Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T03:57:46.655Z Has data issue: false hasContentIssue false

26 - Intelligence and Video Games

from Part V - Intelligence and Information Processing

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Video games can be useful tools for assessing intelligence and cognitive differences. First, available video games are grouped into thirteen genres defining their basic features. Second, empirical studies relating intelligence and video games are reviewed. Results show very strong correlations between intelligence and video game performance at the latent level, which suggests that the latter taps core facets of the intelligence concept. Third, regarding cognitive processes, studies have focused on “action video games.” Results have shown that video game experience (hours per week) correlates mainly with visuospatial cognition, perception, and attention. Fourth, key neural correlates of video game performance are also discussed. The final section enumerates required features for a video game to properly measure intelligence differences using a video game elaborated for research purposes (Forgotten Depths).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, P. J. (1988). Individual differences and skill acquisition. In Ackerman, P. L., Sternberg, R. J., & Glaser, R. (Eds.), Learning and individual differences: Advances in theory and practice (pp. 165217). New York: W. H. Freeman and Company.Google Scholar
Adams, D., & Mayer, R. (2012). Examining the connection between dynamic and static spatial skills and video game performance. Proceedings of the Annual Meeting of the Cognitive Science Society, 34. https://escholarship.org/uc/item/8vc391r3Google Scholar
Baniqued, P. L., Lee, H., Voss, M. W., Basak, C., Cosman, J. D., DeSouza, S., et al. (2013). Selling points: What cognitive abilities are tapped by casual video games? Acta Psychologica, 142, 7486. http://dx.doi.org/10.1016/j.actpsy.2012.11.009Google Scholar
Bavelier, D., Achtman, R. L., Mani, M., & Föcker, J. (2012). Neural bases of selective attention in action video game players. Vision Research, 61, 132143. https://doi.org/10.1016/j.visres.2011.08.007CrossRefGoogle ScholarPubMed
Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin, 144(1), 77110. http://dx.doi.org/10.1037/bul0000130CrossRefGoogle ScholarPubMed
Bonny, J. W., Castaneda, L. M., & Swanson, T. (2016). Using an international gaming tournament to study individual differences in MOBA expertise and cognitive skills. In Proceedings of the SIGCHI conference on human factors in computing systems (34733484). San José, CA. http://dx.doi.org/10.1145/2858036.2858190Google Scholar
Buford, C. C., & O’Leary, B. J. (2015). Assessment of fluid intelligence utilizing a computer simulated game. International Journal of Gaming and Computer-Mediated Simulations, 7, 117. http://dx.doi.org/10.4018/IJGCMS.2015100101CrossRefGoogle Scholar
Colom, R., Quiroga, M. A., Solana, A. B., Burgaleta, M., Román, F. J., Privado, J., et al. (2012). Structural changes after videogame practice related to a brain network associated with intelligence. Intelligence, 40, 479489.Google Scholar
Colom, R., & Román, F. J. (2018). Enhancing intelligence. From the group to the individual. Journal of Intelligence, 6(1), 11. https://doi.org/10.3390/jintelligence6010011Google Scholar
Dobrowolsky, P., Hanusz, K., Sobczyk, B., Skorko, M., & Wiatrow, A. (2015). Cognitive enhancement in video game players: The role of video game genre. Computers in Human Behavior, 44, 5963. http://dx.doi.org/10.1016/j.chb.2014.11.051Google Scholar
Drummond, A., & Sauer, J. D. (2014). Video-games do not negatively impact adolescent academic performance in science, mathematics or reading. PLoS One, 9(4), e87943.Google Scholar
Ekstrom, R. B., French, J. W., & Harman, H. H. (1976). Manual for kit of Factor-Referenced Cognitive Tests. Princeton: Educational Testing Service.Google Scholar
Eysenck, H. J. (1993). Meta-analysis and its problems. British Medical Journal, 309, 789792.Google Scholar
Foroughi, C. K., Serraino, C., Parasuraman, R., & Boehm-Davis, A. (2016). Can we create a measure of fluid intelligence using Puzzle Creator within Portal 2? Intelligence, 56, 5864. http://dx.doi.org/10.1016/j.intell.2016.02.011Google Scholar
Glass, B. D., Maddox, W. T., & Love, B. C. (2013). Real time strategy game training: Emergence of a cognitive flexibility trait. PLoS One, 8(8), e70350. http://dx.doi.org/10.1371/journal.pone.0070350Google Scholar
Gnambs, T., & Appel, M. (2017). Is computer gaming associated with cognitive abilities? A population study among German adolescents. Intelligence, 61, 1928. http://dx.doi.org/10.1016/j.intell.2016.12.004CrossRefGoogle Scholar
Gottfredson, L. (1997a). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 1323.Google Scholar
Gottfredson, L. (1997b). Why g matters: The complexity of everyday life. Intelligence, 24, 79132.Google Scholar
Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534537.Google Scholar
Green, C. S., Kattner, F., Eichenbaum, A., Bediou, B., Adams, D. M., et al. (2017). Playing some video games but no others is related to cognitive abilities: A critique of Unsworth et al. (2015). Psychological Science, 28(5), 679682. http://dx.doi.org/10.1177/09566797616644837Google Scholar
Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current Biology, 20, 15731579. http://dx.doi.org/10.1016/j.cub.2010.07.040Google Scholar
Heim, A. W. (1968). AH4 Test. Windsor, UK: Nfer-Nelson.Google Scholar
Hunt, E. B. (2011). Where are we? Where are we going?: Reflections on the current and future state of research on intelligence. In Sternberg, R. J. & Kauffman, S. B. (Eds.), Cambridge handbook of intelligence (pp. 864885). New York: Cambridge University Press.Google Scholar
Hunt, E., Pellegrino, J. W., Frick, R. W., Farr, S. A., & Alderton, D. (1988). The ability to reason about movement in the visual field. Intelligence, 12, 77100.Google Scholar
Jensen, A. (1998). The g factor: The science of mental ability. Westport, CT: Praeger.Google Scholar
Jones, M. B., Dunlap, W. P., & Bilodeau, I. M. (1986). Comparison of video game and conventional test performance. Simulation and Games, 17(4), 435446.Google Scholar
Kirkegaard, E. O. W. (2018). Is national mental sport ability a sign of intelligence? An analysis of the top players of 12 mental sports. https://psyarxiv.com/9qnwyCrossRefGoogle Scholar
Kokkinakis, A. V., Cowling, P. I., Drachen, A., & Wade, A. R. (2017). Exploring the relationship between video game expertise and fluid intelligence. PLoS One, 12(11), e0186621. https://doi.org/10.1371/journal.pone.0186621Google Scholar
Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27, 151177. https://doi.org/10.1080/1047840X.2016.1153946Google Scholar
Kranz, M. B., Baniqued, P. L., Voss, M. W., Lee, H., & Kramer, A. F. (2017). Examining the roles of reasoning and working memory in predicting casual game performance across extended gameplay. Frontiers in Psychology, 8 (203), 113. http://dx.doi.org/10.3389/fpsyg.2017.00203Google Scholar
Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2013). Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a comercial video game. Molecular Psychiatry. https://doi.org/10.1038/mp.2013.120CrossRefGoogle Scholar
Kühn, S., Lorenz, R., Banaschewski, T., Barker, G. J., Büchel, C., Conrod, P. J., et al. (2014). Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS One, 9(3), e91506.Google Scholar
Lim, J., & Furnham, A. (2018). Can commercial games function as intelligence tests? A pilot study. Computer Games Journal, 7(1), 2737. https://doi.org/10.1007/s40869-018–0053-zGoogle Scholar
Macnamara, B., Hambrick, D., & Oswald, F. (2014). Deliberate practice and performance in music, games, sports, education, and professions: A meta-analysis. Psychological Science, 25(8), 16081618. http://dx.doi.org/10.1177/0956797614535810Google Scholar
Martínez, K., Solana, A. B., Burgaleta, M., Hernández-Tamames, J. A., Alvarez-Linera, J., Román, F. J., et al. (2013). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Human Brain Mapping, 34, 31433157. http://dx.doi.org/10.1002/hbm.22129Google Scholar
Martinovic, D., Ezeife, C. I., Whent, R., Reed, J., Burgess, G. H., Pomerleau, C. M., et al. (2014). “Critic-proofing” of the cognitive aspects of simple games. Computers and Education, 72, 132144. http://dx.doi.org/10.1016/j.compedu.2013.10.017Google Scholar
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 110. http://dx.doi.org/10.1016/j.intell.2008.08.004Google Scholar
McPherson, J., & Burns, N. R. (2007). Gs invaders: Assessing a computer game-like test of processing speed. Behavior Research Methods, 39, 876883. http://dx.doi.org/10.3758/BF03192982CrossRefGoogle ScholarPubMed
McPherson, J., & Burns, N. R. (2008). Assessing the validity of computer-game-like tests of processing speed and working memory. Behavior Research Methods, 40, 969981. http://dx.doi.org/10.3758/BRM.40.4.969Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Palaus, M., Marron, E. M., Viejo-Sobera, R., & Redolar-Ripoll, D. (2017). Neural basis of video gaming: A systematic review. Frontiers in Human Neuroscience, 11(248), 140. http://dx.doi.org/10.3389/fnhum.2017.00248CrossRefGoogle ScholarPubMed
Parong, J., Mayer, R. E., Fiorella, L., MacNamara, A., Homer, B. D., & Plass, J. L. (2017). Learning executive function skills by playing focused video games. Contemporary Educational Psychology, 51, 141151. http://dx.doi.org/10.1016/j.cedpsych.2017.07.002Google Scholar
Posso, A. (2016). Internet usage and educational outcomes among 15-year-old Australian students. International Journal of Communication, 10, 38513876.Google Scholar
Primi, R. (2014). Developing a fluid intelligence scale through a combination of Rasch modeling and cognitive psychology. Psychological Assessment, 26(3), 774788. http://dx.doi.org/10.1037/a0036712Google Scholar
Quiroga, M. A., Aranda, A., Román, F. J., Privado, J., & Colom, R. (2019). Intelligence can be measured with video games other than “brain-games.” Intelligence, 75, 8594.Google Scholar
Quiroga, M. A., Escorial, S., Román, F. J., Morillo, D., Jarabo, A., Privado, J. et al. (2015). Can we reliably measure the general factor of intelligence (g) through commercial video games? Yes, we can! Intelligence, 53, 17. http://dx.doi.org/10.1016/j.intell.2015.08.004Google Scholar
Quiroga, M. A., Herranz, M., Gómez-Abad, M., Kebir, M., Ruiz, J., & Colom, R. (2009). Video-games: Do they require general intelligence? Computers and Education, 53, 414418. http://dx.doi.org/10.1016/j.compedu.2009.02.017Google Scholar
Quiroga, M. A., Román, F. J., Catalán, A., Rodríguez, H., Ruiz, J., Herranz, M., et al. (2011). Videogame performance (not always) requires intelligence. International Journal of Online Pedagogy and Course Design, 1, 1832. http://dx.doi.org/10.4018/ijopcd.2011070102Google Scholar
Quiroga, M. A., Román, F. J., De la Fuente, J., Privado, J., & Colom, R. (2016). The measurement of intelligence in the XXI century using video games. Spanish Journal of Psychology, 19, 113.CrossRefGoogle ScholarPubMed
Rabbitt, P., Banerji, N., & Szymanski, A. (1989). Space Fortress as an IQ test? Predictions of learning and of practiced performance in a complex interactive video game. Acta Psychologica, 71, 243257.CrossRefGoogle Scholar
Sajjadi, P., Vlieghe, J., & De Troyer, O. (2017). Exploring the relation between the theory of multiple intelligences and games for the purpose of player-centered game design. Electronic Journal of e-Learning, 15(4), 320334. www.ejel.org/main.homeGoogle Scholar
Sala, G., Tatlidil, K. S., & Gobet, F. (2018). Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. Psychological Bulletin, 144(2), 111139. http://dx.doi.org/10.1037/bul0000139CrossRefGoogle Scholar
Sedig, K., Haworth, R., & Corridore, M. (2015). Investigating variations in gameplay: Cognitive implications. International Journal of Computer Games Technology, Article ID 208247. http://dx.doi.org/10.1155/2015/208247CrossRefGoogle Scholar
Shute, V. J., Ventura, M., & Ke, F. (2015). The power of play: The effects of Portal 2 and Lumosity on cognitive and noncognitive skills. Computers and Education, 80, 5867. http://dx.doi.org/10.1016/j.compedu.2014.08.013Google Scholar
Spearman, C. (1904). “General intelligence,” objectively determined and measured. American Journal of Psychology, 15(2), 201292.Google Scholar
Torre-Tresols, J. J. (2017). Clasificación de géneros de videojuegos [Classification of video games genres]. Laboratory of Intelligence (Faculty of Psychology), Universidad Complutense de Madrid: Laboratorio de Inteligencia y videojuegos. www.quirogas.netGoogle Scholar
Unsworth, N., Redick, T. S., McMillan, B. D., Hambrick, D. Z., Kane, M. J., & Engle, R. W. (2015). Is playing video games related to cognitive abilities? Psychological Science, 26, 759774. http://dx.doi.org/10.1177/0956797615570367Google Scholar
Ventura, M., Shute, V. J., Wright, T., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4, 852. http://dx.doi.org/10.3389/fpsyg.2013.00852CrossRefGoogle ScholarPubMed
West, G. L., Konishi, K., Diarra, M., Benady-Chorney, J., Drisdelle, B. L., Dahmani, L., et al. (2017). Impact of video games on plasticity of the hippocampus. Molecular Psychiatry, 23, 15661574. http://dx.doi.org/10.1038/mp.2017.155Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×