Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T07:00:33.188Z Has data issue: false hasContentIssue false

Part II - Development of Intelligence

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381. https://doi.org/10.1146/annurev.ne.09.030186.002041Google Scholar
Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185188.Google Scholar
Anokhin, K. V., & Rose, S. P. (1991). Learning-induced increase of immediate early gene messenger RNA in the chick forebrain. European Journal of Neuroscience, 3, 162167.Google Scholar
Arshavsky, Y. I. (2014). Alzheimer disease and cellular mechanisms of memory storage. Journal of Neuropathology and Experimental Neurology, 73, 192205. https://doi.org/10.1097/NEN.0000000000000043Google Scholar
Ba, Y., Yu, H., Liu, F., Geng, X., Zhu, C., Zhu, Q., et al. (2011). Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. European Journal of Clinical Nutrition, 65, 480485. https://doi.org/10.1038/ejcn.2010.294Google Scholar
Barnett, J. H., Scoriels, L., & Munafò, M. R. (2008). Meta-analysis of the cognitive effects of the Catechol-O-Methyltransferase gene Val158/108Met polymorphism. Biological Psychiatry, 64, 137144. https://doi.org/10.1016/j.biopsych.2008.01.005Google Scholar
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., et al. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19, 253258. https://doi.org/10.1038/mp.2012.184Google Scholar
Bhate, V., Deshpande, S., Bhat, D., Joshi, N., Ladkat, R., Watve, S., et al. (2008). Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food and Nutrition Bulletin, 29, 249254. https://doi.org/10.1177/156482650802900401Google Scholar
Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209213.Google Scholar
Bird, A. P. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16, 621.Google Scholar
Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., et al. (2004). Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences, 101, 21732178. https://doi.org/10.1073/pnas.0308512100Google Scholar
Boyes, J., & Bird, A. P. (1992). Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvement of a methyl-CpG binding protein. EMBO Journal, 11, 327333.Google Scholar
Bredy, T. W., & Barad, M. (2008). The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learning and Memory, 15, 3945. https://doi.org/10.1101/lm.801108Google Scholar
Brennan, P. A., Hancock, D., & Keverne, E. B. (1992). The expression of the immediate-early genes c-fos, egr-1 and c-jun in the accessory olfactory bulb during the formation of an olfactory memory in mice. Neuroscience, 49, 277284.Google Scholar
Burgaleta, M., MacDonald, P. A., Martínez, K., Román, F. J., Álvarez-Linera, J., González, A. R., et al. (2014). Subcortical regional morphology correlates with fluid and spatial intelligence. Human Brain Mapping, 35, 19571968. https://doi.org/10.1002/hbm.22305Google Scholar
Butcher, L. M., Kennedy, J. K., & Plomin, R. (2006). Generalist genes and cognitive neuroscience. Current Opinion in Neurobiology, 16, 145151.Google Scholar
Butcher, L. M., Meaburn, E., Knight, J., Sham, P. C., Schalkwyk, L. C., Craig, I. W., et al. (2005). SNPs, microarrays, and pooled DNA: Identification of four loci associated with mild mental impairment in a sample of 6,000 children. Human Molecular Genetics, 14, 13151325.Google Scholar
Caramaschi, D., Sharp, G. C., Nohr, E. A., Berryman, K., Lewis, S. J., Davey Smith, G., et al. (2017). Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: A two-step Mendelian randomization study. Human Molecular Genetics, 26, 30013013. https://doi.org/10.1093/hmg/ddx164Google Scholar
Chen, Z-x., & Riggs, A. D. (2011). DNA methylation and demethylation in mammals. Journal of Biological Chemistry, 286, 1834718353. https://doi.org/10.1074/jbc.R110.205286Google Scholar
Chen, Z. J., & Pikaard, C. S. (1997). Epigenetic silencing of RNA polymerase I transcription: A role for DNA methylation and histone modification in nucleolar dominance. Genes and Development, 11, 21242136.Google Scholar
Costa, R. M., Honjo, T., & Silva, A. J. (2003). Learning and memory deficits in Notch mutant mice. Current Biology, 13(15), 13481354.Google Scholar
Dagnas, M., & Mons, N. (2013). Region- and age-specific patterns of histone acetylation related to spatial and cued learning in the water maze. Hippocampus, 23, 581591. https://doi.org/10.1002/hipo.22116Google Scholar
Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., et al. (2015). Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949). Molecular Psychiatry, 20, 183192. https://doi.org/10.1038/mp.2014.188Google Scholar
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9(1), 2098. https://doi.org/10.1038/s41467-018-04362-xGoogle Scholar
Davies, G., Marioni, R. E., Liewald, D. C., Hill, W. D., Hagenaars, S. P., Harris, S. E., et al. (2016). Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Molecular Psychiatry, 21, 758767. https://doi.org/10.1038/mp.2016.45Google Scholar
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 9961005. https://doi.org/10.1038/mp.2011.85Google Scholar
Davis, O. S., Butcher, L. M., Docherty, S. J., Meaburn, E. L., Curtis, C. J., Simpson, M. A., et al. (2010). A three-stage genome-wide association study of general cognitive ability: Hunting the small effects. Behavior Genetics, 40, 759767.Google Scholar
Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., & Moulden, J. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16, 14451452.Google Scholar
Deary, I. J., Harris, S. E., & Hill, W. D. (2019). What genome-wide association studies reveal about the association between intelligence and physical health, illness, and mortality. Current Opinion in Psychology, 27, 612. https://doi.org/10.1016/j.copsyc.2018.07.005Google Scholar
Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H.-J., Grace, A. A., et al. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences, 112(5), 15951600. https://doi.org/10.1073/pnas.1417219112Google Scholar
Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567631. https://doi.org/10.1146/annurev.neuro.22.1.567Google Scholar
Du, Y., Ninga, Y., Wena, Y., Liua, L., Lianga, X., Lia, P., et al. (2018). A genome-wide pathway enrichment analysis identifies brain region related biological pathways associated with intelligence. Psychiatry Research, 268, 238242. https://doi.org/10.1016/j.psychres.2018.07.029Google Scholar
Eden, S., Hashimshony, T., Keshet, I., Cedar, H., & Thorne, A. W. (1998). DNA methylation models histone acetylation. Nature, 394, 842. https://doi.org/10.1038/29680Google Scholar
Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a are required for the maintenance of DNA methylation and synaptic function in adult forebrain neurons. Nature Neuroscience, 13, 423430.Google Scholar
Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: Macmillan and Co.Google Scholar
Gardner, H. (2006). Multiple intelligences: New horizons in theory and practice. New York: Basic Books.Google Scholar
Girirajan, S. (2017). Missing heritability and where to find it. Genome Biology, 18, 89. https://doi.org/10.1186/s13059-017-1227-xGoogle Scholar
Glenn, C. C., Deng, G., Michaelis, R. C., Tarleton, J., Phelan, M. C., Surh, L., et al. (2000). DNA methylation analysis with respect to prenatal diagnosis of the Angelman and Prader-Willi syndromes and imprinting. Prenatal Diagnosis, 20, 300306.Google Scholar
Gold, W. A., Krishnarajy, R., Ellaway, C., & Christodoulou, J. (2018). Rett syndrome: A genetic update and clinical review focusing on comorbidities. ACS Chemical Neuroscience, 9, 167176. https://doi.org/10.1021/acschemneuro.7b00346Google Scholar
Gomes, M. V. M., Toffoli, L. V., Arruda, D. W., Soldera, L. M., Pelosi, G. G., Neves-Souza, R. D., et al. (2012). Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to functional capacities. PLoS One, 7, e52570. https://doi.org/10.1371/journal.pone.0052570Google Scholar
Gould, S. J. (1981). The mismeasure of man. New York: Norton.Google Scholar
Grazioplene, R. G., Ryman, S. G., Gray, J. R., Rustichini, A., Jung, R. E., & DeYoung, C. G. (2015). Subcortical intelligence: Caudate volume predicts IQ in healthy adults. Human Brain Mapping, 36, 14071416. https://doi.org/10.1002/hbm.22710Google Scholar
Grigorenko, E. L., Compton, D., Fuchs, L., Wagner, R., Wilcutt, E., Fletcher, J. M. (2019) Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice. American Psychologist. https://doi.org/10.1002/cad.20290Google Scholar
Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., et al. (2012). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences, 109, 1052210527. https://doi.org/10.1073/pnas.1120658109Google Scholar
Hill, W. D., Harris, S. E., & Deary, I. J. (2019). What genome-wide association studies reveal about the association between intelligence and mental health. Current Opinion in Psychology, 27, 2530. https://doi.org/10.1016/j.copsyc.2018.07.007Google Scholar
Hill, W. D., Marioni, R. E., Maghzian, O., Ritchie, S. J., Hagenaars, S. P., McIntosh, A. M., et al. (2018). A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Molecular Psychiatry, 24, 169181. https://doi.org/10.1038/s41380-017-0001-5Google Scholar
Hoekstra, R. A., Bartels, M., van Leeuwen, M., & Boomsma, D. I. (2009). Genetic architecture of verbal abilities in children and adolescents. Developmental Science, 12, 10411053. https://doi.org/10.1111/j.1467-7687.2009.00843.xGoogle Scholar
Holm, V. A., Cassidy, S. B., Butler, M. G., Hanchett, J. M., Greenswag, L. R., Whitman, B. Y., & Greenberg, F. (1993). Prader-Willi syndrome: Consensus diagnostic criteria. Pediatrics, 91, 398402.Google Scholar
Hsieh, C. L. (1994). Dependence of transcriptional repression on CpG methylation density. Molecular and Cellular Biology, 14(8), 54875494.Google Scholar
Ianov, L., Riva, A., Kumar, A., & Foster, T. C. (2017). DNA methylation of synaptic genes in the prefrontal cortex is associated with aging and age-related cognitive impairment. Frontiers in Aging Neuroscience, 9, 249. https://doi.org/10.3389/fnagi.2017.00249Google Scholar
Illingworth, R. S., & Bird, A. P. (2009). CpG islands – “A rough guide.” FEBS Letters, 583, 17131720. https://doi.org/10.1016/j.febslet.2009.04.012Google Scholar
International Multiple Sclerosis Genetics Consortium. (2013). MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 136, 17781782. https://doi.org/10.1093/brain/awt101Google Scholar
Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging Cell, 14, 924932. https://doi.org/10.1111/acel.12349Google Scholar
Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19, 187191. https://doi.org/10.1038/561Google Scholar
Kaminski, J. A., Schlagenhauf, F., Rapp, M., Awasthi, S., Ruggeri, B., Deserno, L., et al. (2018). Epigenetic variance in dopamine D2 receptor: A marker of IQ malleability? Translational Psychiatry, 8, 169.https://doi.org/10.1038/s41398-018-0222-7Google Scholar
Karama, S., Bastin, M. E., Murray, C., Royle, N. A., Penke, L., Muñoz Maniega, S., et al. (2013). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19, 555559. https://doi.org/10.1038/mp.2013.64Google Scholar
Kelly, T. K., Ahmadiantehrani, S., Blattler, A., & London, S. E. (2018). Epigenetic regulation of transcriptional plasticity associated with developmental song learning. Proceedings of the Royal Society B: Biological Sciences, 285. https://doi.org/10.1098/rspb.2018.0160Google Scholar
Kirkpatrick, R. M., McGue, M., Iacono, W. G., Miller, M. B., & Basu, S. (2014). Results of a “GWAS Plus”: General cognitive ability is substantially heritable and massively polygenic. PLoS One, 9(11), e112390. https://doi.org/10.1371/journal.pone.0112390Google Scholar
Kohli, R. M., & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502, 472479. https://doi.org/10.1038/nature12750Google Scholar
Laan, L. A., Haeringen, A., & Brouwer, O. F. (1999). Angelman syndrome: A review of clinical and genetic aspects. Clinical Neurology and Neurosurgery, 101, 161170.Google Scholar
Lee, D. Y., Hayes, J. J., Pruss, D., & Wolffe, A. P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell, 72, 7384.Google Scholar
Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D. C., Starr, J. M., et al. (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics ConsorTium (COGENT). Molecular Psychiatry, 19, 168174. https://doi.org/10.1038/mp.2013.166Google Scholar
Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279, 4054540559.Google Scholar
Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., et al. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45, 580585. https://doi.org/10.1038/ng.2653Google Scholar
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 1057610586.Google Scholar
MacDonald, P. A., Ganjavi, H., Collins, D. L., Evans, A. C., & Karama, S. (2014). Investigating the relation between striatal volume and IQ. Brain Imaging and Behavior, 8, 5259. https://doi.org/10.1007/s11682-013-9242-3Google Scholar
Mackey, A. P., Miller Singley, A. T., & Bunge, S. A. (2013). Intensive reasoning training alters patterns of brain connectivity at rest. Journal of Neuroscience, 33, 47964803. https://doi.org/10.1523/JNEUROSCI.4141-12.2013Google Scholar
Mackintosh, N. (2011). IQ and human intelligence. Oxford: Oxford University Press.Google Scholar
Mandelman, S. D., & Grigorenko, E. L. (2012). BDNF Val66Met and cognition: All, none, or some? A meta-analysis of the genetic association. Genes, Brain and Behavior, 11, 127136. https://doi.org/10.1111/j.1601-183X.2011.00738.xGoogle Scholar
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747753.Google Scholar
Marioni, R. E., McRae, A. F., Bressler, J., Colicino, E., Hannon, E., Li, S., et al. (2018). Meta-analysis of epigenome-wide association studies of cognitive abilities. Molecular Psychiatry, 23(11), 21332144. https://doi.org/10.1038/s41380-017-0008-yGoogle Scholar
McGue, M., & Christensen, K. (2001). The heritability of cognitive functioning in very old adults: Evidence from Danish twins aged 75 years and older. Psychology and Aging, 16, 272280. https://doi.org/10.1037//0882–7974.16.2.272Google Scholar
McGue, M., & Christensen, K. (2002). The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research, 28, 435451. https://doi.org/10.1080/03610730290080416Google Scholar
McKay, J. A., Groom, A., Potter, C., Coneyworth, L. J., Ford, D., Mathers, J. C., et al. (2012). Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: Role for golate gene variants and vitamin B12. PLoS One, 7, e33290. https://doi.org/10.1371/journal.pone.0033290Google Scholar
Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857869. https://dx.doi.org/10.1016/j.neuron.2007.02.022Google Scholar
Nativio, R., Donahue, G., Berson, A., Lan, Y. M., Amlie-Wolf, A., Tuzer, F., et al. (2018). Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nature Neuroscience, 21, 497505. https://doi.org/10.1038/s41593-018-0101-9Google Scholar
Neubert, F.-X., Mars, R. B., Sallet, J., & Rushworth, M. F. S. (2015). Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proceedings of the National Academy of Sciences, 112, E2695E2704. https://doi.org/10.1073/pnas.1410767112Google Scholar
Oberauer, K., Süβ, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641652. https://doi.org/10.1016/j.intell.2008.01.007Google Scholar
Oliveira, A. M. M., Hemstedt, T. J., & Bading, H. (2012). Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15, 11111113.Google Scholar
Oliveira, A. M. M., Hemstedt, T. J., Freitag, H. E., & Bading, H. (2015). Dnmt3a2: A hub for enhancing cognitive functions. Molecular Psychiatry, 21, 11301136. https://doi.org/10.1038/mp.2015.175Google Scholar
Penner, M. R., Roth, T. L., Chawla, M. K., Hoang, L. T., Roth, E. D., Lubin, F. D., et al. (2011). Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiology of Aging, 32, 21982210. https://doi.org/10.1016/j.neurobiolaging.2010.01.009Google Scholar
Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19, 148159. https://doi.org/10.1038/nrg.2017.104Google Scholar
Presente, A., Boyles, R. S., Serway, C. N., de Belle, J. S., & Andres, A. J. (2004). Notch is required for long-term memory in Drosophila. Proceedings of the National Academy of Sciences, 101(6), 17641768. https://doi.org/10.1073/pnas.0308259100Google Scholar
Ptashne, M. (2007). On the use of the word “epigenetic.” Current Biology, 17(7), R233236. https://doi.org/10.1016/j.cub.2007.02.030Google Scholar
Reolon, G. K., Maurmann, N., Werenicz, A., Garcia, V. A., Schroder, N., Wood, M. A., et al. (2011). Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats. Behavioural Brain Research, 221(1), 329332. https://doi.org/10.1016/j.bbr.2011.03.033Google Scholar
Rimfeld, K., Shakeshaft, N. G., Malanchini, M., Rodic, M., Selzam, S., Schofield, K., et al. (2017). Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences, 114, 27772782. https://doi.org/10.1073/pnas.1607883114Google Scholar
Rogowski, K., van Dijk, J., Magiera, M. M., Bosc, C., Deloulme, J.-C., Bosson, A., et al. (2010). A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell, 143, 564578. https://doi.org/10.1016/j.cell.2010.10.014Google Scholar
Roth, C., Magnus, P., Schjolberg, S., Stoltenberg, C., Suren, P., McKeague, I. W., et al. (2011). Folic acid supplements in pregnancy and severe language delay in children. Journal of the American Medical Association, 306, 15661573.Google Scholar
Rush, E. C., Katre, P., & Yajnik, C. S. (2014). Vitamin B12: One carbon metabolism, fetal growth and programming for chronic disease. European Journal of Clinical Nutrition, 68, 27.Google Scholar
Sakakibara, E., Takizawa, R., Kawakubo, Y., Kuwabara, H., Kono, T., Hamada, K., et al. (2018). Genetic influences on prefrontal activation during a verbal fluency task in children: A twin study using near‐infrared spectroscopy. Brain and Behavior, 8, e00980. https://doi.org/10.1002/brb3.980Google Scholar
Sauce, B., & Matzel, L. D. (2018). The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay. Psychological Bulletin, 144, 2647. https://doi.org/10.1037/bul0000131Google Scholar
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., et al. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50, 912919. https://doi.org/10.1038/s41588-018-0152-6Google Scholar
Schiepers, O. J. G., van Boxtel, M. P. J., de Groot, R. H. M., Jolles, J., Kok, F. J., Verhoef, P., et al. (2011). DNA methylation and cognitive functioning in healthy older adults. British Journal of Nutrition, 107, 744748. https://doi.org/10.1017/S0007114511003576Google Scholar
Schlagenhauf, F., Rapp, M. A., Huys, Q. J. M., Beck, A., Wüstenberg, T., Deserno, L., et al. (2013). Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Human Brain Mapping, 34, 14901499. https://doi.org/10.1002/hbm.22000Google Scholar
Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, D., Lang, M., Winz, O. H., et al. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience, 28, 1431114319. https://doi.org/10.1523/jneurosci.2058-08.2008Google Scholar
Shah, S., McRae, A. F., Marioni, R. E., Harris, S. E., Gibson, J., Henders, A. K., et al. (2014). Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Research, 24, 17251733. https://doi.org/10.1101/gr.176933.114Google Scholar
Shlyueva, D., Stampfel, G., & Stark, A. (2014). Transcriptional enhancers: From properties to genome-wide predictions. Nature Reviews Genetics, 15, 272286. https://doi.org/10.1038/nrg3682Google Scholar
Sinn, D. I., Kim, S. J., Chu, K., Jung, K. H., Lee, S. T., Song, E. C., et al. (2007). Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiology of Disease, 26, 464472. https://doi.org/10.1016/j.nbd.2007.02.006Google Scholar
Smith, A. K., Kilaru, V., Klengel, T., Mercer, K. B., Bradley, B., Conneely, K. N., et al. (2015). DNA extracted from saliva for methylation studies of psychiatric traits: Evidence for tissue specificity and relatedness to brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168B, 3644.Google Scholar
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., et al. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49, 11071112. https://doi.org/10.1038/ng.3869Google Scholar
Spengler, M., Gottschling, J., Hahn, E., Tucker-Drob, E. M., Harzer, C., & Spinath, F. M. (2018). Does the heritability of cognitive abilities vary as a function of parental education? Evidence from a German twin sample. PLoS One, 13, 115. https://doi.org/10.1371/journal.pone.0196597Google Scholar
Starnawska, A., Tan, Q., McGue, M., Mors, O., Borglum, A. D., Christensen, K., et al. (2017). Epigenome-wide association study of cognitive functioning in middle-aged monozygotic twins. Frontiers in Aging Neuroscience, 9, 413. https://doi.org/10.3389/fnagi.2017.00413Google Scholar
Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., & Wood, M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proceedings of the National Academy of Sciences, 106, 94479452. https://doi.org/10.1073/pnas.0903964106Google Scholar
Sternberg, R. J. (2003). Wisdom, intelligence, and creativity synthesized. New York: Cambridge University Press.Google Scholar
Surén, P., Roth, C., Bresnahan, M., Haugen, M., Hornig, M., Hirtz, D., et al. (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. Journal of the American Medical Association, 309, 570577. https://doi.org/10.1001/jama.2012.155925Google Scholar
Trampush, J. W., Yang, M. L. Z., Yu, J., Knowles, E., Davies, G., Liewald, D. C., et al. (2017). GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: A report from the COGENT consortium. Molecular Psychiatry, 22, 336345. https://doi.org/10.1038/mp.2016.244Google Scholar
Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., et al. (2011). Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31, 66926698. https://doi.org/10.1523/JNEUROSCI.6631-10.2011Google Scholar
Vaessen, T., Hernaus, D., Myin-Germeys, I., & van Amelsvoort, T. (2015). The dopaminergic response to acute stress in health and psychopathology: A systematic review. Neuroscience and Biobehavioral Reviews, 56, 241251. https://doi.org/10.1016/j.neubiorev.2015.07.008Google Scholar
Van Der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842861.Google Scholar
Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., et al. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience, 27, 61286140. https://doi.org/10.1523/JNEUROSCI.0296-07.2007Google Scholar
Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., et al. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359(22), 23372345. https://doi.org/10.1056/NEJMoa0802828Google Scholar
Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., & Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO Journal, 15(10), 25082518.Google Scholar
Villamor, E., Rifas-Shiman, S. L., Gillman, M. W., & Oken, E. (2012). Maternal intake of methyl-donor nutrients and child cognition at 3 years of age. Paediatric and Perinatal Epidemiology, 26, 328335. https://doi.org/10.1111/j.1365-3016.2012.01264.xGoogle Scholar
Vitolo, J. M., Thiriet, C., & Hayes, J. J. (2000). The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Molecular and Cellular Biology, 20(6), 21672175.Google Scholar
von Stumm, S., & Plomin, R. (2015). Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence, 48, 3036. https://doi.org/10.1016/j.intell.2014.10.002Google Scholar
Vukojevic, V., Kolassa, I. T., Fastenrath, M., Gschwind, L., Spalek, K., Milnik, A., et al. (2014). Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. Journal of Neuroscience, 34, 1027410284. https://doi.org/10.1523/JNEUROSCI.1526-14.2014Google Scholar
Walton, E., Hass, J., Liu, J., Roffman, J. L., Bernardoni, F., Roessner, V., et al. (2016). Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophrenia Bulletin, 42, 406414. https://doi.org/10.1093/schbul/sbv074Google Scholar
Walton, E., Liu, J. Y., Hass, J., White, T., Scholz, M., Roessner, V., et al. (2014). MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics, 9, 11011107. https://doi.org/10.4161/epi.29223Google Scholar
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., et al. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40, 897903.Google Scholar
Weaving, L. S., Ellaway, C. J., Gecz, J., & Christodoulou, J. (2005). Rett syndrome: Clinical review and genetic update. Journal of Medical Genetics, 42, 17. https://doi.org/10.1136/jmg.2004.027730Google Scholar
Weissberger, G. H., Nation, D. A., Nguyen, C. P., Bondi, M. W., & Han, S. D. (2018). Meta-analysis of cognitive ability differences by apolipoprotein e genotype in young humans. Neuroscience and Biobehavioral Reviews, 94, 4958.Google Scholar
Whitehouse, A. J., Bishop, D. V. M., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10, 451456.Google Scholar
Winick-Ng, W., & Rylett, R. J. (2018). Into the fourth dimension: Dysregulation of genome architecture in aging and Alzheimer’s disease. Frontiers in Molecular Neuroscience, 11. https://doi.org/10.3389/fnmol.2018.00060Google Scholar
Wu, L., Sun, T., Kobayashi, K., Gao, P., & Griffin, J. D. (2002). Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Molecular and Cellular Biology, 22(21), 76887700.Google Scholar
Xie, W., & Ren, B. (2013). Enhancing pluripotency and lineage specification. Science, 341, 245247. https://doi.org/10.1126/science.1236254Google Scholar
Yang, A. W., Sachs, A. J., & Nystuen, A. M. (2015). Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice. Neurogenetics, 16(4), 277285. https://doi.org/10.1007/s10048-015-0450-4Google Scholar
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569. https://doi.org/10.1038/ng.608Google Scholar
Zhang, R.-R., Cui, Q.-Y., Murai, K., Lim, Y. C., Smith, Z. D., Jin, S., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13, 237245. https://doi.org/10.1016/j.stem.2013.05.006Google Scholar

References

Abelson, R. (1985). A variance explanation paradox: When a little is a lot. Psychological Bulletin, 97, 129133.Google Scholar
Ahadi, S., & Diener, E. (1989). Multiple determinants and effect sizes. Journal of Personality and Social Psychology, 56, 398406.Google Scholar
Alexander, K. L., Entwisle, D. R., & Dauber, S. L. (1993). First-grade behavior: Its short-and long-term consequences for school performance. Child Development, 64, 801814.Google Scholar
Amso, D., & Johnson, S. P. (2006). Learning by selection: Visual search and object perception in young infants. Developmental Psychology, 42, 12361245.Google Scholar
Anastasi, A., & Urbina, S. (1997). Psychological testing. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Arterberry, M. E., & Bornstein, M. H. (2002). Variability and its sources in infant categorization. Infant Behavior and Development, 25, 515528.Google Scholar
Baillargeon, R. (2004). Infants’ physical world. Current Directions in Psychological Science, 13, 8994.Google Scholar
Bauer, P. J. (2007). Recall in infancy: A neurodevelopmental account. Current Directions in Psychological Science, 16, 142146.Google Scholar
Bayley, N. (1949). Consistency and variability in the growth of intelligence from birth to eighteen yearsThe Pedagogical Seminary and Journal of Genetic Psychology75(2), 165196.Google Scholar
Bayley, N. (1955). On the growth of intelligenceAmerican Psychologist10(12), 805818.Google Scholar
Bellinger, D. (1980). Consistency in the pattern of change in mother’s speech: Some discriminant analyses. Journal of Child Language, 7, 469487.Google Scholar
Binet, A. (1905). On double consciousness: Experimental psychological studies. Chicago: Open Court Publishing Company.Google Scholar
Bjorklund, D. F., & Myers, A. (2019). The evolution of parenting. In Bornstein, M. H. (Ed.), Handbook of parenting (3rd ed., vol. 2, pp. 329). New York: Routledge.Google Scholar
Bjorklund, D. F., & Schneider, W. (1996). The interaction of knowledge, aptitude, and strategies in children’s memory performance. Advances in Child Development and Behavior, 26, 5989.Google Scholar
Blaga, O. M., Anderson, C. J., Shaddy, D. J., Kannass, K. N., Little, T. D., & Colombo, J. (2009). Structure and continuity of intelligence during early childhood. Intelligence, 37, 106113.Google Scholar
Block, J., & Block, J. H. (2006). Venturing a 30-year longitudinal studyAmerican Psychologist61(4), 315327.Google Scholar
Bornstein, M. H. (1985). How infant and mother jointly contribute to developing cognitive competence in the child. Proceedings of the National Academy of Sciences, 82, 74707473.Google Scholar
Bornstein, M. H. (1989a). Sensitive periods in development: Structural characteristics and causal interpretationsPsychological Bulletin105(2), 179197.Google Scholar
Bornstein, M. H. (1989b). Between caretakers and their young: Two modes of interaction and their consequences for cognitive growth. In Bornstein, M. H. & Bruner, J. S. (Eds.), Interaction in human development (pp. 197214). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Bornstein, M. H. (2013). Mother-infant attunement: A multilevel approach via body, brain, and behavior. In Legerstee, M., Haley, D. W., & Bornstein, M. H. (Eds.), The infant mind: Origins of the social brain (pp. 266298). New York: Guilford.Google Scholar
Bornstein, M. H. (2014). Human infancy … and the rest of the lifespan. Annual Review of Psychology, 65, 121158.Google Scholar
Bornstein, M. H. (2015). Children’s parents. In Bornstein, M. H. & Leventhal, T. (Vol. Eds.), Ecological settings and processes in developmental systems. In Lerner, R. M. (Ed.), Handbook of child psychology and developmental science (7th ed., vol. 4, pp. 55132). Hoboken, NJ: Wiley.Google Scholar
Bornstein, M. H. (Ed.) (2018). SAGE encyclopedia of lifespan human development. Thousand Oaks, CA: Sage.Google Scholar
Bornstein, M. H., & Arterberry, M. E. (2003). Recognition, categorization, and apperception of the facial expression of smiling by 5-month-old infants. Developmental Science, 6, 585599.Google Scholar
Bornstein, M. H., Arterberry, M. E., & Lamb, M. (2014). Development in infancy: A contemporary introduction (5th ed.). New York,: Psychology Press.Google Scholar
Bornstein, M. H., Arterberry, M. E., & Mash, C. (2004). Long‐term memory for an emotional interpersonal interaction occurring at 5 months of ageInfancy6(3), 407416.Google Scholar
Bornstein, M. H., Arterberry, M. E., & Mash, C. (2013). Differentiated brain activity in response to faces of “own” versus “unfamiliar” babies in primipara mothers: An electrophysiological study. Developmental Neuropsychology, 38(6), 365385.Google Scholar
Bornstein, M. H., & Benasich, A. A. (1986). Infant habituation: Assessments of short-term reliability and individual differences at five months. Child Development, 57, 8799.Google Scholar
Bornstein, M. H., & Colombo, J. (2012). Infant cognitive functioning and mental development. In Pauen, S. (Ed.), Early childhood development and later achievement (pp. 118147). New York: Cambridge University Press.Google Scholar
Bornstein, M. H., Hahn, C.-S., Bell, C., Haynes, O. M., Slater, A., Golding, J., Wolke, D., & ALSPAC Study Team. (2006). Stability in cognition from early infancy: A developmental cascade. Psychological Science, 17, 151158.Google Scholar
Bornstein, M. H., Hahn, C.-H., & Putnick, D. L. (2016). Stability of core language skill across the first decade of life in children at biological and social risk. Journal of Child Psychology and Psychiatry, 57, 14341443.Google Scholar
Bornstein, M. H., Hahn, C.-S., & Wolke, D. (2013). Systems and cascades in cognitive development and academic achievement. Child Development, 84, 154162.Google Scholar
Bornstein, M. H., & Ludemann, P. L. (1989). Habituation at home. Infant Behavior and Development, 12, 525529.Google Scholar
Bornstein, M. H., & Putnick, D. L. (2012). Stability of language in childhood: A multiage, multidomain, multimeasure, and multisource study. Developmental Psychology, 48, 477491.Google Scholar
Bornstein, M. H., & Putnick, D. L. (2019). The architecture of the child mind: g, F, and their hierarchy. New York: Routledge.Google Scholar
Bornstein, M. H., Putnick, D. L., & Esposito, G. (2017). Continuity and stability in development. Child Development Perspectives, 11, 113119.Google Scholar
Bornstein, M. H., & Sigman, M. D. (1986). Continuity in mental development from infancy. Child Development, 57, 251274.Google Scholar
Bornstein, M. H., Tal, J., Rahn, C., Galperín, C. Z., Pêcheux, M.-G., Lamour, M., et al. (1992). Functional analysis of the contents of maternal speech to infants of 5 and 13 months in four cultures: Argentina, France, Japan, and the United States. Developmental Psychology, 28, 593603.Google Scholar
Bornstein, M. H., & Tamis-LeMonda, C. S. (1990). Activities and interactions of mothers and their firstborn infants in the first six months of life: Covariation, stability, continuity, correspondence, and prediction. Child Development, 61, 12061217.Google Scholar
Bornstein, M. H., Tamis-LeMonda, C. S., & Haynes, O. M. (1999). First words in the second year: Continuity, stability, and models of concurrent and predictive correspondence in vocabulary and verbal responsiveness across age and context. Infant Behavior and Development, 22, 6585.Google Scholar
Brody, N. (1992). Intelligence (2nd ed.). New York: Academic.Google Scholar
Broman, S. H. (1989). Infant physical status and later cognitive development. In Bornstein, M. H. & Krasnegor, N. A. (Eds.), Stability and continuity in mental development: Behavioral and biological perspectives (pp. 4562). Hillsdale, NJLawrence Erlbaum Associates.Google Scholar
Broman, S. H., Nichols, P. L., & Kennedy, W. A. (1975). Preschool IQ: Prenatal and early developmental correlates. Hillsdale, NJ: Erlbaum.Google Scholar
Bruer, J. (2002). The myth of the first three years. New York: The Free Press.Google Scholar
Butz, W. P., & Torrey, B. B. (2006). Some frontiers in social scienceScience312(5782), 18981900.Google Scholar
Chapman, R. S. (1981). Cognitive development and language comprehension in 10 to 21-month-olds. In Stark, R. E. (Ed.), Language behavior in infancy and early childhood (pp. 359394). New York: Elsevier North Holland.Google Scholar
Chen, Z., & Siegler, R. (2000). Intellectual development in childhood. In Sternberg, R. J. (Ed.), Handbook of intelligence (pp. 92116). New York: Cambridge University Press.Google Scholar
Choudhury, N., & Benasich, A. A. (2011). Maturation of auditory evoked potentials from 6 to 48 months: Prediction to 3 and 4 year language and cognitive abilitiesClinical Neurophysiology122(2), 320338.Google Scholar
Clarke, A. M., & Clarke, A. D. B. (Eds.) (1976). Early experience: Myth and evidence. New York: Free Press.Google Scholar
Coates, D. L., & Lewis, M. (1984). Early mother-infant interaction and infant cognitive status as predictors of school performance and cognitive behavior in six-year-oldsChild Development, 55, 12191230.Google Scholar
Colombo, J. (1993). Infant cognition: Predicting later intellectual functioning. Newbury Park, CA: Sage.Google Scholar
Cooper, L. A., & Regan, D. T. (1986). Attention, perception, and intelligence. In Sternberg, R. J. (Ed.), Handbook of human intelligence (pp. 123169). Cambridge, UK: Cambridge University Press.Google Scholar
Cortina, J. M., & Landis, R. S. (2009). When small effect sizes tell a big story, and when large effect sizes don’t. In Lance, C. E. & Vandenberg, R. J. (Eds.), Statistical and methodological myths and urban legends: Doctrine, verity and fable in the organizational and social sciences (pp. 287308). New York: Taylor & Francis.Google Scholar
Courage, M. L., Howe, M. L., & Squires, S. E. (2004). Individual differences in 3.5-month-olds’ visual attention: What do they predict at 1 year?Infant Behavior and Development27(1), 1930.Google Scholar
Cuevas, K., & Bell, M. A. (2014). Infant attention and early childhood executive functionChild Development85(2), 397404.Google Scholar
Cummings, M. E., & Warmuth, K. M. (2019). Parenting and attachment. In Bornstein, M. H. (Ed.), Handbook of parenting (3rd ed., vol. 4, pp. 374400). New York: Routledge.Google Scholar
Darwin, C. R. (1859). The origin of speciesNew York: Modern Library.Google Scholar
Darwin, C. R. (1877). A biographical sketch of an infant. Mind, 2, 286294.Google Scholar
Davis, K., Christodoulou, J. A., Seider, S., & Gardner, H. (2011). The theory of multiple intelligences. In Sternberg, R. J. & Kaufman, S. B. (Eds.), Cambridge handbook of intelligence (pp. 485503). New York: Cambridge University Press.Google Scholar
de Boysson-Bardies, B., & Vihman, M. M. (1991). Adaptation to language: Evidence from babbling and first words in four languagesLanguage, 67(2), 297319.Google Scholar
Deary, I. J. (1995). Auditory inspection time and intelligence: What is the causal direction? Developmental Psychology, 31, 237250.Google Scholar
DeCasper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behavior and Development, 9, 133150.Google Scholar
Demiris, Y., & Meltzoff, A. (2008). The robot in the crib: A developmental analysis of imitation skills in infants and robots. Infant and Child Development, 17, 4353.Google Scholar
Delauney-El Allam, M., Marlier, L., & Schaal, B. (2006). Learning at the breast: Preference formation for an artificial scent and its attraction against the odor of maternal milk. Infant Behavior and Development, 29, 308321.Google Scholar
Delauney-El Allam, M., Soussignan, R., Patris, B., Marlier, L., & Schaal, B. (2010). Long‐lasting memory for an odor acquired at the mother’s breast. Developmental Science, 13(6), 849863.Google Scholar
Dempster, F. N. (1991). Inhibitory processes: A neglected dimension of intelligence. Intelligence, 15, 157173.Google Scholar
Detterman, D. K. (1987). Theoretical notions of intelligence and mental retardation. American Journal of Mental Deficiency, 92, 211.Google Scholar
Dickstein, S., & Parke, R. D. (1988). Social referencing in infancy: A glance at fathers and marriage. Child Development, 59, 506511.Google Scholar
Dixon, W. E., & Smith, P. H. (2008). Attentional focus moderates habituation–language relationships: Slow habituation may be a good thingInfant and Child Development17(2), 95108.Google Scholar
Dollard, J., & Miller, N. (1950). Personality and psychotherapy. New York: McGraw-Hill.Google Scholar
Domsch, H., Lohaus, A., & Thomas, H. (2009). Prediction of childhood cognitive abilities from a set of early indicators of information processing capabilitiesInfant Behavior and Development32(1), 91102.Google Scholar
Dougherty, T. M., & Haith, M. (1997). Infant expectations and reaction time as predictors of childhood speed of processing and IQ. Developmental Psychology, 33, 146155.Google Scholar
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., et al. (2007). School readiness and later achievement. Developmental Psychology, 43, 14281446.Google Scholar
Elder, G. H., Shanahan, M. J., & Jennings, J. A. (2015). Human development in time and place. In Bornstein, M. H. & Leventhal, T. (Eds.), Handbook of child psychology and developmental science, vol. 4, Ecological settings and processes in developmental systems (7th ed., pp. 654). Hoboken, NJ: Wiley.Google Scholar
Emmerich, W. (1964). Continuity and stability in early social developmentChild Development, 35(2), 311332.Google Scholar
Erikson, E. H. (1950). Childhood and society. New York: W. W. Norton and CompanyGoogle Scholar
Fagan, J. F., Holland, C. R., & Wheeler, K. (2007). The prediction, from infancy, of adult IQ and achievementIntelligence35(3), 225231.Google Scholar
Fagan, J. F., & Singer, L. T. (1983). Infant recognition memory as a measure of intelligence. In Lipsitt, L. P. (Ed.), Advances in infancy research (vol. 2, pp. 3179). Norwood, NJ: Ablex.Google Scholar
Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in understanding: Speech processing efficiency and vocabulary growth across the 2nd yearDevelopmental Psychology42(1), 98116.Google Scholar
Ferri, E., Bynner, J., & Wadsworth, M. (2003). Changing Britain, changing lives. London: Institute of Education, University of London.Google Scholar
Freud, S. (1949). An outline of psycho-analysis. New York: NortonGoogle Scholar
Frick, J. E., & Colombo, J. (1996). Individual differences in infant visual attention: Recognition of degraded visual forms by four-month-olds. Child Development, 67, 188204.Google Scholar
Frick, J. E., & Richards, J. E. (2001). Individual differences in infants’ recognition of briefly presented visual stimuli. Infancy, 2, 331352.Google Scholar
Garcia-Sierra, A., Rivera-Gaxiola, M., Percaccio, C. R., Conboy, B. T., Romo, H., Klarman, L., et al. (2011). Bilingual language learning: An ERP study relating early brain responses to speech, language input, and later word productionJournal of Phonetics39(4), 546557.Google Scholar
Geangu, E., Benga, O., Stahl, D., & Striano, T. (2010). Contagious crying beyond the first days of life. Infant Behavior and Development, 33, 279288.Google Scholar
Geangu, E., Benga, O., Stahl, D., & Striano, T. (2011). Individual differences in infants’ emotional resonance to a peer in distress: Self-other awareness and emotion regulation. Social Development, 20, 450470.Google Scholar
Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 1323.Google Scholar
Gottfried, A. W. (Ed.) (1984). Home environment and early cognitive development. Orlando, FL: Academic.Google Scholar
Goubet, N., Rattaz, C., Pierrat, V., Allemann, E., Bullinger, A., & Lequien, P. (2002). Olfactory familiarization and discrimination in preterm and full-term newborns. Infancy, 3, 5376.Google Scholar
Goubet, N., Strasbaugh, K., & Chesney, J. (2007). Familiarity breeds content? Soothing effect of a familiar odor on full-term newborns. Journal of Developmental and Behavioral Pediatrics, 28, 189194.Google Scholar
Gould, S. J. (1985). Ontogeny and phylogeny. Cambridge, MA: Belknap.Google Scholar
Guerin, D. W., Gottfried, A. W., Oliver, P. H., & Thomas, C. W. (1994). Temperament and school functioning during early adolescence. Journal of Early Adolescence, 14, 200225.Google Scholar
Hall, G. S. (1891). Notes on the study of infants. Pedagogical Seminary, 1, 127138.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. New York: Paul H. Brookes.Google Scholar
Hart, B., & Risley, T. R. (1999). The social world of children learning to talk. New York: Paul H. Brookes.Google Scholar
Hauser, R. M. (2009). The Wisconsin longitudinal study. In Elder, G. H. & Giele, J. Z. (Eds.), The craft of life course research (pp. 2950). New York: Guilford Press.Google Scholar
Hedges, L. L., & Oklin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.Google Scholar
Hespos, S. J., & Baillargeon, R. (2008). Young infants’ actions reveal their developing knowledge of support variables: Converging evidence for violation-of-expectation findings. Cognition, 107, 304316.Google Scholar
Hespos, S. J., Ferry, A. L., & Rips, L. J. (2009). Five-month-old infants have different expectations for solids and liquids. Psychological Science, 20, 603611.Google Scholar
Hetherington, E. M., Parke, R. D., Gauvain, M., & Locke, V. O. (2006). Childhood psychology: A contemporary viewpoint (6th ed.). Boston: McGraw-Hill.Google Scholar
Hirshberg, L. M., & Svejda, M. (1990). When infants look to their parents: I. Infants’ social referencing of mothers compared to fathers. Child Development, 61, 11751186.Google Scholar
Hornik, R., Risenhoover, N., & Gunnar, M. (1987). The effects of maternal positive, neutral, and negative affective communications on infant responses to new toys. Child Development, 58, 937944.Google Scholar
Humphreys, L. G., & Davey, T. C. (1988). Continuity in intellectual growth from 12 months to 9 years. Intelligence, 12, 183197.Google Scholar
Hunt, E. B. (1983). On the nature of intelligence. Science, 219, 141146.Google Scholar
Hutman, T., & Dapretto, M. (2009). The emergence of empathy during infancy. Cognition, Brain, Behavior, 13, 367390.Google Scholar
Jaeger, S. (1985). The origin of the diary method in developmental psychology. In Eckhardt, G., Bringmann, W. G., & Sprung, L. (Eds.), Contributions to a history of developmental psychology (pp. 6374). Berlin: Mouton.Google Scholar
James, W. (1890). Principles of psychology. New York: Holt.Google Scholar
Jensen, A. R. (1980). Chronometric analysis of intelligenceJournal of Social and Biological Structures3(2), 103122.Google Scholar
Johnson, W., Emde, R. N., Pennbrook, B., Stenberg, C., & Davis, M. (1982). Maternal perception of infant emotion from birth through 18 months. Infant Behavior and Development, 5, 313322.Google Scholar
Kagan, J. (1976). Emergent themes in human development. American Scientist, 64(2), 186196.Google Scholar
Kagan, J. (2009). Three seductive ideas. Cambridge, MA: Harvard University Press.Google Scholar
Kandel, E. C. (2007). In search of memory: The emergence of a new science of mind. New York: W. W. Norton.Google Scholar
Kavšek, M. (2004). Predicting later IQ from infant visual habituation and dishabituation: A meta-analysis. Journal of Applied Developmental Psychology, 25, 369393.Google Scholar
Kavšek, M., & Bornstein, M. H. (2010). Visual habituation and dishabituation in preterm infants: A review and meta-analysis. Research in Developmental Disabilities31(5), 951975.Google Scholar
Keen, R. E., & Berthier, N. E. (2004). Continuities and discontinuities in infants’ representation of objects and events. Advances in Child Development and Behavior, 32, 243279.Google Scholar
Kim, G., & Kwak, K. (2011). Uncertainty matters: Impact of stimulus ambiguity on infant social referencing. Infant and Child Development, 20, 449462.Google Scholar
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35B42.Google Scholar
Kirkham, N. Z., Slemmer, J. A., Richardson, D. C., & Johnson, S. P. (2007). Location, location, location: Development of spatiotemporal sequence learning in infancy. Child Development, 78, 15591571.Google Scholar
Kisilevsky, B. S., Hains, S. M. J., Lee, K., Xie, X., Huang, H., Ye, H.-H., et al. (2003). Effects of experience on fetal voice recognition. Psychological Science, 14, 220224.Google Scholar
Klein, P. S. (1988). Stability and change in interaction of Israeli mothers and infants. Infant Behavior and Development, 11, 5570.Google Scholar
Kopp, C. B., & McCall, R. B. (1980). Stability and instability in mental test performance among normal, at-risk, and handicapped infants and children. In Baltes, P. B. & Brim, O. G. Jr. (Eds.), Life-span development and behavior (vol. 4, pp. 3361). New YorkAcademic.Google Scholar
Kuhl, P. K. (2009). Linking infant speech perception to language acquisition: Phonetic learning predicts language growth. In McCardle, P., Colombo, J., & Freund, L. (Eds.), Infant pathways to language: Methods, models, and research directions. New York: Erlbaum.Google Scholar
Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: New data and native language magnet theory expanded (NLM-e)Philosophical Transactions of the Royal Society B: Biological Sciences363(1493), 9791000.Google Scholar
Kuhl, P. K., Conboy, B. T., Padden, D., Nelson, T., & Pruitt, J. (2005). Early speech perception and later language development: Implications for the “critical period.” Language Learning and Development1(34), 237264.Google Scholar
Kuhl, P. K., & Rivera-Gaxiola, M. (2008). Neural substrates of language acquisitionAnnual Review of Neuroscience31, 511534.Google Scholar
Lamott, A. (2013). Some assembly required: A journal of my son’s first son. New York: Riverhead Books.Google Scholar
Laucht, M., Esser, G., & Schmidt, M. H. (1994). Contrasting infant predictors of later cognitive functioningJournal of Child Psychology and Psychiatry35(4), 649662.Google Scholar
Legerstee, M., & Markova, G. (2008). Variations in 10-month-old infant imitation of people and things. Infant Behavior and Development, 31, 8191.Google Scholar
Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 1724.Google Scholar
Lerner, R. M., Hershberg, R. M., Hilliard, L. J., & Johnson, S. K. (2015). Concepts and theories of human development. In Bornstein, M. H. & Lamb, M. E. (Eds.), Developmental science: An advanced textbook (7th ed., pp. 341). New York: Psychology Press.Google Scholar
Lewis, M. (1997). Altering fate: Why the past does not predict the future. New York: Guilford.Google Scholar
Lewontin, R. (2005). The triple helix. Cambridge, MA: Harvard University PressGoogle Scholar
Lorenz, K. (1935/1970). Studies in animal and human behavior (Trans. R. Martin). London: Methuen.Google Scholar
Lunden, M., & Silven, M. (2011). Balanced communication in mid-infancy promotes early vocabulary development: Effects of play with mother and father in mono-and bilingual familiesInternational Journal of Bilingualism15(4), 535559.Google Scholar
Maccoby, E. E., & Martin, J. A. (1983). Socialization in the context of the family: Parent–child interaction. In Hetherington, E. M. (Ed.), Handbook of child psychology, vol. 4, Socialization, personality, and social development (3rd ed., pp. 1101). New York: Wiley.Google Scholar
Macken, M. A., & Barton, D. (1980). The acquisition of the voicing contrast in English: A study of voice onset time in word-initial stop consonantsJournal of Child Language7(1), 4174.Google Scholar
Manian, N., & Bornstein, M. H. (2009). Dynamics of emotion in infants of clinically depressed and nondepressed mothers. Journal of Child Psychology and Psychiatry, 50, 14101418.Google Scholar
Marchman, V. A., & Fernald, A. (2008). Speed of word recognition and vocabulary knowledge in infancy predict cognitive and language outcomes in later childhoodDevelopmental Science11(3), F9F16.Google Scholar
Mash, C., Arterberry, M. E., & Bornstein, M. H. (2007). Mechanisms of visual object recognition in infancy: Five-month-olds generalize beyond the interpolation of familiar views. Infancy, 12, 3143.Google Scholar
McCall, R. B. (1994). What process mediates prediction of childhood IQ from infant habituation and recognition memory? Speculations on the roles of inhibition and rate of information processing. Intelligence, 18, 107125.Google Scholar
McCall, R. B., & Carriger, M. S. (1993). A meta-analysis of infant habituation and recognition memory performance as predictors of later IQ. Child Development, 64, 5779.Google Scholar
McCall, R. B., Hogarty, P. S., & Hurlburt, N. (1972). Transitions in infant sensorimotor development and the prediction of childhood IQ. American Psychologist, 27(8), 728748.Google Scholar
McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18, 740745.Google Scholar
McLaughlin, B., White, D., McDevitt, T., & Raskin, R. (1983). Mothers’ and fathers’ speech to their young children: Similar or different? Journal of Child Language, 10, 245252.Google Scholar
Meltzoff, A. N., & Moore, M. K. (2002). Imitation, memory, and the representation of persons. Infant Behavior and Development, 25, 3961.Google Scholar
Mendelson, M. J. (1993). Becoming a brother: A child learns about life, family, and self. Cambridge, MA: MIT Press.Google Scholar
Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responsesBrain and Language72(3), 238245.Google Scholar
Murray, L., de Rosnay, M., Pearson, J., Bergeron, C., Schofield, E., Royal-Lawson, M., et al. (2008). Intergenerational transmission of social anxiety: The role of social referencing processes in infancy. Child Development, 79, 10491064.Google Scholar
Murray, L., & Trevarthen, C. (1985). Emotional regulation of interactions between two-month-olds and their mothers. In Field, T. M. & Fox, N. A. (Eds.), Social perception in infants (pp. 177197). Norwood, NJ: Ablex.Google Scholar
Needham, A. (2009). Learning in infants’ object perception, object-directed action, and tool use. In Woodward, A. & Needham, A. (Eds.), Learning and the infant mind (pp. 208226). New York: Oxford University Press.Google Scholar
Nettelbeck, T. (1987). Inspection time and intelligence. In Vernon, P. A. (Ed.), Speed of information processing and intelligence (pp. 295346). Norwood, NJ: Ablex.Google Scholar
Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006). Infants’ early ability to segment the conversational speech signal predicts later language development: A retrospective analysisDevelopmental Psychology42(4), 643655.Google Scholar
Nicely, P., Tamis-LeMonda, C. S., & Bornstein, M. H. (1999). Mothers’ attuned responses to infant affect expressivity promote earlier achievement of language milestones. Infant Behavior and Development, 22, 557568.Google Scholar
Oakes, L. M., Horst, J. S., Kovack-Lesh, K. L., & Perone, S. (2009). How infants learn categories. In Woodward, A. & Needham, A. (Eds.), Learning and the infant mind (pp. 144171). New York: Oxford University Press.Google Scholar
Overton, W. F. (2015). Process and relational developmental systems. In Overton, W. F. & Molenaar, P. C. (Eds.), Handbook of child psychology and developmental science, vol. 1, Theory and method (7th ed., pp. 962). Hoboken, NJ: Wiley.Google Scholar
Pancsofar, N., Vernon-Feagans, L., & Family Life Project Investigators. (2010). Fathers’ early contributions to children’s language development in families from low-income rural communitiesEarly Childhood Research Quarterly25(4), 450463.Google Scholar
Parke, R. D., & Cookston, J. (2019). Fathers and families. In Bornstein, M. H. (Ed.), Handbook of parenting (3rd ed., vol.3, pp. 64136). New York: Routledge.Google Scholar
Pearson, R. M., Lightman, S. L., & Evans, J. (2011). Attentional processing of infant emotion during late pregnancy and mother-infant relations after birth. Archives of Women’s Mental Health, 14(1), 2331.Google Scholar
Phelps, E., Furstenberg, F. F. Jr., & Colby, A. (Eds.) (2002). Looking at lives: American longitudinal studies of the twentieth century. Troy, NY: Russell Sage Foundation.Google Scholar
Piaget, J. (1952). The origins of intelligence in children (Trans. M. Cook). New York: W. W. Norton.Google Scholar
Plato (1970). The laws (Trans. T. J. Saunders). Harmondsworth, Middlesex: Penguin. (Original work written ca. 355 BC)Google Scholar
Plomin, R., & DeFries, J. C. (1985). Origins of individual differences in infancy: The Colorado Adoption Project. New York: Academic Press.Google Scholar
Porter, R. H., & Levy, F. (1995). Olfactory mediation of mother–infant interactions in a selected mammalian species. In Wong, R. (Ed.), Biological perspectives on motivated activities (pp. 77110). Norwood, NJ: Ablex.Google Scholar
Porter, R. H., & Winberg, J. (1999). Unique salience of maternal breast odors for newborn infants. Neuroscience and Biobehavioral Reviews, 23, 439449.Google Scholar
Prentice, D. A., & Miller, D. T. (1992). When small effects are impressivePsychological Bulletin112(1), 160164.Google Scholar
Preyer, W. (1882). Die seele des kindes. Leipzig: Grieben. Published in English in 1888–1889 as The mind of the child, Parts 1 and 2. (trans. H. W. Brown). New York: Appleton. (Reprinted by Arno Press, 1973.)Google Scholar
Prochner, L., & Doyon, P. (1997). Researchers and their subjects in the history of child study: William Blatz and the Dionne quintuplets. Canadian Psychology, 38, 103110.Google Scholar
Rankin, C., Abrams, T., Barry, R., Bhatnagar, S., Cerruti, D., Fang, C.-W., & Thompson, R. (2009). Habituation: An evaluation and revision of Thompson and Spencer (1966). Neurobiology of Learning and Memory, 92, 135138.Google Scholar
Reilly, S., Bavin, E. L., Bretherton, L., Conway, L., Eadie, P., Cini, E., et al. (2009). The Early Language in Victoria Study (ELVS): A prospective, longitudinal study of communication skills and expressive vocabulary development at 8, 12 and 24 monthsInternational Journal of Speech-Language Pathology11(5), 344357.Google Scholar
Richards, J. E. (1997). Effects of attention on infants’ preference for briefly exposed visual stimuli in the paired-comparison recognition-memory paradigm. Developmental Psychology, 33, 2231.Google Scholar
Rivera‐Gaxiola, M., Silva‐Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non‐native speech contrasts in 7‐and 11‐month‐old American infants. Developmental science8(2), 162172.Google Scholar
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2012). Implications of infant cognition for executive functions at age 11Psychological Science23(11), 13451355.Google Scholar
Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effectJournal of Educational Psychology74(2), 166169.Google Scholar
Rosenthal, R., & Rubin, D. B. (1983). A note on percent variance explained as a measure of the importance of effectsJournal of Applied Social Psychology9(5), 395396.Google Scholar
Rousseau, J. J. (1762). Emile. New York: Barron’s Educational Series.Google Scholar
Rovee-Collier, C. (1997). Dissociations in infant memory: Rethinking the development of implicit and explicit memoryPsychological Review104(3), 467498.Google Scholar
Rovee-Collier, C., & Cuevas, K. (2009). Multiple memory systems are unnecessary to account for infant memory development: An ecological model. Developmental Psychology, 45, 160174.Google Scholar
Sattler, J. M. (1992). Assessment of children’s intelligence. In Walker, C. E. & Roberts, M. C. (Eds.), Handbook of clinical child psychology (2nd ed., pp. 85100). Oxford: John Wiley & Sons.Google Scholar
Scarr, S., Weinberg, R. A., & Waldman, I. D. (1993). IQ correlations in transracial adoptive families. Intelligence, 17, 541555.Google Scholar
Shaddy, D. J., & Colombo, J. (2004). Developmental changes in infant attention to dynamic and static stimuli. Infancy, 5, 355365.Google Scholar
Siegel, L. S. (1989). A reconceptualisation of prediction from infant test scores. In Bornstein, M. H. & Krashnegor, N. A. (Eds.), Stability and continuity in mental development: Behavioral and biological perspectives (pp. 89103). Hillsdale, NJ: Erlbaum.Google Scholar
Sigman, M., Cohen, S. E., & Beckwith, L. (1997). Why does infant attention predict adolescent intelligence? Infant Behavior and Development20(2), 133140.Google Scholar
Sigman, M., Cohen, S. E., Beckwith, L., Asarnow, R., & Parmelee, A. H. (1991). Continuity in cognitive abilities from infancy to 12 years of ageCognitive Development6(1), 4757.Google Scholar
Sigman, M., Cohen, S. E., Beckwith, L., & Topinka, C. (1987). Task persistence in 2-year-old preterm infants in relation to subsequent attentiveness and intelligence. Infant Behavior and Development, 10, 295305.Google Scholar
Singh, L., Liederman, J., Mierzejewski, R., & Barnes, J. (2011). Rapid reacquisition of native phoneme contrasts after disuse: You do not always lose what you do not useDevelopmental science14(5), 949959.Google Scholar
Smith, L., Fagan, J. F., & Ulvund, S. E. (2002). The relation of recognition memory in infancy and parental socioeconomic status to later intellectual competence. Intelligence, 30(3), 247259.Google Scholar
Sorce, J. F., & Emde, R. N. (1981). Mother’s presence is not enough: Effect of emotional availability on infant exploration. Developmental Psychology, 17, 737745.Google Scholar
Sroufe, L. A., Egeland, B., Carlson, E., & Collins, W. A. (2005). The development of the person: The Minnesota study of risk and adaptation from birth to adulthood. New York: Guilford Press.Google Scholar
Stankov, L. (1983). Attention and intelligence. Journal of Educational Psychology, 75, 471490.Google Scholar
Steiner, J. E. (1979). Human facial expressions in response to taste and smell stimulation. In Reese, H. & Lipsitt, L. (Eds.), Advances in child development and behavior (vol. 13, pp. 257295). New York: Academic.Google Scholar
Stern, D. (1990). Diary of a child. New York: Basic Books.Google Scholar
Sternberg, R. J. (Ed.) (2020). Cambridge handbook of intelligence (2nd ed.). New York: Cambridge University Press.Google Scholar
Sternberg, R. J., & Detterman, D. K. (Eds.) (1986). What is intelligence? Contemporary viewpoints on its nature and definition. Santa Barbara, CA: Praeger Pub Text.Google Scholar
Sternberg, R. J., Grigorenko, E. L., & Bundy, D. A. (2001). The predictive value of IQ. Merrill-Palmer Quarterly, 47, 141.Google Scholar
Stoecker, J. J., Colombo, J., Frick, J. E., & Ryther, J. S. (1998). Long- and short-looking infants’ recognition of symmetrical and asymmetrical visual forms. Journal of Experimental Child Psychology, 71, 6378.Google Scholar
Taine, H. A. (1877). Taine on the acquisition of language by children. Mind, 2, 252259.Google Scholar
Tamis-LeMonda, C. S., & Bornstein, M. H. (1989). Habituation and maternal encouragement of attention in infancy as predictors of toddler language, play, and representational competence. Child Development, 60, 738751.Google Scholar
Tamis-LeMonda, C. S., & Bornstein, M. H. (1993). Antecedents of exploratory competence at one year. Infant Behavior and Development, 16(4), 423439.Google Scholar
Thompson, R. A. (2006). The development of the person: Social understanding, relationships, conscience, self. In Kuhn, D. & Siegler, R. S. (Eds.), Handbook of child psychology: Cognition, perception, and language (6th ed., vol. 2, pp. 2498). Hoboken, NJ: Wiley.Google Scholar
Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 1643.Google Scholar
Tiedemann, D. (1787).Beobachtungen über die Entwicklung der Seelenfähigkeiten bei Kindern. Hessische Beiträge zur Gelehrsamkeit und Kunst, 2, 313315 and 3, 486488. (Observations on the development of the mental faculties of children, Pedagogical Seminary, 1927, 34, 205230.)Google Scholar
Tinbergen, N. (1951). The study of instinct. Oxford: Oxford University Press.Google Scholar
Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2004). Speech perception in infancy predicts language development in the second year of life: A longitudinal studyChild Development75(4), 10671084.Google Scholar
Vacha-Haase, T., & Thompson, B. (2004). How to estimate and interpret various effect sizesJournal of Counseling Psychology51(4), 473481.Google Scholar
Vernon, P. E. (1947). The variations of intelligence with occupation, age, and localityBritish Journal of Mathematical and Statistical Psychology1(1), 5263.Google Scholar
Vernon, P. E. (Ed.) (1987). Speed of information-processing and intelligence. Norwood, NJ: Ablex.Google Scholar
Wachs, T. D., & Chan, A. (1986). Specificity of environmental action, as seen in environmental correlates of infants’ communication performance. Child Development, 57, 14641474.Google Scholar
Wagner, L., & Lakusta, L. (2009). Using language to navigate the infant mind. Perspectives on Psychological Science, 4, 177184.Google Scholar
Wallace, D. B., Franklin, M. B., & Keegan, R. T. (1994). The observing eye: A century of baby diaries. Human Development, 37(1), 129.Google Scholar
Watson, J. B. (1924/1970). Behaviorism (Rev. ed.) New York: Norton.Google Scholar
Wechsler, D. (1958). The measurement and appraisal of adult intelligence (4th ed.). Baltimore, MD: Williams & Wilkins Co.Google Scholar
Winnicott, D. W. (1965). The maturational processes and the facilitating environment: Studies in the theory of emotional development. New York: International Universities Press.Google Scholar
Wohlwill, J. F. (1973). The study of behavioral development. New York: Academic Press.Google Scholar
Wolfe, C. D., & Bell, M. A. (2007). The integration of cognition and emotion during infancy and early childhood: Regulatory processes associated with the development of working memoryBrain and Cognition65(1), 313.Google Scholar
Woodward, A. L. (2009). Infants’ grasp of others’ intentions. Current Directions in Psychological Science, 18, 5357.Google Scholar
Yamaguchi, M., Kuhlmeier, V. A., Wynn, K., & VanMarle, K. (2009). Continuity in social cognition from infancy to childhood. Developmental Science, 12(5), 746752.Google Scholar
Yeaton, W., & Sechrest, L. (1981). Meaningful measures of effect. Journal of Consulting and Clinical Psychology, 49, 766767.Google Scholar
Yu, H., McCoach, D. B., Gottfried, A. W., & Gottfried, A. E. (2018). Stability of intelligence from infancy through adolescence: An autoregressive latent variable model. Intelligence, 69, 815.Google Scholar
Zigler, E., Abelson, W. D., & Seitz, V. (1973). Motivational factors in the performance of economically disadvantaged children on the Peabody Picture Vocabulary Test. Child Development, 44, 294303.Google Scholar

References

Abbasi, J. (2017). Junk food ads reach children despite food industry self-regulationJournal of the American Medical Association317(23), 23592361. https://doi.org/10.1001/jama.2017.4653Google Scholar
Ackil, J. K., & Zaragoza, M. S. (1995). Developmental differences in eyewitness suggestibility and memory for source. Journal of Experimental Child Psychology, 60(1), 5783. https://doi.org/10.1006/jecp.1995.1031Google Scholar
Adolph, K. E., Bertenthal, B. I., Boker, S. M., Goldfield, E. C., & Gibson, E. J. (1997). Learning in the development of infant locomotionMonographs of the Society for Research in Child Development, 162(3), ivi, 1158. https://doi.org/10.2307/1166199Google Scholar
Adolph, L. E., & Hoch, J. E. (2019). Motor development: Embodied, embedded, enculturated, and enablingAnnual Review of Psychology, 70, 141164. https://doi.org/10.1146/annurev-psych-010418-102836Google Scholar
Aguiar, N. R., Stoess, C. J., & Taylor, M. (2012). The development of children’s ability to fill the gaps in their knowledge by consulting expertsChild Development83(4), 13681381. https://doi.org/10.1111/j.1467-8624.2012.01782.xGoogle Scholar
Amato, P. R., & Dorius, C. (2010). Fathers, children, and divorce. In Lamb, M. E. (Ed.), The role of the father in child development (5th ed., pp. 177200). Hoboken, NJ: Wiley.Google Scholar
Atran, S. (1998). Folk biology and the anthropology of science: Cognitive universals and cultural particularsBehavioral and Brain Sciences21(4), 547569.Google Scholar
Bascandziev, I., & Harris, P. L. (2013). In beauty we trust: Children prefer information from more attractive informantsBritish Journal of Developmental Psychology32(1), 9499. https://doi.org/10.1111/bjdp.12022Google Scholar
Batada, A., & Wootan, M. G. (2007). Nickelodeon markets nutrition-poor foods to childrenAmerican Journal of Preventive Medicine33(1), 4850. https://doi.org/10.1016/j.amepre.2007.02.035Google Scholar
Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievementProceedings of the National Academy of Sciences107(5), 18601863. https://doi.org/10.1073/pnas.0910967107Google Scholar
Bering, J. M., Blasi, C. H., & Bjorklund, D. F. (2005). The development of afterlife beliefs in religiously and secularly schooled childrenBritish Journal of Developmental Psychology23(4), 587607. https://doi.org/10.1348/026151005X36498Google Scholar
Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355(6323), 389391. https://doi.org/10.1126/science.aah6524Google Scholar
Birch, L. L. (1980). Effects of peer models’ food choices and eating behaviors on preschoolers’ food preferences. Child Development, 51(2), 489496. https://doi.org/10.2307/1129283Google Scholar
Bjorklund, D. F., Dukes, C., & Brown, R. D. (2008). The development of memory strategies. In Courage, M. & Cowan, N. (Eds.), The development of memory in infancy and childhood (pp. 157188). Hove, UK: Psychology Press.Google Scholar
Bjorklund, D. F., & Green, B. L. (1992). The adaptive nature of cognitive immaturity. American Psychologist, 47, 4654. https://doi.org/10.1037/0003-066X.47.1.46Google Scholar
Blacker, K.-A., & LoBue, V. (2016). Behavioral avoidance of contagion in childhood. Journal of Experimental Child Psychology, 143, 162170. https://doi.org/10.1016/j.jecp.2015.09.033Google Scholar
Bornstein, M. H., Hahn, C. S., & Suwalsky, J. T. (2013). Physically developed and exploratory young infants contribute to their own long-term academic achievementPsychological Science24(10), 19061917. https://doi.org/10.1177/0956797613479974Google Scholar
Bregant, J., Shaw, A., & Kinzler, K. D. (2016). Intuitive jurisprudence: Early reasoning about the functions of punishment. Journal of Empirical Legal Studies, 13(4), 693717. https://doi.org/10.1111/jels.12130Google Scholar
Brosseau‐Liard, P. E., & Birch, S. A. (2010). “I bet you know more and are nicer too!”: What children infer from others’ accuracyDevelopmental Science13(5), 772778. https://doi.org/10.1111/j.1467-7687.2009.00932.xGoogle Scholar
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy1(2), 149219.Google Scholar
Carey, S. (2009). The origin of concepts. New York: Oxford University Press.Google Scholar
Centers for Disease Control and Prevention (2016). Influenza (Flu): Information for Schools & Childcare Providers. www.cdc.gov/flu/school.Google Scholar
Chapman, K., Nicholas, P., Banovic, D., & Supramaniam, R. (2006). The extent and nature of food promotion directed to children in Australian supermarketsHealth Promotion International21(4), 331339. https://doi.org/10.1093/heapro/dal028Google Scholar
Chen, Z., & Siegler, R. S. (2000). Intellectual development in childhood. In Sternberg, R. J. (Ed.), Handbook of intelligence (pp. 92116). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511807947.006Google Scholar
Chi, M. T. (1978). Knowledge structures and memory development. In Siegler, R. (Ed.), Children’s thinking: What develops? (pp. 7596). Mahwah, NJ: Erlbaum.Google Scholar
Clegg, J. M., Wen, N. J., & Legare, C. H. (2017). Is non-conformity WEIRD? Cultural variation in adults’ beliefs about children’s competency and conformityJournal of Experimental Psychology: General146(3), 428441. https://doi.org/10.1037/xge0000275Google Scholar
Cohen, D. J., & Sarnecka, B. W. (2014). Children’s number-line estimation shows development of measurement skills (not number representations. Developmental Psychology, 50(6), 16401652. https://doi.org/10.1037/a0035901Google Scholar
Connell, P. M., Brucks, M., & Nielsen, J. H. (2014). How childhood advertising exposure can create biased product evaluations that persist into adulthoodJournal of Consumer Research, 41(1), 119134. https://doi.org/10.1086/675218Google Scholar
Corriveau, K. H., Fusaro, M., & Harris, P. L. (2009). Going with the flow: Preschoolers prefer nondissenters as informantsPsychological Science20(3), 372377. https://doi.org/10.1111/j.1467-9280.2009.02291.xGoogle Scholar
Corriveau, K. H., & Harris, P. L. (2009). Choosing your informant: Weighing familiarity and recent accuracy. Developmental Science12(3), 426437. https://doi.org/10.1111/j.1467-7687.2008.00792.xGoogle Scholar
Corriveau, K. H., Harris, P. L., Meins, E., Fernyhough, C., Arnott, B., Elliott, L., et al. (2009b). Young children’s trust in their mother’s claims: Longitudinal links with attachment security in infancyChild Development80(3), 750761. https://doi.org/10.1111/j.1467-8624.2009.01295.xGoogle Scholar
Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive growth? Perspectives on Psychological Science11(2), 239264. https://doi.org/10.1177/1745691615621279Google Scholar
Cruwys, T., Bevelander, K. E., & Hermans, R. C. (2015). Social modeling of eating: A review of when and why social influence affects food intake and choice. Appetite86, 318. https://doi.org/10.1016/j.appet.2014.08.035Google Scholar
Cunningham, S. A., Kramer, M. R., & Narayan, K. V. (2014). Incidence of childhood obesity in the United States. New England Journal of Medicine, 370(5), 403411. https://doi.org/10.1056/NEJMoa1309753Google Scholar
Dahl, R. E. (2004). Adolescent brain development: A period of vulnerabilities and opportunities. Keynote addressAnnals of the New York Academy of Sciences1021(1), 122. https://doi.org/10.1196/annals.1308.001Google Scholar
Dalton, M. A., Longacre, M. R., Drake, K. M., Cleveland, L. P., Harris, J. L., et al. (2017). Child-targeted fast-food television advertising exposure is linked with fast-food intake among pre-school childrenPublic Health Nutrition20(9), 15481556. https://doi.org/10.1017/S1368980017000520Google Scholar
Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: On the deceptive determinism of DNA. Psychological Bulletin, 137(5), 800818. https://doi.org/10.1037/a0021860Google Scholar
DeJesus, J. M., Kinzler, K. D., & Shutts, K. (2018). Food cognition and nutrition knowledge. In Fisher, J. O. & Lumeng, J. C. (Eds.), Pediatric food preferences and eating behaviors (pp. 271288). New York: Elsevier. https://doi.org/10.1016/B978-0-12-811716-3.00014-2Google Scholar
DeJesus, J. M., Shutts, K., & Kinzler, K. D. (2015). Eww she sneezed! Contamination context affects children’s food preferences and consumption. Appetite, 87, 303309. https://doi.org/10.1016/j.appet.2014.12.222Google Scholar
DeJesus, J. M., Shutts, K., & Kinzler, K. D. (2018). Mere social knowledge impacts children’s consumption and categorization of foods. Developmental Science. https://doi.org/10.1111/desc.12627Google Scholar
DeLoache, J. S., Simcock, G., & Macari, S. (2007). Planes, trains, automobiles – and tea sets: Extremely intense interests in very young childrenDevelopmental Psychology43(6), 15791586. https://doi.org/10.1037/0012-1649.43.6.1579Google Scholar
Diamond, A. (2013). Executive functionsAnnual Review of Psychology64, 135168. https://doi.org/10.1146/annurev-psych-113011-143750Google Scholar
Eidson, R. C., & Coley, J. D. (2014). Not so fast: Reassessing gender essentialism in young adultsJournal of Cognition and Development15(2), 382392. https://doi.org/10.1080/15248372.2013.763810Google Scholar
Einav, S., & Robinson, E. J. (2011). When being right is not enough: Four-year-olds distinguish knowledgeable informants from merely accurate informantsPsychological Science22(10), 12501253. https://doi.org/10.1177/0956797611416998Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of numberTrends in Cognitive Sciences8(7), 307314. https://doi.org/10.1016/j.tics.2004.05.002Google Scholar
Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics abilityChild Development Perspectives7(2), 7479. https://doi.org/10.1111/cdep.12019Google Scholar
Finn, A. S., Lee, T., Kraus, A., & Kam, C. L. H. (2014). When it hurts (and helps) to try: The role of effort in language learningPloS One9(7), e101806. https://doi.org/10.1371/journal.pone.0101806Google Scholar
Flavell, J. H. (1963). The developmental psychology of Jean Piaget. Princeton: D. Van Nostrand.Google Scholar
Flynn, E., O’Malley, C., & Wood, D. (2004). A longitudinal, microgenetic study of the emergence of false belief understanding and inhibition skillsDevelopmental Science7(1), 103115. https://doi.org/10.1111/j.1467-7687.2004.00326.xGoogle Scholar
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognitionCognition108(3), 819824. https://doi.org/10.1016/j.cognition.2008.04.007Google Scholar
Furth, H. G. (1973). Piaget, IQ and the nature-nurture controversyHuman Development16(1–2), 6173. https://doi.org/10.1159/000271267Google Scholar
Gaither, S. E., Chen, E. E., Corriveau, K. H., Harris, P. L., Ambady, N., & Sommers, S. R. (2014). Monoracial and biracial children: Effects of racial identity saliency on social learning and social preferencesChild Development85(6), 22992316. https://doi.org/10.1111/cdev.12266Google Scholar
Gelman, S. A. (2003). The essential child: Origins of essentialism in everyday thought. New York: Oxford University Press.Google Scholar
Gelman, S. A., & Legare, C. H. (2011). Concepts and folk theoriesAnnual Review of Anthropology40, 379398. https://doi.org/10.1146/annurev-an40Google Scholar
Gelman, S. A., & Marchak, K. A. (in press). How does intuition mislead? The role of human bias in scientific inquiry. In McCain, K. & Kampourakis, K. (Eds.), What is scientific knowledge? An introduction to contemporary epistemology of science. London: Routledge.Google Scholar
Gelman, S. A., & Rhodes, M. (2012). “Two-thousand years of stasis”: How psychological essentialism impedes evolutionary understanding. In Rosengren, K. S., Brem, S., Evans, E. M., & Sinatra, G. (Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution (pp. 321). New York: Oxford University Press.Google Scholar
Gentner, D., & Rattermann, M. J. (1991). Language and the career of similarity. In Gelman, S. A. & Byrnes, J. P. (Eds.), Perspectives on language and thought: interrelations in development (pp. 225277). New York: Cambridge University Press.Google Scholar
Gergely, G., Bekkering, H., & Király, I. (2002). Developmental psychology: Rational imitation in preverbal infantsNature415(6873), 755. https://doi.org/10.1038/415755aGoogle Scholar
Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naıve theory of rational action. Trends in Cognitive Sciences, 7(7), 287292. https://doi.org/10.1016/S1364-6613(03)00128-1Google Scholar
Giménez-Dasí, M., Guerrero, S., & Harris, P. L. (2005). Intimations of immortality and omniscience in early childhoodEuropean Journal of Developmental Psychology2(3), 285297. https://doi.org/10.1080/17405620544000039Google Scholar
Gopnik, A., O’Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., et al. (2017). Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proceedings of the National Academy of Sciences, 201700811. https://doi.org/10.1073/pnas.1700811114Google Scholar
Gopnik, A., & Wellman, H. M. (1992). Why the child’s theory of mind really is a theoryMind and Language7(1–2), 145171. https://doi.org/10.1111/j.1468-0017.1992.tb00202.xGoogle Scholar
Gunderson, E. A., & Levine, S. C. (2011). Some types of parent number talk count more than others: Relations between parents’ input and children’s cardinal‐number knowledgeDevelopmental Science14(5), 10211032. https://doi.org/10.1111/j.1467-7687.2011.01050.xGoogle Scholar
Gweon, H., & Schulz, L. (2011). 16-month-olds rationally infer causes of failed actionsScience332(6037), 15241524. https://doi.org/10.1126/science.1204493Google Scholar
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievementNature455(7213), 665668. https://doi.org/10.1038/nature07246Google Scholar
Harris, P. L. (2011). Conflicting thoughts about deathHuman Development54(3), 160168. https://doi.org/10.1159/000329133Google Scholar
Harris, P. L., Koenig, M. A., Corriveau, K. H., & Jaswal, V. K. (2018). Cognitive foundations of learning from testimonyAnnual Review of Psychology69, 251273. https://doi.org/10.1146/annurev-psych-122216-011710Google Scholar
Hartshorne, J. K., Tenenbaum, J. B., & Pinker, S. (2018). A critical period for second language acquisition: Evidence from 2/3 million English speakersCognition, 177, 263277. https://doi.org/10.1016/j.cognition.2018.04.007Google Scholar
Hatano, G., & Inagaki, K. (1994). Young children’s naive theory of biologyCognition50(1–3), 171188. https://doi.org/10.1016/0010-0277(94)90027-2Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRDNature466(7302), 29. https://doi.org/10.1038/466029aGoogle Scholar
Hofman, A. D., Visser, I., Jansen, B. R., & van der Maas, H. L. (2015). The balance-scale task revisited: A comparison of statistical models for rule-based and information-integration theories of proportional reasoningPloS One10(10), e0136449. https://doi.org/10.1371/journal.pone.0136449Google Scholar
Horne, Z., Powell, D., Hummel, J. E., & Holyoak, K. J. (2015). Countering antivaccination attitudesProceedings of the National Academy of Sciences112(33), 1032110324. https://doi.org/10.1073/pnas.1504019112Google Scholar
Jaffer, S., & Ma, L. (2015). Preschoolers show less trust in physically disabled or obese informants. Frontiers in Psychology, 5, 1524. https://doi.org/10.3389/fpsyg.2014.01524Google Scholar
Jara-Ettinger, J., Gweon, H., Tenenbaum, J. B., & Schulz, L. E. (2015). Children’s understanding of the costs and rewards underlying rational actionCognition140, 1423. https://doi.org/10.1016/j.cognition.2015.03.006Google Scholar
Kahneman, D. (2011). Thinking, fast and slow. New York: Macmillan.Google Scholar
Kail, R. V., Lervåg, A., & Hulme, C. (2016). Longitudinal evidence linking processing speed to the development of reasoningDevelopmental Science19(6), 10671074. https://doi.org/10.1111/desc.12352Google Scholar
Kam, C. L. H., & Newport, E. L. (2009). Getting it right by getting it wrong: When learners change languagesCognitive Psychology59(1), 3066. https://doi.org/10.1016/j.cogpsych.2009.01.001Google Scholar
Kaufman, A. S. (1997). KBIT-2: Kaufman Brief Intelligence Test. Minneapolis, MN: NCS Pearson.Google Scholar
Keen, R. (2011). The development of problem solving in young children: A critical cognitive skillAnnual Review of Psychology62, 121. https://doi.org/10.1146/annurev.psych.031809.130730Google Scholar
Kelemen, D. (2012). Teleological minds. In Rosengren, K. S., Brem, S., Evans, E. M., & Sinatra, G. (Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution (pp. 6692). New York: Oxford University Press.Google Scholar
Kelemen, D., Rottman, J., & Seston, R. (2013). Professional physical scientists display tenacious teleological tendencies: Purpose-based reasoning as a cognitive defaultJournal of Experimental Psychology: General142(4), 10741083. https://doi.org/10.1037/a0030399Google Scholar
Kidd, C., Palmeri, H., & Aslin, R. N. (2013). Rational snacking: Young children’s decision-making on the marshmallow task is moderated by beliefs about environmental reliabilityCognition126(1), 109114. https://doi.org/10.1016/j.cognition.2012.08.004Google Scholar
Killen, M., Mulvey, K. L., Richardson, C., Jampol, N., & Woodward, A. (2011). The accidental transgressor: Morally-relevant theory of mindCognition119(2), 197215. https://doi.org/10.1016/j.cognition.2011.01.006Google Scholar
Kim, S. A., Moore, L. V., Galuska, D., Wright, A. P., Harris, D., Grummer-Strawn, L. M., et al. (2014). Vital signs: Fruit and vegetable intake among children – United States, 2003–2010. Morbidity and Mortality Weekly Report, 63(31), 671676.Google Scholar
Koenig, M. A., & Jaswal, V. K. (2011). Characterizing children’s expectations about expertise and incompetence: Halo or pitchfork effects? Child Development, 82(5), 16341647. https://doi.org/10.1111/j.1467-8624.2011.01618.xGoogle Scholar
Lamb, M. E., Malloy, L. C., Hershkowitz, I., & La Rooy, D. (2015). Children and the law. In Lamb, M. E. (Ed.), Handbook of child psychology and developmental science, vol. 3, Social, emotional, and personality development (7th ed., pp. 464512). Hoboken NJ: Wiley. https://doi.org/10.1002/9781118963418.childpsy312Google Scholar
Lane, J. D., Wellman, H. M., & Gelman, S. A. (2012). Informants’ traits weigh heavily in young children’s trust in testimony and in their epistemic inferencesChild Development84(4), 12531268. https://doi.org/10.1111/cdev.12029Google Scholar
Legare, C. H., Evans, E. M., Rosengren, K. S., & Harris, P. L. (2012). The coexistence of natural and supernatural explanations across cultures and developmentChild Development83(3), 779793. https://doi.org/10.1111/j.1467-8624.2012.01743.xGoogle Scholar
Legare, C. H., & Gelman, S. A. (2008). Bewitchment, biology, or both: The co-existence of natural and supernatural explanatory frameworks across developmentCognitive Science32(4), 607642. https://doi.org/10.1080/03640210802066766Google Scholar
Legare, C. H., & Nielsen, M. (2015). Imitation and innovation: The dual engines of cultural learningTrends in Cognitive Sciences19(11), 688699. https://doi.org/10.1016/j.tics.2015.08.005Google Scholar
Legare, C. H., Wellman, H. M., & Gelman, S. A. (2009). Evidence for an explanation advantage in naïve biological reasoning. Cognitive Psychology, 58(2), 177194. https://doi.org/10.1016/j.cogpsych.2008.06.002Google Scholar
Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347(6219), 262265. https://doi.org/10.1126/science.1261375Google Scholar
Liberman, Z., Kinzler, K. D., & Woodward, A. L. (2018). The early social significance of shared ritual actionsCognition171, 4251. https://doi.org/0.1016/j.cognition.2017.10.018Google Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19, 10581066. https://doi.org/10.1111/desc.12370Google Scholar
Longacre, M. R., Drake, K. M., Titus, L. J., Harris, J., Cleveland, L. P., Langeloh, G., et al. (2017). Child-targeted TV advertising and preschoolers’ consumption of high-sugar breakfast cerealsAppetite108, 295302. https://doi.org/10.1016/j.appet.2016.10.014Google Scholar
Lyons, D. E., Young, A. G., & Keil, F. C. (2007). The hidden structure of overimitation. Proceedings of the National Academy of Sciences, 104(50), 1975119756. https://doi.org/10.1073/pnas.0704452104Google Scholar
Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015). Intergenerational effects of parents’ math anxiety on children’s math achievement and anxietyPsychological Science26(9), 14801488. https://doi.org/10.1177/0956797615592630Google Scholar
Mayr, E. (1974). Behavior programs and evolutionary strategies: Natural selection sometimes favors a genetically “closed” behavior program, sometimes an “open” oneAmerican Scientist62(6), 650659.Google Scholar
Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memoryPsychonomic Bulletin and Review18(1), 4660. https://doi.org/10.3758/s13423-010-0034-0Google Scholar
Moses, L. J., & Baldwin, D. A. (2005). What can the study of cognitive development reveal about children’s ability to appreciate and cope with advertising? Journal of Public Policy and Marketing, 24, 186201. https://doi.org/10.1509/jppm.2005.24.2.186Google Scholar
Moshman, D., & Tarricone, P. (2016). Logical and causal reasoning. In Greene, J. A., Sandoval, W. A., & Bråten, I. (Eds.), Handbook of epistemic cognition (pp. 5467). New York: Routledge.Google Scholar
Newport, E. L. (1990). Maturational constraints on language learningCognitive Science14(1), 1128. https://doi.org/10.1207/s15516709cog1401_2Google Scholar
Nguyen, S. P. (2012). The role of external sources of information in children’s evaluative food categoriesInfant and Child Development21(2), 216235. https://doi.org/10.1002/icd.745Google Scholar
Nguyen, S. P., & Rosengren, K. S. (2004). Causal reasoning about illness: A comparison between European and Vietnamese-American childrenJournal of Cognition and Culture4(1), 5178. https://doi.org/10.1163/156853704323074750Google Scholar
Nielsen, M. (2013). Young children’s imitative and innovative behaviour on the floating object taskInfant and Child Development22(1), 4452. https://doi.org/10.1002/icd.1765Google Scholar
Nielsen, M., & Blank, C. (2011). Imitation in young children: When who gets copied is more important than what gets copiedDevelopmental Psychology4710501053. https://doi.org/10.1037/a0023866Google Scholar
Nielsen, M., Haun, D., Kärtner, J., & Legare, C. H. (2017). The persistent sampling bias in developmental psychology: A call to actionJournal of Experimental Child Psychology162, 3138. https://doi.org/10.1016/j.jecp.2017.04.017Google Scholar
Nielsen, M., Mushin, I. Tomaselli, K., & Whiten, A. (2014). Where culture takes hold: “Overimitation” and its flexible deployment in Western, Aboriginal, and Bushmen children. Child Development, 85(6), 21692184. https://doi.org/10.1111/cdev.12265Google Scholar
Over, H., & Carpenter, M. (2009). Priming third‐party ostracism increases affiliative imitation in childrenDevelopmental Science12(3). https://doi.org/10.1111/j.1467-7687.2008.00820.xGoogle Scholar
Petitto, L. A., Berens, M. S., Kovelman, I., Dubins, M. H., Jasinska, K., & Shalinsky, M. (2012). The “Perceptual Wedge Hypothesis” as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imagingBrain and Language121(2), 130143. https://doi.org/10.1016/j.bandl.2011.05.003Google Scholar
Piaget, J. (1968). Piaget’s point of view. International Journal of Psychology, 3(4), 281299. https://doi.org/10.1080/00207596808246651Google Scholar
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculiaCognition116(1), 3341. https://doi.org/10.1016/j.cognition.2010.03.012Google Scholar
Raman, L., & Gelman, S. A. (2004). A cross-cultural developmental analysis of children’s and adults’ understanding of illness in South Asia (India) and the United StatesJournal of Cognition and Culture4(2), 293317. https://doi.org/10.1163/1568537041725088Google Scholar
Rhodes, M., Gelman, S. A., & Brickman, D. (2010). Children’s attention to sample composition in learning, teaching and discoveryDevelopmental Science13(3), 421429. https://doi.org/10.1111/j.1467-7687.2009.00896.xGoogle Scholar
Rhodes, M., & Wellman, H. (2013). Constructing a new theory from old ideas and new evidenceCognitive Science37(3), 592604. https://doi.org/10.1111/cogs.12031Google Scholar
Richland, L. E., & Burchinal, M. R. (2013). Early executive function predicts reasoning developmentPsychological Science24(1), 8792. https://doi.org/10.1177/0956797612450883Google Scholar
Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical reasoning: Insights from scene analogy problemsJournal of Experimental Child Psychology94(3), 249273. https://doi.org/10.1016/j.jecp.2006.02.002Google Scholar
Roberto, C. A., Baik, J., Harris, J. L., & Brownell, K. D. (2010). Influence of licensed characters on children’s taste and snack preferences. Pediatrics, 126(1), 8893. https://doi.org/10.1542/peds.2009-3433Google Scholar
Rogoff, B. (2003). The cultural nature of human development. New York: Oxford University Press.Google Scholar
Rosengren, K. S., Brem, S. K., Evans, E. M., & Sinatra, G. M. (Eds.) (2012). Evolution challenges: Integrating research and practice in teaching and learning about evolution. New York: Oxford University Press.Google Scholar
Rosengren, K. S., Miller, P. J., Gutiérrez, I. T., Chow, P. I., Schein, S. S., Anderson, K. N., et al. (Eds.) (2014). Children’s understanding of death: Toward a contextualized and integrated account. Monographs of the Society for Research in Child Development, vol. 79.1. Boston: John Wiley & Sons.Google Scholar
Rozin, P., Hammer, L., Oster, H., Horowitz, T., & Marmora, V. (1986). The child’s conception of food: Differentiation of categories of rejected substances in the 16 months to 5 year age range. Appetite, 7(2), 141151. https://doi.org/10.1016/S0195-6663 (86)80014-9Google Scholar
Sánchez Tapia, I., Gelman, S. A., Hollander, M., Manczak, E. M., Mannheim, B., & Escalante, C. (2016). Development of teleological explanations in Peruvian Quechua-speaking and US English-speaking preschoolers and adults. Child Development, 87(3), 747758. https://doi.org/10.1111/cdev.12497Google Scholar
Schneider, W. (1996). The effects of expertise and IQ on children’s memory: When knowledge is, and when it is not enoughInternational Journal of Behavioral Development19(4), 773796. https://doi.org/10.1080/016502596385578Google Scholar
Senghas, A., Kita, S., & Özyürek, A. (2004). Children creating core properties of language: Evidence from an emerging sign language in NicaraguaScience305(5691), 17791782. https://doi.org/10.1126/science.1100199Google Scholar
Shtulman, A., & Calabi, P. (2012). Cognitive constraints on the understanding and acceptance of evolution. In Rosengren, K. S., Brem, S., Evans, E. M., & Sinatra, G. (Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution (pp. 4765). New York: Oxford University Press.Google Scholar
Shtulman, A., & Harrington, K. (2016). Tensions between science and intuition across the lifespanTopics in Cognitive Sciences8(1), 118137. https://doi.org/10.1111/tops.12174Google Scholar
Shutts, K., Kinzler, K. D., & DeJesus, J. M. (2013). Infants’ and children’s social learning about foods: Previous research and new prospects. Developmental Psychology, 49(3), 419425. https://doi.org/10.1037/a0027551Google Scholar
Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. New York: Oxford University Press.Google Scholar
Siegler, R. S. (2007). Cognitive variabilityDevelopmental Science10(1), 104109. https://doi.org/10.1111/j.1467-7687.2007.00571.xGoogle Scholar
Siegler, R. S., & Lortie‐Forgues, H. (2014). An integrative theory of numerical developmentChild Development Perspectives8(3), 144150. https://doi.org/10.1111/cdep.12077Google Scholar
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantityPsychological Science14(3), 237250. https://doi.org/10.1111/1467-9280.02438Google Scholar
Solomon, G. E. A., & Cassimatis, N. L. (1999). On facts and conceptual systems: Young children’s integration of their understandings of germs and contagion. Developmental Psychology, 35(1), 113126. https://doi.org/10.1037/0012-1649.35.1.113Google Scholar
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actionsCognition96(1), B1B11. https://doi.org/10.1016/j.cognition.2004.07.004Google Scholar
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhoodProceedings of the National Academy of Sciences110(45), 1811618120. https://doi.org/10.1073/pnas.1302751110Google Scholar
Storage, D., Horne, Z., Cimpian, A., & Leslie, S. J. (2016). The frequency of “brilliant” and “genius” in teaching evaluations predicts the representation of women and African Americans across fieldsPloS One11(3), e0150194. https://doi.org/10.1371/journal.pone.0150194Google Scholar
Susperreguy, M. I., & Davis-Kean, P. E. (2016). Maternal math talk in the home and math skills in preschool childrenEarly Education and Development27(6), 841857. https://doi.org/10.1080/10409289.2016.1148480Google Scholar
Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
Trentacosta, C. J., Davis‐Kean, P., Mitchell, C., Hyde, L., & Dolinoy, D. (2016). Environmental contaminants and child developmentChild Development Perspectives10(4), 228233. https://doi.org/10.1111/cdep.12191Google Scholar
van der Ven, S. H. G., Boom, J., Kroesbergen, E. H., & Leseman, P. P. M. (2012). Microgenetic patterns of children’s multiplication learning: Confirming the overlapping waves model by latent growth modelingJournal of Experimental Child Psychology, 113, 119. https://doi.org/10.1016/j.jecp.2012.02.001Google Scholar
Vanderbilt, K. E., Heyman, G. D., & Liu, D. (2014). In the absence of conflicting testimony young children trust inaccurate informantsDevelopmental Science17(3), 443451. https://doi.org/10.1111/desc.12134Google Scholar
Vanderbilt, K. E., Liu, D., & Heyman, G. D. (2011). The development of distrustChild Development82(5), 13721380. https://doi.org/10.1111/j.1467-8624.2011.01629.xGoogle Scholar
VanderBorght, M., & Jaswal, V. K. (2009). Who knows best? Preschoolers sometimes prefer child informants over adult informants. Infant and Child Development, 18(1), 6171. https://doi.org/10.1002/icd.591Google Scholar
Vendetti, M. S., Matlen, B. J., Richland, L. E., & Bunge, S. A. (2015). Analogical reasoning in the classroom: Insights from cognitive scienceMind, Brain, and Education9(2), 100106. https://doi.org/10.1111/mbe.12080Google Scholar
Ware, E. A., & Gelman, S. A. (2014). You get what you need: An examination of purpose-based inheritance reasoning in undergraduates, preschoolers, and biological expertsCognitive Science38(2), 197243. https://doi.org/10.1111/cogs.12097Google Scholar
Wellman, H. M., & Gelman, S. A. (1998). Knowledge acquisition. In Kuhn, D. & Siegler, R. (Eds.), Handbook of child psychology, vol. 2, Cognitive development (5th ed., pp. 523573). New York: Wiley.Google Scholar
Wen, N. J., Herrmann, P. A., & Legare, C. H. (2016). Ritual increases children’s affiliation with in-group membersEvolution and Human Behavior, 37(1), 5460. https://doi.org/10.1016/j.evolhumbehav.2015.08.002Google Scholar
Wendelken, C., Ferrer, E., Whitaker, K. J., & Bunge, S. A. (2015). Fronto-parietal network reconfiguration supports the development of reasoning abilityCerebral Cortex26(5), 21782190. https://doi.org/10.1093/cercor/bhv050Google Scholar
Werker, J. F., & Tees, R. C. (2002). Cross-language speech perception: Evidence for perceptual reorganization during the first year of lifeInfant Behavior and Development25(1), 121133. https://doi.org/10.1016/S0163-6383(02)00093-0Google Scholar
Woolley, J. D., & Phelps, K. E. (2001). The development of children’s beliefs about prayerJournal of Cognition and Culture1(2), 139166. https://doi.org/10.1163/156853701316931380Google Scholar
Xu, F., & Kushnir, T. (2013). Infants are rational constructivist learnersCurrent Directions in Psychological Science22(1), 2832. https://doi.org/10.1177/0963721412469396Google Scholar
Xu, F., & Tenenbaum, J. B. (2007). Word learning as Bayesian inferencePsychological Review114(2), 245272. https://doi.org/10.1037/0033-295X.114.2.245Google Scholar
Zelazo, P. D., Müller, U., Frye, D., Marcovitch, S., Argitis, G., Boseovski, J., et al. (2003). The development of executive function in early childhoodMonographs of the Society for Research in Child Development, 68(3), i151.Google Scholar

References

Ackerman, P. L. (2000). Domain-specific knowledge as the “dark matter” of adult intelligence: Gf/Gc personality and interest correlates. Journal of Gerontology: Psychological Sciences, 55, P69P84.Google Scholar
Ackerman, P. L., & Heggestad, E. D. (1997). Intelligence, personality, and interests: Evidence for overlapping traits. Psychological Bulletin, 121, 219245.Google Scholar
Alwin, D. F. (2009). History, cohorts, and patterns of cognitive aging. In Bosworth, H. B. & Hertzog, C. (Eds.), Aging and cognition: Research methodologies and empirical advances (pp. 938). Washington: American Psychological Association.Google Scholar
Anstey, K. J., Hofer, S. M., & Luszcz, M. A. (2003). Cross-sectional and longitudinal patterns of dedifferentiation in late-life cognitive and sensory function: The effects of age, ability, attrition, and occasion of measurement. Journal of Experimental Psychology: General, 132, 470487.Google Scholar
Bäckman, L., & Small, B. J. (2007). Cognitive deficits in preclinical Alzheimer’s disease and vascular dementia: Patterns of findings from the Kungsholmen project. Physiology and Behavior, 92, 8086.Google Scholar
Ball, K., Berch, D. B., Helmer, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. Journal of the American Medical Association, 288, 22712281.Google Scholar
Baltes, P. B. (1997). On the incomplete architecture of human ontogeny: Selection, optimization, and compensation as a foundation for developmental theory. American Psychologist, 52, 366380.Google Scholar
Baltes, P. B., & Labouvie, G. V. (1973). Adult development of intellectual performance: Description, explanation, and modification. In Eisdorfer, C. & Lawton, M. P. (Eds.), The psychology of adult development and aging (pp. 157219). Washington: American Psychological Association.Google Scholar
Baltes, P. B., & Nesselroade, J. R. (1970). Multivariate longitudinal and cross-sectional sequences for analyzing ontogenetic and generational change: A methodological note. Developmental Psychology, 2, 163168.Google Scholar
Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In Nesselroade, J. R. & Baltes, P. B. (Eds.), Longitudinal research in the study of behavior and development. New York: Academic Press.Google Scholar
Baltes, P. B., Staudinger, U. M., & Lindenberger, U. (1999). Lifespan psychology: Theory and application to intellectual functioning. Annual Review of Psychology, 50, 471507.Google Scholar
Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy videogame attenuate cognitive decline in older adults? Psychology and Aging, 23, 765777.Google Scholar
Beier, M., & Ackerman, P. L. (2005). Age, ability, and the role of prior knowledge on the acquisition of new domain knowledge: Promising results in a real-world learning environment. Psychology and Aging, 20, 341355.Google Scholar
Berg, S. (1996). Aging, behavior, and terminal decline. In Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the psychology of aging (4th ed., pp. 323337). San Diego, CA: Academic Press.Google Scholar
Birren, J. E. (1964). The psychology of aging. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Bosworth, H. B., Schaie, K. W., & Willis, S. L. (1999). Cognitive and sociodemographic risk factors for mortality in the Seattle Longitudinal Study. Journal of Gerontology: Psychological Sciences, 54, P273P282.Google Scholar
Botwinick, J. (1977). Intellectual abilities. In Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the psychology of aging (pp. 580605). New York: Van Nostrand Reinhold.Google Scholar
Brickley, P. G., Keith, T. Z., & Wolfle, L. M. (1995). The three-stratum theory of cognitive abilities: Test of the structure of intellect across the adult life span. Intelligence, 20, 309328.Google Scholar
Buchman, A. S., Tanne, D., Boyle, P. A., Shah, R. C., Leurgans, S. E., & Bennett, D. A. (2009). Kidney function is associated with the rate of cognitive decline in the elderly. Neurology, 73, 920927.Google Scholar
Carlson, M. C., Saczynski, J. S., Rebok, G. W., McGill, S., Tielsch, J., Glass, T. A., et al. (2008). Exploring the effects of an everyday activity program on executive function and memory in older adults: Experience Corps. The Gerontologist, 48, 793801.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. Cambridge, UK: Cambridge University Press.Google Scholar
Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin.Google Scholar
Charness, N. (1981). Aging and skilled problem solving. Journal of Experimental Psychology: General, 110, 2138.Google Scholar
Cianciolo, A. T., Matthew, C., Sternberg, R. J., & Wagner, R. K. (2006). Tacit knowledge, practical intelligence, and expertise. In Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.), Cambridge handbook of expertise and expert performance (pp. 613632). New York: Cambridge University Press.Google Scholar
Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125130.Google Scholar
Colonia-Willner, R. (1998). Practical intelligence at work: Relationships between aging and cognitive efficiency among managers in a bank environment. Psychology and Aging, 13, 4557.Google Scholar
Czaja, S., Charness, N., Fisk, A. D., Hertzog, C., Nair, S., Rogers, W. A., et al. (2006). Factors predicting the use of technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychology and Aging, 21, 333352.Google Scholar
Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: Following up the Scottish Mental Surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130147.Google Scholar
deFrias, C. M., Lövdén, M., Lindenberger, U., & Nilsson, L-G. (2007). Revisiting the de-differentiation hypothesis with longitudinal multi-cohort data. Intelligence, 35, 381392.Google Scholar
Eggermont, L. H. P., Milberg, W. P., Lipsitz, L. A., Scherder, E. J. A., & Leveille, S. G. (2009). Physical activity and executive function in aging: The MOBILIZE Boston study. Journal of the American Geriatric Society, 57, 17501756.Google Scholar
Ferrer, E., Salthouse, T. A., McArdle, J. J., Stewart, W. F., & Schwartz, B. S. (2005). Multivariate modeling of age and retest in longitudinal studies of cognitive abilities. Psychology and Aging, 20, 412422.Google Scholar
Ferrer, E., Salthouse, T. A., Stewart, W. F., & Schwartz, B. S. (2004). Modeling age and retest processes in longitudinal studies of cognitive abilities. Psychology and Aging, 19, 243249.Google Scholar
Flynn, J. R. (2007). What is intelligence? Beyond the Flynn effect. Cambridge, UK: Cambridge University Press.Google Scholar
Fox, M. C., Berry, J. M., & Freeman, S. P. (2014). Are vocabulary tests measurement invariant between age groups? An item response analysis of three popular tests. Psychology and Aging, 29, 925938.Google Scholar
Fox, M. C., & Mitchum, A. L. (2013). A knowledge-based theory of rising scores on “culture free“ tests. Journal of Experimental Psychology: General, 142, 9791000.Google Scholar
Ghisletta, P., McArdle, J. J., & Lindenberger, U. (2006). Longitudinal cognition-survival relations in old and very old age: 13-year data from the Berlin Aging Study. European Psychologist, 11, 204223.Google Scholar
Hall, C. B., Lipton, R. B., Sliwinski, M., & Stewart, W. F. (2000). A change point model for estimating the onset of cognitive decline in preclinical Alzheimer’s disease. Statistics in Medicine, 19, 15551566.Google Scholar
Hambrick, D. Z., Meinz, E. J., & Salthouse, T. A. (1999). Predictors of crossword puzzle proficiency and moderators of age-cognition relations. Journal of Experimental Psychology: General, 128, 131164.Google Scholar
Harris, S. E., Fox, H., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., Deary, I. J. (2006). The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Molecular Psychiatry, 11, 505513.Google Scholar
Hershey, D. A., Jacobs-Lawson, J. M., & Walsh, D. A. (2003). Influences of age and training on script development. Aging, Neuropsychology, and Cognition, 10, 119.Google Scholar
Hertzog, C. (1989). The influence of cognitive slowing on age differences in intelligence. Developmental Psychology, 25, 636651.Google Scholar
Hertzog, C. (2008). Theoretical approaches to the study of cognitive aging: An individual-differences perspective. In Hofer, S. M. & Alwin, D. F. (Eds.), Handbook of cognitive aging: Interdisciplinary perspectives (pp. 3449). Thousand Oaks, CA: Sage.Google Scholar
Hertzog, C. (2009). Use it or lose it: An old hypothesis, new evidence, and an ongoing controversy. In Bosworth, H. & Hertzog, C. (Eds.), Cognition and aging: Research methodologies and empirical advances (pp. 161179). Washington: American Psychological Association.Google Scholar
Hertzog, C., & Bleckley, M. K. (2001). Age differences in the structure of intelligence: Influences of information processing speed. Intelligence, 29, 191217.Google Scholar
Hertzog, C., Dixon, R. A., Hultsch, D. F., & MacDonald, S. W. S. (2003). Latent change models of adult cognition: Are changes in processing speed and working memory associated with changes in episodic memory? Psychology and Aging, 18, 755769.Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9, 165.Google Scholar
Hertzog, C., & Schaie, K. W. (1986). Stability and change in adult intelligence: 1. Analysis of longitudinal covariance structures. Psychology and Aging, 1, 159171.Google Scholar
Hofer, S. M., Flaherty, B. P., & Hoffman, L. (2006). Cross-sectional analysis of time-dependent data: Mean-induced association in age-heterogeneous samples and an alternative method based on sequential narrow age-cohort samples. Multivariate Behavioral Research, 41, 165187.Google Scholar
Horn, J. L. (1985). Remodeling old models of intelligence: Gf–Gc theory. In Wolman, B. B. (Ed.), Handbook of intelligence (pp. 267300). New York: Wiley.Google Scholar
Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107129.Google Scholar
Horn, J. L., Donaldson, G., & Engstrom, R. (1981). Apprehension, memory, and fluid intelligence decline in adulthood. Research on Aging, 3, 3384.Google Scholar
Horn, J. L., & Hofer, S. M. (1992). Major abilities and development in the adult period. In Sternberg, R. J. & Berg, C. A. (Eds.), Intellectual development (pp. 4499). New York: Cambridge University Press.Google Scholar
Hultsch, D. F., Hertzog, C., Dixon, R. A., & Small, B. J. (1998). Memory change in the aged. New York: Cambridge University Press.Google Scholar
Hultsch, D. F., Small, B. J., Hertzog, C., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging. Psychology and Aging, 14, 245263.Google Scholar
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual differences perspective. Psychonomic Bulletin and Review, 9, 637671.Google Scholar
Kramer, A. F., & Colcombe, S. (2018). Fitness effects on the cognitive function of older adults: A meta-analytic study – revisited. Perspectives on Psychological Science, 13, 213217.Google Scholar
Kyllonen, P. C., & Chrystal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14, 389433.Google Scholar
Lane, C. J., & Zelinski, E. M. (2003). Longitudinal hierarchical linear models of the Memory Functioning Questionnaire. Psychology and Aging, 18, 3853.Google Scholar
Laukka, E. J., MacDonald, S. M. S., & and Bäckman, L. (2008). Terminal-decline effects for select cognitive tasks after controlling for preclinical dementia. American Journal of Geriatric Psychiatry, 16, 355365.Google Scholar
Lindenberger, U., Nagel, I. E., Chicherio, C., Li, S-C., Heekeren, H. R., & Bäckman, L. (2008). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience, 2, 234244.Google Scholar
Lindenberger, U., von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age variance extraction: What’s change got to do with it? Psychology and Aging, 26, 3447.Google Scholar
Lövdén, M., Rönnlund, M., Wahlin, A., Bäckman, L., Nyberg, L., & Goran-Nilsson, L. (2004). The extent of stability and change in episodic and semantic memory in old age: Demographic predictors of stability and change. Journal of Gerontology: Psychological Sciences, 59B, P130P134.Google Scholar
MacKinnon, A., Christensen, H., Hofer, S. M., Korten, A. E., & Jorm, A. F. (2003). Use it and still lose it? The association between activity and cognitive performance established using latent growth techniques in a community sample. Aging Neuropsychology and Cognition, 10, 215222.Google Scholar
Masunaga, H., & Horn, J. L. (2001). Expertise and age-related changes in components of intelligence. Psychology and Aging, 16, 293311.Google Scholar
McArdle, J. J., & Bell, R. Q. (2001). An introduction to latent growth models for developmental data analysis. In Little, T. D. & Schabel, K. U. (Eds.), Modeling longitudinal and multi-level data: Practical issues, applied approaches, and specific examples (pp. 6981). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115142.Google Scholar
Meredith, W., & Horn, J. L. (2001). The role of factorial invariance in modeling growth and change. In Collins, L. M. & Sayer, A. G. (Eds.), New methods for the analysis of change (pp. 203240). Washington: American Psychological Association.Google Scholar
Ng, T. W. H., & Feldman, D. C. (2008). The relationship of age to ten dimensions of job performance. Journal of Applied Psychology, 93, 392423.Google Scholar
Nilsson, L-G., Sternäng, O., Rönnlund, M., & Nyberg, L. (2009). Challenging the notion of an early onset of cognitive decline. Neurobiology of Aging, 30, 521524.Google Scholar
Park, D. C., Hertzog, C., Leventhal, H., Morrell, R. W., Leventhal, E., Birchmore, D., et al. (1999). Medication adherence in rheumatoid arthritis patients: Older is wiser. Journal of the American Geriatrics Society, 47, 172183.Google Scholar
Park, D. C., Smith, A. D., Lautenschlager, G., Earles, J. L., Frieske, D., Zwahr, M., &Gaines, C. L. (1996). Mediators of long-term memory performance across the life span. Psychology and Aging, 11, 621637.Google Scholar
Phillips, L. H., Henry, J. D., & Martin, M. (2008). Adult aging and prospective memory: The importance of ecological validity. In Kliegel, M., McDaniel, M. A., & Einstein, G. O. (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 161185). New York: Taylor & Francis.Google Scholar
Pietschnig, J., & Voracek, M. (2015). One century of global IQ gains: A formal meta-analysis of the Flynn effect (1909–2013). Perspectives on Psychological Science, 10, 282315.Google Scholar
Rabbitt, P. (1993). Does it all go together when it goes? The nineteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 46A, 385434.Google Scholar
Rabbitt, P., Diggle, P., Holland, F., & McInnes, L. (2004). Practice and drop-out effects during a 17-year longitudinal study of cognitive aging. Journal of Gerontology: Psychological Sciences and Social Sciences, 59B, P84P97.Google Scholar
Ram, N., Gerstorf, D., Fauth, E., Zarit, S., & Malmberg, B. (2010). Aging, disablement, and dying: Using time-as-process and time-as-resources metrics to chart late-life change. Research on Human Development, 7, 2744.Google Scholar
Raven, J. (2000). The Raven’s Progressive Matrices: Change and stability over culture and time. Cognitive Psychology, 41, 148.Google Scholar
Raz, N., Lindenberger, U., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Acker, J. M. (2008). Neuroanatomical correlates of fluid intelligence in healthy adults and persons with vascular risk factors. Cerebral Cortex, 18, 718726.Google Scholar
Reynolds, C. A. (2008). Genetic and environmental influences on cognitive change. In Hofer, S. M. & Alwin, D. F. (Eds.), Handbook of cognitive aging: Interdisciplinary perspectives (pp. 557574). Thousand Oaks, CA: Sage.Google Scholar
Rönnlund, M., & Nilsson, L-G. (2008). The magnitude, generality, and determinants of Flynn effects on forms of declarative memory and visuospatial ability: Time-sequential analyses of data from a Swedish cohort study. Intelligence, 36, 192209.Google Scholar
Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L-G. (2005). Stability, growth, and decline in adult life span development of declarative memory: Data from a population-based study. Psychology and Aging, 20, 318.Google Scholar
Salthouse, T. A. (1982). Adult cognition: An experimental psychology of human aging. New York: Springer-Verlag.Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403428.Google Scholar
Salthouse, T. A. (2006). Mental exercise and mental aging: Evaluating the validity of the “use it or lose it” hypothesis. Perspectives on Psychological Science, 1, 6887.Google Scholar
Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30, 507514.Google Scholar
Salthouse, T. A., Pink, J. E., & Tucker-Drob, E. M. (2008). Contextual analysis of fluid intelligence. Intelligence, 36, 464486.Google Scholar
Schaie, K. W. (1977). Quasi-experimental designs in the psychology of aging. In Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the psychology of aging (pp. 3958). New York: Van Nostrand Reinhold.Google Scholar
Schaie, K. W. (1989). Perceptual speed in adulthood: Cross-sectional and longitudinal studies. Psychology and Aging, 4, 443453.Google Scholar
Schaie, K. W. (2009). “When does age-related cognitive decline begin?”: Salthouse again reifies the “cross-sectional fallacy.” Neurobiology of Aging, 30, 528529.Google Scholar
Schaie, K. W. (2012). Developmental influences on adult intelligence: The Seattle Longitudinal Study (2nd ed.). New York: Oxford University Press.Google Scholar
Schaie, K. W., Maitland, S. B., Willis, S. L, & Intrieri, R. C. (1998). Longitudinal invariance of adult psychometric ability factor structures across 7 years. Psychology and Aging, 13, 820.Google Scholar
Schooler, C., Mulatu, M. S., & Oates, G. (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychology and Aging, 14, 483506.Google Scholar
Shadish, W., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston: Houghton Mifflin.Google Scholar
Singer, T., Verhaeghen, P., Ghisletta, P., Lindenberger, U., & Baltes, P. B. (2003). The fate of cognition in very old age: Six-year longitudinal findings in the Berlin Aging Study (BASE). Psychology and Aging, 18, 318331.Google Scholar
Sliwinski, M., & Buschke, H. (2004). Modeling intraindividual cognitive change in aging adults: Results from the Einstein Aging Studies. Aging, Neuropsychology and Cognition, 11, 196211.Google Scholar
Sliwinski, M. J., Hofer, S. M., Hall, C., Bushke, H., & Lipton, R. B. (2003). Modeling memory decline in older adults: The importance of preclinical dementia, attrition and chronological age. Psychology and Aging, 18, 658671.Google Scholar
Sliwinski, M. J., Hoffman, L., & Hofer, S. M. (2010). Evaluating convergence of within-person change and between-person differences in age-heterogeneous longitudinal studies. Research on Human Development, 7, 4560.Google Scholar
Spiro, A. III, & Brady, C. B. (2008).Integrating health into cognitive aging research and theory: Quo vadis? In, S. M. Hofer & Alwin, D. F. (Eds.), Handbook of cognitive aging: Interdisciplinary perspectives (pp. 260283). Thousand Oaks, CA: Sage.Google Scholar
Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge, UK: Cambridge University Press.Google Scholar
Stine-Morrow, A. L., Parisi, J. M., Morrow, D. G., Greene, J., & Park, D. C. (2007). The senior odyssey project: A model of intellectual and social engagement. Journal of Gerontology: Psychological Sciences, 62B, P62P69.Google Scholar
Thorvaldsson, V., Hofer, S. M., Berg, S., Skoog, I., Sacuiu, S., & Johansson, B. (2008). Onset of terminal decline in cognitive abilities in individuals without dementia. Neurology, 71, 882887.Google Scholar
Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
Tranter, L. J., & Koutstaal, W. (2008). Age and flexible thinking: An experimental demonstration of the beneficial effects of increased cognitively stimulating activity on fluid intelligence in healthy older adults. Aging, Neuropsychology, and Cognition, 15, 184207.Google Scholar
Tucker-Drob, E. M. (2011). Global and domain-specific changes in cognition throughout adulthood. Developmental Psychology, 47, 331343.Google Scholar
Verhaeghen, P., & Salthouse, T. A.(1997). Meta-analyses of age-cognition relations in adulthood: Estimates of linear and non-linear age effects and structural models. Psychological Bulletin, 122, 231249.Google Scholar
Wechsler, D. (1939). Measurement of adult intelligence. Baltimore, MD: Williams & Wilkins.Google Scholar
Wilson, R. S., Beck, T. L., Bienias, J. L., & Bennett, D. A. (2007). Terminal cognitive decline: Accelerated loss of cognition in the last years of life. Psychosomatic Medicine, 69, 131137.Google Scholar
Wilson, R. S., Bennett, D. A., Bienias, J. L., Mendes de Leon, C. F., Morris, M. C., & Evans, D. A. (2003). Cognitive activity and cognitive decline in a biracial community population. Neurology, 61, 812816.Google Scholar
Zelinski, E. M., & Kennison, R. F. (2007). Not your father’s test scores: Cohort reduces psychometric aging effects. Psychology and Aging, 22, 546557.Google Scholar
Zelinski, E. M., Kennison, R. F., Watts, A., & Lewis, K. L. (2009). Convergence between cross-sectional and longitudinal studies: Cohort matters. In Bosworth, H. B. & Hertzog, C. (Eds.), Aging and cognition: Research methodologies and empirical advances (pp. 101118). Washington: American Psychological Association.Google Scholar

References

Ackerman, P. L. (2014). Nonsense, common sense, and science of expert performance: Talent and individual differences. Intelligence, 45, 617.Google Scholar
Adams, M. J. (1989). Thinking skills curricula: Their promise and progress. Educational Psychologist, 24, 2577.Google Scholar
Allensworth, E. M., Moore, P. T., Sartain, L., & de la Torre, M. (2017). The educational benefits of attending higher performing schools: Evidence from Chicago high schools. Educational Evaluation and Policy Analysis, 39, 175197.Google Scholar
Anastasi, A. (1988). Psychological testing (6th ed.). New York: Macmillan.Google Scholar
Anderson, J. R. (2000). Learning and memory: An integrated approach (2nd ed.). New York: John Wiley & Sons.Google Scholar
Anderson, S. B., & Messick, S. (1974). Social competency in young children. Developmental Psychology, 10, 282293.Google Scholar
Andrews, G. R., & Debus, R. I. (1978). Persistence and the causal perception of failure: Modifying cognitive attributions. Journal of Educational Psychology, 70, 154166.Google Scholar
Bandura, A. (1997). Self efficacy: The exercise of control. New York: Freeman.Google Scholar
Barnett, W. S. (1995). Long-term effects of early childhood programs on cognitive and school outcomes. Future of Children, 5(3), 2550.Google Scholar
Barnett, W. S. (2002). The battle over Head Start: What the research shows. New Brunswick, NJ: National Institute for Early Education Research.Google Scholar
Barnett, W. S. (2011). Effectiveness of early educational intervention. Science, 333, 975978.Google Scholar
Baron, J. (1988). Thinking and deciding. New York: Cambridge University Press.Google Scholar
Baron, J. (1991). Beliefs about thinking. In Voss, J. F., Perkins, D. N., & Segal, J. W. (Eds.), Informal reasoning and education (pp. 169186). Hillsdale, NJ: Erlbaum.Google Scholar
Barreto, F. B., de Miguel, M. S., Ibarluzea, J., Andiarena, A., & Arranz, E. (2017). Family context and cognitive development in early childhood: A longitudinal study. Intelligence, 65, 1122.Google Scholar
Batha, K., & Carroll, M. (2007). Metacognitive training aids decision making. Australian Journal of Psychology, 59, 6469.Google Scholar
Beaver, K. M., Schwartz, J. A., Nedelec, J. L., Connolly, E. J., Boutwell, B. B., & Barnes, J. C. (2013). Intelligence is associated with criminal justice processing: Arrest through incarceration. Intelligence, 41, 277288.Google Scholar
Beyth-Marom, R., Fischhoff, B., Quadrel, M. J., & Furby, L. (1991). Teaching adolescents decision making: A critical review. In Baron, J. & Brown, R. V. (Eds.), Teaching decision making to adolescents (pp. 1959). Hillsdale, NJ: Erlbaum.Google Scholar
Boccio, C. M., Beaver, K. M., & Schwartz, J. A. (2018). The role of verbal intelligence in becoming a successful criminal: Results from a longitudinal sample. Intelligence, 66, 2431.Google Scholar
Botvinik, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83113.Google Scholar
Bouchard, J., & Villeda, S. A. (2014). Aging and brain rejuvenation as systemic events. Journal of Neurochemistry, 132, 519.Google Scholar
Bradway, K. P., Thompson, C. W., & Cravens, R. B. (1958). Preschool IQs after twenty-five years. Journal of Educational Psychology, 49, 278281.Google Scholar
Bransford, J. D., & Stein, B. S. (1984). The ideal problem solver: A guide for improving thinking, learning, and creativity. New York: Freeman.Google Scholar
Brinch, C. N., Galloway, T. A. (2012). Schooling in adolescence raises IQ scores. Proceedings of the National Academy of Sciences, 109, 425430.Google Scholar
Brody, N. (2014). A plea for the teaching of intelligence: Personal reflections. Intelligence, 42, 136141.Google Scholar
Burchinal, M., Lee, M., & Ramey, C. T. (1989). Type of daycare and preschool intellectual development in disadvantaged children. Child Development, 60, 128137.Google Scholar
Burhan, N. A. S., Mohamad, M. R., Kurniawan, Y., & Sidek, A. H. (2014). National intelligence, basic human needs, and their effect on economic growth. Intelligence, 44, 103111.Google Scholar
Byun, S-y., & Park, H. (2012). The academic success of East Asian American youth: The role of shadow education. Sociology of Education, 85(1), 4060.Google Scholar
Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., et al. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: Prospective population study. British Medical Journal, 357. https://doi.org/10.1136/bmj.j2708Google Scholar
Campbell, F. A., & Burchinal, M. R. (2008). Early childhood interventions: The Abecedarian Project. In Kyllonen, P. C., Roberts, R. D., & Stankov, L. (Eds.), Extending intelligence: Enhancement and new constructs (pp. 6184). New York: Erlbaum.Google Scholar
Campbell, F. A., & Ramey, C. T. (1994). Effects of early intervention on intellectual and academic achievement: A follow-up study of children from low-income families. Child Development, 65, 684698.Google Scholar
Campbell, F. A., & Ramey, C. T. (1995). Cognitive and school outcomes for high-risk African-American students at middle adolescence: Positive effects of early intervention. American Educational Research Journal, 32, 743772.Google Scholar
Campbell, F. A., Ramey, C. T., Pungello, E., Sparling, J., & Miller-Johnson, S. (2002). Early childhood education: Young adult outcomes from the Abecedarian Project. Applied Developmental Science, 6, 4257.Google Scholar
Caplan, N., Choy, M. H., & Whitmore, J. K. (1992). Indochinese refugee families and academic achievement. Scientific American, 266(2), 3642.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.Google Scholar
Cattell, R. B. (1943). The measurement of adult intelligence. Psychological Bulletin, 40, 153193.Google Scholar
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 122.Google Scholar
Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin.Google Scholar
Cattell, R. B., & Cattell, A. K. S. (1961). Culture Fair Intelligence Test (Scale 2, Forms A & B). Champaign, IL: Institute for Personality and Ability Testing.Google Scholar
Ceci, S. J. (1991). How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence. Developmental Psychology, 27, 703722.Google Scholar
Ceci, S. J., & Williams, W. M. (1997). Schooling, intelligence and income. American Psychologist, 52, 10511058.Google Scholar
Chance, P. (1986). Thinking in the classroom. New York: Teachers College Press.Google Scholar
Charlton, B. (2009). Clever sillies: Why high IQ people tend to be deficient in common sense. Medical Hypotheses, 73, 867870.Google Scholar
Chen, C., & Stevenson, H. W. (1995). Motivation and mathematics achievement: A comparative study of Asian-American, Caucasian-American and East Asian high school students. Child Development, 66, 12151234.Google Scholar
Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive Psychology, 17, 391416.Google Scholar
Cho, S. H., te Nijenhuis, J., van Vianen, A. E., Kim, H.-B., & Lee, K. H. (2010). The relationship between diverse components of intelligence and creativityJournal of Creative Behavior, 44, 125137.Google Scholar
Chooi, W. T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531542.Google Scholar
Clarke, S. H., & Campbell, F. A. (1998). Can intervention early prevent crime later? The Abecedarian Project compared with other programs. Early Childhood Research Quarterly, 13, 31343.Google Scholar
Clouston, S. A., Kuh, D., Herd, P., Elliott, J., Richards, M., & Hofer, S. M. (2012). Benefits of educational attainment on adult fluid cognition: International evidence from three birth cohorts. International Journal of Epidemiology, 41, 17291736.Google Scholar
Colombo, J. (1993). Infant cognition: Predicting later intellectual functioning. Newberry Park, CA: Sage.Google Scholar
Covington, M. V., Crutchfield, R. S., Davies, L., & Olton, R. M. (1974). The productive thinking program: A course in learning to think. Columbus, OH: Merrill.Google Scholar
Crane, J., & Barg, M. (2003). Do early childhood intervention programs really work? Coalition for Evidence-Based Policy. https://pdfs.semanticscholar.org/90f5/fe541b5641037518041e66fe6b5af6d4a51a.pdfGoogle Scholar
Daniel, V. (2016). Does the intelligence of populations determine the wealth of nations? Journal of Socio-Economics, 46, 2737.Google Scholar
Daugherty, A. M., Zwilling, C., Paul, E. J., Sherepa, N., Allen, C., Kramer, A. F., et al. (2018). Multi-modal fitness and cognitive training to enhance fluid intelligence. Intelligence, 66, 3243.Google Scholar
Davies, N. M., Dickson, M., Davey Smith, G., van den Berg, G. J., & Windmeijer, F. (2018). The causal effects of education on health outcomes in the UK Biobank. Nature Human Behaviour, 2, 117125.Google Scholar
Deary, I. J. (2000). Looking down on human intelligence: From psychometrics to the brain. Oxford: Oxford University Press.Google Scholar
Deary, I. J. (2001). Intelligence: A very short introduction. Oxford: Oxford University Press.Google Scholar
Deary, I. J. (2012a). Intelligence. Annual Review of Psychology, 63, 453482.Google Scholar
Deary, I. J. (2012b). 125 years of intelligence in the American Journal of Psychology. American Journal of Psychology, 125, 145154.Google Scholar
Deary, I. J. (2013). Intelligence. Current Biology, 23, 673676.Google Scholar
Deary, I. J. (2014). Teaching intelligence. Intelligence, 42, 142147.Google Scholar
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35, 1321.Google Scholar
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press.Google Scholar
Detterman, D. K. (2014a). Introduction to the intelligence special issue on the development of expertise: Is ability necessary? Intelligence, 45, 15.Google Scholar
Detterman, D. K. (2014b). You should be teaching intelligence! Intelligence, 42, 148151.Google Scholar
Detterman, D. K., & Sternberg, R. J. (Eds.) (1982). How and how much can intelligence be increased? Norwood, NJ: Erlbaum.Google Scholar
Dickstein, L. S. (1975). Effects of instructions and premise ordering errors in syllogistic reasoning. Journal of Experimental Psychology: Human Learning and Memory, 104, 376384.Google Scholar
Dillon, J. T. (1988). The remedial status of student questioning. Journal of Curriculum Studies, 20, 197210.Google Scholar
Duckworth, A. L., & Seligman, M. E. P. (2005). Self-discipline outdoes IQ in predicting academic performance of adolescents. Psychological Science, 16, 939944.Google Scholar
Duncan, J. Seitz, R., Kolodny, J.Bor, D., Herzog, H., & Ahmed, A. (2000). A neural basis for general intelligence. Science289, 457460.Google Scholar
Dweck, C. S. (1999). Self-theories: Their role in motivation, personality and development. Philadelphia: Psychology Press.Google Scholar
Ehrenberg, S. D., & Ehrenberg, L. M. (1982). BASICS: Building and applying strategies for intellectual competencies in students. Coshocton, OH: Institute for Curriculum and Instruction.Google Scholar
Ennis, R. H. (1986). A taxonomy of critical thinking dispositions and abilities. In Baron, J. B. & Sternberg, R. S. (Eds.), Teaching thinking skills: Theory and practice (pp. 926). New York: Freeman.Google Scholar
Ericsson, K. A. (2007). Deliberate practice and the modifiability of body and mind: Toward a science of the structure and acquisition of expert and elite performance. International Journal of Sport Psychology, 38, 434.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Ericsson, K. A., Prietula, M. J., & Cokely, E. T. (2007). The making of an expert. Harvard Business Review, 85, 114121.Google Scholar
Evans, J. St. B. T. (1989). Bias in human reasoning: Causes and consequences. Hillsdale, NJ: Erlbaum.Google Scholar
Fagan, J. F. (2011). Intelligence in infancy. In Sternberg, R. J. & Kaufman, S. B. (Eds.), The Cambridge handbook of intelligence. New York: Cambridge University Press.Google Scholar
Feuerstein, R., Rand, Y., Hoffman, M., & Miller, R. (1980). Instrumental enrichment. Baltimore, MD: University Park Press.Google Scholar
Flavell, J. H. (1981). Cognitive monitoring. In Dickson, W. P. (Ed.), Children’s oral communication skills. New York: Academic Press.Google Scholar
Flynn, J. R. (1984). The mean IQ of Americans: Massive gains 1932 to 1978. Psychological Bulletin, 95, 2951.Google Scholar
Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin, 101, 171191.Google Scholar
Flynn, J. R. (2007). What is intelligence? Beyond the Flynn effect. New York: Cambridge University Press.Google Scholar
Fong, G. T., Krantz, D. H., & Nisbett, R. E. (1986). The effects of statistical training on thinking about everyday problems. Cognitive Psychology, 18, 235292.Google Scholar
Gage, F. H. (2003). Brain, repair yourself. Scientific American, 289(3), 4653.Google Scholar
Gagne, R. M. (1967). Science – A process approach: Purposes, accomplishments, expectations. Washington: American Association for the Advancement of Science.Google Scholar
Gale, C. R., Batty, G. D., Osborn, D. P., Tynelius, P., Whitley, E., Rasmussen, F. (2012). Association of mental disorders in early adulthood and later psychiatric hospital admissions and mortality in a cohort study of more than 1 million men. Archives of General Psychiatry, 69, 823831.Google Scholar
Garber, H. L. (1988). The Milwaukee Project: Preventing mental retardation in children at risk. Washington: American Association on Mental Retardation.Google Scholar
Gardner, H. (1995). “Expert performance: Its structure and acquisition”: Comment. American Psychologist, 50, 802803.Google Scholar
Gardner, H. (2011). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
Gardner, H., Krechevsky, M., Sternberg, R. J., & Okagaki, L. (1994). Intelligence in context: Enhancing students’ practical intelligence for school. In McGilly, K. (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 105127). Cambridge, MA: MIT Press.Google Scholar
Geary, D. C. (1996). Biology, culture, and cross-national differences in mathematical ability. In Sternberg, R. J. & Ben-Zeev, T. (Eds.), The nature of mathematical thinking (pp. 145171). Mahwah, NJ: Erlbaum.Google Scholar
Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 24, 79132.Google Scholar
Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience5471482.Google Scholar
Greenwood, P. M. (2007). Functional plasticity in cognitive aging: Review and hypothesis. Neuropsychology, 21, 657673.Google Scholar
Greenwood, P. M., & Parasuraman, R. (2015). The mechanisms of far transfer from cognitive training: Review and hypothesis. Neuropsychology, 30(6), 742755.Google Scholar
Haier, R. J. (2014). The universe, dark matter, and streaming intelligence. Intelligence, 42, 152155.Google Scholar
Haimovitz, K., Wormington, S. V., & Corpus, J. H. (2011). Dangerous mindsets: How beliefs about intelligence predict motivational change. Learning and individual differences, 21, 747752.Google Scholar
Hambrick, D. Z., Oswald, F. L., Altman, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 3445.Google Scholar
Hammond, S. I., Müller, U., Carpendale, J. I., Bibok, M. B., & Liebermann-Finestone, D. P. (2012). The effects of parental scaffolding on preschoolers’ executive function. Developmental Psychology, 48, 271281.Google Scholar
Hansen, K. T., Heckman, J. J., Mullen, K. J. (2004). The effect of schooling and ability on achievement test scores. Journal of Econometrics, 121, 3998.Google Scholar
Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24, 24092419.Google Scholar
Harvard University (1983). Project Intelligence: The development of procedures to enhance thinking skills. Final report, submitted to the Minister for the Development of Human Intelligence, Republic of Venezuela, October.Google Scholar
Hayes, T. R., Petrov, A., & Sederberg, P. B. (2015). Do we really become smarter when our fluid-intelligence test scores improve? Intelligence, 48, 114.Google Scholar
Herrnstein, R. J., Nickerson, R. S., Sanchez, M, & Swets, J. A. (1986). Teaching thinking skills. American Psychologist, 41, 12791289.Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberg, U. (2009). Enrichment effects on adult cognitive development. Psychological Science in the Public Interest, 9, 165.Google Scholar
Heyman, G. D., & Dweck, C. S. (1998). Children’s thinking about traits: Implications for judgments of the self and others. Child Development, 64, 391403.Google Scholar
Hong, Y. Y., Chiu, C., Dweck, C. S., Lin, D., & Wan, W. (1999). Implicit theories, attributions, and coping: A meaning system approach. Journal of Personality and Social Psychology, 77, 588599.Google Scholar
Honzik, M. P., Macfarlane, J. W., & Allen, L. (1948). The stability of mental test performance between two and eighteen years. Journal of Experimental Education, 17, 309324.Google Scholar
Horacek, H. J., Ramey, C. T., Campbell, F. A., Hoffmann, K., & Fletcher, R. H. (1987). Predicting school failure and assessing early intervention with high-risk children. American Academy of Child and Adolescent Psychiatry, 26(1987), 758763.Google Scholar
Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology of Aging, 14, 245263.Google Scholar
Hunt, E. (2011). Human intelligence. Cambridge, UK: Cambridge University Press.Google Scholar
Hunt, E. (2014). Teaching intelligence: Why, why it is hard and perhaps how to do it. Intelligence, 42, 156165.Google Scholar
Hunter, J. E. (1986). Cognitive ability, cognitive aptitudes, job knowledge, and job performance. Journal of Vocational Behavior, 29, 340362.Google Scholar
Jak, A. J. (2011). The impact of physical and mental activity on cognitive aging. In Pardon, M.-C. & Bondi, M. W. (Eds.), Behavioral neurobiology of aging (pp. 273291). Berlin: Springer.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105, 68296833.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training and transfer. Memory and Cognition, 42, 464480.Google Scholar
Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41, 212221.Google Scholar
Jensen, A. R. (1998). The g factor. Westport, CT: Praeger.Google Scholar
Jones, B. F., Palincsar, A. S., Ogle, D. S., & Carr, E. G. (1987). Learning and thinking. In Jones, B. F., Palincsar, A. S., Ogle, D. S., & Carr, E. G. (Eds.), Strategic teaching and learning: Cognitive instruction in the content areas (pp. 332). Alexandria, VA: Association for Supervision and Curriculum Development.Google Scholar
Jones, G., & Schneider, W. (2006). Intelligence, human capital, and economic growth: A Bayesian averaging of classical estimates (BACE) approach. Journal of Economic Growth1, 7193.Google Scholar
Kanyama, I. K. (2014). Quality of institutions: Does intelligence matter? Intelligence, 42, 4452.Google Scholar
Kaufman, J. C., & Plucker, J. A. (2011). Intelligence and creativity. In Sternberg, R. J., & Kaufman, S. B. (Eds.), Cambridge handbook of intelligence (pp. 771783). Cambridge, UK: Cambridge University Press.Google Scholar
Keith, Z. K., & Reynolds, M. (2010). Cattell-Horn-Carroll abilities and cognitive tests: What we’ve learned from 20 years of research. Psychology in the Schools, 47, 635650.Google Scholar
Kim, K. H. (2005). Can only intelligent people be creative? Journal of Secondary Gifted Education, 24, 5766.Google Scholar
Klausmeier, H. J. (1980). Learning and teaching concepts – A strategy for testing applications of theory. New York: Academic Press.Google Scholar
Klemp, G. O. Jr., & McClelland, D. C. (1986). What characterizes intelligent functioning among senior managers? In Sternberg, R. J. & Wagner, R. K. (Eds.), Practical intelligence: Nature and origins of competence in the everyday world (pp. 3150). Cambridge, UK: Cambridge University Press.Google Scholar
Kosonen, P., & Winne, P. H. (1995). Effects of teaching statistical laws on reasoning about everyday problems. Journal of Educational Psychology, 87, 3346.Google Scholar
Krueger, J. (2000). Individual differences and Pearson’s r: Rationality revealed? Behavioral and Brain Sciences, 23, 684685.Google Scholar
Lally, J. R., Mangione, P. L., & Honig, A. S. (1998). The Syracuse University Family Development Research Project: Long-range impact of an early intervention with low-income children and their families. In Powell, D. R. (Ed.), Annual advances in applied developmental psychology, vol. 3, Parent education as early childhood intervention: Emerging directions in theory, research, and practice. Norwood, NJ: Ablex.Google Scholar
Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 13351342.Google Scholar
Lazar, I., & Darlington, R. (1982). Lasting effects of early education: A report from the Consortium for Longitudinal Studies. Monographs of the Society for Research in Child Development, 47(2–3), 1151.Google Scholar
Lee, V. E., & Loeb, S. (1994). Where do Head Start attendees end up? One reason why preschool effects fade out. ED368510. Available from the Education Resources Information Center (ERIC).Google Scholar
Lewis, M. (1973). Infant intelligence tests: Their use and misuse. Human Development, 16, 108118.Google Scholar
Lynn, R. (2012). IQs predict differences in the technological development of nations from 1000 BC through 2000 AD. Intelligence, 40, 439444.Google Scholar
Lynn, R., & Vanhanen, T. (2012). National IQs: A review of their educational, cognitive, economic, political, demographic, sociological, epidemiological, geographic and climatic correlates. Intelligence, 2, 226234.Google Scholar
Machado, L. A. (1980). The right to be intelligent. New York: Pergamon Press.Google Scholar
Mackintosh, N. J. (2011). IQ and human intelligence (2nd ed.). Oxford: Oxford University Press.Google Scholar
Mackintosh, N. J. (2014). Why teach intelligence? Intelligence, 42, 166170.Google Scholar
Manuel, H. T. (1962). Tests of general ability: Inter-American series (Spanish, Level 4, Forms A & B). San Antonio, TX: Guidance Testing Associates.Google Scholar
Martin, S. L., Ramey, C. T., & Ramey, S. (1990). The prevention of intellectual impairment in children of impoverished families: Findings of a randomized trial of educational day care. American Journal of Public Health, 80, 844847.Google Scholar
McCall, R. B., Appelbaum, M. I., & Hogarty, P. S. (1973). Developmental changes in mental performance. Monographs of the Society for Research in Child Development, 42(3), 184).Google Scholar
McKay, R. H., Condelli, L., Ganson, H., Barnett, B. J., McCouley, C., & Plantz., M. C. (1985). The impact of Head Start on children, families and communities: Final report of the Head Start Evaluation, Synthesis and Utilization Project. Washington: US Department of Health and Human Services.Google Scholar
Meeker, M. N. (1969). The structure of intellect: Its interpretation and uses. Columbus, OH: Charles E. Merrill.Google Scholar
Meisenberg, G., & Lynn, R. (2011). Intelligence: A measure of human capital in nations. Journal of Social, Political and Economic Studies, 36, 421454.Google Scholar
Melby-Lervåg̊, M., & Hulme, C.(2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270291.Google Scholar
Millar, G. (1992). Developing student questioning skills – A handbook of tips and strategies for teachers. Bensenville, IL: Scholastic Testing Service.Google Scholar
Mueller, C. W., & Dweck, C. S. (1998). Praise for intelligence can undermine children’s motivation and performance. Journal of Personality and Social Psychology, 75, 3352.Google Scholar
National Commission on Excellence in Education. (1983). A nation at risk: The imperative for educational reform. www.edreform.com/wp-content/uploads/2013/02/A_Nation_At_Risk_1983.pdfGoogle Scholar
Neisser, U. (1997). Rising scores on intelligence tests. American Scientist, 85, 440447.Google Scholar
Neisser, U. (Ed.) (1998). The rising curve: Long-term gains in IQ and related measures. Washington: American Psychological Association.Google Scholar
Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., & Ceci, S. J. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51, 77101.Google Scholar
Nickerson, R. S. (1980). Retrieval efficiency, knowledge assessment and age: Comments on some welcome findings. In Poon, L. W., Fozard, J. L., Cermak, L. S., Arenberg, D., & Thompson, L. W. (Eds.), New directions in memory and aging: Proceedings of the George A. Talland Memorial Conference (pp. 355366). Hillsdale, NJ: Erlbaum.Google Scholar
Nickerson, R. S. (1987). Project Intelligence: An Account and some reflections. Special Services in the Schools, 3(1–2), 83102.Google Scholar
Nickerson, R. S. (1988/1989). On improving thinking through instruction. In Rothkopf, E. Z. (Ed.), Review of research in education (vol. 15, pp. 358). Washington: American Educational Research Association.Google Scholar
Nickerson, R. S. (1994). The teaching of thinking and problem solving. In Sternberg, R. J. (Ed.), Thinking and problem solving, vol. 12, Handbook of perception and cognition (pp. 409449). San Diego, CA: Academic Press.Google Scholar
Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2, 175220.Google Scholar
Nickerson, R. S. (2004). Teaching reasoning. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 410442). New York: Cambridge University Press.Google Scholar
Nickerson, R. S. (2011). Developing intelligence through instruction. In Sternberg, R. J. & Kaufman, S. B. (Eds.), Cambridge handbook of intelligence (pp. 107129). New York: Cambridge University Press.Google Scholar
Nickerson, R. S., Butler, S. F., & Barch, D. H. (in press). Validity and persuasiveness of conditional arguments. American Journal of Psychology.Google Scholar
Nickerson, R. S., Perkins, D. N., & Smith, E. E. (1985). The teaching of thinking. Hillsdale, NJ: Erlbaum.Google Scholar
Nisbett, R. E. (2009). Intelligence and how to get it: Why schools and cultures count. New York: W. W. Norton.Google Scholar
Nottebohm, F. (2002). Why are some neurons replaced in adult brains? Journal of Neuroscience, 22, 624628.Google Scholar
Nusbaum, E. C., & Silvia, P. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.Google Scholar
Olds, D., Henderson, C. R. Jr., Cole, R., Eckenrode, J., Kitzman, H., Luckey, D., et al. (1998). Long-term effects of nurse home visitation on children’s criminal and antisocial behavior: 15-year follow-up of a randomized trial. Journal of the American Medical Association, 280(14), 12381244.Google Scholar
Otis, A. S., & Lennon, R. T. (1977). Otis-Lennon School Ability Test (Intermediate Level 1, Form R). New York: Harcourt Brace Jovanovich.Google Scholar
Ott, A., van Rossum, C. T., van Harskamp, F., van de Mheen, H., Hofman, A., & Breteler, M. M. (1999). Education and the incidence of dementia in a large population-based study: The Rotterdam study. Neurology, 52, 663666.Google Scholar
Papageorgiou, E., Christou, C., Spanoudis, G., & Demetriou, A. (2016). Augmenting intelligence: Developmental limits to learning-based cognitive change. Intelligence, 56, 1627.Google Scholar
Pardon, M.-C., & Bondi, M. W. (Eds.) (2011) Behavioral neurobiology of aging. Berlin: Springer.Google Scholar
Paris, S. G., Lipson, M. Y., & Wixson, K. K. (1983). Becoming a strategic reader. Contemporary Educational Psychology, 8, 293316.Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196.Google Scholar
Payne, J. E., Mercer, C. D., Payne, A., & Davison, R. G. (1973). Head Start: A tragicomedy with epilogue. New York: Behavioral Publications.Google Scholar
Perkins, D. N. (1995). Outsmarting IQ: The emerging science of learnable intelligence. New York: Free Press.Google Scholar
Piattelli-Palmarini, M. (1994). Inevitable illusions: How mistakes of reason rule our minds. New York: Wiley.Google Scholar
Plomin, R., & DeFries, J. C. (1998). Genetics of cognitive abilities and disabilities. Scientific American, 275(5), 6269.Google Scholar
Plomin, R., Pedersen, N. L., Lichtenstein, P., & McClearn, G. E. (1994). Variability and stability in cognitive abilities are largely genetic later in life. Behavior Genetics, 24, 207215.Google Scholar
Ramey, C. T., Bryant, D. M., & Suarez, T. M. (1985). Preschool compensatory education and the modifiability of intelligence: A critical review. In Detterman, D. K. (Ed.), Current topics in human intelligence, vol. 1, Research methodology (pp. 247296). Westport, CT: Ablex Publishing.Google Scholar
Ramey, C. T., & Campbell, F. A. (1984). Preventive education for high-risk children: Cognitive consequences of the Carolina abecedarian project. American Journal of Mental Deficiency, 88, 515523.Google Scholar
Ramey, C. T., & Campbell, F. A. (1994). Poverty, early childhood education, and academic competence: The Abecedarian experiment. In Huston, A. C. (Ed.), Children in poverty: Child development and public policy (pp. 190221). New York: Cambridge University Press.Google Scholar
Reynolds, A. J. (1998). The Chicago Child-Parent Center and Expansion Program: A study of extended early childhood intervention. In Crane, Jonathan (Ed.), Social programs that work (pp. 110147). New York: Russell Sage Foundation.Google Scholar
Resnick, L. B. (1987). Education and learning to think. Washington: National Academy Press.Google Scholar
Rindermann, H., & Becker, D. (2018). Flynn-effect and economic growth: Do national increases in intelligence lead to increases in GDP?. Intelligence, 69, 8793.Google Scholar
Rips, L. J., & Conrad, F. G. (1983). Individual differences in deduction. Cognition and Brain Theory, 6, 259285.Google Scholar
Ritchie, S. J., & Tucker-Drob, E. M. (2018). How much does education improve intelligence? A meta-analysis. Psychological Science, 29, 13581369.Google Scholar
Ross, L., Greene, D., & House, P. (1977). The false consensus phenomenon: An attributional bias in self-perception and social perception processes. Journal of Experimental Social Psychology, 13, 279301.Google Scholar
Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118137.Google Scholar
Rubenstein, M. F. (1975). Patterns of problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Salthouse, T. A. (2015). Do cognitive interventions alter the rate of age-related cognitive change? Intelligence, 53, 8691.Google Scholar
Sanders, J. R., & Sonnad, S. R. ( 1982). Research on the introduction, use and impact of the ThinkAbout instructional television series: Executive summary. Agency for Instructional Television, January.Google Scholar
Scarmeas, N., Levy, G., Tang, M. X., Manly, J., Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology, 57, 22362242.Google Scholar
Schipolowski, S., Wilhelm, O., & Schroeders, U. (2014). On the nature of crystalized intelligence: The relationship between verbal ability and factual knowledge. Intelligence, 46, 156168.Google Scholar
Schneider, W., Niklas, F., & Schmiedeler, S. (2014). Intellectual development from early childhood to early adulthood: The impact of early IQ differences on stability and change over time. Learning and Individual Differences, 32, 156162.Google Scholar
Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.Google Scholar
Schwartzman, A. E., Gold, D., Andres, D., Arbuckle, T. Y., & Chaikelson, J. (1987). Stability of intelligence: A 40-year follow-up. Canadian Journal of Psychology, 41, 244256.Google Scholar
Schweinhart, L. J., Montie, J., Xiang, Z., Barnett, W. S., Belfield, C. R., & Nores, M. (2005). Lifetime effects: The High/Scope Perry Preschool Study through age 40. Ypsilanti, MI: High/Scope Foundation.Google Scholar
Seeman, T. E., McAvay, G., Merrill, S., Albert, M., & Rodin, J. (1996). Self-efficacy beliefs and changes in cognitive performance: MacArthur studies of successful aging. Psychology and Aging, 11, 538551.Google Scholar
Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138, 628654.Google Scholar
Sigel, I. E. (1973). Where is preschool education going: Or are we en route without a road map? Proceedings of the 1972 Invitational Conference on Testing Problems: Assessment in a pluralistic society (pp. 99116). Princeton: Educational Testing Service.Google Scholar
Squalli, J., & Wilson, K. (2014). Intelligence, creativity, and innovation. Intelligence, 46, 250257.Google Scholar
Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21, 360407.Google Scholar
Stanovich, K. E. (1994). Reconceptualizing intelligence: Dysrationalia as an intuition pump. Educational Researcher, 23, 1122.Google Scholar
Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. Mahwah, NJ: Erlbaum.Google Scholar
Stanovich, K. E., & West, R. (2008). On the failure of cognitive ability to predict myside bias and one-sided thinking biases. Thinking and Reasoning, 14, 129167.Google Scholar
Sternberg, R. J. (1986). Intelligence applied: Understanding and increasing your intellectual skills. San Diego, CA: Harcourt Brace Jovanovich.Google Scholar
Sternberg, R. J. (2012). Intelligence. Dialogs in Clinical Neuroscience, 14, 1427.Google Scholar
Sternberg, R. J. (2014). Teaching about the nature of intelligence. Intelligence, 42, 176179.Google Scholar
Sternberg, R. J., & Grigorenko, E. L. (2007). Teaching for successful intelligence (2nd ed.). Thousand Oaks, CA: Corwin Press.Google Scholar
Sternberg, R. J., Jarvin, L., & Grigorenko, E. L. (2011). Explorations of the nature of giftedness. New York: Cambridge University Press.Google Scholar
Sternberg, R. J., & Wagner, R. K. (Eds.) (1986). Practical intelligence: Nature and origins of competence in the everyday world. Cambridge, UK: Cambridge University Press.Google Scholar
Stevenson., H. W., Chen, C., & Lee, S-Y. (1993). Mathematics achievement of Chinese, Japanese, and American children: Ten years later. Science, 259, 5358.Google Scholar
Stevenson, H. W., Lee, S. Y., & Stigler, J. W. (1986). Mathematics achievement of Chinese, Japanese, and American children. Science, 231, 693699.Google Scholar
Swartz, R. J. (1991). Structured teaching for critical thinking and reasoning in standard subject area instruction. In Voss, J. F., Perkins, D. N., & Segal, J. W. (Eds.), Informal reasoning and education (pp. 415450). Hillsdale, NJ: Erlbaum.Google Scholar
Swets, J. A., Herrnstein, R. J., Nickerson, R. S., & Getty, D. J. (1988). Design and evaluation issues in an experiment on teaching thinking skills. American Psychologist, 43, 600602.Google Scholar
Thorell, L. B., Lindqvist, S., Bergman, S., Bholin, G., & Klingberg, T. (2008). Training and transfer effects of executive functions in preschool children. Developmental Science, 11, 969976.Google Scholar
Tourva, A., Spanoudis, G., & Demetriou, A. (2016). Cognitive correlates of developing intelligence: The contribution of working memory, processing speed and attention. Intelligence, 54, 136146.Google Scholar
Tsang, S. L. (1988). The mathematics achievement characteristics of Asian-American students. In Cocking, R. R. & Mestre, J. P. (Eds.), Linguistic and cultural influences on learning mathematics (pp. 123136). Hillsdale, NJ: Erlbaum.Google Scholar
Valenzuela, M. J., Breakspear, M., & Sackdev, P. (2007). Complex mental activity and the aging brain: Molecular, cellular and cortical network mechanisms. Brain Research Reviews, 56, 198213.Google Scholar
Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS One. https://doi.org/10.1371/journal.pone.0002598Google Scholar
Verghese, J., Wang, C., Katz, M. J., Sanders, A., & Lipton, R. B. (2009). Leisure activities and risk of vascular cognitive impairment in older adults. Journal of Geriatric Psychiatry and Neurology, 22, 110118.Google Scholar
Verhaeghen, P., Cerella, J., & Basak, C. (2004). A working memory workout: How to expand the focus of serial attention from one to four items in 10 hours or less. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 13221337.Google Scholar
Wai, J. (2013). Investigating America’s elite: Cognitive ability, education, and sex differences. Intelligence, 41, 203211.Google Scholar
Wai, J. (2014). Investigating the world’s rich and powerful. Intelligence, 46, 5472.Google Scholar
Wai, J., & Nisen, M. (2013). The 25 countries with the most brainpower. Business Insider. www.businessinsider.com/countries-with-the-most-brainpower-2013-10?r=US&IR=TGoogle Scholar
Wechsler, D. (1981). WAIS-R manual: Wechsler Adult Intelligence Scale – Revised. San Antonio, TX: Psychological Corporation.Google Scholar
Weinert, F. E. (1987). Introduction and overview: Metacognition and motivation as determinants of effective learning and understanding. In Weinert, F. & Kluwe, R. (Eds.), Metacognition, motivation, and understanding (pp. 116). Hillsdale, NJ: Erlbaum.Google Scholar
Wickelgren, W. A. (1974). How to solve problems. San Francisco: W. H. Freeman.Google Scholar
Williams, R. L. (2013). Overview of the Flynn effect. Intelligence, 41, 753764.Google Scholar
Wrar, C., Deary, I. J., Gale, C. R., & Der, G. (2015). Intelligence in youth and health at 50. Intelligence, 53, 2332.Google Scholar
Wrulich, M., Brunner, M., Stadler, G., Schalke, D., Keller, U., & Martin, R. (2014). Forty years on: Childhood intelligence predicts health in middle adulthood. Health Psychology, 33, 292296.Google Scholar
Yang, B., & Lester, D. (2016). Regional differences in intelligence and economic activity: A brief note. Intelligence, 54, 3336.Google Scholar
Yu, H., McCoach, D. B., Gottfried, A. W., & Gottfried, A. K. (2018). Stability of intelligence from infancy through adolescence: An autoregressive latent variable model. Intelligence, 69, 815.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×