Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-qr8hc Total loading time: 0 Render date: 2025-12-08T20:10:47.112Z Has data issue: false hasContentIssue false

Chapter 19 - Affective Biases in Attention, Cognitive Control, and Awareness

from Section V - Cognition–Emotion Interactions

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

Emotionally or motivationally significant stimuli tend to attract, divert, or hold attention more readily than neutral stimuli. These effects arise during numerous tasks, varying as a function of stimulus type or emotional cue. Their neural substrates involve enhanced activity of sensory cortices under direct influence of emotional or reward processing systems, including the amygdala, in combination with other top-down or bottom-up biases that together serve to prioritize behaviorally relevant information for access to conscious awareness. Other indirect influences act through interactions of emotional and motivational systems, with cortical or subcortical networks controlling attention, including executive functions and neuromodulatory pathways. These data reveal that attentional processes encompass multiple biasing signals that can modulate stimulus processing, based not only on space or object representations, as traditionally considered, but also value-based representations. Such mechanisms of emotional attention or affect-driven biases may operate preattentively, involuntarily, or non-consciously, yet nonetheless be regulated by current goals or context.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abivardi, A., & Bach, D. R. (2017). Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Human Brain Mapping, 38, 3927–3940.10.1002/hbm.23639CrossRefGoogle ScholarPubMed
Ahumada-Méndez, F., Lucero, B., Avenanti, A., Saracini, C., Muñoz-Quezada, M. T., Cortés-Rivera, C., & Canales-Johnson, A. (2022). Affective modulation of cognitive control: A systematic review of EEG studies. Physiology & Behavior, 249, 113743.10.1016/j.physbeh.2022.113743CrossRefGoogle ScholarPubMed
Amting, J. M., Greening, S. G., & Mitchell, D. G. (2010). Multiple mechanisms of consciousness: The neural correlates of emotional awareness. Journal of Neuroscience, 30, 10039–10047.10.1523/JNEUROSCI.6434-09.2010CrossRefGoogle ScholarPubMed
Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411, 305–309.10.1038/35077083CrossRefGoogle ScholarPubMed
Anderson, B. A. (2019). Neurobiology of value-driven attention. Current Opinion in Psychology, 29, 27–33.10.1016/j.copsyc.2018.11.004CrossRefGoogle ScholarPubMed
Anderson, B. A., Kim, H., Kim, A. J., Liao, M. R., Mrkonja, L., Clement, A., & Grégoire, L. (2021). The past, present, and future of selection history. Neuroscience & Biobehavioral Review, 130, 326–350.10.1016/j.neubiorev.2021.09.004CrossRefGoogle ScholarPubMed
Armony, J. L., Quirk, G. J., & LeDoux, J. E. (1998). Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. Journal of Neuroscience, 18, 2592–2601.10.1523/JNEUROSCI.18-07-02592.1998CrossRefGoogle ScholarPubMed
Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A. L., & Poeppel, D. (2015). Human screams occupy a privileged niche in the communication soundscape. Current Biology, 25, 2051–2056.10.1016/j.cub.2015.06.043CrossRefGoogle ScholarPubMed
Bachman, M. D., Wang, L., Gamble, M. L., & Woldorff, M. G. (2020). Physical salience and value-driven salience operate through different neural mechanisms to enhance attentional selection. Journal of Neuroscience, 40, 5455–5464.10.1523/JNEUROSCI.1198-19.2020CrossRefGoogle ScholarPubMed
Basso, M. A., Bickford, M. E., & Cang, J. (2021). Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 109, 918–937.10.1016/j.neuron.2021.01.013CrossRefGoogle ScholarPubMed
Becker, D. V., & Rheem, H. (2020). Searching for a face in the crowd: Pitfalls and unexplored possibilities. Attention, Perception, & Psychophysics, 82, 626–636.10.3758/s13414-020-01975-7CrossRefGoogle ScholarPubMed
Bekhtereva, V., Craddock, M., & Müller, M. M. (2021). Emotional content overrides spatial attention. Psychophysiology, 58, e13847.10.1111/psyp.13847CrossRefGoogle ScholarPubMed
Bentley, P., Vuilleumier, P., Thiel, C. M., Driver, J., & Dolan, R. J. (2003). Cholinergic enhancement modulates neural correlates of selective attention and emotional processing. Neuroimage, 20, 58–70.10.1016/S1053-8119(03)00302-1CrossRefGoogle ScholarPubMed
Benuzzi, F., Meletti, S., Zamboni, G., Calandra-Buonaura, G., Serafini, M., Lui, F., … Nichelli, P. (2004). Impaired fear processing in right mesial temporal sclerosis: A fMRI study. Brain Research Bulletin, 63, 269–281.10.1016/j.brainresbull.2004.03.005CrossRefGoogle ScholarPubMed
Bourgeois, A., Marti, E., Schnider, A., & Ptak, R. (2022). Task relevance and negative reward modulate the disengagement deficit of patients with spatial neglect. Neuropsychologia, 175, 108365.10.1016/j.neuropsychologia.2022.108365CrossRefGoogle ScholarPubMed
Bourgeois, A., Sterpenich, V., Iannotti, G. R., & Vuilleumier, P. (2022). Reward-driven modulation of spatial attention in the human frontal eye-field. Neuroimage, 247, 118846.10.1016/j.neuroimage.2021.118846CrossRefGoogle ScholarPubMed
Bourgeois, A., Saj, A., & Vuilleumier, P. (2018). Value-driven attentional capture in neglect. Cortex, 109, 260–271.10.1016/j.cortex.2018.09.015CrossRefGoogle ScholarPubMed
Brown, C. R. H. (2022). The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 150, 85–107.10.1016/j.cortex.2022.03.001CrossRefGoogle ScholarPubMed
Calvo, M. G., Fernández-Martín, A., & Nummenmaa, L. (2014). Facial expression recognition in peripheral versus central vision: Role of the eyes and the mouth. Psychological Research, 78, 180–195.10.1007/s00426-013-0492-xCrossRefGoogle ScholarPubMed
Carlson, J. M., & Reinke, K. S. (2014). Attending to the fear in your eyes: Facilitated orienting and delayed disengagement. Cognition and Emotion, 28, 1398–1406.10.1080/02699931.2014.885410CrossRefGoogle Scholar
Carretié, L., Fernández-Folgueiras, U., Álvarez, F., Cipriani, G. A., Tapia, M., & Kessel, D. (2022). Fast unconscious processing of emotional stimuli in early stages of the visual cortex. Cerebral Cortex, 32, 4331–4344.10.1093/cercor/bhab486CrossRefGoogle ScholarPubMed
Chen, T., Becker, B., Camilleri, J., Wang, L., Yu, S., Eickhoff, S. B., & Feng, C. (2018). A domain-general brain network underlying emotional and cognitive interference processing: Evidence from coordinate-based and functional connectivity meta-analyses. Brain Structure and Function, 223, 3813–3840.10.1007/s00429-018-1727-9CrossRefGoogle ScholarPubMed
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32, 8988–8999.10.1523/JNEUROSCI.0536-12.2012CrossRefGoogle ScholarPubMed
Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17, 222–227.Google ScholarPubMed
Diano, M., Celeghin, A., Bagnis, A., & Tamietto, M. (2017). Amygdala response to emotional stimuli without awareness: Facts and interpretations. Frontiers in Psychology, 10, 2029.Google Scholar
Di Plinio, S., Ferri, F., Marzetti, L., Romani, G. L., Northoff, G., & Pizzella, V. (2018). Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition. Human Brain Mapping, 39, 3597–3610.10.1002/hbm.24197CrossRefGoogle ScholarPubMed
Dolcos, F., Katsumi, Y., Moore, M., Berggren, N., de Gelder, B., Derakshan, N., … Dolcos, S. (2020). Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neuroscience & Biobehavioral Reviews, 108, 559–601.10.1016/j.neubiorev.2019.08.017CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Moyne, M., Saj, A., Guex, R., & Vuilleumier, P. (2020). Impaired emotional biases in visual attention after bilateral amygdala lesion. Neuropsychologia, 137, 107292.10.1016/j.neuropsychologia.2019.107292CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Rieger, S. W., Corradi-Dell’Acqua, C., Neveu, R., & Vuilleumier, P. (2017). Fear Spreading across senses: Visual emotional events alter cortical responses to touch, audition, and vision. Cerebral Cortex, 27, 68–82.10.1093/cercor/bhw337CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Saj, A., Armony, J. L., & Vuilleumier, P. (2012). Emotional processing and its impact on unilateral neglect and extinction. Neuropsychologia, 50, 1054–1071.10.1016/j.neuropsychologia.2012.03.003CrossRefGoogle ScholarPubMed
Doron, N. N., & Ledoux, J. E. (1999). Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. The Journal of Comparative Neurology, 412, 383–409.10.1002/(SICI)1096-9861(19990927)412:3<383::AID-CNE2>3.0.CO;2-53.0.CO;2-5>CrossRefGoogle Scholar
Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18, 1475–1484.10.1093/cercor/bhm179CrossRefGoogle ScholarPubMed
Elorette, C., Forcelli, P. A., Saunders, R. C., & Malkova, L. (2018). Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Frontiers in Neural Circuits, 12, 91.10.3389/fncir.2018.00091CrossRefGoogle ScholarPubMed
Enea, V., & Iancu, S. (2016). Processing emotional body expressions: State-of-the-art. Society of Neuroscience, 11, 495–506.10.1080/17470919.2015.1114020CrossRefGoogle ScholarPubMed
Fan, Y., Gold, J. I., & Ding, L. (2020). Frontal eye field and caudate neurons make different contributions to reward-biased perceptual decisions. eLife, 9, 1–24.10.7554/eLife.60535CrossRefGoogle ScholarPubMed
Fecteau, S., Belin, P., Joanette, Y., & Armony, J. L. (2007). Amygdala responses to nonlinguistic emotional vocalizations. Neuroimage, 36, 480–487.10.1016/j.neuroimage.2007.02.043CrossRefGoogle ScholarPubMed
Fenske, M. J., & Eastwood, J. D. (2003). Modulation of focused attention by faces expressing emotion: Evidence from flanker tasks. Emotion, 3, 327–343.10.1037/1528-3542.3.4.327CrossRefGoogle ScholarPubMed
Flykt, A. (2005). Visual search with biological threat stimuli: Accuracy, reaction times, and heart rate changes. Emotion, 5, 349–353.10.1037/1528-3542.5.3.349CrossRefGoogle ScholarPubMed
Flykt, A., & Caldara, R. (2006). Tracking fear in snake and spider fearful participants during visual search: A multi-response domain study. Cognition and Emotion, 20, 1075–1091.10.1080/02699930500381405CrossRefGoogle Scholar
Forbes, S. J., Purkis, H. M., & Lipp, O. V. (2011). Better safe than sorry: Simplistic fear-relevant stimuli capture attention. Cognition and Emotion, 25, 794–804.10.1080/02699931.2010.514710CrossRefGoogle ScholarPubMed
Framorando, D., Moses, E., Legrand, L., Seeck, M., & Pegna, A. J. (2021). Rapid processing of fearful faces relies on the right amygdala: Evidence from individuals undergoing unilateral temporal lobectomy. Scientific Reports, 11, 426.10.1038/s41598-020-80054-1CrossRefGoogle ScholarPubMed
Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 1367–1378.10.1098/rstb.2004.1512CrossRefGoogle ScholarPubMed
Freese, J. L., & Amaral, D. G. (2006). Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. The Journal of Comparative Neurology, 496, 295–317.10.1002/cne.20945CrossRefGoogle ScholarPubMed
Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., Vuilleumier, P., & Grandjean, D. (2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112, 1583–1588.Google ScholarPubMed
Gerritsen, C., Frischen, A., Blake, A., Smilek, D., & Eastwood, J. D. (2008). Visual search is not blind to emotion. Perception & Psychophysics, 70, 1047–1059.10.3758/PP.70.6.1047CrossRefGoogle Scholar
Gillet, S. N., Kato, H. K., Justen, M. A., Lai, M., & Isaacson, J. S. (2018). Fear learning regulates cortical sensory representations by suppressing habituation. Frontiers in Neural Circuits, 11, 112.10.3389/fncir.2017.00112CrossRefGoogle ScholarPubMed
Gootjes, L., Coppens, L. C., Zwaan, R. A., Franken, I. H., & Van Strien, J. W. (2011). Effects of recent word exposure on emotion-word Stroop interference: An ERP study. International Journal of Psychophysiology, 79, 356–363.10.1016/j.ijpsycho.2010.12.003CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Lucas, N., Scherer, K. R., & Vuilleumier, P. (2008). Effects of emotional prosody on auditory extinction for voices in patients with spatial neglect. Neuropsychologia, 46, 487–496.10.1016/j.neuropsychologia.2007.08.025CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8, 145–146.10.1038/nn1392CrossRefGoogle ScholarPubMed
Guex, R., Hofstetter, C., Domínguez-Borràs, J., Méndez-Bértolo, C., Sterpenich, V., Spinelli, L., … Vuilleumier, P. (2019). Neurophysiological evidence for early modulation of amygdala activity by emotional reappraisal. Biological Psychology, 145, 211–223.10.1016/j.biopsycho.2019.05.006CrossRefGoogle ScholarPubMed
Guex, R., Méndez-Bértolo, C., Moratti, S., Strange, B. A., Spinelli, L., Murray, R. J., … Domínguez-Borràs, J. (2020). Temporal dynamics of amygdala response to emotion- and action-relevance. Scientific Reports, 10, 11138.10.1038/s41598-020-67862-1CrossRefGoogle ScholarPubMed
Gupta, R. (2019). Positive emotions have a unique capacity to capture attention. Progress in Brain Research, 247, 23–46.10.1016/bs.pbr.2019.02.001CrossRefGoogle ScholarPubMed
Hadj-Bouziane, F., Liu, N., Bell, A. H., Gothard, K. M., Luh, W. M., Tootell, R. B., … Ungerleider, L. G. (2012). Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, E3640–E3648.Google ScholarPubMed
Hedger, N., Gray, K. L. H., Garner, M., & Adams, W. J. (2016). Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers. Psychological Bulletin, 142, 934–968.10.1037/bul0000054CrossRefGoogle ScholarPubMed
Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 146, 105637.10.1016/j.bandc.2020.105637CrossRefGoogle ScholarPubMed
Hikosaka, O., Kim, H. F., Yasuda, M., & Yamamoto, S. (2014). Basal ganglia circuits for reward value-guided behavior. Annual Review of Neuroscience, 37, 289–306.10.1146/annurev-neuro-071013-013924CrossRefGoogle ScholarPubMed
Hinojosa, J. A., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: A meta-analysis. Neuroscience & Biobehavioral Review, 55, 498–509.10.1016/j.neubiorev.2015.06.002CrossRefGoogle ScholarPubMed
Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148–155.10.1016/j.conb.2004.03.007CrossRefGoogle ScholarPubMed
Holmes, A., Vuilleumier, P., & Eimer, M. (2003). The processing of emotional facial expression is gated by spatial attention: Evidence from event-related brain potentials. Brain Research. Cognitive Brain Research, 16, 174–184.10.1016/S0926-6410(02)00268-9CrossRefGoogle ScholarPubMed
Inagaki, M., Inoue, K., Tanabe, S., Kimura, K., Takada, M., & Fujita, I. (2023). Rapid processing of threatening faces in the amygdala of nonhuman primates: Subcortical inputs and dual roles. Cerebral Cortex, 33, 895–915.10.1093/cercor/bhac109CrossRefGoogle ScholarPubMed
Itthipuripat, S., Vo, V. A., Sprague, T. C., & Serences, J. T. (2019). Value-driven attentional capture enhances distractor representations in early visual cortex. PLoS Biology, 17, e3000186.10.1371/journal.pbio.3000186CrossRefGoogle ScholarPubMed
Kawai, N., & Koda, H. (2016). Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals. Journal of Comparative Psychology, 130, 299–303.10.1037/com0000032CrossRefGoogle Scholar
Kawasaki, H., Kaufman, O., Damasio, H., Damasio, A. R., Granner, M., Bakken, H., … Adolphs, R. (2001). Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nature Neuroscience, 4, 15–16.10.1038/82850CrossRefGoogle Scholar
Keifer, O. P., Gutman, D. A., Hecht, E. E., Keilholz, S. D., & Ressler, K. J. (2015). A comparative analysis of mouse and human medial geniculate nucleus connectivity: A DTI and anterograde tracing study. Neuroimage, 105, 53–66.10.1016/j.neuroimage.2014.10.047CrossRefGoogle ScholarPubMed
Keil, A., & Ihssen, N. (2004). Identification facilitation for emotionally arousing verbs during the attentional blink. Emotion, 4, 23–35.10.1037/1528-3542.4.1.23CrossRefGoogle ScholarPubMed
Kessel, D., García-Rubio, M. J., González, E. K., Tapia, M., López-Martín, S., Román, F. J., … Carretié, L. (2016). Working memory of emotional stimuli: Electrophysiological characterization. Biological Psychology, 119, 190–199.10.1016/j.biopsycho.2016.07.009CrossRefGoogle ScholarPubMed
Khalid, S., Horstmann, G., Ditye, T., & Ansorge, U. (2017). Measuring the emotion-specificity of rapid stimulus-driven attraction of attention to fearful faces: Evidence from emotion categorization and a comparison with disgusted faces. Psychological Research, 81, 508–523.10.1007/s00426-016-0743-8CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.10.1016/j.neuron.2021.06.001CrossRefGoogle ScholarPubMed
Kragel, P. A., Kano, M., Van Oudenhove, L., Ly, H. G., Dupont, P., Rubio, A., … Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nature Neuroscience, 21, 283–289.10.1038/s41593-017-0051-7CrossRefGoogle ScholarPubMed
Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5, eaaw4358.10.1126/sciadv.aaw4358CrossRefGoogle ScholarPubMed
Kunimatsu, J., Yamamoto, S., Maeda, K., & Hikosaka, O. (2021). Environment-based object values learned by local network in the striatum tail. Proceedings of the National Academy of Sciences of the United States of America, 118, e2013623118.Google ScholarPubMed
Le, Q. V., Isbell, L. A., Matsumoto, J., Le, V. Q., Nishimaru, H., Hori, E., … Nishijo, H. (2016). Snakes elicit earlier, and monkey faces, later, gamma oscillations in macaque pulvinar neurons. Scientific Reports, 6, 20595.10.1038/srep20595CrossRefGoogle ScholarPubMed
Lecce, F., Rotondaro, F., Bonnì, S., Carlesimo, A., Thiebaut De Schotten, M., Tomaiuolo, F., & Doricchi, F. (2015). Cingulate neglect in humans: Disruption of contralesional reward learning in right brain damage. Cortex, 62, 73–88.10.1016/j.cortex.2014.08.008CrossRefGoogle ScholarPubMed
Li, K., Bentley, P., Nair, A., Halse, O., Barker, G., Russell, C., … Malhotra, P. A. (2020). Reward sensitivity predicts dopaminergic response in spatial neglect. Cortex, 122, 213–224.10.1016/j.cortex.2018.09.002CrossRefGoogle ScholarPubMed
LoBue, V., & Adolph, K. E. (2019). Fear in infancy: Lessons from snakes, spiders, heights, and strangers. Developmental Psychology, 55, 1889–1907.10.1037/dev0000675CrossRefGoogle ScholarPubMed
Lucas, N., Schwartz, S., Leroy, R., Pavin, S., Diserens, K., & Vuilleumier, P. (2013). Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 49, 2616–2627.10.1016/j.cortex.2013.06.004CrossRefGoogle ScholarPubMed
Lucas, N., & Vuilleumier, P. (2008). Effects of emotional and non-emotional cues on visual search in neglect patients: Evidence for distinct sources of attentional guidance. Neuropsychologia, 46, 1401–1414.10.1016/j.neuropsychologia.2007.12.027CrossRefGoogle ScholarPubMed
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4, 432–440.10.1016/S1364-6613(00)01545-XCrossRefGoogle ScholarPubMed
Lundqvist, D., Bruce, N., & Öhman, A. (2015). Finding an emotional face in a crowd: Emotional and perceptual stimulus factors influence visual search efficiency. Cognition and Emotion, 29, 621–633.10.1080/02699931.2014.927352CrossRefGoogle Scholar
Malhotra, P. A., Soto, D., Li, K., & Russell, C. (2013). Reward modulates spatial neglect. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 366–369.10.1136/jnnp-2012-303169CrossRefGoogle ScholarPubMed
Markovic, J., Anderson, A. K., & Todd, R. M. (2014). Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research, 259, 229–241.10.1016/j.bbr.2013.11.018CrossRefGoogle Scholar
Mashour, G. A., Roelfsema, P., Changeux, J. P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105, 776–798.10.1016/j.neuron.2020.01.026CrossRefGoogle ScholarPubMed
Maunsell, J. H. R. (2004). Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences, 8, 261–265.10.1016/j.tics.2004.04.003CrossRefGoogle ScholarPubMed
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews Neuroscience, 21, 264–276.10.1038/s41583-020-0287-1CrossRefGoogle ScholarPubMed
McFadyen, J., Mermillod, M., Mattingley, J., Halász, V., & Garrido, M. (2016). A rapid subcortical amygdala route for faces irrespective of spatial frequency and emotion. Journal of Neuroscience, 37, 3864–3874.Google Scholar
McHugo, M., Olatunji, B. O., & Zald, D. H. (2013). The emotional attentional blink: What we know so far. Frontiers in Human Neuroscience, 7, 151.10.3389/fnhum.2013.00151CrossRefGoogle ScholarPubMed
Meaux, E., Sterpenich, V., & Vuilleumier, P. (2019). Emotional learning promotes perceptual predictions by remodeling stimulus representation in visual cortex. Scientific Reports, 9, 16867.10.1038/s41598-019-52615-6CrossRefGoogle ScholarPubMed
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martinez-Alvarez, R., Mah, Y. H., … Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 1041–1049.10.1038/nn.4324CrossRefGoogle ScholarPubMed
Mineur, Y. S., & Picciotto, M. R. (2021). The role of acetylcholine in negative encoding bias: Too much of a good thing? European Journal of Neuroscience, 53, 114–125.10.1111/ejn.14641CrossRefGoogle ScholarPubMed
Mogg, K., & Bradley, B. P. (2018). Anxiety and threat-related attention: Cognitive-motivational framework and treatment. Trends in Cognitive Sciences, 22, 225–240.10.1016/j.tics.2018.01.001CrossRefGoogle ScholarPubMed
Mohanty, A., Egner, T., Monti, J. M., & Mesulam, M. M. (2009). Search for a threatening target triggers limbic guidance of spatial attention. Journal of Neuroscience, 29, 10563–10572.10.1523/JNEUROSCI.1170-09.2009CrossRefGoogle ScholarPubMed
Morris, J. S., Friston, K. J., Buchel, C., Frith, C. D., Young, A. W., Calder, A. J., & Dolan, R. J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121, 47–57.10.1093/brain/121.1.47CrossRefGoogle ScholarPubMed
Paulmann, S., Bleichner, M., & Kotz, S. A. E. (2013). Valence, arousal, and task effects in emotional prosody processing. Frontiers in Psychology, 4, 345.10.3389/fpsyg.2013.00345CrossRefGoogle ScholarPubMed
Peelen, M. V, Atkinson, A. P., Andersson, F., & Vuilleumier, P. (2007). Emotional modulation of body-selective visual areas. Social Cognitive and Affective Neuroscience, 2, 274–283.10.1093/scan/nsm023CrossRefGoogle ScholarPubMed
Pessoa, L., McKenna, M., Gutierrez, E., & Ungerleider, L. G. (2002). Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences of the United States of America, 99, 11458–11463.Google ScholarPubMed
Pessoa, L., Padmala, S., Kenzer, A., & Bauer, A. (2012). Interactions between cognition and emotion during response inhibition. Emotion, 12, 192–197.10.1037/a0024109CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175–187.10.1016/j.neuron.2005.09.025CrossRefGoogle ScholarPubMed
Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17, 292–299.10.1111/j.1467-9280.2006.01701.xCrossRefGoogle ScholarPubMed
Pichon, S., Miendlarzewska, E. A., Eryilmaz, H., & Vuilleumier, P. (2015). Cumulative activation during positive and negative events and state anxiety predicts subsequent inertia of amygdala reactivity. Social Cognitive and Affective Neuroscience, 10, 180–190.10.1093/scan/nsu044CrossRefGoogle ScholarPubMed
Piguet, C., Sterpenich, V., Desseilles, M., Cojan, Y., Bertschy, G., & Vuilleumier, P. (2013). Neural substrates of cognitive switching and inhibition in a face processing task. NeuroImage, 82, 489–499.10.1016/j.neuroimage.2013.06.015CrossRefGoogle Scholar
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619–633.10.1093/cercor/bhh023CrossRefGoogle ScholarPubMed
Pourtois, G., Schettino, A., & Vuilleumier, P. (2012). Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology, 92, 492–512.Google ScholarPubMed
Pourtois, G., Spinelli, L., Seeck, M., & Vuilleumier, P. (2010). Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy. Cognitive, Affective, & Behavioral Neuroscience, 10, 83–93.10.3758/CABN.10.1.83CrossRefGoogle ScholarPubMed
Provenzano, J., Verduyn, P., Daniels, N., Fossati, P., & Kuppens, P. (2019). Mood congruency effects are mediated by shifts in salience and central executive network efficiency. Social Cognitive and Affective Neuroscience, 14, 987–995.10.1093/scan/nsz065CrossRefGoogle ScholarPubMed
Puls, S., & Rothermund, K. (2018). Attending to emotional expressions: No evidence for automatic capture in the dot-probe task. Cognition and Emotion, 32, 450–463.10.1080/02699931.2017.1314932CrossRefGoogle ScholarPubMed
Qiu, Z., Lei, X., Becker, S. I., & Pegna, A. J. (2022). Neural activities during the processing of unattended and unseen emotional faces: A voxel-wise meta-analysis. Brain Imaging and Behavior, 16, 2426–2443.10.1007/s11682-022-00697-8CrossRefGoogle ScholarPubMed
Reisch, L. M., Wegrzyn, M., Woermann, F. G., Bien, C. G., & Kissler, J. (2020). Negative content enhances stimulus-specific cerebral activity during free viewing of pictures, faces, and words. Human Brain Mapping, 41, 4332–4354.10.1002/hbm.25128CrossRefGoogle ScholarPubMed
Rotshtein, P., Richardson, M. P., Winston, J. S., Kiebel, S. J., Vuilleumier, P., Eimer, M., … Dolan, R. J. (2010). Amygdala damage affects event-related potentials for fearful faces at specific time windows. Human Brain Mapping, 31, 1089–1105.10.1002/hbm.20921CrossRefGoogle ScholarPubMed
Sabatinelli, D., & Frank, D. W. (2019). Assessing the primacy of human amygdala-inferotemporal emotional scene discrimination with rapid whole-brain fMRI. Neuroscience, 406, 212–224.10.1016/j.neuroscience.2019.03.001CrossRefGoogle ScholarPubMed
Sagliano, L., Trojano, L., Di Mauro, V., Carnevale, P., Di Domenico, M., Cozzolino, C., & D’Olimpio, F. (2018). Attentional biases for threat after fear-related autobiographical recall. Anxiety Stress Coping, 31, 69–78.10.1080/10615806.2017.1362297CrossRefGoogle ScholarPubMed
Savage, R. A., & Lipp, O. V. (2014). The effect of face inversion on the detection of emotional faces in visual search. Cognition and Emotion, 29, 972–991.Google ScholarPubMed
Sawada, R., Sato, W., Nakashima, R., & Kumada, T. (2022). How are emotional facial expressions detected rapidly and accurately? A diffusion model analysis. Cognition, 229, 105235.10.1016/j.cognition.2022.105235CrossRefGoogle ScholarPubMed
Schindler, S., & Bublatzky, F. (2020). Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex, 130, 362–386.10.1016/j.cortex.2020.06.010CrossRefGoogle ScholarPubMed
Schlochtermeier, L. H., Kuchinke, L., Pehrs, C., Urton, K., Kappelhoff, H., & Jacobs, A. M. (2013). Emotional picture and word processing: An FMRI study on effects of stimulus complexity. PLoS ONE, 8, e55619.10.1371/journal.pone.0055619CrossRefGoogle Scholar
Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29, 687–694.10.1080/02699931.2014.924484CrossRefGoogle ScholarPubMed
Schultebraucks, K., Deuter, C. E., Duesenberg, M., Schulze, L., Hellmann-Regen, J., Domke, A., … Wingenfeld, K. (2016). Selective attention to emotional cues and emotion recognition in healthy subjects: The role of mineralocorticoid receptor stimulation. Psychopharmacology, 233, 3405–3415.10.1007/s00213-016-4380-0CrossRefGoogle ScholarPubMed
Schupp, H. T., & Kirmse, U. (2021). Neural correlates of affective stimulus evaluation: A case-by-case analysis. Social Cognitive and Affective Neuroscience, 17, 300–310.Google ScholarPubMed
Senderecka, M. (2018). Emotional enhancement of error detection. The role of perceptual processing and inhibition monitoring in failed auditory stop trials. Cognitive, Affective, & Behavioral Neuroscience, 18, 1–20.10.3758/s13415-017-0546-4CrossRefGoogle ScholarPubMed
Shasteen, J. R., Sasson, N. J., & Pinkham, A. E. (2015). A detection advantage for facial threat in the absence of anger. Emotion, 15, 837–845.10.1037/emo0000090CrossRefGoogle ScholarPubMed
Silvert, L., Lepsien, J., Fragopanagos, N., Goolsby, B., Kiss, M., Taylor, J. G., … Nobre, A. C. (2007). Influence of attentional demands on the processing of emotional facial expressions in the amygdala. NeuroImage, 38, 357–366.10.1016/j.neuroimage.2007.07.023CrossRefGoogle ScholarPubMed
Song, S., Zilverstand, A., Song, H., d’Oleire Uquillas, F., Wang, Y., Xie, C., … Zou, Z. (2017). The influence of emotional interference on cognitive control: A meta-analysis of neuroimaging studies using the emotional Stroop task. Scientific Reports, 7, 2088.Google ScholarPubMed
Sterpenich, V., Piguet, C., Desseilles, M., Ceravolo, L., Gschwind, M., Van De Ville, D., … Schwartz, S. (2014). Sleep sharpens sensory stimulus coding in human visual cortex after fear conditioning. Neuroimage, 100, 608–618.10.1016/j.neuroimage.2014.06.003CrossRefGoogle Scholar
Stolarova, M., Keil, A., & Moratti, S. (2006). Modulation of the C1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception. Cerebral Cortex, 16, 876–887.10.1093/cercor/bhj031CrossRefGoogle ScholarPubMed
Todd, R. M., Miskovic, V., Chikazoe, J., & Anderson, A. K. (2020). Emotional objectivity: Neural representations of emotions and their interaction with cognition. Annual Review of Psychology, 71, 25–48.10.1146/annurev-psych-010419-051044CrossRefGoogle ScholarPubMed
Tolomeo, S., Christmas, D., Jentzsch, I., Johnston, B., Sprengelmeyer, R., Matthews, K., & Douglas Steele, J. (2016). A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control. Brain, 139, 1844–1854.10.1093/brain/aww069CrossRefGoogle ScholarPubMed
Torres-Quesada, M., Korb, F. M., Funes, M. J., Lupiáñez, J., & Egner, T. (2014). Comparing neural substrates of emotional vs. non-emotional conflict modulation by global control context. Frontiers in Human Neuroscience, 8, 66.10.3389/fnhum.2014.00066CrossRefGoogle ScholarPubMed
Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12, 1224–1225.10.1038/nn.2380CrossRefGoogle ScholarPubMed
Vetter, P., Badde, S., Phelps, E. A., & Carrasco, M. (2019). Emotional faces guide the eyes in the absence of awareness. eLife, 8, e43467.10.7554/eLife.43467CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585–594.10.1016/j.tics.2005.10.011CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2013). Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: Progress and challenges. Annals of the New York Academy of Sciences, 1296, 50–74.10.1111/nyas.12161CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Clarke, K., Husain, M., Driver, J., & Dolan, R. J. (2002). Neural response to emotional faces with and without awareness: Event-related fMRI in a parietal patient with visual extinction and spatial neglect. Neuropsychologia, 40, 2156–2166.10.1016/S0028-3932(02)00045-3CrossRefGoogle Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron, 30, 829–841.10.1016/S0896-6273(01)00328-2CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624–631.10.1038/nn1057CrossRefGoogle ScholarPubMed
Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J., & Dolan, R. J. (2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience, 7, 1271–1278.10.1038/nn1341CrossRefGoogle ScholarPubMed
Vuilleumier, P., Schwartz, S., Verdon, V., Maravita, A., Hutton, C., Husain, M., & Driver, J. (2008). Abnormal attentional modulation of retinotopic cortex in parietal patients with spatial neglect. Current Biology, 18, 1525–1529.10.1016/j.cub.2008.10.021CrossRefGoogle ScholarPubMed
Waechter, S., Nelson, A. L., Wright, C., Hyatt, A., & Oakman, J. (2014). Measuring attentional bias to threat: Reliability of dot probe and eye movement indices. Cognitive Therapy and Research, 38, 313–333.10.1007/s10608-013-9588-2CrossRefGoogle Scholar
Wang, S., Yu, R., Tyszka, J. M., Zhen, S., Kovach, C., Sun, S., … Rutishauser, U. (2017). The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 8, 14821.Google ScholarPubMed
Wang, Y., Luo, L., Chen, G., Luan, G., Wang, X., Wang, Q., & Fang, F. (2023). Rapid processing of invisible fearful faces in the human amygdala. Journal of Neuroscience, 43, 1405–1413.10.1523/JNEUROSCI.1294-22.2022CrossRefGoogle ScholarPubMed
Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., … Wang, L. (2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications, 6, 6756.Google ScholarPubMed
Zerbi, V., Floriou-Servou, A., Markicevic, M., Vermeiren, Y., Sturman, O., Privitera, M., … Bohacek, J. (2019). Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron, 103, 702–718.10.1016/j.neuron.2019.05.034CrossRefGoogle ScholarPubMed
Zinchenko, A., Kotz, S. A., Schröger, E., & Kanske, P. (2020). Moving towards dynamics: Emotional modulation of cognitive and emotional control. International Journal of Psychophysiology, 147, 193–201.10.1016/j.ijpsycho.2019.10.018CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×