: An update. Nature Reviews Neurology, 11, 157165. https://doi.org/10.1038/nrneurol.2015.10CrossRefGoogle ScholarPubMed
Qi, Z., Beach, S. D., Finn, A. S., Minas, J., Goetz, C., Chan, B., & Gabrieli, J. D. E. (2017). Native-language N400 and P600 predict dissociable language-learning abilities in adults. Neuropsychologia, 98, 177191. https://doi.org/10.1016/j.neuropsychologia.2016.10.005CrossRefGoogle ScholarPubMed
Rebuschat, P., Rohrmeier, M., Hawkins, J. A., & Cross, I. (2012). Language and Music as Cognitive Systems. Oxford University Press.Google Scholar
Reiterer, S. M. (2019). Neuro-psycho-cognitive markers for pronunciation/speech imitation as language aptitude. In Wen, Z., Skehan, P., Biedroń, A., Li, S., & Sparks, S. L. (Eds.), Language Aptitude: Advancing Theory, Testing, Research and Practice (pp. 277299). Taylor & Francis.10.4324/9781315122021-14CrossRefGoogle Scholar
Rimfeld, K., Malanchini, M., Krapohl, E., et al. (2018). The stability of educational achievement across school years is largely explained by genetic factors. npj Science of Learning, 3(16). https://doi.org/10.1038/s41539-018-0030-0CrossRefGoogle ScholarPubMed
Robinson, P. (2002). Learning conditions, aptitude complexes and SLA: A framework for research and pedagogy. In Robinson, P. (Ed.), Individual Differences and Instructed Language Learning (pp. 113133). John Benjamins.10.1075/lllt.2.08robCrossRefGoogle Scholar
Rubenfeld, S., Clément, R., Lussier, D., Lebrun, M., & Auger, R. (2006). Second language learning and cultural representations: Beyond competence and identity. Language Learning, 56 (4), 609632. https://doi.org/10.1111/j.1467-9922.2006.00390.xCrossRefGoogle Scholar
Rubin, J. (1975). What the “good language learner” can teach us. TESOL Quarterly, 9, 4151. https://doi.org/10.2307/3586011CrossRefGoogle Scholar
Saito, K. (2024). Age effects in spoken second language vocabulary attainment beyond the critical period. Studies in Second Language Acquisition, 46(1), 327. https://doi.org/10.1017/S0272263122000432CrossRefGoogle Scholar
Salthouse, T. A. (2011) Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137(5), 753784. https://doi.org/10.1037/a0023262CrossRefGoogle ScholarPubMed
Schmidt, R. (1983). Interaction, acculturation and the acquisition of communication competence: A case study of an adult. In Wolfson, N. & Judd, E. (Eds.), Sociolinguistics and Language Acquisition (pp. 137174). Newbury House.Google Scholar
Schneiderman, E. I., & Desmarais, C. (1988). A neuropsychological substrate for talent in second-language acquisition. In Obler, L. K. & Fein, D. (Eds.), The Exceptional Brain. Neuropsychology of Talent and Special Abilities (pp. 103126). The Guilford Press.Google Scholar
Schwartz, A. I., & Kroll, J. F. (2006). Bilingual lexical activation in sentence context. Journal of Memory and Language, 55(2), 197212. https://doi.org/10.1016/j.jml.2006.03.004CrossRefGoogle Scholar
Schwering, S. C., & MacDonald, M. C. (2020) Verbal working memory as emergent from language comprehension and production. Frontiers in Human Neuroscience, 14, 68. https://doi.org/10.3389/fnhum.2020.00068CrossRefGoogle ScholarPubMed
Schwieter, J. W., & Wen, Z. (2022). The Cambridge Handbook of Working Memory in Language and Linguistics. Cambridge University Press.10.1017/9781108955638CrossRefGoogle Scholar
Setter, J., & Jenkins, J. (2005). State-of-the-Art Review Article. Language Teaching, 38(1), 117. https://doi.org/10.1017/S026144480500251XCrossRefGoogle Scholar
Shook, A., & Marian, V. (2013). The bilingual language interaction network for comprehension of speech. Bilingualism: Language and Cognition, 16(2), 304324. https://doi.org/10.1017/S1366728912000466CrossRefGoogle Scholar
Shook, A., Marian, V., Bartolotti, J., & Schroeder, S. R. (2013). Musical experience influences statistical learning of a novel language. The American Journal of Psychology, 126(1), 95104. https://doi.org/10.5406/amerjpsyc.126.1.0095CrossRefGoogle ScholarPubMed
Singleton, D., & Leśniewska, J. (2021). The critical period hypothesis for L2 acquisition: An unfalsifiable embarrassment? Languages, 6(3), 149. https://doi.org/10.3390/languages6030149CrossRefGoogle Scholar
Skehan, P. (1998). A Cognitive Approach to Language Learning. Oxford University Press.Google Scholar
Skehan, P. (2016). Foreign language aptitude. In Granena, G., Jackson, D. O., & Yilmaz, Y. (Eds.), Cognitive Individual Differences in L2 Processing and Acquisition (pp. 381395). John Benjamins.Google Scholar
Slevc, L. R., Davey, N. S., Buschkuehl, M., & Jaeggi, S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199211. https://doi.org/10.1016/j.cognition.2016.03.017CrossRefGoogle ScholarPubMed
Slevc, L. R., & Miyake, A. (2006). Individual differences in second-language proficiency: Does musical ability matter? Psychological Science, 17(8), 675681. https://doi.org/s10.1111/j.1467-9280.2006.01765.xCrossRefGoogle ScholarPubMed
Slevc, L. R., & Okada, B. M. (2015). Processing structure in language and music: A case for shared reliance on cognitive control. Psychonomic Bulletin & Review, 22(3), 637652. https://doi.org/10.3758/s13423-014-0712-4CrossRefGoogle Scholar
Smith, A. W., Holden, K. R., Dwivedi, A., Dupont, B. R., & Lyons, M. J. (2015). Deletion of 16q24.1 supports a role for the ATP2C2 gene in specific language impairment. Journal of Child Neurology, 30, 517521. https://doi.org/10.1177/0883073814545113CrossRefGoogle ScholarPubMed
Sparks, R. L. (2012). Individual differences in L2 learning and long-term L1-L2 relationships. Language Learning, 64(s2), 527. https://doi.org/10.1111/j.1467-9922.2012.00704.xCrossRefGoogle Scholar
Sparks, R. L., Patton, J., & Ganschow, L. (2012). Profiles of more and less successful L2 learners: A cluster analysis study. Learning and Individual Differences, 22(4), 463472. https://doi.org/10.1016/j.lindif.2012.03.009CrossRefGoogle Scholar
Sparks, R. L., Patton, J., Ganschow, L., Humbach, N., & Javorsky, J. (2006). Native language predictors of foreign language proficiency and foreign language aptitude. Annals of Dyslexia, 56(1), 129160. https://doi.org/10.1007/s11881-006-0006-2CrossRefGoogle ScholarPubMed
Steinhauer, K., & Kasparian, K. (2020). Brain plasticity in adulthood: ERP evidence for L1-attrition in lexicon and morphosyntax after predominant L2 use. Language Learning, 70(S2), 171193.10.1111/lang.12391CrossRefGoogle Scholar
Stevick, E. (1989). Success with foreign languages: Seven who achieved it and what worked for them. Prentice Hall.Google Scholar
Stromswold, K. (1998). Genetics of spoken language disorders. Human Biology, 70, 297324. www.ncbi.nlm.nih.gov/pubmed/9549241Google ScholarPubMed
Swanson, H. L. (2017). Verbal and visual-spatial working memory: What develops over a life span? Developmental Psychology, 53(5), 971995. https://doi.org/10.1037/dev0000291CrossRefGoogle Scholar
Swets, B., Desmet, T., Hambrick, D. Z., & Ferreira, F. (2007). The role of working memory in syntactic ambiguity resolution: A psychometric approach. Journal of Experimental Psychology: General, 136(1), 6481. https://doi.org/10.1037/0096-3445.136.1.64CrossRefGoogle ScholarPubMed
Takahashi, N., Nishimura, T., Harada, T., Okumura, A., Iwabuchi, T., Rahman, M. S., Kuwabara, H., Takagai, S., Nomura, Y., Takei, N., & Tsuchiya, K. J. (2021). Association between genetic risks for obesity and working memory in children. Frontiers in Neuroscience, 22(15), 749230. https://doi.org/10.3389/fnins.2021.749230CrossRefGoogle Scholar
Thevenon, J., Souchay, C., Seabold, G., …, & Faivre, L. (2016). Heterozygous deletion of the LRFN2 gene is associated with working memory deficits. European Journal of Human Genetics, 24, 911918. https://doi.org/10.1038/ejhg.2015.221CrossRefGoogle ScholarPubMed
Troutman, S. B. W., & Diaz, M. T. (2020). White matter disconnection is related to age-related phonological deficits. Brain Imaging and Behavior, 14(5), 15551565. doi. 10.1007/s11682–019-00086-8CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., Briley, D. A., & Harden, K. P. (2013). Genetic and environmental influences on cognition across development and context. Current Directions in Psychological Science, 22(5), 349355. https://doi.org/10.1177/0963721413485087CrossRefGoogle ScholarPubMed
Turker, S., & Reiterer, S. (2021). Brain, musicality, and language aptitude: A complex interplay. Annual Review of Applied Linguistics, 41, 95107. https://doi.org/10.1017/S0267190520000148CrossRefGoogle Scholar
Ullman, M. T., Miranda, R. A., & Travers, M. L. (2007). Sex differences in the neurocognition of language. In Becker, J. B. et al. (Eds.), Sex Differences in the Brain: From Genes to Behavior (pp. 291310). Oxford Academic. https://doi.org/10.1093/acprof:oso/9780195311587.003.0015CrossRefGoogle Scholar
Unsworth, N., Heitz, R., Schrock, J. C., & Engle, R. (2005). An automated version of the operation span task. Behavioral Research Methods, 37, 498505. https://doi.org/10.3758/BF03192720CrossRefGoogle ScholarPubMed
Ushioda, E. (2009). A person-in-context relational view of emergent motivation, self and identity. In Dörnyei, Z. & Ushioda, E. (Eds.), Motivation, Language Identity and the L2 Self (pp. 215228). Multilingual Matters.Google Scholar
Ushioda, E. (2016). Language learning motivation through a small lens: A research agenda. Language Teaching, 49(4), 564577. https://doi.org/10.1017/S0261444816000173CrossRefGoogle Scholar
Ushioda, E. (2019a). Motivation in second language acquisition. In Chapelle, C. (Ed.), The Encyclopedia of Applied Linguistics (pp. 16). Wiley. https://doi.org/10.1002/9781405198431Google Scholar
Ushioda, E. (2019b). Researching L2 motivation: Past, present and future. In Lamb, M. et al. (Eds.), The Palgrave Handbook of Motivation for Language Learning (pp. 661682). Palgrave Macmillan.10.1007/978-3-030-28380-3_32CrossRefGoogle Scholar
van der Lely, H. K., & Stollwerck, L. (1996). A grammatical specific language impairment in children: An autosomal dominant inheritance? Brain and Language, 52(3), 484504. https://doi.org/10.1006/brln.1996.0026CrossRefGoogle ScholarPubMed
Van Hedger, S. C., Johnsrude, I. S., & Batterink, L. J. (2022) Musical instrument familiarity affects statistical learning of tone sequences. Cognition, 218, 104949. https://doi.org/10.1016/j.cognition.2021.104949CrossRefGoogle ScholarPubMed
van Hell, J. G. (2023). The neurocognitive underpinnings of second language processing: Knowledge gains from the past and future outlook. Language Learning, 73(S2), 95138.10.1111/lang.12601CrossRefGoogle Scholar
van Hell, J., & Abdollahi, F. (2017). Individual variation in syntactic processing in the second language: behavioral and electrophysiological approaches. In Segers, E. & van de Broek, P. (Eds.), Developmental Perspectives in Written Language and Literacy (pp. 257273). John Benjamins. https://doi.org/10.1075/z.206.16vanGoogle Scholar
van Hell, J. G., & Dijkstra, T. (2002). Foreign language knowledge can influence native language performance in exclusively native contexts. Psychonomic Bulletin & Review, 9(4), 780789. https://doi.org/10.3758/BF03196335CrossRefGoogle ScholarPubMed
van Hell, J. G., & Tanner, D. (2012). Second language proficiency and cross-language lexical activation. Language Learning, 62(S2), 148171. https://doi.org/10.1111/j.1467-9922.2012.00710.xCrossRefGoogle Scholar
van Leeuwen, M., van den Berg, S. M., Hoekstra, R. A., & Boomsma, D. I. (2009). The genetic and environmental structure of verbal and visuospatial memory in young adults and children. Neuropsychology, 23(6), 792802. https://doi.org/10.1037/a0016526CrossRefGoogle ScholarPubMed
Vanhove, J. (2013). The critical period hypothesis in second language acquisition: A statistical critique and a reanalysis. PLoS ONE, 8(7), e69172. https://doi.org/10.1371/journal/.pone.0069172CrossRefGoogle ScholarPubMed
Walters, K. (2011). Gendering French in Tunisia: Language ideologies and nationalism. International Journal of the Sociology of Language, 211, 83111. https://doi.org/10.1515/ijsl.2011.039Google Scholar
Waninge, F., Dörnyei, Z., & de Bot, K. (2014). Motivational dynamics in language learning: Change, stability and context. The Modern Language Journal, 9(1), 704723. https://doi.org/10.1111/modl.12118Google Scholar
Weiss, M. W., & Bidelman, G. M. (2015). Listening to the brainstem: Musicianship enhances intelligibility of subcortical representations for speech. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(4), 16871691. https://doi.org/10.1523/JNEUROSCI.3680-1CrossRefGoogle Scholar
Wen, Z. (2016). Working Memory and Second Language Learning: An Integrated Approach. Multilingual Matters.Google Scholar
Wen, Z. (2018). Working memory in first and second language: A comprehensive bibliography. Expanded and updated (November 24, 2018) from Wen (2016). www.academia.edu/12198656Google Scholar
Wen, Z. (2021). Working memory. In Mohebbi, H. & Coombe, C. (Eds.), Research Questions in Language Education and Applied Linguistics (pp. 279284). Springer.10.1007/978-3-030-79143-8_50CrossRefGoogle Scholar
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173196. https://doi.org/10.1146/annurev-psych-010814-015104CrossRefGoogle ScholarPubMed
White, E. J., Hutka, S. A., Williams, L. J., & Moreno, S. (2013). Learning, neural plasticity and sensitive periods: Implications for language acquisition, music training and transfer across the lifespan. Frontiers in Psychology, 7. https://doi.org/10.3389/fnsys.2013.00090Google ScholarPubMed
Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-back task. Frontiers in Psychology, 2, 186. https://doi.org/10.3389/fpsyg.2011.00186CrossRefGoogle Scholar
Wing, H. D. (1968). Tests of Musical Ability and Appreciation: An Investigation into the Measurement, Distribution, and Development of Musical Capacity (2nd ed.). Cambridge University Press.Google Scholar
Wong, P. C. M., Kang, X., So, H.-C., & Choy, K. W. (2022). Contributions of common genetic variants to specific languages and to when a language is learned. Nature Scientific Reports, 12, 580. https://doi.org/10.1038/s41598-021-04163-1CrossRefGoogle Scholar
Wong, P. C., Morgan-Short, K., Ettlinger, M., & Zheng, J. (2012). Linking neurogenetics and individual differences in language learning: The dopamine hypothesis. Cortex, 48(9), 10911102. https://doi.org/10.1016/j.cortex.2012.03.017CrossRefGoogle ScholarPubMed
Wright, M., De Geus, E., Ando, J., Luciano, M., Posthuma, D., Ono, Y., …, & Boomsma, D. (2001). Genetics of cognition: Outline of a collaborative twin study. Twin Research, 4(1), 4856. https://doi.org/10.1375/twin.4.1.48CrossRefGoogle ScholarPubMed
You, C., & Dörnyei, Z. (2016). Language learning motivation in China: Results of a large-scale stratified survey. Applied Linguistics, 37(4), 495519. https://doi.org/10.1093/applin/amu046CrossRefGoogle Scholar
Young, R., & Perkins, K. (1995). Cognition and conation in second language acquisition theory. IRAL: International Review of Applied Linguistics in Language Teaching, 33(2), 142164.Google Scholar
Zhang, F., Roland, C., Rasul, D., Cahn, S., Liang, C., & Valencia, G. (2019.) Comparing musicians and non-musicians in signal-in-noise perception. International Journal of Audiology, 58(11), 717723. https://doi.org/10.1080/14992027.2019.1623424CrossRefGoogle ScholarPubMed
Zhang, L., Xie, S., Li, Y., Shu, H., & Zhang, Y. (2020). Perception of musical melody and rhythm as influenced by native language experience. Journal of the Acoustical Society of America, 147, EL385EL390. https://doi.org/10.1121/10.0001179CrossRefGoogle ScholarPubMed
Zhang, R., & Zou, D. Z. (2022) Self-regulated second language learning: A review of types and benefits of strategies, modes of teacher support, and pedagogical implications. Computer Assisted Language Learning, 37(4), 720765. https://doi.org/10.1080/09588221.2022.2055081CrossRefGoogle Scholar
Zhang, Y., & Papi, M. (2021). Motivation and second language pragmatics: A regulatory focus perspective. Frontiers in Psychology, 12, 753605. https://doi.org/10.3389/fpsyg.2021.753605CrossRefGoogle ScholarPubMed
Zhang, Y., Ridchenko, M., Hayashi, A., & Hamrick, P. (2021). Episodic memory contributions to second language lexical development persist at higher proficiencies. Applied Cognitive Psychology, 35(2), 13561361. https://doi.org/10.1002/acp.3865CrossRefGoogle Scholar
Zhao, X., Xiao, W., & Zhang, J. (2022). L2 motivational self system, international posture and the sustainable development of L2 proficiency in the COVID-19 era: A case of English majors in China. Sustainability, 14, 8087. https://doi.org/10.3390/su14138087CrossRefGoogle Scholar
Zheng, C., Liang, J. C., Li, M., & Tsai, C. C. (2018). The relationship between English language learners’ motivation and online self-regulation: A structural equation modelling approach. System, 76, 144157. https://doi.org/10.1016/j.system.2018.05.003CrossRefGoogle Scholar
Zhou, H., Rossi, S., & Chen, B. (2017). Effects of working memory capacity and tasks in processing L2 complex sentences: Evidence from Chinese-English bilinguals. Frontiers in Psychology, 8, 595. https://doi.org/10.3389/fpsyg.2017.00595CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×