Skip to main content Accessibility help
×
Hostname: page-component-7f64f4797f-d87pz Total loading time: 0 Render date: 2025-11-10T06:17:03.796Z Has data issue: false hasContentIssue false

Section V - Cognition–Emotion Interactions

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abivardi, A., & Bach, D. R. (2017). Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Human Brain Mapping, 38, 3927–3940.10.1002/hbm.23639CrossRefGoogle ScholarPubMed
Ahumada-Méndez, F., Lucero, B., Avenanti, A., Saracini, C., Muñoz-Quezada, M. T., Cortés-Rivera, C., & Canales-Johnson, A. (2022). Affective modulation of cognitive control: A systematic review of EEG studies. Physiology & Behavior, 249, 113743.10.1016/j.physbeh.2022.113743CrossRefGoogle ScholarPubMed
Amting, J. M., Greening, S. G., & Mitchell, D. G. (2010). Multiple mechanisms of consciousness: The neural correlates of emotional awareness. Journal of Neuroscience, 30, 10039–10047.10.1523/JNEUROSCI.6434-09.2010CrossRefGoogle ScholarPubMed
Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411, 305–309.10.1038/35077083CrossRefGoogle ScholarPubMed
Anderson, B. A. (2019). Neurobiology of value-driven attention. Current Opinion in Psychology, 29, 27–33.10.1016/j.copsyc.2018.11.004CrossRefGoogle ScholarPubMed
Anderson, B. A., Kim, H., Kim, A. J., Liao, M. R., Mrkonja, L., Clement, A., & Grégoire, L. (2021). The past, present, and future of selection history. Neuroscience & Biobehavioral Review, 130, 326–350.10.1016/j.neubiorev.2021.09.004CrossRefGoogle ScholarPubMed
Armony, J. L., Quirk, G. J., & LeDoux, J. E. (1998). Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. Journal of Neuroscience, 18, 2592–2601.10.1523/JNEUROSCI.18-07-02592.1998CrossRefGoogle ScholarPubMed
Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A. L., & Poeppel, D. (2015). Human screams occupy a privileged niche in the communication soundscape. Current Biology, 25, 2051–2056.10.1016/j.cub.2015.06.043CrossRefGoogle ScholarPubMed
Bachman, M. D., Wang, L., Gamble, M. L., & Woldorff, M. G. (2020). Physical salience and value-driven salience operate through different neural mechanisms to enhance attentional selection. Journal of Neuroscience, 40, 5455–5464.10.1523/JNEUROSCI.1198-19.2020CrossRefGoogle ScholarPubMed
Basso, M. A., Bickford, M. E., & Cang, J. (2021). Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 109, 918–937.10.1016/j.neuron.2021.01.013CrossRefGoogle ScholarPubMed
Becker, D. V., & Rheem, H. (2020). Searching for a face in the crowd: Pitfalls and unexplored possibilities. Attention, Perception, & Psychophysics, 82, 626–636.10.3758/s13414-020-01975-7CrossRefGoogle ScholarPubMed
Bekhtereva, V., Craddock, M., & Müller, M. M. (2021). Emotional content overrides spatial attention. Psychophysiology, 58, e13847.10.1111/psyp.13847CrossRefGoogle ScholarPubMed
Bentley, P., Vuilleumier, P., Thiel, C. M., Driver, J., & Dolan, R. J. (2003). Cholinergic enhancement modulates neural correlates of selective attention and emotional processing. Neuroimage, 20, 58–70.10.1016/S1053-8119(03)00302-1CrossRefGoogle ScholarPubMed
Benuzzi, F., Meletti, S., Zamboni, G., Calandra-Buonaura, G., Serafini, M., Lui, F., … Nichelli, P. (2004). Impaired fear processing in right mesial temporal sclerosis: A fMRI study. Brain Research Bulletin, 63, 269–281.10.1016/j.brainresbull.2004.03.005CrossRefGoogle ScholarPubMed
Bourgeois, A., Marti, E., Schnider, A., & Ptak, R. (2022). Task relevance and negative reward modulate the disengagement deficit of patients with spatial neglect. Neuropsychologia, 175, 108365.10.1016/j.neuropsychologia.2022.108365CrossRefGoogle ScholarPubMed
Bourgeois, A., Sterpenich, V., Iannotti, G. R., & Vuilleumier, P. (2022). Reward-driven modulation of spatial attention in the human frontal eye-field. Neuroimage, 247, 118846.10.1016/j.neuroimage.2021.118846CrossRefGoogle ScholarPubMed
Bourgeois, A., Saj, A., & Vuilleumier, P. (2018). Value-driven attentional capture in neglect. Cortex, 109, 260–271.10.1016/j.cortex.2018.09.015CrossRefGoogle ScholarPubMed
Brown, C. R. H. (2022). The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 150, 85–107.10.1016/j.cortex.2022.03.001CrossRefGoogle ScholarPubMed
Calvo, M. G., Fernández-Martín, A., & Nummenmaa, L. (2014). Facial expression recognition in peripheral versus central vision: Role of the eyes and the mouth. Psychological Research, 78, 180–195.10.1007/s00426-013-0492-xCrossRefGoogle ScholarPubMed
Carlson, J. M., & Reinke, K. S. (2014). Attending to the fear in your eyes: Facilitated orienting and delayed disengagement. Cognition and Emotion, 28, 1398–1406.10.1080/02699931.2014.885410CrossRefGoogle Scholar
Carretié, L., Fernández-Folgueiras, U., Álvarez, F., Cipriani, G. A., Tapia, M., & Kessel, D. (2022). Fast unconscious processing of emotional stimuli in early stages of the visual cortex. Cerebral Cortex, 32, 4331–4344.10.1093/cercor/bhab486CrossRefGoogle ScholarPubMed
Chen, T., Becker, B., Camilleri, J., Wang, L., Yu, S., Eickhoff, S. B., & Feng, C. (2018). A domain-general brain network underlying emotional and cognitive interference processing: Evidence from coordinate-based and functional connectivity meta-analyses. Brain Structure and Function, 223, 3813–3840.10.1007/s00429-018-1727-9CrossRefGoogle ScholarPubMed
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32, 8988–8999.10.1523/JNEUROSCI.0536-12.2012CrossRefGoogle ScholarPubMed
Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17, 222–227.Google ScholarPubMed
Diano, M., Celeghin, A., Bagnis, A., & Tamietto, M. (2017). Amygdala response to emotional stimuli without awareness: Facts and interpretations. Frontiers in Psychology, 10, 2029.Google Scholar
Di Plinio, S., Ferri, F., Marzetti, L., Romani, G. L., Northoff, G., & Pizzella, V. (2018). Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition. Human Brain Mapping, 39, 3597–3610.10.1002/hbm.24197CrossRefGoogle ScholarPubMed
Dolcos, F., Katsumi, Y., Moore, M., Berggren, N., de Gelder, B., Derakshan, N., … Dolcos, S. (2020). Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neuroscience & Biobehavioral Reviews, 108, 559–601.10.1016/j.neubiorev.2019.08.017CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Moyne, M., Saj, A., Guex, R., & Vuilleumier, P. (2020). Impaired emotional biases in visual attention after bilateral amygdala lesion. Neuropsychologia, 137, 107292.10.1016/j.neuropsychologia.2019.107292CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Rieger, S. W., Corradi-Dell’Acqua, C., Neveu, R., & Vuilleumier, P. (2017). Fear Spreading across senses: Visual emotional events alter cortical responses to touch, audition, and vision. Cerebral Cortex, 27, 68–82.10.1093/cercor/bhw337CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Saj, A., Armony, J. L., & Vuilleumier, P. (2012). Emotional processing and its impact on unilateral neglect and extinction. Neuropsychologia, 50, 1054–1071.10.1016/j.neuropsychologia.2012.03.003CrossRefGoogle ScholarPubMed
Doron, N. N., & Ledoux, J. E. (1999). Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. The Journal of Comparative Neurology, 412, 383–409.10.1002/(SICI)1096-9861(19990927)412:3<383::AID-CNE2>3.0.CO;2-53.0.CO;2-5>CrossRefGoogle Scholar
Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18, 1475–1484.10.1093/cercor/bhm179CrossRefGoogle ScholarPubMed
Elorette, C., Forcelli, P. A., Saunders, R. C., & Malkova, L. (2018). Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Frontiers in Neural Circuits, 12, 91.10.3389/fncir.2018.00091CrossRefGoogle ScholarPubMed
Enea, V., & Iancu, S. (2016). Processing emotional body expressions: State-of-the-art. Society of Neuroscience, 11, 495–506.10.1080/17470919.2015.1114020CrossRefGoogle ScholarPubMed
Fan, Y., Gold, J. I., & Ding, L. (2020). Frontal eye field and caudate neurons make different contributions to reward-biased perceptual decisions. eLife, 9, 1–24.10.7554/eLife.60535CrossRefGoogle ScholarPubMed
Fecteau, S., Belin, P., Joanette, Y., & Armony, J. L. (2007). Amygdala responses to nonlinguistic emotional vocalizations. Neuroimage, 36, 480–487.10.1016/j.neuroimage.2007.02.043CrossRefGoogle ScholarPubMed
Fenske, M. J., & Eastwood, J. D. (2003). Modulation of focused attention by faces expressing emotion: Evidence from flanker tasks. Emotion, 3, 327–343.10.1037/1528-3542.3.4.327CrossRefGoogle ScholarPubMed
Flykt, A. (2005). Visual search with biological threat stimuli: Accuracy, reaction times, and heart rate changes. Emotion, 5, 349–353.10.1037/1528-3542.5.3.349CrossRefGoogle ScholarPubMed
Flykt, A., & Caldara, R. (2006). Tracking fear in snake and spider fearful participants during visual search: A multi-response domain study. Cognition and Emotion, 20, 1075–1091.10.1080/02699930500381405CrossRefGoogle Scholar
Forbes, S. J., Purkis, H. M., & Lipp, O. V. (2011). Better safe than sorry: Simplistic fear-relevant stimuli capture attention. Cognition and Emotion, 25, 794–804.10.1080/02699931.2010.514710CrossRefGoogle ScholarPubMed
Framorando, D., Moses, E., Legrand, L., Seeck, M., & Pegna, A. J. (2021). Rapid processing of fearful faces relies on the right amygdala: Evidence from individuals undergoing unilateral temporal lobectomy. Scientific Reports, 11, 426.10.1038/s41598-020-80054-1CrossRefGoogle ScholarPubMed
Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 1367–1378.10.1098/rstb.2004.1512CrossRefGoogle ScholarPubMed
Freese, J. L., & Amaral, D. G. (2006). Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. The Journal of Comparative Neurology, 496, 295–317.10.1002/cne.20945CrossRefGoogle ScholarPubMed
Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., Vuilleumier, P., & Grandjean, D. (2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112, 1583–1588.Google ScholarPubMed
Gerritsen, C., Frischen, A., Blake, A., Smilek, D., & Eastwood, J. D. (2008). Visual search is not blind to emotion. Perception & Psychophysics, 70, 1047–1059.10.3758/PP.70.6.1047CrossRefGoogle Scholar
Gillet, S. N., Kato, H. K., Justen, M. A., Lai, M., & Isaacson, J. S. (2018). Fear learning regulates cortical sensory representations by suppressing habituation. Frontiers in Neural Circuits, 11, 112.10.3389/fncir.2017.00112CrossRefGoogle ScholarPubMed
Gootjes, L., Coppens, L. C., Zwaan, R. A., Franken, I. H., & Van Strien, J. W. (2011). Effects of recent word exposure on emotion-word Stroop interference: An ERP study. International Journal of Psychophysiology, 79, 356–363.10.1016/j.ijpsycho.2010.12.003CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Lucas, N., Scherer, K. R., & Vuilleumier, P. (2008). Effects of emotional prosody on auditory extinction for voices in patients with spatial neglect. Neuropsychologia, 46, 487–496.10.1016/j.neuropsychologia.2007.08.025CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8, 145–146.10.1038/nn1392CrossRefGoogle ScholarPubMed
Guex, R., Hofstetter, C., Domínguez-Borràs, J., Méndez-Bértolo, C., Sterpenich, V., Spinelli, L., … Vuilleumier, P. (2019). Neurophysiological evidence for early modulation of amygdala activity by emotional reappraisal. Biological Psychology, 145, 211–223.10.1016/j.biopsycho.2019.05.006CrossRefGoogle ScholarPubMed
Guex, R., Méndez-Bértolo, C., Moratti, S., Strange, B. A., Spinelli, L., Murray, R. J., … Domínguez-Borràs, J. (2020). Temporal dynamics of amygdala response to emotion- and action-relevance. Scientific Reports, 10, 11138.10.1038/s41598-020-67862-1CrossRefGoogle ScholarPubMed
Gupta, R. (2019). Positive emotions have a unique capacity to capture attention. Progress in Brain Research, 247, 23–46.10.1016/bs.pbr.2019.02.001CrossRefGoogle ScholarPubMed
Hadj-Bouziane, F., Liu, N., Bell, A. H., Gothard, K. M., Luh, W. M., Tootell, R. B., … Ungerleider, L. G. (2012). Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, E3640–E3648.Google ScholarPubMed
Hedger, N., Gray, K. L. H., Garner, M., & Adams, W. J. (2016). Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers. Psychological Bulletin, 142, 934–968.10.1037/bul0000054CrossRefGoogle ScholarPubMed
Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 146, 105637.10.1016/j.bandc.2020.105637CrossRefGoogle ScholarPubMed
Hikosaka, O., Kim, H. F., Yasuda, M., & Yamamoto, S. (2014). Basal ganglia circuits for reward value-guided behavior. Annual Review of Neuroscience, 37, 289–306.10.1146/annurev-neuro-071013-013924CrossRefGoogle ScholarPubMed
Hinojosa, J. A., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: A meta-analysis. Neuroscience & Biobehavioral Review, 55, 498–509.10.1016/j.neubiorev.2015.06.002CrossRefGoogle ScholarPubMed
Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148–155.10.1016/j.conb.2004.03.007CrossRefGoogle ScholarPubMed
Holmes, A., Vuilleumier, P., & Eimer, M. (2003). The processing of emotional facial expression is gated by spatial attention: Evidence from event-related brain potentials. Brain Research. Cognitive Brain Research, 16, 174–184.10.1016/S0926-6410(02)00268-9CrossRefGoogle ScholarPubMed
Inagaki, M., Inoue, K., Tanabe, S., Kimura, K., Takada, M., & Fujita, I. (2023). Rapid processing of threatening faces in the amygdala of nonhuman primates: Subcortical inputs and dual roles. Cerebral Cortex, 33, 895–915.10.1093/cercor/bhac109CrossRefGoogle ScholarPubMed
Itthipuripat, S., Vo, V. A., Sprague, T. C., & Serences, J. T. (2019). Value-driven attentional capture enhances distractor representations in early visual cortex. PLoS Biology, 17, e3000186.10.1371/journal.pbio.3000186CrossRefGoogle ScholarPubMed
Kawai, N., & Koda, H. (2016). Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals. Journal of Comparative Psychology, 130, 299–303.10.1037/com0000032CrossRefGoogle Scholar
Kawasaki, H., Kaufman, O., Damasio, H., Damasio, A. R., Granner, M., Bakken, H., … Adolphs, R. (2001). Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nature Neuroscience, 4, 15–16.10.1038/82850CrossRefGoogle Scholar
Keifer, O. P., Gutman, D. A., Hecht, E. E., Keilholz, S. D., & Ressler, K. J. (2015). A comparative analysis of mouse and human medial geniculate nucleus connectivity: A DTI and anterograde tracing study. Neuroimage, 105, 53–66.10.1016/j.neuroimage.2014.10.047CrossRefGoogle ScholarPubMed
Keil, A., & Ihssen, N. (2004). Identification facilitation for emotionally arousing verbs during the attentional blink. Emotion, 4, 23–35.10.1037/1528-3542.4.1.23CrossRefGoogle ScholarPubMed
Kessel, D., García-Rubio, M. J., González, E. K., Tapia, M., López-Martín, S., Román, F. J., … Carretié, L. (2016). Working memory of emotional stimuli: Electrophysiological characterization. Biological Psychology, 119, 190–199.10.1016/j.biopsycho.2016.07.009CrossRefGoogle ScholarPubMed
Khalid, S., Horstmann, G., Ditye, T., & Ansorge, U. (2017). Measuring the emotion-specificity of rapid stimulus-driven attraction of attention to fearful faces: Evidence from emotion categorization and a comparison with disgusted faces. Psychological Research, 81, 508–523.10.1007/s00426-016-0743-8CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.10.1016/j.neuron.2021.06.001CrossRefGoogle ScholarPubMed
Kragel, P. A., Kano, M., Van Oudenhove, L., Ly, H. G., Dupont, P., Rubio, A., … Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nature Neuroscience, 21, 283–289.10.1038/s41593-017-0051-7CrossRefGoogle ScholarPubMed
Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5, eaaw4358.10.1126/sciadv.aaw4358CrossRefGoogle ScholarPubMed
Kunimatsu, J., Yamamoto, S., Maeda, K., & Hikosaka, O. (2021). Environment-based object values learned by local network in the striatum tail. Proceedings of the National Academy of Sciences of the United States of America, 118, e2013623118.Google ScholarPubMed
Le, Q. V., Isbell, L. A., Matsumoto, J., Le, V. Q., Nishimaru, H., Hori, E., … Nishijo, H. (2016). Snakes elicit earlier, and monkey faces, later, gamma oscillations in macaque pulvinar neurons. Scientific Reports, 6, 20595.10.1038/srep20595CrossRefGoogle ScholarPubMed
Lecce, F., Rotondaro, F., Bonnì, S., Carlesimo, A., Thiebaut De Schotten, M., Tomaiuolo, F., & Doricchi, F. (2015). Cingulate neglect in humans: Disruption of contralesional reward learning in right brain damage. Cortex, 62, 73–88.10.1016/j.cortex.2014.08.008CrossRefGoogle ScholarPubMed
Li, K., Bentley, P., Nair, A., Halse, O., Barker, G., Russell, C., … Malhotra, P. A. (2020). Reward sensitivity predicts dopaminergic response in spatial neglect. Cortex, 122, 213–224.10.1016/j.cortex.2018.09.002CrossRefGoogle ScholarPubMed
LoBue, V., & Adolph, K. E. (2019). Fear in infancy: Lessons from snakes, spiders, heights, and strangers. Developmental Psychology, 55, 1889–1907.10.1037/dev0000675CrossRefGoogle ScholarPubMed
Lucas, N., Schwartz, S., Leroy, R., Pavin, S., Diserens, K., & Vuilleumier, P. (2013). Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 49, 2616–2627.10.1016/j.cortex.2013.06.004CrossRefGoogle ScholarPubMed
Lucas, N., & Vuilleumier, P. (2008). Effects of emotional and non-emotional cues on visual search in neglect patients: Evidence for distinct sources of attentional guidance. Neuropsychologia, 46, 1401–1414.10.1016/j.neuropsychologia.2007.12.027CrossRefGoogle ScholarPubMed
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4, 432–440.10.1016/S1364-6613(00)01545-XCrossRefGoogle ScholarPubMed
Lundqvist, D., Bruce, N., & Öhman, A. (2015). Finding an emotional face in a crowd: Emotional and perceptual stimulus factors influence visual search efficiency. Cognition and Emotion, 29, 621–633.10.1080/02699931.2014.927352CrossRefGoogle Scholar
Malhotra, P. A., Soto, D., Li, K., & Russell, C. (2013). Reward modulates spatial neglect. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 366–369.10.1136/jnnp-2012-303169CrossRefGoogle ScholarPubMed
Markovic, J., Anderson, A. K., & Todd, R. M. (2014). Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research, 259, 229–241.10.1016/j.bbr.2013.11.018CrossRefGoogle Scholar
Mashour, G. A., Roelfsema, P., Changeux, J. P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105, 776–798.10.1016/j.neuron.2020.01.026CrossRefGoogle ScholarPubMed
Maunsell, J. H. R. (2004). Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences, 8, 261–265.10.1016/j.tics.2004.04.003CrossRefGoogle ScholarPubMed
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews Neuroscience, 21, 264–276.10.1038/s41583-020-0287-1CrossRefGoogle ScholarPubMed
McFadyen, J., Mermillod, M., Mattingley, J., Halász, V., & Garrido, M. (2016). A rapid subcortical amygdala route for faces irrespective of spatial frequency and emotion. Journal of Neuroscience, 37, 3864–3874.Google Scholar
McHugo, M., Olatunji, B. O., & Zald, D. H. (2013). The emotional attentional blink: What we know so far. Frontiers in Human Neuroscience, 7, 151.10.3389/fnhum.2013.00151CrossRefGoogle ScholarPubMed
Meaux, E., Sterpenich, V., & Vuilleumier, P. (2019). Emotional learning promotes perceptual predictions by remodeling stimulus representation in visual cortex. Scientific Reports, 9, 16867.10.1038/s41598-019-52615-6CrossRefGoogle ScholarPubMed
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martinez-Alvarez, R., Mah, Y. H., … Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 1041–1049.10.1038/nn.4324CrossRefGoogle ScholarPubMed
Mineur, Y. S., & Picciotto, M. R. (2021). The role of acetylcholine in negative encoding bias: Too much of a good thing? European Journal of Neuroscience, 53, 114–125.10.1111/ejn.14641CrossRefGoogle ScholarPubMed
Mogg, K., & Bradley, B. P. (2018). Anxiety and threat-related attention: Cognitive-motivational framework and treatment. Trends in Cognitive Sciences, 22, 225–240.10.1016/j.tics.2018.01.001CrossRefGoogle ScholarPubMed
Mohanty, A., Egner, T., Monti, J. M., & Mesulam, M. M. (2009). Search for a threatening target triggers limbic guidance of spatial attention. Journal of Neuroscience, 29, 10563–10572.10.1523/JNEUROSCI.1170-09.2009CrossRefGoogle ScholarPubMed
Morris, J. S., Friston, K. J., Buchel, C., Frith, C. D., Young, A. W., Calder, A. J., & Dolan, R. J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121, 47–57.10.1093/brain/121.1.47CrossRefGoogle ScholarPubMed
Paulmann, S., Bleichner, M., & Kotz, S. A. E. (2013). Valence, arousal, and task effects in emotional prosody processing. Frontiers in Psychology, 4, 345.10.3389/fpsyg.2013.00345CrossRefGoogle ScholarPubMed
Peelen, M. V, Atkinson, A. P., Andersson, F., & Vuilleumier, P. (2007). Emotional modulation of body-selective visual areas. Social Cognitive and Affective Neuroscience, 2, 274–283.10.1093/scan/nsm023CrossRefGoogle ScholarPubMed
Pessoa, L., McKenna, M., Gutierrez, E., & Ungerleider, L. G. (2002). Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences of the United States of America, 99, 11458–11463.Google ScholarPubMed
Pessoa, L., Padmala, S., Kenzer, A., & Bauer, A. (2012). Interactions between cognition and emotion during response inhibition. Emotion, 12, 192–197.10.1037/a0024109CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175–187.10.1016/j.neuron.2005.09.025CrossRefGoogle ScholarPubMed
Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17, 292–299.10.1111/j.1467-9280.2006.01701.xCrossRefGoogle ScholarPubMed
Pichon, S., Miendlarzewska, E. A., Eryilmaz, H., & Vuilleumier, P. (2015). Cumulative activation during positive and negative events and state anxiety predicts subsequent inertia of amygdala reactivity. Social Cognitive and Affective Neuroscience, 10, 180–190.10.1093/scan/nsu044CrossRefGoogle ScholarPubMed
Piguet, C., Sterpenich, V., Desseilles, M., Cojan, Y., Bertschy, G., & Vuilleumier, P. (2013). Neural substrates of cognitive switching and inhibition in a face processing task. NeuroImage, 82, 489–499.10.1016/j.neuroimage.2013.06.015CrossRefGoogle Scholar
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619–633.10.1093/cercor/bhh023CrossRefGoogle ScholarPubMed
Pourtois, G., Schettino, A., & Vuilleumier, P. (2012). Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology, 92, 492–512.Google ScholarPubMed
Pourtois, G., Spinelli, L., Seeck, M., & Vuilleumier, P. (2010). Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy. Cognitive, Affective, & Behavioral Neuroscience, 10, 83–93.10.3758/CABN.10.1.83CrossRefGoogle ScholarPubMed
Provenzano, J., Verduyn, P., Daniels, N., Fossati, P., & Kuppens, P. (2019). Mood congruency effects are mediated by shifts in salience and central executive network efficiency. Social Cognitive and Affective Neuroscience, 14, 987–995.10.1093/scan/nsz065CrossRefGoogle ScholarPubMed
Puls, S., & Rothermund, K. (2018). Attending to emotional expressions: No evidence for automatic capture in the dot-probe task. Cognition and Emotion, 32, 450–463.10.1080/02699931.2017.1314932CrossRefGoogle ScholarPubMed
Qiu, Z., Lei, X., Becker, S. I., & Pegna, A. J. (2022). Neural activities during the processing of unattended and unseen emotional faces: A voxel-wise meta-analysis. Brain Imaging and Behavior, 16, 2426–2443.10.1007/s11682-022-00697-8CrossRefGoogle ScholarPubMed
Reisch, L. M., Wegrzyn, M., Woermann, F. G., Bien, C. G., & Kissler, J. (2020). Negative content enhances stimulus-specific cerebral activity during free viewing of pictures, faces, and words. Human Brain Mapping, 41, 4332–4354.10.1002/hbm.25128CrossRefGoogle ScholarPubMed
Rotshtein, P., Richardson, M. P., Winston, J. S., Kiebel, S. J., Vuilleumier, P., Eimer, M., … Dolan, R. J. (2010). Amygdala damage affects event-related potentials for fearful faces at specific time windows. Human Brain Mapping, 31, 1089–1105.10.1002/hbm.20921CrossRefGoogle ScholarPubMed
Sabatinelli, D., & Frank, D. W. (2019). Assessing the primacy of human amygdala-inferotemporal emotional scene discrimination with rapid whole-brain fMRI. Neuroscience, 406, 212–224.10.1016/j.neuroscience.2019.03.001CrossRefGoogle ScholarPubMed
Sagliano, L., Trojano, L., Di Mauro, V., Carnevale, P., Di Domenico, M., Cozzolino, C., & D’Olimpio, F. (2018). Attentional biases for threat after fear-related autobiographical recall. Anxiety Stress Coping, 31, 69–78.10.1080/10615806.2017.1362297CrossRefGoogle ScholarPubMed
Savage, R. A., & Lipp, O. V. (2014). The effect of face inversion on the detection of emotional faces in visual search. Cognition and Emotion, 29, 972–991.Google ScholarPubMed
Sawada, R., Sato, W., Nakashima, R., & Kumada, T. (2022). How are emotional facial expressions detected rapidly and accurately? A diffusion model analysis. Cognition, 229, 105235.10.1016/j.cognition.2022.105235CrossRefGoogle ScholarPubMed
Schindler, S., & Bublatzky, F. (2020). Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex, 130, 362–386.10.1016/j.cortex.2020.06.010CrossRefGoogle ScholarPubMed
Schlochtermeier, L. H., Kuchinke, L., Pehrs, C., Urton, K., Kappelhoff, H., & Jacobs, A. M. (2013). Emotional picture and word processing: An FMRI study on effects of stimulus complexity. PLoS ONE, 8, e55619.10.1371/journal.pone.0055619CrossRefGoogle Scholar
Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29, 687–694.10.1080/02699931.2014.924484CrossRefGoogle ScholarPubMed
Schultebraucks, K., Deuter, C. E., Duesenberg, M., Schulze, L., Hellmann-Regen, J., Domke, A., … Wingenfeld, K. (2016). Selective attention to emotional cues and emotion recognition in healthy subjects: The role of mineralocorticoid receptor stimulation. Psychopharmacology, 233, 3405–3415.10.1007/s00213-016-4380-0CrossRefGoogle ScholarPubMed
Schupp, H. T., & Kirmse, U. (2021). Neural correlates of affective stimulus evaluation: A case-by-case analysis. Social Cognitive and Affective Neuroscience, 17, 300–310.Google ScholarPubMed
Senderecka, M. (2018). Emotional enhancement of error detection. The role of perceptual processing and inhibition monitoring in failed auditory stop trials. Cognitive, Affective, & Behavioral Neuroscience, 18, 1–20.10.3758/s13415-017-0546-4CrossRefGoogle ScholarPubMed
Shasteen, J. R., Sasson, N. J., & Pinkham, A. E. (2015). A detection advantage for facial threat in the absence of anger. Emotion, 15, 837–845.10.1037/emo0000090CrossRefGoogle ScholarPubMed
Silvert, L., Lepsien, J., Fragopanagos, N., Goolsby, B., Kiss, M., Taylor, J. G., … Nobre, A. C. (2007). Influence of attentional demands on the processing of emotional facial expressions in the amygdala. NeuroImage, 38, 357–366.10.1016/j.neuroimage.2007.07.023CrossRefGoogle ScholarPubMed
Song, S., Zilverstand, A., Song, H., d’Oleire Uquillas, F., Wang, Y., Xie, C., … Zou, Z. (2017). The influence of emotional interference on cognitive control: A meta-analysis of neuroimaging studies using the emotional Stroop task. Scientific Reports, 7, 2088.Google ScholarPubMed
Sterpenich, V., Piguet, C., Desseilles, M., Ceravolo, L., Gschwind, M., Van De Ville, D., … Schwartz, S. (2014). Sleep sharpens sensory stimulus coding in human visual cortex after fear conditioning. Neuroimage, 100, 608–618.10.1016/j.neuroimage.2014.06.003CrossRefGoogle Scholar
Stolarova, M., Keil, A., & Moratti, S. (2006). Modulation of the C1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception. Cerebral Cortex, 16, 876–887.10.1093/cercor/bhj031CrossRefGoogle ScholarPubMed
Todd, R. M., Miskovic, V., Chikazoe, J., & Anderson, A. K. (2020). Emotional objectivity: Neural representations of emotions and their interaction with cognition. Annual Review of Psychology, 71, 25–48.10.1146/annurev-psych-010419-051044CrossRefGoogle ScholarPubMed
Tolomeo, S., Christmas, D., Jentzsch, I., Johnston, B., Sprengelmeyer, R., Matthews, K., & Douglas Steele, J. (2016). A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control. Brain, 139, 1844–1854.10.1093/brain/aww069CrossRefGoogle ScholarPubMed
Torres-Quesada, M., Korb, F. M., Funes, M. J., Lupiáñez, J., & Egner, T. (2014). Comparing neural substrates of emotional vs. non-emotional conflict modulation by global control context. Frontiers in Human Neuroscience, 8, 66.10.3389/fnhum.2014.00066CrossRefGoogle ScholarPubMed
Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12, 1224–1225.10.1038/nn.2380CrossRefGoogle ScholarPubMed
Vetter, P., Badde, S., Phelps, E. A., & Carrasco, M. (2019). Emotional faces guide the eyes in the absence of awareness. eLife, 8, e43467.10.7554/eLife.43467CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585–594.10.1016/j.tics.2005.10.011CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2013). Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: Progress and challenges. Annals of the New York Academy of Sciences, 1296, 50–74.10.1111/nyas.12161CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Clarke, K., Husain, M., Driver, J., & Dolan, R. J. (2002). Neural response to emotional faces with and without awareness: Event-related fMRI in a parietal patient with visual extinction and spatial neglect. Neuropsychologia, 40, 2156–2166.10.1016/S0028-3932(02)00045-3CrossRefGoogle Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron, 30, 829–841.10.1016/S0896-6273(01)00328-2CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624–631.10.1038/nn1057CrossRefGoogle ScholarPubMed
Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J., & Dolan, R. J. (2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience, 7, 1271–1278.10.1038/nn1341CrossRefGoogle ScholarPubMed
Vuilleumier, P., Schwartz, S., Verdon, V., Maravita, A., Hutton, C., Husain, M., & Driver, J. (2008). Abnormal attentional modulation of retinotopic cortex in parietal patients with spatial neglect. Current Biology, 18, 1525–1529.10.1016/j.cub.2008.10.021CrossRefGoogle ScholarPubMed
Waechter, S., Nelson, A. L., Wright, C., Hyatt, A., & Oakman, J. (2014). Measuring attentional bias to threat: Reliability of dot probe and eye movement indices. Cognitive Therapy and Research, 38, 313–333.10.1007/s10608-013-9588-2CrossRefGoogle Scholar
Wang, S., Yu, R., Tyszka, J. M., Zhen, S., Kovach, C., Sun, S., … Rutishauser, U. (2017). The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 8, 14821.Google ScholarPubMed
Wang, Y., Luo, L., Chen, G., Luan, G., Wang, X., Wang, Q., & Fang, F. (2023). Rapid processing of invisible fearful faces in the human amygdala. Journal of Neuroscience, 43, 1405–1413.10.1523/JNEUROSCI.1294-22.2022CrossRefGoogle ScholarPubMed
Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., … Wang, L. (2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications, 6, 6756.Google ScholarPubMed
Zerbi, V., Floriou-Servou, A., Markicevic, M., Vermeiren, Y., Sturman, O., Privitera, M., … Bohacek, J. (2019). Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron, 103, 702–718.10.1016/j.neuron.2019.05.034CrossRefGoogle ScholarPubMed
Zinchenko, A., Kotz, S. A., Schröger, E., & Kanske, P. (2020). Moving towards dynamics: Emotional modulation of cognitive and emotional control. International Journal of Psychophysiology, 147, 193–201.10.1016/j.ijpsycho.2019.10.018CrossRefGoogle ScholarPubMed

References

Adams, R. B., Albohn, D. N., & Kveraga, K. (2017). Social vision: Applying a social-functional approach to face and expression perception. Current Directions in Psychological Science, 26, 243–248.10.1177/0963721417706392CrossRefGoogle ScholarPubMed
Adams, R. B., Jr., Franklin, R. G., Jr., Kveraga, K., Ambady, N., Kleck, R. E., Whalen, P. J., … Nelson, A. J. (2012). Amygdala responses to averted vs direct gaze fear vary as a function of presentation speed. Social Cognitive and Affective Neuroscience, 7, 568–577.10.1093/scan/nsr038CrossRefGoogle ScholarPubMed
Adams, R. B., Im, H. Y., Cushing, C., Boshyan, J., Ward, N., Albohn, D. N., & Kveraga, K. (2019). Differential magnocellular versus parvocellular pathway contributions to the combinatorial processing of facial threat. Progress in Brain Research, 247, 71–87.10.1016/bs.pbr.2019.03.006CrossRefGoogle Scholar
Amodio, D. M. (2019). Social cognition 2.0: An interactive memory systems account. Trends in Cognitive Sciences, 23, 21–33.10.1016/j.tics.2018.10.002CrossRefGoogle ScholarPubMed
Bach, D. R., & Dayan, P. (2017). Algorithms for survival: A comparative perspective on emotions. Nature Reviews Neuroscience, 18, 311–319.10.1038/nrn.2017.35CrossRefGoogle ScholarPubMed
Barkus, E. (2021). The effects of anhedonia in social context. Current Behavioral Neuroscience Reports, 8, 77–89.10.1007/s40473-021-00232-xCrossRefGoogle Scholar
Barkus, E., & Badcock, J. C. (2019). A transdiagnostic perspective on social anhedonia. Frontiers in Psychiatry, 10, 216.10.3389/fpsyt.2019.00216CrossRefGoogle ScholarPubMed
Bastos, A. F., Vieira, A. S., Oliveira, J. M., Oliveira, L., Pereira, M. G., Figueira, I., … Volchan, E. (2016). Stop or move: Defensive strategies in humans. Behavioural Brain Research, 302, 252–262.10.1016/j.bbr.2016.01.043CrossRefGoogle ScholarPubMed
Beaurenaut, M., Mennella, R., Dezecache, G., & Grèzes, J. (2023). Prioritization of danger-related social signals during threat-induced anxiety. Emotion, 23, 2356–2369.10.1037/emo0001231CrossRefGoogle ScholarPubMed
Bertini, C., Pietrelli, M., Braghittoni, D., & Làdavas, E. (2018). Pulvinar lesions disrupt fear-related implicit visual processing in hemianopic patients. Frontiers in Psychology, 9, 2329.10.3389/fpsyg.2018.02329CrossRefGoogle ScholarPubMed
Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: Implications and applications. Trends in Cognitive Sciences, 26, 767–781.10.1016/j.tics.2022.06.003CrossRefGoogle ScholarPubMed
Borgomaneri, S., Vitale, F., & Avenanti, A. (2015). Early changes in corticospinal excitability when seeing fearful body expressions. Scientific Reports, 5, 14122.10.1038/srep14122CrossRefGoogle ScholarPubMed
Borgomaneri, S., Vitale, F., Battaglia, S., & Avenanti, A. (2021). Early right motor cortex response to happy and fearful facial expressions: A TMS motor-evoked potential study. Brain Sciences, 11, 1203.10.3390/brainsci11091203CrossRefGoogle ScholarPubMed
Borra, E., Gerbella, M., Rozzi, S., Tonelli, S., & Luppino, G. (2014). Projections to the superior colliculus from inferior parietal, ventral premotor, and ventrolateral prefrontal areas involved in controlling goal-directed hand actions in the macaque. Cerebral Cortex, 24, 1054–1065.10.1093/cercor/bhs392CrossRefGoogle Scholar
Botta, A., Lagravinese, G., Bove, M., Pelosin, E., Bonassi, G., Avenanti, A., & Avanzino, L. (2022). Sensorimotor inhibition during emotional processing. Scientific Reports, 12, 503–518.10.1038/s41598-022-10981-8CrossRefGoogle ScholarPubMed
Bramson, B., Folloni, D., Verhagen, L., Hartogsveld, B., Mars, R. B., Toni, I., & Roelofs, K. (2020). Human lateral frontal pole contributes to control over emotional approach–avoidance actions. Journal of Neuroscience, 40, 2925–2934.10.1523/JNEUROSCI.2048-19.2020CrossRefGoogle ScholarPubMed
Bramson, B., Jensen, O., Toni, I., & Roelofs, K. (2018). Cortical oscillatory mechanisms supporting the control of human social–emotional actions. The Journal of Neuroscience, 38, 5739–5749.10.1523/JNEUROSCI.3382-17.2018CrossRefGoogle ScholarPubMed
Buades-Rotger, M., Beyer, F., & Krämer, U. M. (2017). Avoidant responses to interpersonal provocation are associated with increased amygdala and decreased mentalizing network activity. eNeuro, 4, ENEURO.0337-16.2017.10.1523/ENEURO.0337-16.2017CrossRefGoogle ScholarPubMed
Buades-Rotger, M., Solbakk, A.-K., Liebrand, M., Endestad, T., Funderud, I., Siegwardt, P., … Krämer, U. M. (2021). Patients with ventromedial prefrontal lesions show an implicit approach bias to angry faces. Journal of Cognitive Neuroscience, 33, 1069–1081.10.1162/jocn_a_01706CrossRefGoogle ScholarPubMed
Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B., & Pegna, A. J. (2019). Affective blindsight relies on low spatial frequencies. Neuropsychologia, 128, 44–49.10.1016/j.neuropsychologia.2017.10.009CrossRefGoogle ScholarPubMed
Cain, C. K. (2019). Avoidance problems reconsidered. Current Opinion in Behavioral Sciences, 26, 9–17.10.1016/j.cobeha.2018.09.002CrossRefGoogle ScholarPubMed
Campagner, D., Vale, R., Tan, Y. L., Iordanidou, P., Pavón Arocas, O., Claudi, F., … Branco, T. (2022). A cortico-collicular circuit for orienting to shelter during escape. Nature, 613, 111–119.Google ScholarPubMed
Cauchoix, M., Arslan, A. B., Fize, D., & Serre, T. (2012). The neural dynamics of visual processing in monkey extrastriate cortex: A comparison between univariate and multivariate techniques. In Langs, G., Rish, I., Grosse-Wentrup, M., & Murphy, B. (Eds.), Machine learning and interpretation in neuroimaging (pp. 164–171). Springer.Google Scholar
Chareyron, L. J., Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2011). Stereological analysis of the rat and monkey amygdala. The Journal of Comparative Neurology, 519, 3218–3239.10.1002/cne.22677CrossRefGoogle ScholarPubMed
Chen, M., & Bargh, J. A. (1999). Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality and Social Psychology Bulletin, 25, 215–224.10.1177/0146167299025002007CrossRefGoogle Scholar
Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1585–1599.10.1098/rstb.2007.2054CrossRefGoogle ScholarPubMed
Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.10.1146/annurev.neuro.051508.135409CrossRefGoogle ScholarPubMed
Claudi, F., Campagner, D., & Branco, T. (2022). Innate heuristics and fast learning support escape route selection in mice. Current Biology, 32, 2980–2987.e5.10.1016/j.cub.2022.05.020CrossRefGoogle ScholarPubMed
Conty, L., Dezecache, G., Hugueville, L., & Grèzes, J. (2012). Early binding of gaze, gesture, and emotion: Neural time course and correlates. The Journal of Neuroscience, 32, 4531–4539.10.1523/JNEUROSCI.5636-11.2012CrossRefGoogle Scholar
Craske, M. G., Sandman, C. F., & Stein, M. B. (2022). How can neurobiology of fear extinction inform treatment? Neuroscience & Biobehavioral Reviews, 143, 104923.10.1016/j.neubiorev.2022.104923CrossRefGoogle ScholarPubMed
de Borst, A. W., & de Gelder, B. (2022). Threat detection in nearby space mobilizes human ventral premotor cortex, intraparietal sulcus, and amygdala. Brain Sciences, 12, 391.10.3390/brainsci12030391CrossRefGoogle ScholarPubMed
de Gelder, B. (2023). Social affordances, mirror neurons, and how to understand the social brain. Trends in Cognitive Sciences, 27, 218–219.10.1016/j.tics.2022.11.011CrossRefGoogle ScholarPubMed
De Houwer, J., Thomas, S., & Baeyens, F. (2001). Associative learning of likes and dislikes: A review of 25 years of research on human evaluative conditioning. Psychological Bulletin, 127, 853–869.10.1037/0033-2909.127.6.853CrossRefGoogle ScholarPubMed
Delgado, M. R., Jou, R. L., LeDoux, J. E., & Phelps, L. (2009). Avoiding negative outcomes: Tracking the mechanisms of avoidance learning in humans during fear conditioning. Frontiers in Behavioral Neuroscience, 3, 33.10.3389/neuro.08.033.2009CrossRefGoogle ScholarPubMed
Dezecache, G., Conty, L., & Grèzes, J. (2013). Social affordances: Is the mirror neuron system involved? Behavioral and Brain Sciences, 36, 417–418.10.1017/S0140525X12001872CrossRefGoogle Scholar
Diano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M.-K., Bagnis, A., … Costa, T. (2017). Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions. Scientific Reports, 7, 45260.10.1038/srep45260CrossRefGoogle ScholarPubMed
Dima, D. C., Perry, G., Messaritaki, E., Zhang, J., & Singh, K. D. (2018). Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces. Human Brain Mapping, 39, 3993–4006.10.1002/hbm.24226CrossRefGoogle Scholar
Dinh, H. T., Meng, Y., Matsumoto, J., Setogawa, T., Nishimaru, H., & Nishijo, H. (2022). Fast detection of snakes and emotional faces in the macaque amygdala. Frontiers in Behavioral Neuroscience, 16, 839123.10.3389/fnbeh.2022.839123CrossRefGoogle ScholarPubMed
Distler, C., & Hoffmann, K.-P. (2015). Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (Macaca mulatta). Journal of Comparative Neurology, 523, 2390–2408.Google Scholar
Dorfman, H. M., & Gershman, S. J. (2019). Controllability governs the balance between Pavlovian and instrumental action selection. Nature Communications, 10, 5826.10.1038/s41467-019-13737-7CrossRefGoogle ScholarPubMed
Eder, A. B., & Hommel, B. (2013). Anticipatory control of approach and avoidance: An ideomotor approach. Emotion Review, 5, 275–279.10.1177/1754073913477505CrossRefGoogle Scholar
El Zein, M., Mennella, R., Sequestro, M., Meaux, E., Wyart, V., & Grèzes, J. (2024). Prioritized neural processing of social threats during perceptual decision-making. iScience, 27, 109951.10.1016/j.isci.2024.109951CrossRefGoogle ScholarPubMed
El Zein, M., Wyart, V., & Grèzes, J. (2015). Anxiety dissociates the adaptive functions of sensory and motor response enhancements to social threats. eLife, 4, e10274.10.7554/eLife.10274CrossRefGoogle ScholarPubMed
Engelen, T., de Graaf, T. A., Sack, A. T., & de Gelder, B. (2015). A causal role for inferior parietal lobule in emotion body perception. Cortex, 73, 195–202.10.1016/j.cortex.2015.08.013CrossRefGoogle ScholarPubMed
Engelen, T., Zhan, M., Sack, A. T., & de Gelder, B. (2018). Dynamic interactions between emotion perception and action preparation for reacting to social threat: A combined cTBS-fMRI study. eNeuro, 5, ENEURO.0408-17.2018.10.1523/ENEURO.0408-17.2018CrossRefGoogle ScholarPubMed
Evans, D. A., Stempel, A. V., Vale, R., & Branco, T. (2019). Cognitive control of escape behaviour. Trends in Cognitive Sciences, 23, 334–348.10.1016/j.tics.2019.01.012CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Bolles, R. C. & Beecher, M. D. (Eds.), Evolution and learning (pp. 185–212). Lawrence Erlbaum Associates.Google Scholar
Faul, L., Stjepanović, D., Stivers, J. M., Stewart, G. W., Graner, J. L., Morey, R. A., & LaBar, K. S. (2020). Proximal threats promote enhanced acquisition and persistence of reactive fear-learning circuits. Proceedings of the National Academy of Sciences of the United States of America, 117, 16678–16689.Google ScholarPubMed
Fernandez-Leon, J. A., Engelke, D. S., Aquino-Miranda, G., Goodson, A., Rasheed, M. N., & Do Monte, F. H. (2021). Neural correlates and determinants of approach–avoidance conflict in the prelimbic prefrontal cortex. eLife, 10, e74950.10.7554/eLife.74950CrossRefGoogle ScholarPubMed
Ferrari, C., Fiori, F., Suchan, B., Plow, E. B., & Cattaneo, Z. (2021). TMS over the posterior cerebellum modulates motor cortical excitability in response to facial emotional expressions. European Journal of Neuroscience, 53, 1029–1039.10.1111/ejn.14953CrossRefGoogle ScholarPubMed
Gangopadhyay, P., Chawla, M., Dal Monte, O., & Chang, S. W. C. (2021). Prefrontal–amygdala circuits in social decision-making. Nature Neuroscience, 24, 5–18.10.1038/s41593-020-00738-9CrossRefGoogle ScholarPubMed
George, D. T., Ameli, R., & Koob, G. F. (2019). Periaqueductal gray sheds light on dark areas of psychopathology. Trends in Neurosciences, 42, 349–360.10.1016/j.tins.2019.03.004CrossRefGoogle ScholarPubMed
Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34, 905–923.10.1016/j.neuroimage.2006.09.046CrossRefGoogle ScholarPubMed
Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M., & Amaral, D. G. (2007). Neural responses to facial expression and face identity in the monkey amygdala. Journal of Neurophysiology, 97, 1671–1683.10.1152/jn.00714.2006CrossRefGoogle ScholarPubMed
Grèzes, J., Adenis, M.-S., Pouga, L., & Armony, J. L. (2013). Self-relevance modulates brain responses to angry body expressions. Cortex, 49, 2210–2220.10.1016/j.cortex.2012.08.025CrossRefGoogle ScholarPubMed
Grèzes, J., & Dezecache, G. (2014). How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia, 55, 105–114.10.1016/j.neuropsychologia.2013.09.019CrossRefGoogle ScholarPubMed
Grèzes, J., Erblang, M., Vilarem, E., Quiquempoix, M., Van Beers, P., Guillard, M., … Rabat, A. (2021). Impact of total sleep deprivation and related mood changes on approach-avoidance decisions to threat-related facial displays. Sleep, 44, zsab186.10.1093/sleep/zsab186CrossRefGoogle ScholarPubMed
Grèzes, J., Risch, N., Courtet, P., Olié, E., & Mennella, R. (2023). Depression and approach-avoidance decisions to emotional displays: The role of anhedonia. Behaviour Research and Therapy, 164, 104306.10.1016/j.brat.2023.104306CrossRefGoogle ScholarPubMed
Grèzes, J., Valabrègue, R., Gholipour, B., & Chevallier, C. (2014). A direct amygdala-motor pathway for emotional displays to influence action: A diffusion tensor imaging study. Human Brain Mapping, 35, 5974–5983.10.1002/hbm.22598CrossRefGoogle Scholar
Guex, R., Méndez-Bértolo, C., Moratti, S., Strange, B. A., Spinelli, L., Murray, R. J., … Domínguez-Borràs, J. (2020). Temporal dynamics of amygdala response to emotion- and action-relevance. Scientific Reports, 10, 11138.10.1038/s41598-020-67862-1CrossRefGoogle ScholarPubMed
Han, H.-B., Shin, H.-S., Jeong, Y., Kim, J., & Choi, J. H. (2023). Dynamic switching of neural oscillations in the prefrontal–amygdala circuit for naturalistic freeze-or-flight. Proceedings of the National Academy of Sciences of the United States of America, 120, e2308762120.Google ScholarPubMed
Hashemi, M. M., Gladwin, T. E., de Valk, N. M., Zhang, W., Kaldewaij, R., van Ast, V., … Roelofs, K. (2019). Neural dynamics of shooting decisions and the switch from freeze to fight. Scientific Reports, 9, 4240.10.1038/s41598-019-40917-8CrossRefGoogle ScholarPubMed
Hersman, S., Allen, D., Hashimoto, M., Brito, S. I., & Anthony, T. E. (2020). Stimulus salience determines defensive behaviors elicited by aversively conditioned serial compound auditory stimuli. eLife, 9, e53803.10.7554/eLife.53803CrossRefGoogle ScholarPubMed
Holley, D., & Fox, A. S. (2022). The central extended amygdala guides survival-relevant tradeoffs: Implications for understanding common psychiatric disorders. Neuroscience & Biobehavioral Reviews, 142, 104879.10.1016/j.neubiorev.2022.104879CrossRefGoogle ScholarPubMed
Hortensius, R., de Gelder, B., & Schutter, D. J. L. G. (2016). When anger dominates the mind: Increased motor corticospinal excitability in the face of threat. Psychophysiology, 53, 1307–1316.10.1111/psyp.12685CrossRefGoogle ScholarPubMed
Hulsman, A. M., Terburg, D., Roelofs, K., & Klumpers, F. (2021). Chapter 28 – Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. In Swaab, D. F., Kreier, F., Lucassen, P. J., Salehi, A., & Buijs, R. M. (Eds.), Handbook of clinical neurology, vol. 179 (pp. 419–432). Elsevier.Google Scholar
Inagaki, M., Inoue, K., Tanabe, S., Kimura, K., Takada, M., & Fujita, I. (2023). Rapid processing of threatening faces in the amygdala of nonhuman primates: Subcortical inputs and dual roles. Cerebral Cortex, 33, 895–915.10.1093/cercor/bhac109CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167, 748–751.10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Isa, T., Marquez-Legorreta, E., Grillner, S., & Scott, E. K. (2021). The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Current Biology, 31, R741–R762.10.1016/j.cub.2021.04.001CrossRefGoogle Scholar
Kaldewaij, R., Koch, S. B. J., Volman, I., Toni, I., & Roelofs, K. (2016). On the control of social approach–avoidance behavior: Neural and endocrine mechanisms. In Wöhr, M. & Krach, S. (Eds.), Social behavior from rodents to humans, vol. 30 (pp. 275–293). Springer International Publishing.Google Scholar
Kaldewaij, R., Koch, S. B. J., Zhang, W., Hashemi, M. M., Klumpers, F., & Roelofs, K. (2019). Frontal control over automatic emotional action tendencies predicts acute stress responsivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 975–983.Google ScholarPubMed
Keefer, S. E., Gyawali, U., & Calu, D. J. (2021). Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behavioural Brain Research, 409, 113306.10.1016/j.bbr.2021.113306CrossRefGoogle ScholarPubMed
Kim, E. J., Kong, M.-S., Park, S. G., Mizumori, S. J. Y., Cho, J., & Kim, J. J. (2018). Dynamic coding of predatory information between the prelimbic cortex and lateral amygdala in foraging rats. Science Advances, 4, eaar7328.10.1126/sciadv.aar7328CrossRefGoogle ScholarPubMed
Klaassen, F. H., Held, L., Figner, B., O’Reilly, J. X., Klumpers, F., de Voogd, L. D., & Roelofs, K. (2021). Defensive freezing and its relation to approach–avoidance decision-making under threat. Scientific Reports, 11, 12030.10.1038/s41598-021-90968-zCrossRefGoogle ScholarPubMed
Koller, K., Rafal, R. D., Platt, A., & Mitchell, N. D. (2019). Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia, 128, 78–86.10.1016/j.neuropsychologia.2018.01.027CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.e5.10.1016/j.neuron.2021.06.001CrossRefGoogle ScholarPubMed
Laham, S. M., Kashima, Y., Dix, J., & Wheeler, M. (2015). A meta-analysis of the facilitation of arm flexion and extension movements as a function of stimulus valence. Cognition and Emotion, 29, 1069–1090.10.1080/02699931.2014.968096CrossRefGoogle ScholarPubMed
Le, Q. V., Le, Q. V., Nishimaru, H., Matsumoto, J., Takamura, Y., Hori, E., … Nishijo, H. (2020). A prototypical template for rapid face detection is embedded in the monkey superior colliculus. Frontiers in Systems Neuroscience, 14, 5.10.3389/fnsys.2020.00005CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life (p. 384). Simon & Schuster.Google Scholar
LeDoux, J. E., & Daw, N. D. (2018). Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive behaviour. Nature Reviews Neuroscience, 19, 269–282.10.1038/nrn.2018.22CrossRefGoogle ScholarPubMed
Leng, L., Beckers, T., & Vervliet, B. (2022). No joy – why bother? Higher anhedonia relates to reduced pleasure from and motivation for threat avoidance. Behaviour Research and Therapy, 159, 104227.10.1016/j.brat.2022.104227CrossRefGoogle ScholarPubMed
Levita, L., Hoskin, R., & Champi, S. (2012). Avoidance of harm and anxiety: A role for the nucleus accumbens. NeuroImage, 62, 189–198.10.1016/j.neuroimage.2012.04.059CrossRefGoogle ScholarPubMed
Lichtenberg, N. T., Sepe-Forrest, L., Pennington, Z. T., Lamparelli, A. C., Greenfield, V. Y., & Wassum, K. M. (2021). The medial orbitofrontal cortex–basolateral amygdala circuit regulates the influence of reward cues on adaptive behavior and choice. Journal of Neuroscience, 41, 7267–7277.10.1523/JNEUROSCI.0901-21.2021CrossRefGoogle ScholarPubMed
Ligneul, R., Mainen, Z. F., Ly, V., & Cools, R. (2022). Stress-sensitive inference of task controllability. Nature Human Behaviour, 6, 812–822.10.1038/s41562-022-01306-wCrossRefGoogle ScholarPubMed
Lima Portugal, L. C., Alves, R. C. S., Junior, O. F., Sanchez, T. A., Mocaiber, I., Volchan, E., … Pereira, M. G. (2020). Interactions between emotion and action in the brain. NeuroImage, 214, 116728.10.1016/j.neuroimage.2020.116728CrossRefGoogle ScholarPubMed
Liu, M., Liu, C. H., Zheng, S., Zhao, K., & Fu, X. (2021). Reexamining the neural network involved in perception of facial expression: A meta-analysis. Neuroscience & Biobehavioral Reviews, 131, 179–191.10.1016/j.neubiorev.2021.09.024CrossRefGoogle ScholarPubMed
Livermore, J., Klaassen, F., Bramson, B., Hulsman, A., Meijer, S., Held, L., … Roelofs, K. (2021). Approach-avoidance decisions under threat: The role of autonomic psychophysiological states. Frontiers in Neuroscience, 15, 621517.10.3389/fnins.2021.621517CrossRefGoogle ScholarPubMed
Lu, J., Kemmerer, S., Riecke, L., & Gelder, B. (2023). Early threat perception is independent of later cognitive and behavioral control. A virtual reality-EEG-ECG study. Cerebral Cortex, 33, 8748–8758.10.1093/cercor/bhad156CrossRefGoogle ScholarPubMed
Marsh, A. A., Ambady, N., & Kleck, R. E. (2005). The effects of fear and anger facial expressions on approach- and avoidance-related behaviors. Emotion, 5, 119–124.10.1037/1528-3542.5.1.119CrossRefGoogle ScholarPubMed
McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M., & Singer, T. (2016). Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Computers in Human Behavior, 59, 93–107.10.1016/j.chb.2016.01.028CrossRefGoogle Scholar
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews. Neuroscience, 21, 264–276.10.1038/s41583-020-0287-1CrossRefGoogle ScholarPubMed
McFadyen, J., Mattingley, J. B., & Garrido, M. I. (2019). An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 8, e40766.10.7554/eLife.40766CrossRefGoogle Scholar
Méndez, C. A., Celeghin, A., Diano, M., Orsenigo, D., Ocak, B., & Tamietto, M. (2022). A deep neural network model of the primate superior colliculus for emotion recognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20210512.10.1098/rstb.2021.0512CrossRefGoogle ScholarPubMed
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., … Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 1041–1049.10.1038/nn.4324CrossRefGoogle ScholarPubMed
Mendl, M., & Paul, E. S. (2020). Animal affect and decision-making. Neuroscience & Biobehavioral Reviews, 112, 144–163.10.1016/j.neubiorev.2020.01.025CrossRefGoogle ScholarPubMed
Mennella, R., Bavard, S., Mentec, I., & Grèzes, J. (2022). Spontaneous instrumental avoidance learning in social contexts. Scientific Reports, 12, 33.10.1038/s41598-022-22334-6CrossRefGoogle ScholarPubMed
Mennella, R., Vilarem, E., & Grèzes, J. (2020). Rapid approach-avoidance responses to emotional displays reflect value-based decisions: Neural evidence from an EEG study. NeuroImage, 222, 117253.10.1016/j.neuroimage.2020.117253CrossRefGoogle ScholarPubMed
Mobbs, D., Headley, D. B., Ding, W., & Dayan, P. (2020). Space, time, and fear: Survival computations along defensive circuits. Trends in Cognitive Sciences, 24, 228–241.10.1016/j.tics.2019.12.016CrossRefGoogle ScholarPubMed
Mobbs, D., Marchant, J. L., Hassabis, D., Seymour, B., Tan, G., Gray, M., … Frith, C. D. (2009). From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience, 29, 12236–12243.10.1523/JNEUROSCI.2378-09.2009CrossRefGoogle ScholarPubMed
Moors, A., Boddez, Y., & De Houwer, J. (2017). The power of goal-directed processes in the causation of emotional and other actions. Emotion Review, 9, 310–318.10.1177/1754073916669595CrossRefGoogle Scholar
Moors, A., Fini, C., Everaert, T., Bardi, L., Bossuyt, E., Kuppens, P., & Brass, M. (2019). The role of stimulus-driven versus goal-directed processes in fight and flight tendencies measured with motor evoked potentials induced by transcranial magnetic stimulation. PLoS ONE, 14, e0217266.10.1371/journal.pone.0217266CrossRefGoogle ScholarPubMed
Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United States of America, 96, 1680–1685.Google Scholar
Moscarello, J. M., & Hartley, C. A. (2017). Agency and the calibration of motivated behavior. Trends in Cognitive Sciences, 21, 725–735.10.1016/j.tics.2017.06.008CrossRefGoogle ScholarPubMed
Murray, E. A., & Fellows, L. K. (2022). Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology, 47, 163–179.10.1038/s41386-021-01128-wCrossRefGoogle ScholarPubMed
Nguyen, M. N., Nishimaru, H., Matsumoto, J., Van Le, Q., Hori, E., Maior, R. S., … Nishijo, H. (2016). Population coding of facial information in the monkey superior colliculus and pulvinar. Frontiers in Neuroscience, 10, 583.10.3389/fnins.2016.00583CrossRefGoogle ScholarPubMed
Noordewier, M. K., Scheepers, D. T., & Hilbert, L. P. (2020). Freezing in response to social threat: A replication. Psychological Research, 84, 1890–1896.10.1007/s00426-019-01203-4CrossRefGoogle ScholarPubMed
Orban, G. A., Lanzilotto, M., & Bonini, L. (2021). From observed action identity to social affordances. Trends in Cognitive Sciences, 25, 493–505.10.1016/j.tics.2021.02.012CrossRefGoogle ScholarPubMed
Orban, G. A., Sepe, A., & Bonini, L. (2021). Parietal maps of visual signals for bodily action planning. Brain Structure and Function, 226, 2967–2988.10.1007/s00429-021-02378-6CrossRefGoogle ScholarPubMed
Paulus, A., & Wentura, D. (2016). It depends: Approach and avoidance reactions to emotional expressions are influenced by the contrast emotions presented in the task. Journal of Experimental Psychology: Human Perception and Performance, 42, 197–212.Google ScholarPubMed
Pessiglione, M., Vinckier, F., Bouret, S., Daunizeau, J., & Le Bouc, R. (2018). Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain, 141, 629–650.10.1093/brain/awx278CrossRefGoogle Scholar
Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11, 773–783.10.1038/nrn2920CrossRefGoogle Scholar
Pichon, S., de Gelder, B., & Grèzes, J. (2012). Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 22, 274–285.10.1093/cercor/bhr060CrossRefGoogle ScholarPubMed
Pierce, J. E., & Péron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15, 599–613.10.1093/scan/nsaa076CrossRefGoogle ScholarPubMed
Pittig, A., Boschet, J. M., Glück, V. M., & Schneider, K. (2021). Elevated costly avoidance in anxiety disorders: Patients show little downregulation of acquired avoidance in face of competing rewards for approach. Depression and Anxiety, 38, 361–371.10.1002/da.23119CrossRefGoogle ScholarPubMed
Pittig, A., & Scherbaum, S. (2020). Costly avoidance in anxious individuals: Elevated threat avoidance in anxious individuals under high, but not low competing rewards. Journal of Behavior Therapy and Experimental Psychiatry, 66, 101524.10.1016/j.jbtep.2019.101524CrossRefGoogle Scholar
Pizzagalli, D. A., & Roberts, A. C. (2022). Prefrontal cortex and depression. Neuropsychopharmacology, 47, 225–246.Google ScholarPubMed
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Reichardt, R. (2018). Farsighted and automatic: Affective stimuli facilitate ultimately compatible approach–avoidance tendencies even in the absence of evaluation goals. Motivation and Emotion, 42, 738–747.10.1007/s11031-018-9680-8CrossRefGoogle Scholar
Reis, F. M. C. V., Mobbs, D., Canteras, N. S., & Adhikari, A. (2023). Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology, 228, 109458.10.1016/j.neuropharm.2023.109458CrossRefGoogle ScholarPubMed
Rizzo, G., Milardi, D., Bertino, S., Basile, G. A., Di Mauro, D., Calamuneri, A., … Cacciola, A. (2018). The limbic and sensorimotor pathways of the human amygdala: A structural connectivity study. Neuroscience, 385, 166–180.10.1016/j.neuroscience.2018.05.051CrossRefGoogle ScholarPubMed
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94, 655–706.10.1152/physrev.00009.2013CrossRefGoogle ScholarPubMed
Roberts, A. C., & Clarke, H. F. (2019). Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proceedings of the National Academy of Sciences of the United States of America, 116, 26297–26304.Google Scholar
Roberts, I. D., & Hutcherson, C. A. (2019). Affect and decision making: Insights and predictions from computational models. Trends in Cognitive Sciences, 23, 602–614.10.1016/j.tics.2019.04.005CrossRefGoogle ScholarPubMed
Roelofs, K., & Dayan, P. (2022). Freezing revisited: Coordinated autonomic and central optimization of threat coping. Nature Reviews Neuroscience, 23, 568–580.10.1038/s41583-022-00608-2CrossRefGoogle ScholarPubMed
Roelofs, K., Hagenaars, M. A., & Stins, J. (2010). Facing freeze: Social threat induces bodily freeze in humans. Psychological Science, 21, 1575–1581.10.1177/0956797610384746CrossRefGoogle ScholarPubMed
Rolls, E. T., Deco, G., Huang, C.-C., & Feng, J. (2023). Prefrontal and somatosensory-motor cortex effective connectivity in humans. Cerebral Cortex, 33, 4939–4963.10.1093/cercor/bhac391CrossRefGoogle ScholarPubMed
Rosén, J., Kastrati, G., Reppling, A., Bergkvist, K., & Åhs, F. (2019). The effect of immersive virtual reality on proximal and conditioned threat. Scientific Reports, 9, 17407.10.1038/s41598-019-53971-zCrossRefGoogle ScholarPubMed
Rosenberg, B. M., Taschereau-Dumouchel, V., Lau, H., Young, K. S., Nusslock, R., Zinbarg, R. E., & Craske, M. G. (2023). A multivoxel pattern analysis of anhedonia during fear extinction: Implications for safety learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 417–425.Google ScholarPubMed
Sander, D., Grandjean, D., Kaiser, S., Wehrle, T., & Scherer, K. R. (2007). Interaction effects of perceived gaze direction and dynamic facial expression: Evidence for appraisal theories of emotion. European Journal of Cognitive Psychology, 19, 470–480.10.1080/09541440600757426CrossRefGoogle Scholar
Sandman, C. F., & Craske, M. G. (2022). Psychological treatments for anhedonia. Current Topics in Behavioral Neurosciences, 58, 491–513.10.1007/7854_2021_291CrossRefGoogle ScholarPubMed
Schutter, D. J. L. G., Hofman, D., & Van Honk, J. (2008). Fearful faces selectively increase corticospinal motor tract excitability: A transcranial magnetic stimulation study. Psychophysiology, 45, 345–348.10.1111/j.1469-8986.2007.00635.xCrossRefGoogle ScholarPubMed
Seibt, B., Neumann, R., Nussinson, R., & Strack, F. (2008). Movement direction or change in distance? Self- and object-related approach–avoidance motions. Journal of Experimental Social Psychology, 44, 713–720.10.1016/j.jesp.2007.04.013CrossRefGoogle Scholar
Seqfuestro, M., Serfaty, J., Grèzes, J., & Mennella, R. (2024). Social threat avoidance depends on action-outcome predictability. Communications Psychology, 2, 100.Google Scholar
Shine, J. M. (2022). Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neuroscience & Biobehavioral Reviews, 143, 104921.10.1016/j.neubiorev.2022.104921CrossRefGoogle ScholarPubMed
Soares, S. C., Maior, R. S., Isbell, L. A., Tomaz, C., & Nishijo, H. (2017). Fast detector/first responder: Interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Frontiers in Neuroscience, 11, 67.10.3389/fnins.2017.00067CrossRefGoogle ScholarPubMed
Sporrer, J. K., Brookes, J., Hall, S., Zabbah, S., Serratos Hernandez, U. D., & Bach, D. R. (2023). Functional sophistication in human escape. iScience, 26, 108240.10.1016/j.isci.2023.108240CrossRefGoogle Scholar
Stins, J. F., Roelofs, K., Villan, J., Kooijman, K., Hagenaars, M. A., & Beek, P. J. (2011). Walk to me when I smile, step back when I’m angry: Emotional faces modulate whole-body approach–avoidance behaviors. Experimental Brain Research, 212, 603–611.10.1007/s00221-011-2767-zCrossRefGoogle ScholarPubMed
Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11, 697–709.10.1038/nrn2889CrossRefGoogle ScholarPubMed
Taylor, C. T., Hoffman, S. N., & Khan, A. J. (2022). Anhedonia in anxiety disorders. In Pizzagalli, D. A. (Ed.), Anhedonia: Preclinical, translational, and clinical integration (pp. 201–218). Springer International Publishing.Google Scholar
Terburg, D., Scheggia, D., Triana del Rio, R., Klumpers, F., Ciobanu, A. C., Morgan, B., … van Honk, J. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.10.1016/j.cell.2018.09.028CrossRefGoogle ScholarPubMed
Tovote, P., Esposito, M. S., Botta, P., Chaudun, F., Fadok, J. P., Markovic, M., … Lüthi, A. (2016). Midbrain circuits for defensive behaviour. Nature, 534, 206–212.10.1038/nature17996CrossRefGoogle ScholarPubMed
Vale, R., Evans, D. A., & Branco, T. (2017). Rapid spatial learning controls instinctive defensive behavior in mice. Current Biology, 27, 1342–1349.10.1016/j.cub.2017.03.031CrossRefGoogle ScholarPubMed
Vetter, P., Badde, S., Phelps, E. A., & Carrasco, M. (2019). Emotional faces guide the eyes in the absence of awareness. eLife, 8, e43467.10.7554/eLife.43467CrossRefGoogle ScholarPubMed
Vilarem, E., Armony, J. L., & Grèzes, J. (2020). Action opportunities modulate attention allocation under social threat. Emotion, 20, 890–903.10.1037/emo0000598CrossRefGoogle ScholarPubMed
Vinckier, F., Gourion, D., & Mouchabac, S. (2017). Anhedonia predicts poor psychosocial functioning: Results from a large cohort of patients treated for major depressive disorder by general practitioners. European Psychiatry, 44, 1–8.10.1016/j.eurpsy.2017.02.485CrossRefGoogle ScholarPubMed
Wallis, J. D., & Rushworth, M. F. S. (2014). Chapter 22 – Integrating benefits and costs in decision making. In Glimcher, P. W. & Fehr, E. (Eds.), Neuroeconomics, 2nd ed. (pp. 411–433). Academic Press.Google Scholar
Wang, S., Leri, F., & Rizvi, S. J. (2021). Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 110, 110289.10.1016/j.pnpbp.2021.110289CrossRefGoogle ScholarPubMed
Wang, X., Zhen, Z., Song, Y., Huang, L., Kong, X., & Liu, J. (2016). The hierarchical structure of the face network revealed by its functional connectivity pattern. The Journal of Neuroscience, 36, 890–900.10.1523/JNEUROSCI.2789-15.2016CrossRefGoogle ScholarPubMed
Wang, Y., Luo, L., Chen, G., Luan, G., Wang, X., Wang, Q., & Fang, F. (2023). Rapid processing of invisible fearful faces in the human amygdala. Journal of Neuroscience, 43, 1405–1413.10.1523/JNEUROSCI.1294-22.2022CrossRefGoogle ScholarPubMed
Wassum, K. M. (2022). Amygdala-cortical collaboration in reward learning and decision making. eLife, 11, e80926.10.7554/eLife.80926CrossRefGoogle ScholarPubMed
Wendt, J., Löw, A., Weymar, M., Lotze, M., & Hamm, A. O. (2017). Active avoidance and attentive freezing in the face of approaching threat. NeuroImage, 158, 196–204.10.1016/j.neuroimage.2017.06.054CrossRefGoogle ScholarPubMed
Young, K. S., Bookheimer, S. Y., Nusslock, R., Zinbarg, R. E., Damme, K. S. F., Chat, I. K.-Y., … Craske, M. G. (2021). Dysregulation of threat neurocircuitry during fear extinction: The role of anhedonia. Neuropsychopharmacology, 46, 1650–1657.10.1038/s41386-021-01003-8CrossRefGoogle ScholarPubMed

References

Adhikari, A., Topiwala, M. A., & Gordon, J. A. (2010). Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 65, 257–269.10.1016/j.neuron.2009.12.002CrossRefGoogle ScholarPubMed
Alhadeff, A. L. (2021). The power of hunger. Science, 374, 547–548.10.1126/science.abl7121CrossRefGoogle ScholarPubMed
Al-Mosleh, S., Choi, G. P. T., Abzhanov, A., & Mahadevan, L. (2021). Geometry and dynamics link the form, function, and evolution of finch beaks. Proceedings of the National Academy of Sciences of the United States of America, 118, e2105957118.Google ScholarPubMed
Avery, S. N., Clauss, J. A., & Blackford, J. U. (2016). The human BNST: Functional role in anxiety and addiction. Neuropsychopharmacology, 41, 126–141.10.1038/npp.2015.185CrossRefGoogle ScholarPubMed
Bach, D. R., Guitart-Masip, M., Packard, P. A., Miró, J., Falip, M., Fuentemilla, L., & Dolan, R. J. (2014). Human hippocampus arbitrates approach-avoidance conflict. Current Biology, 24, 541–547.10.1016/j.cub.2014.01.046CrossRefGoogle ScholarPubMed
Barbee, B., & Pinter-Wollman, N. (2022). Nutritional needs and mortality risk combine to shape foraging decisions in ants. Current Zoology, 69, 747–755.Google ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.10.1093/scan/nsx060CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Pan Macmillan.Google Scholar
Barrett, L. F., Wilson-Mendenhall, C. D., & Barsalou, L.W. (2015). The conceptual act theory: A road map. In Barrett, L. F. & Russell, J. A. (Eds.), The psychological construction of emotion (pp. 83–110). Guilford.Google Scholar
Barsbai, T., Lukas, D., & Pondorfer, A. (2021). Local convergence of behavior across species. Science, 371(6526), 292–295.10.1126/science.abb7481CrossRefGoogle ScholarPubMed
Beauchamp, G. (2015). Animal vigilance: Monitoring predators and competitors. Elsevier.10.1016/B978-0-12-801983-2.00004-8CrossRefGoogle Scholar
Blanchard, R. J., & Blanchard, D. C. (1989). Antipredator defensive behaviors in a visible burrow system. Journal of Comparative Psychology, 103, 70–82.10.1037/0735-7036.103.1.70CrossRefGoogle Scholar
Canteras, N. S., & Swanson, L. W. (1992). The dorsal premammillary nucleus: An unusual component of the mammillary body. Proceedings of the National Academy of Sciences of the United States of America, 89, 10089–10093.Google ScholarPubMed
Casas, J., Steinmann, T., & Dangles, O. (2008). The aerodynamic signature of running spiders. PLoS ONE, 3, e2116.10.1371/journal.pone.0002116CrossRefGoogle ScholarPubMed
Cisek, P. (2021). Evolution of behavioural control from chordates to primates. Philosophical Transactions of the Royal Society B, 377, 20200522.Google ScholarPubMed
Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 7–14.10.1016/j.copsyc.2017.04.020CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray.10.5962/bhl.title.82303CrossRefGoogle Scholar
Darwin, E. (1794). Zoonomia, vol. 1. Nova Science Publishers.Google Scholar
Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 489–511.Google ScholarPubMed
Dejean, C., Courtin, J., Karalis, N., Chaudun, F., Wurtz, H., Bienvenu, T. C. M., & Herry, C. (2016). Prefrontal neuronal assemblies temporally control fear behaviour. Nature, 535, 420–424.10.1038/nature18630CrossRefGoogle ScholarPubMed
Dill, L. M., & Fraser, A. H. (1984). Risk of predation and the feeding behavior of juvenile coho salmon (Oncorhynchus kisutch). Behavioral Ecology and Sociobiology, 16, 65–71.10.1007/BF00293105CrossRefGoogle Scholar
Dillon, D. G., & LaBar, K. S. (2005). Startle modulation during conscious emotion regulation is arousal-dependent. Behavioral Neuroscience, 119, 1118–1124.10.1037/0735-7044.119.4.1118CrossRefGoogle ScholarPubMed
Duvarci, S., & Pare, D. (2014). Amygdala microcircuits controlling learned fear. Neuron, 82, 966–980.10.1016/j.neuron.2014.04.042CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Beecher, R. C. B. M. D. (Ed.), Evolution and learning (pp. 185–211). Erlbaum.Google Scholar
Fanselow, M. S., & Pennington, Z. T. (2018). A return to the psychiatric dark ages with a two-system framework for fear. Behaviour Research and Therapy, 100, 24–29.10.1016/j.brat.2017.10.012CrossRefGoogle Scholar
Faull, O. K., & Pattinson, K. T. (2017). The cortical connectivity of the periaqueductal gray and the conditioned response to the threat of breathlessness. eLife, 6, e21749.10.7554/eLife.21749CrossRefGoogle Scholar
Fung, B., Qi, S., Hassabis, D., Daw, N., & Mobbs, D. (2019). Slow escape decisions are swayed by trait anxiety. Nature Human Behavior, 3, 702–708.Google ScholarPubMed
Garcia-Pelegrin, E., Wilkins, C., & Clayton, N. S. (2021). The ape that lived to tell the tale. The evolution of the art of storytelling and its relationship to mental time travel and theory of mind. Frontiers in Psychology, 12, 755783.10.3389/fpsyg.2021.755783CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. The Journal of Neuroscience, 34, 6573–6582.10.1523/JNEUROSCI.3507-13.2014CrossRefGoogle ScholarPubMed
Gromer, D., Kiser, D. P., & Pauli, P. (2021). Thigmotaxis in a virtual human open field test. Scientific Reports, 11, 6670.10.1038/s41598-021-85678-5CrossRefGoogle Scholar
Halladay, L. R., & Blair, H. T. (2015). Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement. Journal of Neurophysiology, 114, 793–807.10.1152/jn.00656.2014CrossRefGoogle ScholarPubMed
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 1726–1731.Google ScholarPubMed
Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517, 284–292.10.1038/nature14188CrossRefGoogle ScholarPubMed
Jimenez, J. C., Su, K., Goldberg, A. R., Luna, V. M., Biane, J. S., Ordek, G., … Kheirbek, M. A. (2018). Anxiety cells in a hippocampal-hypothalamic circuit. Neuron, 97, 670–683.e6.10.1016/j.neuron.2018.01.016CrossRefGoogle Scholar
Kunwar, P. S., Zelikowsky, M., Remedios, R., Cai, H., Yilmaz, M., Meister, M., & Anderson, D. J. (2015). Ventromedial hypothalamic neurons control a defensive emotion state. eLife, 4, e06633.10.7554/eLife.06633CrossRefGoogle ScholarPubMed
Lagos, P. A., Meier, A., Tolhuysen, L. O., Castro, R. A., Bozinovic, F., & Ebensperger, L. A. (2009). Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Canadian Journal of Zoology, 87, 1016–1023.10.1139/Z09-089CrossRefGoogle Scholar
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life (p. 384). Simon & Schuster.Google Scholar
LeDoux, J. E. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.10.1016/j.neuron.2012.02.018CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2022). As soon as there was life, there was danger: The deep history of survival behaviours and the shallower history of consciousness. Philosophical Transactions of the Royal Society London B. Biological Sciences, 377, 20210292.10.1098/rstb.2021.0292CrossRefGoogle Scholar
LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Journal of Neuroscience, 8, 2517–2529.10.1523/JNEUROSCI.08-07-02517.1988CrossRefGoogle ScholarPubMed
LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and anxiety: A two-system framework. The American Journal of Psychiatry, 173, 1083–1093.10.1176/appi.ajp.2016.16030353CrossRefGoogle ScholarPubMed
Liao, W. B., Jiang, Y., Li, D. Y., Jin, L., Zhong, M. J., Qi, Y., … Kotrschal, A. (2022). Cognition contra camouflage: How the brain mediates predator-driven crypsis evolution. Science Advances, 8, eabq1878.10.1126/sciadv.abq1878CrossRefGoogle ScholarPubMed
Lima, S. L., & Dill, L. M. (1990). Behavioural decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68, 619–640.10.1139/z90-092CrossRefGoogle Scholar
Lovett-Barron, M., Chen, R., Bradbury, S., Andalman, A. S., Wagle, M., Guo, S., & Deisseroth, K. (2020). Multiple convergent hypothalamus–brainstem circuits drive defensive behavior. Nature Neuroscience, 23, 959–967.10.1038/s41593-020-0655-1CrossRefGoogle ScholarPubMed
MacIver, M. A., & Finlay, B. L. (2022). The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philosophical Transactions of the Royal Society B, 377, 20200523.10.1098/rstb.2020.0523CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman and Company.Google Scholar
Miller, W. B. (2016). Cognition, information fields and hologenomic entanglement: Evolution in light and shadow. Biology, 5, 21.10.3390/biology5020021CrossRefGoogle ScholarPubMed
Milinski, M. (1984). A predator’s costs of overcoming the confusion-effect of swarming prey. Animal Behaviour, 32, 1157–1162.10.1016/S0003-3472(84)80232-8CrossRefGoogle Scholar
Mobbs, D. (2018). The ethological deconstruction of fear(s). Current Opinion in Behavioral Sciences, 24, 32–37.10.1016/j.cobeha.2018.02.008CrossRefGoogle ScholarPubMed
Mobbs, D., Adolphs, R., Fanselow, M. S., Barrett, L. F., LeDoux, J. E., Ressler, K., & Tye, K. M. (2019). Viewpoints: Approaches to defining and investigating fear. Nature Neuroscience, 22, 1205–1216.10.1038/s41593-019-0456-6CrossRefGoogle ScholarPubMed
Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B., & Prevost, C. (2015). The ecology of human fear: Survival optimization and the nervous system. Frontiers in Neuroscience, 9, 55.10.3389/fnins.2015.00055CrossRefGoogle ScholarPubMed
Mobbs, D., Headley, D., Ding, W., & Dayan, P. (2020). Space, time, and fear: Survival computations along defensive circuits. Trends in Cognitive Science, 24, 228–241.10.1016/j.tics.2019.12.016CrossRefGoogle ScholarPubMed
Mobbs, D., & Kim, J. J. (2015). Neuroethological studies of fear and risky decision-making in rat and humans. Current Opinion in Behavioral Sciences, 5, 8–15.10.1016/j.cobeha.2015.06.005CrossRefGoogle Scholar
Mobbs, D., & LeDoux, J. L. (2018). Editorial overview: Survival behaviors and circuits. Current Opinion in Behavioral Sciences, 24, 168–171.10.1016/j.cobeha.2018.10.004CrossRefGoogle Scholar
Mobbs, D., Marchant, J., Hassabis, D., Seymour, B., Gray, M., Tan, G., … Frith, C. D. (2009). From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience, 39, 12236–12243.Google Scholar
Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., … Frith, C. D. (2007). When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science, 317, 1079–1083.10.1126/science.1144298CrossRefGoogle ScholarPubMed
Mobbs, D., Trimmer, P., Blumstein, D. T., & Dayan, P. (2018). Foraging for foundations in decision neuroscience: Insights from ethology. Nature Reviews Neuroscience, 19, 419–427.10.1038/s41583-018-0010-7CrossRefGoogle ScholarPubMed
Mobbs, D., Wise, T., Suthana, N., Guzman, N., Kriegeskorte, N., & Leibo, J. (2021). The promises and challenges of human computational ethology. Neuron, 109, 2224–2238.10.1016/j.neuron.2021.05.021CrossRefGoogle ScholarPubMed
Mobbs, D., Yu, R., Rowe, J., Eich, H., Feldmanhall, O., & Dalgleish, T. (2010). Neural activity associated with monitoring the oscillating threat value of a tarantula. Proceedings of the National Academy of Sciences of the United States of America, 107, 20582–20586.Google ScholarPubMed
Namburi, P., Beyeler, A., Yorozu, S., Calhoon, G. G., Halbert, S. A., Wichmann, R., … Tye, K. M. (2015). A circuit mechanism for differentiating positive and negative associations. Nature, 520, 675–678.10.1038/nature14366CrossRefGoogle ScholarPubMed
Nashold, B. S., Wilson, W. P., & Slaughter, D. G. (1969). Sensations evoked by stimulation in the midbrain of man. Journal of Neurosurgery, 30, 14–24.10.3171/jns.1969.30.1.0014CrossRefGoogle ScholarPubMed
O’Neill, P.-K., Gore, F., & Salzman, C. D. (2018). Basolateral amygdala circuitry in positive and negative valence. Current Opinion in Neurobiology, 49, 175–183.10.1016/j.conb.2018.02.012CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.10.1093/oso/9780195096736.001.0001CrossRefGoogle Scholar
Pierson, L. M., & Trout, M. (2017). What is consciousness for? New Ideas in Psychology, 47, 62–71.10.1016/j.newideapsych.2017.05.004CrossRefGoogle Scholar
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Rempel-Clower, N. L., & Barbas, H. (1998). Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology, 398, 393–419.10.1002/(SICI)1096-9861(19980831)398:3<393::AID-CNE7>3.0.CO;2-V3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Sengupta, A., Yau, J. O. Y., Jean-Richard-Dit-Bressel, P., Liu, Y., Millan, E. Z., Power, J. M., & McNally, G. P. (2018). Basolateral amygdala neurons maintain aversive emotional salience. Journal of Neuroscience, 38, 3001–3012.10.1523/JNEUROSCI.2460-17.2017CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1906). The integrative action of the nervous system. Yale University Press.Google Scholar
Sih, A. (1980). Optimal behavior: Can foragers balance two conflicting demands? Science, 210, 1041–1043.10.1126/science.210.4473.1041CrossRefGoogle ScholarPubMed
Smith, D., Schlaepfer, P., Major, K., Dyble, M., Page, A. E., Thompson, J., Migliano, A. B. (2017). Cooperation and the evolution of hunter-gatherer storytelling. Nature Communications, 8, 1853.10.1038/s41467-017-02036-8CrossRefGoogle ScholarPubMed
Silston, B., Wise, T., Qi, S., Sui, X., Dayan, P., & Mobbs, D. (2021). Neural encoding of socially adjusted value during competitive and hazardous foraging. Nature Communications, 12, 5478.10.1038/s41467-021-25816-9CrossRefGoogle Scholar
Stankowich, T., & Blumstein, D. T. (2005). Fear in animals: A meta-analysis and review of risk assessment. Proceedings. Biological Sciences, 272, 2627–2634.Google ScholarPubMed
Sternson, S. M. (2013). Hypothalamic survival circuits: Blueprints for purposive behaviors. Neuron, 77, 810–824.10.1016/j.neuron.2013.02.018CrossRefGoogle ScholarPubMed
Tashjian, S. M., Zbozinek, T. D., & Mobbs, D. (2021). A decision architecture for safety computations. Trends in Cognitive Sciences, 25, 342–354.10.1016/j.tics.2021.01.013CrossRefGoogle ScholarPubMed
Terburg, D., Scheggia, D., Triana del Rio, R., Klumpers, F., Ciobanu, A. C., Morgan, B., … van Honk, J. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.10.1016/j.cell.2018.09.028CrossRefGoogle ScholarPubMed
Treit, D., & Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. Pharmacology, Biochemistry, and Behavior, 31, 959–962.10.1016/0091-3057(88)90413-3CrossRefGoogle ScholarPubMed
Verma, D., Wood, J., Lach, G., Herzog, H., Sperk, G., & Tasan, R. (2016). Hunger promotes fear extinction by activation of an amygdala microcircuit. Neuropsychopharmacology, 41, 431–439.10.1038/npp.2015.163CrossRefGoogle ScholarPubMed
Walker, D. L., Miles, L. A., & Davis, M. (2009). Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 1291–1308.10.1016/j.pnpbp.2009.06.022CrossRefGoogle ScholarPubMed
Wang, W., Schuette, P. J., Nagai, J., Tobias, B. C., Cuccovia, V., Reis, F. M., … Adhikari, A. (2021). Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron, 109, 1848–1860.e8.10.1016/j.neuron.2021.03.033CrossRefGoogle ScholarPubMed
Willems, E. P., & van Schaik, C. P. (2017). The social organization of Homo ergaster: Inferences from anti-predator responses in extant primates. Journal of Human Evolution, 109, 11–21.10.1016/j.jhevol.2017.05.003CrossRefGoogle ScholarPubMed
Xu, C., Krabbe, S., Gründemann, J., Botta, P., Fadok, J. P., Osakada, F., … Lüthi, A. (2016). Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell, 167, 961–972.e16.10.1016/j.cell.2016.09.051CrossRefGoogle ScholarPubMed
Ydenberg, R. C., & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229–249.10.1016/S0065-3454(08)60192-8CrossRefGoogle Scholar
Yu, K., Garcia da Silva, P., Albeanu, D. F., & Li, B. (2016). Central amygdala somatostatin neurons gate passive and active defensive behaviors. The Journal of Neuroscience, 36, 6488–6496.10.1523/JNEUROSCI.4419-15.2016CrossRefGoogle ScholarPubMed

References

Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. The Quarterly Journal of Experimental Psychology, 34, 77–98.10.1080/14640748208400878CrossRefGoogle Scholar
Adams, C. D., & Dickinson, A. (1981). Instrumental responding following reinforcer devaluation. The Quarterly Journal of Experimental Psychology Section B, 33, 109–121.10.1080/14640748108400816CrossRefGoogle Scholar
Averbeck, B. B., & Duchaine, B. (2009). Integration of social and utilitarian factors in decision making. Emotion, 9, 599–608.10.1037/a0016509CrossRefGoogle ScholarPubMed
Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 48–69.10.1038/npp.2009.131CrossRefGoogle ScholarPubMed
Beierholm, U. R., Anen, C., Quartz, S., & Bossaerts, P. (2011). Separate encoding of model-based and model-free valuations in the human brain. NeuroImage, 58, 955–962.10.1016/j.neuroimage.2011.06.071CrossRefGoogle ScholarPubMed
Bennett, D., Davidson, G., & Niv, Y. (2022). A model of mood as integrated advantage. Psychological Review, 129, 513–541.10.1037/rev0000294CrossRefGoogle Scholar
Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist, 71, 670–679.10.1037/amp0000059CrossRefGoogle ScholarPubMed
Botvinick, M., & Weinstein, A. (2014). Model-based hierarchical reinforcement learning and human action control. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130480.10.1098/rstb.2013.0480CrossRefGoogle ScholarPubMed
Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the reliability of computational analyses: Model-based planning and its relationship with compulsivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 601–609.Google ScholarPubMed
Burke, C. J., Tobler, P. N., Baddeley, M., & Schultz, W. (2010). Neural mechanisms of observational learning. Proceedings of the National Academy of Sciences of the United States of America, 107, 14431–14436.Google ScholarPubMed
Camerer, C. F., & Li, X. (2021). Neural autopilot and context-sensitivity of habits. Current Opinion in Behavioral Sciences, 41, 185–190.10.1016/j.cobeha.2021.07.002CrossRefGoogle Scholar
Charpentier, C. J., Iigaya, K., & O’Doherty, J. P. (2020). A neuro-computational account of arbitration between choice imitation and goal emulation during human observational learning. Neuron, 106, 687–699.10.1016/j.neuron.2020.02.028CrossRefGoogle ScholarPubMed
Charpentier, C. J., & O’Doherty, J. P. (2021). Computational approaches to mentalizing during observational learning and strategic social interactions. In Gilead, M. & Ochsner, K. N. (Eds.), The neural basis of mentalizing (pp. 489–501). Springer.Google Scholar
Chen, C., Takahashi, T., Nakagawa, S., Inoue, T., & Kusumi, I. (2015). Reinforcement learning in depression: A review of computational research. Neuroscience Biobehavioral Reviews, 55, 247–267.10.1016/j.neubiorev.2015.05.005CrossRefGoogle ScholarPubMed
Collette, S., Pauli, W. M., Bossaerts, P., & O’Doherty, J. (2017). Neural computations underlying inverse reinforcement learning in the human brain. eLife, 6, e29718.10.7554/eLife.29718CrossRefGoogle ScholarPubMed
Collins, A. G. E., & Cockburn, J. (2020). Beyond dichotomies in reinforcement learning. Nature Reviews Neuroscience, 21, 576–586.10.1038/s41583-020-0355-6CrossRefGoogle ScholarPubMed
Collins, A. G. E, & Shenhav, A. (2022). Advances in modeling learning and decision-making in neuroscience. Neuropsychopharmacology, 47, 104–118.10.1038/s41386-021-01126-yCrossRefGoogle ScholarPubMed
Cooper, J. C., Dunne, S., Furey, T., & O’Doherty, J. P. (2017). Human dorsal striatum encodes prediction errors during observational learning of instrumental actions. Journal of Cognitive Neuroscience, 24, 106–118.Google Scholar
Cushman, F., & Morris, A. (2015). Habitual control of goal selection in humans. Proceedings of the National Academy of Sciences of the United States of America, 112, 13817–13822.Google ScholarPubMed
Daw, N. D., & Dayan, P. (2014). The algorithmic anatomy of model-based evaluation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130478.10.1098/rstb.2013.0478CrossRefGoogle ScholarPubMed
Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69, 1204–1215.10.1016/j.neuron.2011.02.027CrossRefGoogle ScholarPubMed
Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711.10.1038/nn1560CrossRefGoogle ScholarPubMed
Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879.10.1038/nature04766CrossRefGoogle ScholarPubMed
Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H. J., Grace, A. A., … Schlagenhauf, F. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences of the United States of America, 112, 1595–1600.Google ScholarPubMed
Dickinson, A. (1985). Actions and habits: The development of behavioural autonomy. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 308, 67–78.Google Scholar
Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw, N. D. (2015). Model-based choices involve prospective neural activity. Nature Neuroscience, 18, 767–772.10.1038/nn.3981CrossRefGoogle ScholarPubMed
Doll, B. B., Simon, D. A., & Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology, 22, 1075–1081.10.1016/j.conb.2012.08.003CrossRefGoogle ScholarPubMed
Eldar, E., & Niv, Y. (2015). Interaction between emotional state and learning underlies mood instability. Nature Communications, 6, 6149.10.1038/ncomms7149CrossRefGoogle ScholarPubMed
Eldar, E., Rutledge, R. B., Dolan, R. J., & Niv, Y. (2016). Mood as representation of momentum. Trends in Cognitive Sciences, 20, 15–24.10.1016/j.tics.2015.07.010CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Wassum, K. M. (2016). The origins and organization of vertebrate Pavlovian conditioning. Cold Spring Harbor Perspectives in Biology, 8, a021717.10.1101/cshperspect.a021717CrossRefGoogle Scholar
Fetter, M. (2007). Vestibulo-ocular reflex. Neuro-Ophthalmology, 40, 35–51.10.1159/000100348CrossRefGoogle ScholarPubMed
Galton, F. (1907). Vox populi. Nature, 75, 450–451.10.1038/075450a0CrossRefGoogle Scholar
Gera, R., Or, M. B., Tavor, I., Roll, D., Cockburn, J., Barak, S., … Schonberg, T. (2023). Characterizing habit learning in the human brain at the individual and group levels: A multi-modal MRI study. NeuroImage, 272, 120002.10.1016/j.neuroimage.2023.120002CrossRefGoogle Scholar
Gershman, S. J., Markman, A. B., & Otto, A. R. (2014). Retrospective revaluation in sequential decision making: A tale of two systems. Journal of Experimental Psychology: General, 143, 182–194.Google ScholarPubMed
Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66, 585–595.10.1016/j.neuron.2010.04.016CrossRefGoogle ScholarPubMed
Hampton, A. N., Bossaerts, P., & O’Doherty, J. P. (2006). The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans. Journal of Neuroscience, 26, 8360–8367.10.1523/JNEUROSCI.1010-06.2006CrossRefGoogle ScholarPubMed
Hill, M. R., Boorman, E. D., & Fried, I. (2016). Observational learning computations in neurons of the human anterior cingulate cortex. Nature Communications, 7, 1272.10.1038/ncomms12722CrossRefGoogle ScholarPubMed
Huang, Y., Yaple, Z. A., & Yu, R. (2020). Goal-oriented and habitual decisions: Neural signatures of model-based and model-free learning. NeuroImage, 215, 116834.10.1016/j.neuroimage.2020.116834CrossRefGoogle ScholarPubMed
Kahneman, D. (2011). Thinking, fast and slow. Macmillan.Google Scholar
Keramati, M., Dezfouli, A., & Piray, P. (2011). Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Computational Biology, 7, e1002055.10.1371/journal.pcbi.1002055CrossRefGoogle ScholarPubMed
Keramati, M., Smittenaar, P., Dolan, R. J., & Dayan, P. (2016). Adaptive integration of habits into depth-limited planning defines a habitual-goal-directed spectrum. Proceedings of the National Academy of Sciences of the United States of America, 113, 12868–12873.Google ScholarPubMed
Kim, D., Park, G. Y., O’Doherty, J. P., & Lee, S. W. (2019). Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning. Nature Communications, 10, 5738.10.1038/s41467-019-13632-1CrossRefGoogle ScholarPubMed
Kool, W., Cushman, F. A., & Gershman, S. J. (2018). Competition and cooperation between multiple reinforcement learning systems. In Morris, R., Bornstein, A., & Shenhav, A. (Eds.), Goal-directed decision making (pp. 153–178). Elsevier Academic Press.Google Scholar
Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost-benefit arbitration between multiple reinforcement-learning systems. Psychological Science, 28, 1321–1333.10.1177/0956797617708288CrossRefGoogle ScholarPubMed
Korn, C. W., & Bach, D. R. (2018). Heuristic and optimal policy computations in the human brain during sequential decision- making. Nature Communications, 9, 325.10.1038/s41467-017-02750-3CrossRefGoogle ScholarPubMed
Kroemer, N. B., Lee, Y., Pooseh, S., Eppinger, B., Goschke, T., & Smolka, M. N. (2019). L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action. NeuroImage, 186, 113–125.10.1016/j.neuroimage.2018.10.075CrossRefGoogle ScholarPubMed
Kumar, P., Goer, F., Murray, L., Dillon, D. G., Beltzer, M. L., Cohen, A. L., … Pizzagalli, D. A. (2018). Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology, 43, 1581–1588.10.1038/s41386-018-0032-xCrossRefGoogle ScholarPubMed
Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in soar: The anatomy of a general learning mechanism. Machine Learning, 1, 11–46.10.1023/A:1022639103969CrossRefGoogle Scholar
Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81, 687–699.10.1016/j.neuron.2013.11.028CrossRefGoogle ScholarPubMed
Ligneul, R., Mainen, Z. F., Ly, V., & Cools, R. (2022). Stress-sensitive inference of task controllability. Nature Human Behaviour, 6, 812–822.10.1038/s41562-022-01306-wCrossRefGoogle ScholarPubMed
Maier, S. F., & Seligman, M. E. P. (2016). Learned helplessness at fifty: Insights from neuroscience. Psychological Review, 123, 349–367.10.1037/rev0000033CrossRefGoogle ScholarPubMed
McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339–346.10.1016/S0896-6273(03)00154-5CrossRefGoogle Scholar
McGovern, A., & Barto, A. G. (2001). “Automatic discovery of subgoals in reinforcement learning using diverse density,” in Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001). Morgan Kaufmann, pp. 361–368.Google Scholar
McNamee, D., Liljeholm, M., Zika, O., & O’Doherty, J. P. (2015). Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: A multivariate FMRI study. Journal of Neuroscience, 5, 3764–3771.Google Scholar
Miller, K. J., Ludvig, E. A., Pezzulo, G., & Shenhav, A. (2018). Realigning models of habitual and goal-directed decision-making. In Morris, R., Bornstein, A, & Shenhav, A. (Eds.), Goal-directed decision making: Computations and neural circuits (pp. 407–428). Elsevier Academic Press.Google Scholar
Moskovitz, T., Miller, K., Sahani, M., & Botvinick, M. M. (2024). Understanding dual process cognition via the minimum description length principle. PLoS Computational Biology, 20, e1012383.10.1371/journal.pcbi.1012383CrossRefGoogle ScholarPubMed
Niv, Y., & Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in Cognitive Sciences, 12, 265–272.10.1016/j.tics.2008.03.006CrossRefGoogle ScholarPubMed
Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In Davidson, R. J., Schwarts, G. E., & Shapiro, D. (Eds.), Consciousness and self-regulation, vol. 4 (pp. 1–18). Springer.Google Scholar
O’Doherty, J. P. (2016). Multiple systems for the motivational control of behavior and associated neural substrates in humans. In Simpson, E. H. & Balsam, P. D. (Eds.), Behavioral Neuroscience of Motivation, (pp. 291–312). Springer.Google Scholar
O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454.Google ScholarPubMed
O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.Google ScholarPubMed
O’Doherty, J. P., Lee, S. W., Tadayonnejad, R., Cockburn, J., Iigaya, K., & Charpentier, C. J. (2021). Why and how the brain weights contributions from a mixture of experts. Neuroscience Biobehavioral Reviews, 123, 14–23.10.1016/j.neubiorev.2020.10.022CrossRefGoogle ScholarPubMed
Pauli, W. M., Gentile, G., Collette, S., Tyszka, J. M., & O’Doherty, J. P. (2019). Evidence for model-based encoding of Pavlovian contingencies in the human brain. Nature Communications, 10, 1099.10.1038/s41467-019-08922-7CrossRefGoogle ScholarPubMed
Pearson, J. M., Hayden, B. Y., & Platt, M. L. (2010). Explicit information reduces discounting behavior in monkeys. Frontiers in Psychology, 1, 237.10.3389/fpsyg.2010.00237CrossRefGoogle ScholarPubMed
Pezzulo, G., Rigoli, F., & Chersi, F. (2013). The mixed instrumental controller: Using value of information to combine habitual choice and mental simulation. Frontiers in Psychology, 4, 92.10.3389/fpsyg.2013.00092CrossRefGoogle ScholarPubMed
Pezzulo, G., Rigoli, F., & Friston, K. J. (2018). Hierarchical active inference: A theory of motivated control. Trends in Cognitive Sciences, 22, 294–306.10.1016/j.tics.2018.01.009CrossRefGoogle ScholarPubMed
Phelps, E. A., Lempert, K. M., & Sokol-Hessner, P. (2014). Emotion and decision making: Multiple modulatory neural circuits. Annual Review of Neuroscience, 37, 263–287.10.1146/annurev-neuro-071013-014119CrossRefGoogle ScholarPubMed
Philippe, R., Janet, R., Khalvati, K., Rao, R. P. N., Lee, D., & Dreher, J. C. C. (2024). Neurocomputational mechanisms involved in adaptation to fluctuating intentions of others. Nature Communications, 15, 3189.10.1038/s41467-024-47491-2CrossRefGoogle ScholarPubMed
Pool, E. R., Pauli, W. M., Kress, C. S., & O’Doherty, J. P. (2019) Behavioural evidence for parallel outcome-sensitive and outcome- insensitive Pavlovian learning systems in humans. Nature Human Behaviour, 3, 284–296.10.1038/s41562-018-0527-9CrossRefGoogle ScholarPubMed
Reeve, C. D. C. (2014). Nicomachean ethics. Hackett Publishing.Google Scholar
Rolls, E. T. (1990). A theory of emotion, and its application to understanding the neural basis of emotion. Cognition Emotion, 4, 161–190.10.1080/02699939008410795CrossRefGoogle Scholar
Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2014). A computational and neural model of momentary subjective well-being. Proceedings of the National Academy of Sciences of the United States of America, 111, 12252–12257.Google ScholarPubMed
Sander, D. (2013). Models of emotion: The affective neuroscience approach. In Armony, J. L. & Vuilleumier, P. (Eds.), The Cambridge handbook of human affective neuroscience (pp. 5–56). Cambridge University Press.Google Scholar
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44, 695–729.10.1177/0539018405058216CrossRefGoogle Scholar
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.10.1037/0033-295X.84.1.1CrossRefGoogle Scholar
Seok, D., Tadayonnejad, R., Wong, W.-W., O’Neill, J., Cockburn, J., Bari, A. A., … Feusner, J. D. (2022). Neurocircuit dynamics of arbitration between decision-making strategies across obsessive-compulsive and related disorders. NeuroImage: Clinical, 35, 103073.Google ScholarPubMed
Seymour, B., & Dolan, R. (2008). Emotion, decision making, and the amygdala. Neuron, 58, 662–671.10.1016/j.neuron.2008.05.020CrossRefGoogle ScholarPubMed
Simon, D. A., & Daw, N. D. (2011). Neural correlates of forward planning in a spatial decision task in humans. Journal of Neuroscience, 31, 5526–5539.10.1523/JNEUROSCI.4647-10.2011CrossRefGoogle Scholar
Surowiecki, J. (2005). The wisdom of crowds. Anchor.Google Scholar
Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Porter, B. & Mooney, R. (Eds.), Machine learning proceedings (pp. 216–224). Morgan Kaufmann.Google Scholar
Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181–211.10.1016/S0004-3702(99)00052-1CrossRefGoogle Scholar
Tricomi, E., Balleine, B. W., & O’Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. European Journal of Neuroscience, 29, 2225–2232.10.1111/j.1460-9568.2009.06796.xCrossRefGoogle Scholar
Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27, 4019–4026.10.1523/JNEUROSCI.0564-07.2007CrossRefGoogle ScholarPubMed
Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In Boakes, R. A. & Halliday, M. S. (Eds.), Inhibition and learning (pp. 301–336). Academic Press.Google Scholar
Wimmer, G. E., Daw, N. D., & Shohamy, D. (2012). Generalization of value in reinforcement learning by humans. European Journal of Neuroscience, 35, 1092–1104.10.1111/j.1460-9568.2012.08017.xCrossRefGoogle ScholarPubMed
Winkielman, P., Berridge, K. C., & Wilbarger, J. L. (2005). Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Personality and Social Psychology Bulletin, 31, 121–135.10.1177/0146167204271309CrossRefGoogle ScholarPubMed
Wunderlich, K., Dayan, P., & Dolan, R. J. (2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15, 786–791.10.1038/nn.3068CrossRefGoogle ScholarPubMed
Wunderlich, K., Rangel, A., & O’Doherty, J. P. (2009). Neural computations underlying action-based decision making in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 106, 17199–17204.Google ScholarPubMed
Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7, 464–476.10.1038/nrn1919CrossRefGoogle ScholarPubMed

References

Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169–177.10.1016/S0959-4388(02)00301-XCrossRefGoogle ScholarPubMed
Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 42–61.10.1111/j.1749-6632.2010.05445.xCrossRefGoogle ScholarPubMed
Aldao, A. (2013). The future of emotion regulation research: Capturing context. 8, 155–172.Google ScholarPubMed
Aldao, A., Gee, D. G., De Los Reyes, A., & Seager, I. (2016). Emotion regulation as a transdiagnostic factor in the development of internalizing and externalizing psychopathology: Current and future directions. Development and Psychopathology, 28, 927–946.10.1017/S0954579416000638CrossRefGoogle ScholarPubMed
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30, 217–237.10.1016/j.cpr.2009.11.004CrossRefGoogle ScholarPubMed
Aldao, A., & Tull, M. T. (2015). Putting emotion regulation in context. Current Opinion in Psychology, 3, 100–107.10.1016/j.copsyc.2015.03.022CrossRefGoogle Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.10.1016/j.tics.2004.02.010CrossRefGoogle ScholarPubMed
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2, 303–312.10.1093/scan/nsm029CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.10.1093/scan/nsx060CrossRefGoogle ScholarPubMed
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361–372.10.1016/j.conb.2012.12.012CrossRefGoogle ScholarPubMed
Berboth, S., & Morawetz, C. (2021). Amygdala-prefrontal connectivity during emotion regulation: A meta-analysis of psychophysiological interactions. Neuropsychologia, 153, 107767.10.1016/j.neuropsychologia.2021.107767CrossRefGoogle ScholarPubMed
Berboth, S., Windischberger, C., Kohn, N., & Morawetz, C. (2021). Test-retest reliability of emotion regulation networks using fMRI at ultra-high magnetic field. NeuroImage, 232, 117917.10.1016/j.neuroimage.2021.117917CrossRefGoogle ScholarPubMed
Berking, M., & Wupperman, P. (2012). Emotion regulation and mental health: Recent findings, current challenges, and future directions. Current Opinion in Psychiatry, 25, 128–134.10.1097/YCO.0b013e3283503669CrossRefGoogle ScholarPubMed
Berthold-Losleben, M., Habel, U., Brehl, A.-K., Freiherr, J., Losleben, K., Schneider, F., … Kohn, N. (2018). Implicit affective rivalry: A behavioral and fMRI study combining olfactory and auditory stimulation. Frontiers in Behavioral Neuroscience, 12, 313.10.3389/fnbeh.2018.00313CrossRefGoogle ScholarPubMed
Bo, K., Kraynak, T. E., Kwon, M., Sun, M., Gianaros, P. J., & Wager, T. D. (2024). A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation. Nature Neuroscience, 27, 975–987.10.1038/s41593-024-01605-7CrossRefGoogle ScholarPubMed
Bonanno, G. A., & Burton, C. L. (2013). Regulatory flexibility: An individual differences perspective on coping and emotion regulation. Perspectives on Psychological Science, 8, 591–612.10.1177/1745691613504116CrossRefGoogle ScholarPubMed
Brady, B., Kneebone, I. I., Denson, N., & Bailey, P. E. (2018). Systematic review and meta-analysis of age-related differences in instructed emotion regulation success. PeerJ, 6, e6051.10.7717/peerj.6051CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277–290.10.1016/j.tics.2010.04.004CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990.10.1093/cercor/bht154CrossRefGoogle ScholarPubMed
Cheng, C.-M., Li, C.-T., & Tsai, S.-J. (2021). Current updates on newer forms of transcranial magnetic stimulation in major depression. Advances in Experimental Medicine and Biology, 1305, 333–349.10.1007/978-981-33-6044-0_18CrossRefGoogle ScholarPubMed
Clemens, B., Wagels, L., Bauchmüller, M., Bergs, R., Habel, U., & Kohn, N. (2017). Alerted default mode: Functional connectivity changes in the aftermath of social stress. Scientific Reports, 7, 40180.10.1038/srep40180CrossRefGoogle ScholarPubMed
Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505.Google ScholarPubMed
Derryberry, D., & Rothbart, M. K. (1997). Reactive and effortful processes in the organization of temperament. Development and Psychopathology, 9, 633–652.10.1017/S0954579497001375CrossRefGoogle ScholarPubMed
Diamond, L. M., & Aspinwall, L. G. (2003). Emotion regulation across the life span: An integrative perspective emphasizing self-regulation, positive affect, and dyadic processes. Motivation and Emotion, 27, 125–156.10.1023/A:1024521920068CrossRefGoogle Scholar
Diekhof, E. K., Geier, K., Falkai, P., & Gruber, O. (2011). Fear is only as deep as the mind allows: a coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. NeuroImage, 58, 275–285.10.1016/j.neuroimage.2011.05.073CrossRefGoogle Scholar
Dixon-Gordon, K. L., Bernecker, S. L., & Christensen, K. (2015). Recent innovations in the field of interpersonal emotion regulation. Current Opinion in Psychology, 3, 36–42.10.1016/j.copsyc.2015.02.001CrossRefGoogle Scholar
Doré, B., Silvers, J., & Ochsner, K. (2016). Toward a personalized science of emotion regulation. Social and Personality Psychology Compass, 10, 171–187.10.1111/spc3.12240CrossRefGoogle Scholar
Dörfel, D., Gärtner, A., & Scheffel, C. (2020). Resting state cortico-limbic functional connectivity and dispositional use of emotion regulation strategies: A replication and extension study. Frontiers in Behavioral Neuroscience, 14, 128.10.3389/fnbeh.2020.00128CrossRefGoogle ScholarPubMed
Eftekhari, A., Zoellner, L. A., & Vigil, S. A. (2009). Patterns of emotion regulation and psychopathology. Anxiety Stress and Coping, 22, 571–586.10.1080/10615800802179860CrossRefGoogle ScholarPubMed
Eisenberg, N., Spinrad, T. L., & Eggum, N. D. (2010). Emotion-related self-regulation and its relation to children’s maladjustment. Annual Review of Clinical Psychology, 6, 495–525.10.1146/annurev.clinpsy.121208.131208CrossRefGoogle ScholarPubMed
Esposito, F., Otto, T., Zijlstra, F. R. H., & Goebel, R. (2014). Spatially distributed effects of mental exhaustion on resting-state FMRI networks. PLoS ONE, 9, e94222.10.1371/journal.pone.0094222CrossRefGoogle ScholarPubMed
Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Review Neuroscience, 16, 693–700.10.1038/nrn4044CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871–882.10.1016/j.neuron.2006.07.029CrossRefGoogle ScholarPubMed
Fernandez, K. C., Jazaieri, H., & Gross, J. J. (2016). Emotion regulation: A transdiagnostic perspective on a new RDoC domain. Cognitive Therapy and Research, 40, 426–440.10.1007/s10608-016-9772-2CrossRefGoogle ScholarPubMed
Ferstl, M., Teckentrup, V., Lin, W. M., Kräutlein, F., Kühnel, A., Klaus, J., … Kroemer, N. B. (2022). Non-invasive vagus nerve stimulation boosts mood recovery after effort exertion. Psychological Medicine, 52, 3029–3039.10.1017/S0033291720005073CrossRefGoogle ScholarPubMed
Fischer, A. H., & Manstead, A. S. R. (2008). Social functions of emotion. In Lewis, M., Haviland-Jones, J. M., & Barrett, L. F. (Eds.), Handbook of emotions, 3rd ed. (pp. 456–468). The Guildford Press.Google Scholar
Fischer, A. H., Manstead, A. S. R., & Zaalberg, R. (2003). Social influences on the emotion process. European Review of Social Psychology, 14, 171–201.10.1080/10463280340000054CrossRefGoogle Scholar
Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F., … Sabatinelli, D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience and Biobehavioral Reviews, 45, 202–211.10.1016/j.neubiorev.2014.06.010CrossRefGoogle ScholarPubMed
Gazzaley, A., & D’Esposito, M. (2007). Unifying prefrontal cortex function: Executive control, neural networks and top-down modulation. In Miller, B. & Cummings, J. (Eds.), The human frontal lobes (pp. 187–206). The Guildford Press.Google Scholar
Grecucci, A., & Sanfey, A. G. (2014). Emotion regulation and decision making. In Gross, J. J. (Ed.), Handbook of emotion regulation, 2nd ed. (pp. 140–153). The Guilford Press.Google Scholar
Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74, 224–237.10.1037/0022-3514.74.1.224CrossRefGoogle ScholarPubMed
Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39, 281–291.10.1017/S0048577201393198CrossRefGoogle ScholarPubMed
Gross, J. J. (2013). Emotion regulation: Taking stock and moving forward. Emotion, 13, 359–365.10.1037/a0032135CrossRefGoogle ScholarPubMed
Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26, 1–26.10.1080/1047840X.2014.940781CrossRefGoogle Scholar
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85, 348–362.10.1037/0022-3514.85.2.348CrossRefGoogle ScholarPubMed
Gross, J. J., & Muñoz, R. F. (1995). Emotion regulation and mental health. Clinical Psychology Science and Practice, 2, 151–164.10.1111/j.1468-2850.1995.tb00036.xCrossRefGoogle Scholar
Gross, J. J., Sheppes, G., & Urry, H. L. (2011). Cognition and emotion lecture at the 2010 SPSP Emotion Preconference: Emotion generation and emotion regulation: A distinction we should make (carefully). Cognition & Emotion, 25, 765–781.10.1080/02699931.2011.555753CrossRefGoogle Scholar
Gross, J. J., & Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In Gross, J. J. (Ed.), Handbook of emotion regulation, vol. 3 (pp. 3–24). The Guilford Press.Google Scholar
Gruber, R., & Cassoff, J. (2014). The interplay between sleep and emotion regulation: Conceptual framework empirical evidence and future directions. Current Psychiatry Reports, 16, 500.10.1007/s11920-014-0500-xCrossRefGoogle ScholarPubMed
Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition & Emotion, 25, 400–412.10.1080/02699931.2010.544160CrossRefGoogle ScholarPubMed
Higgins, E. T., & Pittman, T. S. (2008). Motives of the human animal: Comprehending, managing, and sharing inner states. Annual Review of Psychology, 59, 361–385.10.1146/annurev.psych.59.103006.093726CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167, 748–751.10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Jamieson, A. J., Harrison, B. J., Razi, A., & Davey, C. G. (2021). Rostral anterior cingulate network effective connectivity in depressed adolescents and associations with treatment response in a randomized controlled trial. Neuropsychopharmacology, 47, 1240–1248.Google ScholarPubMed
Jazaieri, H., Urry, H. L., & Gross, J. J. (2013). Affective disturbance and psychopathology: An emotion regulation perspective. Journal of Experimental Psychopathology, 4, 584–599.10.5127/jep.030312CrossRefGoogle Scholar
Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. The Journal of Neuroscience, 27, 8877–8884.10.1523/JNEUROSCI.2063-07.2007CrossRefGoogle ScholarPubMed
Kappas, A. (2011). Emotion and regulation are one! Emotion Review, 3, 17–25.10.1177/1754073910380971CrossRefGoogle Scholar
Khodadadifar, T., Soltaninejad, Z., Ebneabbasi, A., Eickhoff, C. R., Sorg, C., Van Eimeren, T., … Tahmasian, M. (2022). In search of convergent regional brain abnormality in cognitive emotion regulation: A transdiagnostic neuroimaging meta-analysis. Human Brain Mapping, 43, 1309–1325.10.1002/hbm.25722CrossRefGoogle ScholarPubMed
Kohn, N., Eickhoff, S. B. S. B., Scheller, M., Laird, A. R. A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation – An ALE meta-analysis and MACM analysis. NeuroImage, 87, 345–355.10.1016/j.neuroimage.2013.11.001CrossRefGoogle ScholarPubMed
Kohn, N., Hermans, E. J., & Fernández, G. (2017). Cognitive benefit and cost of acute stress is differentially modulated by individual brain state. Social Cognitive and Affective Neuroscience, 12, 1179–1187.10.1093/scan/nsx043CrossRefGoogle ScholarPubMed
Kohn, N., Morawetz, C., Weymar, M., Yuan, J., & Dolcos, F. (2021). Editorial: Cognitive control of emotions in challenging contexts. Frontiers in Behavioral Neuroscience, 15, 785875.10.3389/fnbeh.2021.785875CrossRefGoogle ScholarPubMed
Kohn, N., Toygar, T., Weidenfeld, C., Berthold-Losleben, M., Chechko, N., Orfanos, S., … Habel, U. (2015). In a sweet mood? Effects of experimental modulation of blood glucose levels on mood-induction during fMRI. NeuroImage, 113, 246–256.10.1016/j.neuroimage.2015.03.024CrossRefGoogle Scholar
Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. Cognition & Emotion, 23, 4–41.10.1080/02699930802619031CrossRefGoogle Scholar
Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., … Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, 27, 1193–1202.Google ScholarPubMed
Kring, A. M., & Sloan, D. M. (2010). Emotion regulation and psychopathology: A transdiagnostic approach to etiology and treatment. The Guilford Press.Google Scholar
Laird, A. R., Riedel, M. C., Sutherland, M. T., Eickhoff, S. B., Ray, K. L., Uecker, A. M., … Fox, P. T. (2015). Neural architecture underlying classification of face perception paradigms. NeuroImage, 119, 70–80.10.1016/j.neuroimage.2015.06.044CrossRefGoogle ScholarPubMed
Lakey, B., & Orehek, E. (2011). Relational regulation theory: A new approach to explain the link between perceived social support and mental health. Psychological Review, 118, 482–495.10.1037/a0023477CrossRefGoogle ScholarPubMed
Lee, H., Heller, A. S., van Reekum, C. M., Nelson, B., & Davidson, R. J. (2012). Amygdala-prefrontal coupling underlies individual differences in emotion regulation. NeuroImage, 62, 1575–1581.10.1016/j.neuroimage.2012.05.044CrossRefGoogle ScholarPubMed
Lincoln, T. M., Schulze, L., & Renneberg, B. (2022). The role of emotion regulation in the characterization, development and treatment of psychopathology. Nature Reviews Psychology, 1, 272–286.10.1038/s44159-022-00040-4CrossRefGoogle Scholar
Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65, 209–237.10.1016/j.bandc.2007.02.007CrossRefGoogle ScholarPubMed
Marroquín, B. (2011). Interpersonal emotion regulation as a mechanism of social support in depression. Clinical Psychology Review, 31, 1276–1290.10.1016/j.cpr.2011.09.005CrossRefGoogle ScholarPubMed
McRae, K., Ciesielski, B., & Gross, J. J. (2012). Unpacking cognitive reappraisal: Goals, tactics, and outcomes. Emotion, 12, 250–255.10.1037/a0026351CrossRefGoogle ScholarPubMed
McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2012). Bottom-up and top-down emotion generation: Implications for emotion regulation. Social Cognitive and Affective Neuroscience, 7, 253–262.10.1093/scan/nsq103CrossRefGoogle ScholarPubMed
McTeague, L. M., Huemer, J., Carreon, D. M., Jiang, Y., Eickhoff, S. B., & Etkin, A. (2017). Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. American Journal of Psychiatry, 174, 676–685.10.1176/appi.ajp.2017.16040400CrossRefGoogle ScholarPubMed
McTeague, L. M., Rosenberg, B. M., Lopez, J. W., Carreon, D. M., Huemer, J., Jiang, Y., … Etkin, A. (2020). Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. American Journal of Psychiatry, 177, 411–421.10.1176/appi.ajp.2019.18111271CrossRefGoogle ScholarPubMed
Messina, I., Bianco, S., Sambin, M., & Viviani, R. (2015). Executive and semantic processes in reappraisal of negative stimuli: Insights from a meta-analysis of neuroimaging studies. Frontiers in Psychology, 6, 974–983.10.3389/fpsyg.2015.00956CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Morawetz, C., Berboth, S., & Bode, S. (2021). With a little help from my friends: The effect of social proximity on emotion regulation-related brain activity. NeuroImage, 230, 117817.10.1016/j.neuroimage.2021.117817CrossRefGoogle ScholarPubMed
Morawetz, C., Berboth, S., Chirokoff, V., Chanraud, S., Misdrahi, D., Serre, F., … Swendsen, J. (2023). Mood variability craving and substance use disorders: From intrinsic brain network connectivity to daily life experience. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 940–955.Google ScholarPubMed
Morawetz, C., Berboth, S., Kohn, N., Jackson, P. L., & Jauniaux, J. (2022). Reappraisal and empathic perspective-taking – More alike than meets the eyes. NeuroImage, 255, 119194.10.1016/j.neuroimage.2022.119194CrossRefGoogle ScholarPubMed
Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 72, 111–128.10.1016/j.neubiorev.2016.11.014CrossRefGoogle ScholarPubMed
Morawetz, C., Kellermann, T., Kogler, L., Radke, S., Jens, B., & Derntl, B. (2016). Intrinsic functional connectivity underlying successful emotion regulation of angry faces. Social Cognitive and Affective Neuroscience, 11, 1980–1991.10.1093/scan/nsw107CrossRefGoogle ScholarPubMed
Morawetz, C., Riedel, M. C., Salo, T., Berboth, S., Eickhoff, S. B., Laird, A. R., & Kohn, N. (2020). Multiple large-scale neural networks underlying emotion regulation. Neuroscience & Biobehavioral Reviews, 116, 382–395.10.1016/j.neubiorev.2020.07.001CrossRefGoogle ScholarPubMed
Morawetz, C., Steyrl, D., Berboth, S., Heekeren, H. R., & Bode, S. (2020). Emotion regulation modulates dietary decision-making via activity in the prefrontal–striatal valuation system. Cerebral Cortex, 30, 5731–5749.10.1093/cercor/bhaa147CrossRefGoogle ScholarPubMed
Niven, K., Totterdell, P., & Holman, D. (2009). A classification of controlled interpersonal affect regulation strategies. Emotion, 9, 498–509.10.1037/a0015962CrossRefGoogle ScholarPubMed
Niven, K., Totterdell, P., Holman, D., & Headley, T. (2012). Does regulating others’ feelings influence people’s own affective well-being? The Journal of Social Psychology, 152, 246–260.10.1080/00224545.2011.599823CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 1215–1229.10.1162/089892902760807212CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242–249.10.1016/j.tics.2005.03.010CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Gross, J. J. (2014). The neural bases of emotion and emotion regulation: A valuation perspective. In Gross, J. J. (Ed.), Handbook of emotion regulation, 2nd ed. (pp. 23–42). The Guilford Press.Google Scholar
Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J., … Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20, 1322–1331.10.1111/j.1467-9280.2009.02459.xCrossRefGoogle ScholarPubMed
Ochsner, K. N., Silvers, J., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24.10.1111/j.1749-6632.2012.06751.xCrossRefGoogle ScholarPubMed
Orfanos, S., Toygar, T., Berthold-Losleben, M., Chechko, N., Durst, A., Laoutidis, Z. G., … Karges, W. (2018). Investigating the impact of overnight fasting on intrinsic functional connectivity: A double-blind fMRI study. Brain Imaging and Behavior, 12, 1150–1159.10.1007/s11682-017-9777-9CrossRefGoogle ScholarPubMed
Otto, B., Misra, S., Prasad, A., & McRae, K. (2014). Functional overlap of top-down emotion regulation and generation: An fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions. Cognitive, Affective & Behavioral Neuroscience, 14, 923–938.10.3758/s13415-013-0240-0CrossRefGoogle ScholarPubMed
Palmer, C. A., & Alfano, C. A. (2017). Sleep and emotion regulation: An organizing, integrative review. Sleep Medicine Reviews, 31, 6–16.10.1016/j.smrv.2015.12.006CrossRefGoogle ScholarPubMed
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews. Neuroscience, 9, 148–158.10.1038/nrn2317CrossRefGoogle ScholarPubMed
Pessoa, L. (2018). Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 19, 19–25.10.1016/j.cobeha.2017.09.005CrossRefGoogle ScholarPubMed
Petrova, K., & Gross, J. J. (2023). The future of emotion regulation research: Broadening our field of view. Affective Science, 4, 609–616.10.1007/s42761-023-00222-0CrossRefGoogle ScholarPubMed
Phillips, M. L., Ladouceur, C., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13, 829–857.Google ScholarPubMed
Picó-Pérez, M., Alonso, P., Contreras-Rodríguez, O., Martínez-Zalacaín, I., López-Solà, C., Jiménez-Murcia, S., … Soriano-Mas, C. (2018). Dispositional use of emotion regulation strategies and resting-state cortico-limbic functional connectivity. Brain Imaging and Behavior, 12, 1022–1031.10.1007/s11682-017-9762-3CrossRefGoogle ScholarPubMed
Posner, M. I., & Rothbart, M. K. (2000). Developing mechanisms of self-regulation. Development and Psychopathology, 12, 427–441.10.1017/S0954579400003096CrossRefGoogle Scholar
Quirk, G. J., & Beer, J. S. (2006). Prefrontal involvement in the regulation of emotion: Convergence of rat and human studies. Current Opinion in Neurobiology, 16, 723–727.10.1016/j.conb.2006.07.004CrossRefGoogle ScholarPubMed
Rammensee, R. A., Morawetz, C., & Basten, U. (2023). Individual differences in emotion regulation: Personal tendency in strategy selection is related to implementation capacity and well-being. Emotion, 23, 2331–2343.10.1037/emo0001234CrossRefGoogle ScholarPubMed
Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience and Biobehavioral Reviews, 36, 479–501.10.1016/j.neubiorev.2011.08.005CrossRefGoogle ScholarPubMed
Reeck, C., Ames, D. R., & Ochsner, K. N. (2016). The social regulation of emotion: An integrative, cross-disciplinary model. Trends in Cognitive Sciences, 20, 47–63.10.1016/j.tics.2015.09.003CrossRefGoogle ScholarPubMed
Riedel, M. C., Yanes, J. A., Ray, K. L., Eickhoff, S. B., Fox, P. T., Sutherland, M. T., & Laird, A. R. (2018). Dissociable meta-analytic brain networks contribute to coordinated emotional processing. Human Brain Mapping, 39, 2514–2531.10.1002/hbm.24018CrossRefGoogle ScholarPubMed
Roelofs, K., Bramson, B., & Toni, I. (2023). A neurocognitive theory of flexible emotion control: The role of the lateral frontal pole in emotion regulation. Annals of the New York Academy of Sciences, 1525, 28–40.10.1111/nyas.15003CrossRefGoogle ScholarPubMed
Sander, D., Grandjean, D., & Scherer, K. R. (2005). A systems approach to appraisal mechanisms in emotion. Neural Networks: The Official Journal of the International Neural Network Society, 18, 317–352.10.1016/j.neunet.2005.03.001CrossRefGoogle ScholarPubMed
Sandi, C. (2013). Stress and cognition. Wiley Interdisciplinary Reviews. Cognitive Science, 4, 245–261.10.1002/wcs.1222CrossRefGoogle ScholarPubMed
Scherer, K. R. (2022). Theory convergence in emotion science is timely and realistic. Cognition and Emotion, 36, 154–170.10.1080/02699931.2021.1973378CrossRefGoogle ScholarPubMed
Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, 10, 1329–1337.10.1093/scan/nsv022CrossRefGoogle ScholarPubMed
Shafir, R., Thiruchselvam, R., Suri, G., Gross, J., & Sheppes, G. (2016). Neural processing of emotional-intensity predicts emotion regulation choice. Social Cognitive and Affective Neuroscience, 11, 1863–1871.10.1093/scan/nsw114CrossRefGoogle ScholarPubMed
Sheppes, G. (2020). Transcending the ‘good & bad’ and ‘here & now’ in emotion regulation: Costs and benefits of strategies across regulatory stages. In Gawronski, B. (Ed.), Advances in experimental social psychology (pp. 185–236). Elsevier Academic Press.Google Scholar
Sheppes, G., Suri, G., & Gross, J. J. (2015). Emotion regulation and psychopathology. Annual Review of Clinical Psychology, 11, 379–405.10.1146/annurev-clinpsy-032814-112739CrossRefGoogle ScholarPubMed
Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: A systematic review. Clinical Psychology Review, 57, 141–163.10.1016/j.cpr.2017.09.002CrossRefGoogle ScholarPubMed
Smith, R., & Lane, R. D. (2015). The neural basis of one’s own conscious and unconscious emotional states. Neuroscience & Biobehavioral Reviews, 57, 1–29.10.1016/j.neubiorev.2015.08.003CrossRefGoogle ScholarPubMed
Sripada, C., Angstadt, M., Kessler, D., Phan, K. L., Liberzon, I., Evans, G. W., … Swain, J. E. (2014). Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks. NeuroImage, 89, 110–121.10.1016/j.neuroimage.2013.11.006CrossRefGoogle ScholarPubMed
Stern, E. R., Grimaldi, S. J., Muratore, A., Murrough, J., Leibu, E., Fleysher, L., … Burdick, K. E. (2017). Neural correlates of interoception: Effects of interoceptive focus and relationship to dimensional measures of body awareness. Human Brain Mapping, 38, 6068–6082.10.1002/hbm.23811CrossRefGoogle ScholarPubMed
Steward, T., Davey, C. G., Jamieson, A. J., Stephanou, K., Soriano-Mas, C., Felmingham, K. L., & Harrison, B. J. (2021). Dynamic neural interactions supporting the cognitive reappraisal of emotion. Cerebral Cortex, 31, 961–973.10.1093/cercor/bhaa268CrossRefGoogle ScholarPubMed
Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A., & Gross, J. J. (2011). The temporal dynamics of emotion regulation: An EEG study of distraction and reappraisal. Biological Psychology, 87, 84–92.10.1016/j.biopsycho.2011.02.009CrossRefGoogle ScholarPubMed
Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. Monographs of the Society for Research in Child Development, 59, 25–52.10.1111/j.1540-5834.1994.tb01276.xCrossRefGoogle ScholarPubMed
Thompson, R. A. (2011). Emotion and emotion regulation: Two sides of the developing coin. Emotion Review, 3, 53–61.10.1177/1754073910380969CrossRefGoogle Scholar
Thompson-Schill, S. L., Bedny, M., & Goldberg, R. F. (2005). The frontal lobes and the regulation of mental activity. Current Opinion in Neurobiology, 15, 219–224.10.1016/j.conb.2005.03.006CrossRefGoogle ScholarPubMed
Tibubos, A. N., Grammes, J., Beutel, M. E., Michal, M., Schmutzer, G., & Brähler, E. (2018). Emotion regulation strategies moderate the relationship of fatigue with depersonalization and derealization symptoms. Journal of Affective Disorders, 227, 571–579.10.1016/j.jad.2017.11.079CrossRefGoogle ScholarPubMed
Uchida, M., Biederman, J., Gabrieli, J. D. E., Micco, J., de Los Angeles, C., Brown, A., … Whitfield-Gabrieli, S. (2015). Emotion regulation ability varies in relation to intrinsic functional brain architecture. Social Cognitive and Affective Neuroscience, 10, 1738–1748.10.1093/scan/nsv059CrossRefGoogle ScholarPubMed
Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352–357.10.1177/0963721410388395CrossRefGoogle Scholar
Urry, H. L., Reekum, V., Marije, C., Johnstone, T., Kalin, N. H., Thurow, M. E., … Davidson, R. J. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience, 26, 4415–4425.10.1523/JNEUROSCI.3215-05.2006CrossRefGoogle ScholarPubMed
Van Kleef, G. A. (2010). The emerging view of emotion as social information. Social and Personality Psychology Compass, 4, 331–343.10.1111/j.1751-9004.2010.00262.xCrossRefGoogle Scholar
Van Kleef, G. A., Cheshin, A., Fischer, A. H., & Schneider, I. K. (2016). Editorial: The social nature of emotions. Frontiers in Psychology, 7, 896.10.3389/fpsyg.2016.00896CrossRefGoogle ScholarPubMed
Vandekerckhove, M., & Wang, Y. (2017). Emotion, emotion regulation and sleep: An intimate relationship. AIMS Neuroscience, 5, 1–17.10.3934/Neuroscience.2018.5.1CrossRefGoogle ScholarPubMed
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59, 1037–1050.10.1016/j.neuron.2008.09.006CrossRefGoogle ScholarPubMed
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3, 255–274.10.3758/CABN.3.4.255CrossRefGoogle ScholarPubMed
Wang, C., Trongnetrpunya, A., Samuel, I. B. H., Ding, M., & Kluger, B. M. (2016). Compensatory neural activity in response to cognitive fatigue. Journal of Neuroscience, 36, 3919–3924.10.1523/JNEUROSCI.3652-15.2016CrossRefGoogle ScholarPubMed
Webb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychological Bulletin, 138, 775–808.10.1037/a0027600CrossRefGoogle ScholarPubMed
Wiens, S. (2005). Interoception in emotional experience. Current Opinion in Neurology, 18, 442–447.10.1097/01.wco.0000168079.92106.99CrossRefGoogle ScholarPubMed
Xie, X., Mulej Bratec, S., Schmid, G., Meng, C., Doll, A., Wohlschlaeger, A., … Sorg, C. (2016). How do you make me feel better? Social cognitive emotion regulation and the default mode network. NeuroImage, 134, 270–280.10.1016/j.neuroimage.2016.04.015CrossRefGoogle Scholar
Zaki, J., & Williams, W. C. (2013). Interpersonal emotion regulation. Emotion, 13, 803–810.10.1037/a0033839CrossRefGoogle ScholarPubMed
Zhang, J.-X., Dixon, M. L., Goldin, P. R., Spiegel, D., & Gross, J. J. (2023). The neural separability of emotion reactivity and regulation. Affective Science, 4, 617–629.10.1007/s42761-023-00227-9CrossRefGoogle ScholarPubMed
Zouaoui, I., Zellag, M., Hernout, J., Dumais, A., Potvin, S., & Lavoie, M. E. (2023). Alpha and theta oscillations during the cognitive reappraisal of aversive pictures: A spatio-temporal qEEG investigation. International Journal of Psychophysiology, 192, 13–25.10.1016/j.ijpsycho.2023.07.001CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×