Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-kpv4p Total loading time: 0 Render date: 2025-12-16T10:19:20.663Z Has data issue: false hasContentIssue false

7 - The Default Mode Network and Language Impairment in Stroke and Neurodegeneration

from Part III - Language and Cognitive Plasticity and Processing

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

This chapter discusses the default mode network (DMN), a set of anatomically distinct and functionally correlated brain regions robustly active during the resting state. Once considered the “task negative” network, the DMN is now appreciated as integral to a variety of higher-level, goal-directed skills that are bidirectionally linked to language. Such abilities are dependent on optimal interaction of the DMN with other brain networks. We first review the DMN’s association with cognition and language in the healthy brain, as well as how these change with aging, stroke, and neurodegeneration. Next, we survey existing research describing changes in DMN activation and functional connectivity in post-stroke and primary progressive aphasia as they relate to language impairment. While this connection remains poorly elaborated, we propose that current evidence supports a potential therapeutic role for the DMN, such as through offering targets for noninvasive brain stimulation that support domain-general skills and are also better structurally preserved in post-stroke and primary progressive aphasias compared to the language regions primarily impacted by these disorders. Greater understanding of the DMN’s role in language disruption, decline, maintenance, and recovery could ultimately help to improve outcomes for individuals with aphasia due to stroke or neurodegeneration.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Alves, P., Foulon, C., Karolis, V., Bzdok, D., Margulies, D., Volle, E., & Thiebaut de Schotten, M. (2019). An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Communications Biology, 2, 370.10.1038/s42003-019-0611-3CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. (2012). The brains default network and its adaptive role in internal mentation. The Neuroscientist, 18(3), 251270.10.1177/1073858411403316CrossRefGoogle ScholarPubMed
Andrews-Hanna, J., Reidler, J., Huang, C., & Buckner, R. (2010). Evidence for the default networks role in spontaneous cognition. Journal of Neurophysiology, 104(1), 322335.10.1152/jn.00830.2009CrossRefGoogle ScholarPubMed
Balaev, V., Petrushevsky, A., & Martynova, O. (2016). Changes in functional connectivity of default mode network with auditory and right frontoparietal networks in poststroke aphasia. Brain Connectivity, 6(9), 714723.10.1089/brain.2016.0419CrossRefGoogle ScholarPubMed
Baliki, M., Babbitt, E., & Cherney, L. (2018). Brain network topology influences response to intensive comprehensive aphasia treatment. NeuroRehabilitation, 43(1), 6376.10.3233/NRE-182428CrossRefGoogle ScholarPubMed
Bergeron, D., Beauregard, J., Soucy, J., Verret, L., Poulin, S., Matias-Guiu, J., Cabrera-Martín, M., Bouchard, R., & Laforce, R. (2020). Posterior cingulate cortex hypometabolism in non-amnestic variants of Alzheimer’s disease. Journal of Alzheimer’s Disease, 77(4), 15691577.10.3233/JAD-200567CrossRefGoogle ScholarPubMed
Binder, J., Desai, R., Graves, W., & Conant, L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796.10.1093/cercor/bhp055CrossRefGoogle Scholar
Biswal, B., Yetkin, F., Haughton, V., & Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4).10.1002/mrm.1910340409CrossRefGoogle ScholarPubMed
Bonakdarpour, B., Rogalski, E., Wang, A., Sridhar, J., Mesulam, M., & Hurley, R. (2017). Functional connectivity is reduced in early-stage primary progressive aphasia when atrophy is not prominent. Alzheimer Disease and Associated Disorders, 31(2), 101106.10.1097/WAD.0000000000000193CrossRefGoogle Scholar
Braga, R., DiNicola, L., Becker, H., & Buckner, R. (2020). Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. Journal of Neurophysiology, 124(5), 14151448.10.1152/jn.00753.2019CrossRefGoogle ScholarPubMed
Buckner, R., Andrews-Hanna, J., & Schacter, D. (2008.) The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Buckner, R., & Krienen, F. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17(12), 648665.10.1016/j.tics.2013.09.017CrossRefGoogle ScholarPubMed
Buckner, R., Sepulcre, J., Talukdar, T., Krienen, F., Liu, H., Hedden, T., Andrews-Hanna, J., Sperling, R., & Johnson, K. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 18601873.10.1523/JNEUROSCI.5062-08.2009CrossRefGoogle ScholarPubMed
Campbell, K., & Tyler, L. (2018). Language-related domain-specific and domain-general systems in the human brain. Current Opinion in Behavioral Sciences, 21, 132137.10.1016/j.cobeha.2018.04.008CrossRefGoogle ScholarPubMed
Clemens, B., Jung, S., Mingoia, G., Weyer, D., Domahs, F., & Willmes, K. (2014). Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest. PLoS ONE, 9(4), e95984.10.1371/journal.pone.0095984CrossRefGoogle ScholarPubMed
Collins, J., Montal, V., Hochberg, D., Quimby, M., Mandelli, M., Makris, N., Seeley, W., Gorno-Tempini, M., & Dickerson, B. (2017). Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia. Brain, 140(2), 457471.10.1093/brain/aww313CrossRefGoogle ScholarPubMed
Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., Moritz, C. H., Quigley, M. A., & Meyerand, M. E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology, 21(9), 16361644.Google ScholarPubMed
Damoiseaux, J., Beckmann, C., Arigita, E., Barkhof, F., Scheltens, P., Stam, C., Smith, S., & Rombouts, S. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18(8), 18561864.10.1093/cercor/bhm207CrossRefGoogle Scholar
Davey, C., Pujol, J., & Harrison, B. (2016). Mapping the self in the brain’s default mode network. NeuroImage, 132, 390397.10.1016/j.neuroimage.2016.02.022CrossRefGoogle ScholarPubMed
de Aguiar, V., Zhao, Y., Faria, A., Ficek, B., Webster, K., Wendt, H., Wang, Z., Hillis, A., Onyike, C., Frangakis, C., Caffo, B., & Tsapkini, K. (2020). Brain volumes as predictors of tDCS effects in primary progressive aphasia. Brain and Language, 200, 104707.10.1016/j.bandl.2019.104707CrossRefGoogle ScholarPubMed
Dixon, M., Andrews-Hanna, J., Spreng, R., Irving, Z., Mills, C., Girn, M., & Christoff, K. (2017). Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. NeuroImage, 147, 632649.10.1016/j.neuroimage.2016.12.073CrossRefGoogle ScholarPubMed
Dreyer, F., Doppelbauer, L., Büscher, V., Arndt, V., Stahl, B., Lucchese, G., Hauk, O., Mohr, B., & Pulvermüller, F. (2021). Increased recruitment of domain-general neural networks in language processing following intensive language-action therapy: fMRI evidence from people with chronic aphasia. American Journal of Speech-Language Pathology, 30(1S), 455465.10.1044/2020_AJSLP-19-00150CrossRefGoogle ScholarPubMed
Duncan, E.S., Anakkathil-Pradeep, A., & Small, S. (2020). A review of biological interventions in chronic aphasia. Annals of Indian Academy of Neurology, 23(Suppl 2).10.4103/aian.AIAN_549_20CrossRefGoogle ScholarPubMed
Duncan, E. S., & Small, S. L. (2016). Increased modularity of resting state networks supports improved narrative production in aphasia recovery. Brain Connectivity, 6(7), 524529.10.1089/brain.2016.0437CrossRefGoogle ScholarPubMed
Duncan, E. S., & Small, S. L. (2018). Changes in dynamic resting state network connectivity following aphasia therapy. Brain Imaging and Behavior, 12(4), 11411149.10.1007/s11682-017-9771-2CrossRefGoogle ScholarPubMed
Elton, A., & Gao, W. (2015). Task-positive functional connectivity of the default mode network transcends task domain. Journal of Cognitive Neuroscience, 27(12), 23692381.10.1162/jocn_a_00859CrossRefGoogle ScholarPubMed
Farrás-Permanyer, L., Mancho-Fora, N., Montalà-Flaquer, M., Bartrés-Faz, D., Vaqué-Alcázar, L., Peró-Cebollero, M., & Guàrdia-Olmos, J. (2019). Age-related changes in resting-state functional connectivity in older adults. Neural Regeneration Research, 14(9), 15441555.10.4103/1673-5374.255976CrossRefGoogle ScholarPubMed
Ficek, B., Wang, Z., Zhao, Y., Webster, K., Desmond, J., Hillis, A., Frangakis, C., Faria, A., Caffo, B., & Tsapkini, K. (2019). The effect of tDCS on functional connectivity in primary progressive aphasia. NeuroImage: Clinical, 19, 703715.10.1016/j.nicl.2018.05.023CrossRefGoogle Scholar
Flöel, A., Meinzer, M., Kirstein, R., Nijhof, S., Deppe, M., Knecht, S., & Breitenstein, C. (2011). Short-term anomia training and electrical brain stimulation. Stroke, 42(7), 20652067.10.1161/STROKEAHA.110.609032CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceeings of the National Academy of Sciences, 102(27), 96739678.10.1073/pnas.0504136102CrossRefGoogle ScholarPubMed
Geng, W., Zhang, J., Shang, S., Chen, H., Shi, M., Jiang, L., Yin, X., & Chen, Y. (2022). Reduced functional network connectivity is associated with upper limb dysfunction in acute ischemic brainstem stroke. Brain Imaging and Behavior, 16(2), 802810.10.1007/s11682-021-00554-0CrossRefGoogle ScholarPubMed
Geranmayeh, F., Leech, R., & Wise, R. (2016). Network dysfunction predicts speech production after left hemisphere stroke. Neurology, 86(14), 12961305.10.1212/WNL.0000000000002537CrossRefGoogle ScholarPubMed
Gola, K., Thorne, A., Veldhuisen, L., Felix, C., Hankinson, S., Pham, J., Shany-Ur, T., Schauer, G., Stanley, C., Glenn, S., Miller, B., & Rankin, K. (2015). Neural substrates of spontaneous narrative production in focal neurodegenerative disease. Neuropsychologia, 79(Pt A), 158171.10.1016/j.neuropsychologia.2015.10.022CrossRefGoogle ScholarPubMed
Gordon, E., Laumann, T., Marek, S., Raut, R., Gratton, C., Newbold, D., Greene, D., Coalson, R., Snyder, A., Schlaggar, B., Petersen, S., Dosenbach, N., & Nelson, S. (2020). Default-mode network streams for coupling to language and control systems. Proceedings of the National Academy of Sciences, 117(29), 1730817319.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Ogar, J. M., Rohrer, J. D., Black, S., Boeve, B. F., Manes, F., Dronkers, N. F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B. L., Knopman, D. S., Hodges, J. R., Mesulam, M. M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.10.1212/WNL.0b013e31821103e6CrossRefGoogle ScholarPubMed
Griffis, J., Nenert, R., Allendorfer, J., Vannest, J., Holland, S., Dietz, A., & Szaflarski, J. (2017). The canonical semantic network supports residual language function in chronic post-stroke aphasia. Human Brain Mapping, 38(3), 16361658.10.1002/hbm.23476CrossRefGoogle ScholarPubMed
Hampson, M., Peterson, B. S., Skudlarski, P., Gatenby, J. C., & Gore, J. C. (2002). Detection of functional connectivity using temporal correlations in MR images. Human Brain Mapping, 15(4), 247262.CrossRefGoogle ScholarPubMed
Huang, Y., Mohan, A., McLeod, S., Luckey, A., Hart, J., & Vanneste, S. (2021). Polarity-specific high-definition transcranial direct current stimulation of the anterior and posterior default mode network improves remote memory retrieval. Brain Stimulation, 14(4), 10051014.10.1016/j.brs.2021.06.007CrossRefGoogle ScholarPubMed
Huber, W., Weniger, D., Poeck, K., & Willmes, K. (1980.) [The Aachen Aphasia Test rationale and construct validity (author’s translation)]. Der Nervenarzt, 51(8), 475482.Google Scholar
Johnson, J., Meier, E., Pan, Y., & Kiran, S. (2020). Pre-treatment graph measures of a functional semantic network are associated with naming therapy outcomes in chronic aphasia. Brain and Language, 207, 104809.10.1016/j.bandl.2020.104809CrossRefGoogle ScholarPubMed
Kertesz, A. (2006). Western Aphasia Battery (Revised), PsychCorp, San Antonio, Tx.10.1037/t15168-000CrossRefGoogle Scholar
Koch, G., Bonnì, S., Pellicciari, M., Casula, E., Mancini, M., Esposito, R., Ponzo, V., Picazio, S., Di Lorenzo, F., Serra, L., Motta, C., Maiella, M., Marra, C., Cercignani, M., Martorana, A., Caltagirone, C., & Bozzali, M. (2018). Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. NeuroImage, 169, 302311.10.1016/j.neuroimage.2017.12.048CrossRefGoogle ScholarPubMed
Laforce, R., Tosun, D., Ghosh, P., Lehmann, M., Madison, C., Weiner, M., Miller, B., Jagust, W., & Rabinovici, G. (2014). Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer’s pathology. NeuroImage: Clinical, 4, 508516.10.1016/j.nicl.2014.03.005CrossRefGoogle ScholarPubMed
Lehmann, M., Ghosh, P., Madison, C., Laforce, R., Corbetta-Rastelli, C., Weiner, M., Greicius, M., Seeley, W., Gorno-Tempini, M., Rosen, H., Miller, B., Jagust, W., & Rabinovici, G. (2013a). Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain, 136(Pt 3), 844858.10.1093/brain/aws327CrossRefGoogle ScholarPubMed
Lehmann, M., Madison, C., Ghosh, P., Miller, Z., Greicius, M., Kramer, J., Coppola, G., Miller, B., Jagust, W., Gorno-Tempini, M., Seeley, W., & Rabinovici, G. (2015). Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer’s disease variants. Neurobiology of Aging, 36(10), 26782686.10.1016/j.neurobiolaging.2015.06.029CrossRefGoogle ScholarPubMed
Lehmann, M., Madison, C., Ghosh, P., Seeley, W., Mormino, E., Greicius, M., Gorno-Tempini, M., Kramer, J., Miller, B., Jagust, W., & Rabinovici, G. (2013b). Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proceedings of the National Academy of Sciences, 110(28), 1160611611.10.1073/pnas.1221536110CrossRefGoogle ScholarPubMed
Lustig, C., Snyder, A., Bhakta, M., OBrien, K., McAvoy, M., Raichle, M., Morris, J., & Buckner, R. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences, 100(24), 1450414509.10.1073/pnas.2235925100CrossRefGoogle ScholarPubMed
Maddy, K., Capilouto, G., & McComas, K. (2014). The effectiveness of semantic feature analysis: An evidence-based systematic review. Annals of Physical and Rehabilitation Medicine, 57(4), 254267.10.1016/j.rehab.2014.03.002CrossRefGoogle ScholarPubMed
Mak, L., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S., & Milev, R. (2017). The default mode network in healthy individuals: A systematic review and meta-analysis. Brain Connectivity, 7(1), 2533.10.1089/brain.2016.0438CrossRefGoogle ScholarPubMed
Malagurski, B., Liem, F., Oschwald, J., Mérillat, S., & Jäncke, L. (2020). Longitudinal functional brain network reconfiguration in healthy aging. Human Brain Mapping, 41(17), 48294845.10.1002/hbm.25161CrossRefGoogle ScholarPubMed
Mandelli, M., Vilaplana, E., Brown, J., Hubbard, H., Binney, R., Attygalle, S., Santos-Santos, M., Miller, Z., Pakvasa, M., Henry, M., Rosen, H., Henry, R., Rabinovici, G., Miller, B., Seeley, W., & Gorno-Tempini, M. (2016). Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia. Brain, 139(Pt 10), 27782791.CrossRefGoogle ScholarPubMed
Mandelli, M., Welch, A., Vilaplana, E., Watson, C., Battistella, G., Brown, J., Possin, K., Hubbard, H., Miller, Z., Henry, M., Marx, G., Santos-Santos, M., Bajorek, L., Fortea, J., Boxer, A., Rabinovici, G., Lee, S., Deleon, J., Rosen, H., Miller, B., Seeley, W., & Gorno-Tempini, M. (2018). Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex, 108, 252264.10.1016/j.cortex.2018.08.002CrossRefGoogle ScholarPubMed
Marcotte, K., Perlbarg, V., Marrelec, G., Benali, H., & Ansaldo, A. I. (2013) Default-mode network functional connectivity in aphasia: Therapy-induced neuroplasticity. Brain and Language, 124(1), 4555.10.1016/j.bandl.2012.11.004CrossRefGoogle ScholarPubMed
Margulies, D., Ghosh, S., Goulas, A., Falkiewicz, M., Huntenburg, J., Langs, G., Bezgin, G., Eickhoff, S., Castellanos, F., Petrides, M., Jefferies, E., & Smallwood, J. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences, 113(44), 1257412579.10.1073/pnas.1608282113CrossRefGoogle ScholarPubMed
Mars, R., Neubert, F., Noonan, M., Sallet, J., Toni, I., & Rushworth, M. (2012). On the relationship between the “default mode network” and the “social brain.” Frontiers in Human Neuroscience, 6, 189.10.3389/fnhum.2012.00189CrossRefGoogle Scholar
Martersteck, A., Sridhar, J., Rader, B., Coventry, C., Parrish, T., Mesulam, M., & Rogalski, E. (2020). Differential neurocognitive network perturbation in amnestic and aphasic Alzheimer disease. Neurology, 94(7), e699e704.10.1212/WNL.0000000000008960CrossRefGoogle ScholarPubMed
Mason, M., Norton, M., Van Horn, J., Wegner, D., Grafton, S., & Macrae, C. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393395.10.1126/science.1131295CrossRefGoogle ScholarPubMed
Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houdé, O., Crivello, F., Joliot, M., Petit, L., & Tzourio-Mazoyer, N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 297298.10.1016/S0361-9230(00)00437-8CrossRefGoogle ScholarPubMed
Menke, R., Meinzer, M., Kugel, H., Deppe, M., Baumgärtner, A., Schiffbauer, H., Thomas, M., Kramer, K., Lohmann, H., Flöel, A., Knecht, S., & Breitenstein, C. (2009). Imaging short- and long-term training success in chronic aphasia. BMC Neuroscience, 10, 118.10.1186/1471-2202-10-118CrossRefGoogle Scholar
Mevel, K., Landeau, B., Fouquet, M., La Joie, R., Villain, N., Mézenge, F., Perrotin, A., Eustache, F., Desgranges, B., & Chételat, G. (2013). Age effect on the default mode network, inner thoughts, and cognitive abilities. Neurobiology of Aging, 34(4), 12921301.10.1016/j.neurobiolaging.2012.08.018CrossRefGoogle ScholarPubMed
Miao, G., Rao, B., Wang, S., Fang, P., Chen, Z., Chen, L., Zhang, X., Zheng, J., Xu, H., & Liao, W. (2022). Decreased functional connectivities of low-degree level rich club organization and caudate in post-stroke cognitive impairment based on resting-state fMRI and radiomics features. Frontiers in Neuroscience, 15, 796530.10.3389/fnins.2021.796530CrossRefGoogle ScholarPubMed
Mineroff, Z., Blank, I., Mahowald, K., & Fedorenko, E. (2018). A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size. Neuropsychologia, 119, 501511.10.1016/j.neuropsychologia.2018.09.011CrossRefGoogle ScholarPubMed
Muller, A. M., & Meyer, M. (2014). Language in the brain at rest: New insights from resting state data and graph theoretical analysis. Frontiers in Human Neuroscience, 8, 228.10.3389/fnhum.2014.00228CrossRefGoogle Scholar
Musso, M., Hübner, D., Schwarzkopf, S., Bernodusson, M., LeVan, P., Weiller, C., & Tangermann, M. (2022). Aphasia recovery by language training using a brain–computer interface: A proof-of-concept study. Brain Communications, 4(1), fcac008.10.1093/braincomms/fcac008CrossRefGoogle ScholarPubMed
Naeser, M., Ho, M., Martin, P., Hamblin, M., & Koo, B. (2020). Increased functional connectivity within intrinsic neural networks in chronic stroke following treatment with red/near-infrared transcranial photobiomodulation: Case series with improved naming in aphasia. Photobiomodulation, Photomedicine, and Laser Surgery, 38(2), 115131.10.1089/photob.2019.4630CrossRefGoogle ScholarPubMed
Ng, K., Lo, J., Lim, J., Chee, M., & Zhou, J. (2016). Reduced functional segregation between the default mode network and the executive control network in healthy older adults: A longitudinal study. NeuroImage, 133, 312330.10.1016/j.neuroimage.2016.03.029CrossRefGoogle ScholarPubMed
Nicolas, K., Goodin, P., Visser, M., Michie, P., Bivard, A., Levi, C., Parsons, M., & Karayanidis, F. (2021). Altered functional connectivity and cognition persists 4 years after a transient ischemic attack or minor stroke. Frontiers in Neurology, 12, 612177.10.3389/fneur.2021.612177CrossRefGoogle ScholarPubMed
Ossenkoppele, R., Cohn-Sheehy, B., La Joie, R., Vogel, J., Möller, C., Lehmann, M., van Berckel, B., Seeley, W., Pijnenburg, Y., Gorno-Tempini, M., Kramer, J., Barkhof, F., Rosen, H., van der Flier, W., Jagust, W., Miller, B., Scheltens, P., & Rabinovici, G. (2015). Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease. Human Brain Mapping, 36(11), 44214437.10.1002/hbm.22927CrossRefGoogle ScholarPubMed
Ousdal, O., Kaufmann, T., Kolskår, K., Vik, A., Wehling, E., Lundervold, A., Lundervold, A., & Westlye, L. (2020). Longitudinal stability of the brain functional connectome is associated with episodic memory performance in aging. Human Brain Mapping, 41(3), 697709.10.1002/hbm.24833CrossRefGoogle ScholarPubMed
Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental imagery. Nature Reviews Neuroscience, 20(10), 624634.10.1038/s41583-019-0202-9CrossRefGoogle ScholarPubMed
Persson, J., Pudas, S., Nilsson, L., & Nyberg, L. (2014). Longitudinal assessment of default-mode brain function in aging. Neurobiology of Aging, 35(9), 21072117.10.1016/j.neurobiolaging.2014.03.012CrossRefGoogle ScholarPubMed
Popal, H., Quimby, M., Hochberg, D., Dickerson, B., & Collins, J. (2020). Altered functional connectivity of cortical networks in semantic variant primary progressive aphasia. NeuroImage: Clinical, 28, 102494.10.1016/j.nicl.2020.102494CrossRefGoogle ScholarPubMed
Putcha, D., Eckbo, R., Katsumi, Y., Dickerson, B., Touroutoglou, A., & Collins, J. (2022). Tau and the fractionated default mode network in atypical Alzheimer’s disease. Brain Communications, 4(2), fcac055.10.1093/braincomms/fcac055CrossRefGoogle ScholarPubMed
Pytel, V., Cabrera-Martín, M., Delgado-Álvarez, A., Ayala, J., Balugo, P., Delgado-Alonso, C., Yus, M., Carreras, M., Carreras, J., Matías-Guiu, J., & Matías-Guiu, J. (2021). Personalized repetitive transcranial magnetic stimulation for primary progressive aphasia. Journal of Alzheimer’s Disease, 84(1), 151167.10.3233/JAD-210566CrossRefGoogle ScholarPubMed
Raichle, M., MacLeod, A., Snyder, A., Powers, W., Gusnard, D., & Shulman, G. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676682.10.1073/pnas.98.2.676CrossRefGoogle ScholarPubMed
Sambataro, F., Murty, V., Callicott, J., Tan, H., Das, S., Weinberger, D., & Mattay, V. (2010). Age-related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging, 31(5), 839852.10.1016/j.neurobiolaging.2008.05.022CrossRefGoogle ScholarPubMed
Sandberg, C. W. (2017). Hypoconnectivity of resting-state networks in persons with aphasia compared with healthy age-matched adults. Frontiers in Human Neuroscience, 11.10.3389/fnhum.2017.00091CrossRefGoogle ScholarPubMed
Sandberg, C. W., Bohland, J. W., & Kiran, S. (2015). Changes in functional connectivity related to direct training and generalization effects of a word finding treatment in chronic aphasia. Brain and Language, 150, 103116.10.1016/j.bandl.2015.09.002CrossRefGoogle ScholarPubMed
Schafer, R., & Constable, T. (2009). Modulation of functional connectivity with the syntactic and semantic demands of a noun phrase formation task: A possible role for the default network. NeuroImage, 46(3), 882890.10.1016/j.neuroimage.2009.02.017CrossRefGoogle ScholarPubMed
Seeley, W., Menon, V., Schatzberg, A., Keller, J., Glover, G., Kenna, H., Reiss, A., & Greicius, M. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 23492356.CrossRefGoogle ScholarPubMed
Seghier, M. L., & Price, C. J. (2012). Functional heterogeneity within the default network during semantic processing and speech production. Frontiers in Psychology, 3, 281.10.3389/fpsyg.2012.00281CrossRefGoogle ScholarPubMed
Siegel, J., Seitzman, B., Ramsey, L., Ortega, M., Gordon, E., Dosenbach, N., Petersen, S., Shulman, G., & Corbetta, M. (2018). Re-emergence of modular brain networks in stroke recovery. Cortex, 101, 4459.10.1016/j.cortex.2017.12.019CrossRefGoogle ScholarPubMed
Sihvonen, A., Leo, V., Ripollés, P., Lehtovaara, T., Ylönen, A., Rajanaro, P., Laitinen, S., Forsblom, A., Saunavaara, J., Autti, T., Laine, M., Rodríguez-Fornells, A., Tervaniemi, M., Soinila, S., & Särkämö, T. (2020). Vocal music enhances memory and language recovery after stroke: Pooled results from two RCTs. Annals of Clinical and Translational Neurology, 7(11), 22722287.10.1002/acn3.51217CrossRefGoogle ScholarPubMed
Skipper, J. (2022). A voice without a mouth no more: The neurobiology of language and consciousness. Neuroscience and Biobehavioral Reviews, 140, 104772.10.1016/j.neubiorev.2022.104772CrossRefGoogle ScholarPubMed
Smits, M., Jiskoot, L., & Papma, J. (2014). White matter tracts of speech and language. Seminars in Ultrasound, CT, and MR, 35(5), 504516.10.1053/j.sult.2014.06.008CrossRefGoogle ScholarPubMed
Spinelli, E., Mandelli, M., Miller, Z., Santos-Santos, M., Wilson, S., Agosta, F., Grinberg, L., Huang, E., Trojanowski, J., Meyer, M., Henry, M., Comi, G., Rabinovici, G., Rosen, H., Filippi, M., Miller, B., Seeley, W., & Gorno-Tempini, M. (2017). Typical and atypical pathology in primary progressive aphasia variants. Annals of Neurology, 81(3), 430443.10.1002/ana.24885CrossRefGoogle ScholarPubMed
Spreng, R., & Schacter, D. (2012). Default network modulation and large-scale network interactivity in healthy young and old adults. Cerebral Cortex, 22(11), 26102621.10.1093/cercor/bhr339CrossRefGoogle ScholarPubMed
Staffaroni, A., Brown, J., Casaletto, K., Elahi, F., Deng, J., Neuhaus, J., Cobigo, Y., Mumford, P., Walters, S., Saloner, R., Karydas, A., Coppola, G., Rosen, H., Miller, B., Seeley, W., & Kramer, J. (2018). The longitudinal trajectory of default mode network connectivity in healthy older adults varies as a function of age and is associated with changes in episodic memory and processing speed. The Journal of Neuroscience, 38(11), 28092817.10.1523/JNEUROSCI.3067-17.2018CrossRefGoogle ScholarPubMed
Tomasi, D., & Volkow, N. (2012). Resting functional connectivity of language networks: Characterization and reproducibility. Molecular Psychiatry, 17(8), 841854.10.1038/mp.2011.177CrossRefGoogle ScholarPubMed
Tuladhar, A., Snaphaan, L., Shumskaya, E., Rijpkema, M., Fernandez, G., Norris, D., & de Leeuw, F. (2013). Default mode network connectivity in stroke patients. PLoS ONE, 8(6), e66556.10.1371/journal.pone.0066556CrossRefGoogle ScholarPubMed
Uddin, L., Yeo, B., & Spreng, R. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topography, 32(6), 926942.10.1007/s10548-019-00744-6CrossRefGoogle ScholarPubMed
van Hees, S., McMahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D. A. (2014). A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Human Brain Mapping, 35(8), 39193931.10.1002/hbm.22448CrossRefGoogle ScholarPubMed
Vitali, P., Abutalebi, J., Tettamanti, M., Danna, M., Ansaldo, A., Perani, D., Joanette, Y., & Cappa, S. (2007). Training-induced brain remapping in chronic aphasia: A pilot study. Neurorehabilitation and Neural Repair, 21(2), 152160.10.1177/1545968306294735CrossRefGoogle ScholarPubMed
Weiler, M., Fukuda, A., Massabki, L., Lopes, T., Franco, A., Damasceno, B., Cendes, F., & Balthazar, M. (2014). Default mode, executive function, and language functional connectivity networks are compromised in mild Alzheimer’s disease. Current Alzheimer Research, 11(3), 274282.10.2174/1567205011666140131114716CrossRefGoogle ScholarPubMed
Whitwell, J., Jones, D., Duffy, J., Strand, E., Machulda, M., Przybelski, S., Vemuri, P., Gregg, B., Gunter, J., Senjem, M., Petersen, R., Jack, C., & Josephs, K. (2015). Working memory and language network dysfunctions in logopenic aphasia: A task-free fMRI comparison with Alzheimer’s dementia. Neurobiology of Aging, 36(3), 12451252.10.1016/j.neurobiolaging.2014.12.013CrossRefGoogle ScholarPubMed
Williams, K., Numssen, O., & Hartwigsen, G. (2022). Task-specific network interactions across key cognitive domains. Cerebral Cortex, 32(22), 50505071.10.1093/cercor/bhab531CrossRefGoogle ScholarPubMed
Xu, K., Niu, N., Li, X., Chen, Y., Wang, D., Zhang, J., Chen, Y., Li, H., Wei, D., Chen, K., Cui, R., Zhang, Z., & Yao, L. (2022). The characteristics of glucose metabolism and functional connectivity in posterior default network during nondemented aging: Relationship with executive function performance. Cerebral Cortex, 33(6), 29012911.10.1093/cercor/bhac248CrossRefGoogle Scholar
Xu, X., Yuan, H., & Lei, X. (2016). Activation and connectivity within the default mode network contribute independently to future-oriented thought. Scientific Reports, 6, 21001.CrossRefGoogle ScholarPubMed
Yeshurun, Y., Nguyen, M., & Hasson, U. (2021). The default mode network: Where the idiosyncratic self meets the shared social world. Nature Reviews Neuroscience, 22(3), 181192.10.1038/s41583-020-00420-wCrossRefGoogle ScholarPubMed
Zhang, C., Cahill, N. D., Arbabshirani, M. R., White, T., Baum, S. A., & Michael, A. M. (2016). Sex and age effects of functional connectivity in early adulthood. Brain Connectivity, 6(9), 700713.10.1089/brain.2016.0429CrossRefGoogle ScholarPubMed
Zhang, C., Xia, Y., Feng, T., Yu, K., Zhang, H., Sami, M., Xiang, J., & Xu, K. (2021). Disrupted functional connectivity within and between resting-state networks in the subacute stage of post-stroke aphasia. Frontiers in Neuroscience, 15, 746264.10.3389/fnins.2021.746264CrossRefGoogle ScholarPubMed
Zhu, D., Chang, J., Freeman, S., Tan, Z., Xiao, J., Gao, Y., & Kong, J. (2014). Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Frontiers in Behavioral Neuroscience, 8, 167.CrossRefGoogle ScholarPubMed
Zhu, H., Zhou, P., Alcauter, S., Chen, Y., Cao, H., Tian, M., Ming, D., Qi, H., Wang, X., Zhao, X., He, F., Ni, H., & Gao, W. (2016). Changes of intranetwork and internetwork functional connectivity in Alzheimer’s disease and mild cognitive impairment. Journal of Neural Engineering, 13(4), 046008.10.1088/1741-2560/13/4/046008CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×