Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:50:34.876Z Has data issue: false hasContentIssue false

Part VIII - Abnormal Behavior and Evolutionary Psychopathology

Published online by Cambridge University Press:  02 March 2020

Lance Workman
Affiliation:
University of South Wales
Will Reader
Affiliation:
Sheffield Hallam University
Jerome H. Barkow
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Brewer, R., Cook, R., & Bird, G. (2016). Alexithymia: A general deficit of interoception. Royal Society Open Science, 3(10), 150664.CrossRefGoogle ScholarPubMed
Del Giudice, M. (2018). Evolutionary Psychopathology: A Unified Approach. New York: Oxford University Press.Google Scholar
Gilbert, P. (2009). The Compassionate Mind: A New Approach to the Challenge of Life. London: Constable & Robinson.Google Scholar
McGuire, M. T., & Troisi, A. (1998). Darwinian Psychiatry. New York: Oxford University Press.Google Scholar
Nesse, R. M., & Williams, G. C. (1995). Evolution and Healing: The New Science of Darwinian Medicine. London: Weidenfeld and Nicolson.Google Scholar
Ray, W. J. (2018). Abnormal Psychology: Neuroscience Determinants of Human Behavior and Experience, 2nd ed. Thousand Oaks, CA: Sage.Google Scholar
White, T. D., Asfaw, B., Beyene, Y., et al. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326 (5949), 7586.Google Scholar

References

Allen, N., & Badcock, P. (2003). The social risk hypothesis of depressed mood: Evolutionary, psychosocial, and neurobiological perspectives. Psychological Bulletin, 129, 887913.Google Scholar
Andreasen, N. (2001). Brave New Brain. New York: Oxford University Press.Google Scholar
Andreasen, N. (2005). The Creating Brain: The Neuroscience of Genius. New York: Dana Press.Google Scholar
Andrews, P. (2007). Reconstructing the evolution of the mind is depressingly difficult. In Gangestad, S. & Simpson, J., eds., The Evolution of Mind. New York: Guilford Press, pp. 4552.Google Scholar
Bailey, K. (1987). Human Paleopsychology. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Barak, B., & Feng, G. (2016). Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nature Neuroscience, 19, 647655.Google Scholar
Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Sciences, 6, 248254.CrossRefGoogle ScholarPubMed
Belsky, J. (2005). Differential susceptibility to rearing influence: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D., eds., Origins of the Social Mind: Evolutionary Psychology and Child Development. New York: Guilford Press, pp. 139163.Google Scholar
Bowlby, J. (1951). Maternal Care and Mental Health. Geneva: World Health Organization Press.Google ScholarPubMed
Bowlby, J. (1961). Childhood mourning and its implications for psychiatry. The Adolf Meyer Lecture. American Journal of Psychiatry, 118, 481497.Google Scholar
Bowlby, J. (1969). Attachment and Loss: Vol. 1. Attachment. London: Hogarth.Google Scholar
Bowlby, J. (1982). Attachment and loss: Retrospect and prospect. American Journal of Orthopsychiatry, 52, 664678.Google Scholar
Bowlby, J. (1988). A Secure Base: Clinical Applications of Attachment Theory. London: Routledge.Google Scholar
Bressler, S., & Menon, V. (2010). Large scale brain networks in cognition emerging methods and principles. Trends in Cognitive Sciences, 14, 277290.Google Scholar
Burns, J. (2004). An evolutionary theory of schizophrenia: Cortical connectivity, metarepresentation, and the social brain. Behavioral and Brain Sciences, 27, 831885.Google Scholar
Buss, D., ed. (2015). The Handbook of Evolutionary Psychology. Hoboken, NJ: Wiley.Google Scholar
Carhart-Harris, R. L., & Friston, K. J. (2010). The default-mode, ego-functions and free-energy: A neurobiological account of Freudian ideas. Brain, 133(4), 12651283.Google Scholar
Chamberlain, S., Menzies, L., Hampshire, A., et al. (2008). Orbitofrontal dysfunction in patients with obsessive–compulsive disorder and their unaffected relatives. Science, 321, 421422.Google Scholar
Crow, T. (2000). Schizophrenia as the price that Homo sapiens pays for language: A resolution of the central paradox in the origin of the species. Brain Research Reviews, 31, 118129.Google Scholar
Feygin, D., Swain, J., & Leckman, J. (2006). The normalcy of neurosis: Evolutionary origins of obsessive–compulsive disorder and related behaviors. Progress in Neuropsychopharmacology & Biological Psychiatry, 30, 854864.CrossRefGoogle ScholarPubMed
Frith, C. (1992). The Cognitive Neuropsychology of Schizophrenia. London: LEA.Google Scholar
Gilbert, P. (2005). Evolution and depression: Issues and implications. Psychological Medicine, 36, 287297.Google Scholar
Harpending, H., & Sobus, J. (1987). Sociopathy as an adaptation. Ethology and Sociobiology, 8, 6372.Google Scholar
Harris, J. C. (2016). The origin and natural history of autism spectrum disorders, Nature Neuroscience, 19, 13901391.CrossRefGoogle ScholarPubMed
Huxley, J., Mayr, E., Osmond, H., & Hoffer, A. (1964). Schizophrenia as a genetic morphism. Nature, 204, 220221.Google Scholar
Jamison, K. (1993). Touched with Fire. New York: Simon & Schuster.Google Scholar
Menon, V. (2011). Large scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15, 483506.Google Scholar
Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., et al. (2005). Neural correlates of genetically abnormal social cognition in Williams syndrome. Nature Neuroscience, 8(8), 991993.Google Scholar
Meyer-Lindenberg, A., Mervis, C. B., & Berman, K. F. (2006). Neural mechanisms in Williams syndrome: A unique window to genetic influences on cognition and behaviour. Nature Reviews. Neuroscience, 7(5), 380393.Google Scholar
Mitchell, R., & Crow, T. (2005). Right hemisphere language functions and schizophrenia: The forgotten hemisphere? Brain, 128, 963978.Google Scholar
Murphy, J. (1976). Psychiatric labeling in cross-cultural perspective. Science, 191, 10191028.Google Scholar
Nesse, R. M. (1990). Evolutionary explanations of emotions. Human Nature, 1, 261289.Google Scholar
Nesse, R. M. (2005). Natural selection and the regulation of defenses: A signal detection analysis of the smoke detector principle. Evolution and Human Behavior, 26, 88105.Google Scholar
Neese, R. M. (2015). Evolutionary psychology and mental health. In Buss, D., ed., The Handbook of Evolutionary Psychology. Hoboken, NJ: Wiley, pp. 903927.CrossRefGoogle Scholar
Öhman, A. (2009). Of snakes and faces: An evolutionary perspective on the psychology of fear. Scandinavian Journal of Psychology, 50, 543552.Google Scholar
Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483522.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective Neuroscience: The Foundations of Human and Animal Emotions. New York: Oxford University Press.CrossRefGoogle Scholar
Panksepp, J., ed. (2004). Textbook of Biological Psychiatry. New York: Wiley.Google Scholar
Ploog, D. (2003). The place of the triune brain in psychiatry. Physiology and Behavior, 79, 487493.Google Scholar
Price, P. (1996). Biological Evolution. Pacific Grove, CA: Brooks/Cole.Google Scholar
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 413427.Google Scholar
Ray, W. J. (2013). Evolutionary Psychology: Neuroscience Determinants of Human Behavior and Experience, Thousand Oaks, CA: Sage.Google Scholar
Ray, W. J. (2018). Abnormal Psychology: Neuroscience Determinants of Human Behavior and Experience, 2nd ed. Thousand Oaks, CA: Sage.Google Scholar
Rutter, M. (2006). Genes and Behavior: Nature–Nurture Interplay Explained. Malden, MA: Blackwell Publishing.Google Scholar
Sartorius, N., Jablensky, A., Korten, A., et al. (1986). Early manifestations and first-contact incidence of schizophrenia in different cultures. A preliminary report on the initial evaluation phase of the WHO Collaborative Study on determinants of outcome of severe mental disorders. Psychological Medicine, 16, 909928.Google Scholar
Schulkin, J., & Ragian, G. (2014). The evolution of music and human social capability. Frontiers in Neuroscience, 8, 292.Google Scholar
Sulloway, F. (1979). Freud, Biologist of the Mind. New York: Basic Books.Google Scholar
Suomi, S. (1997). Early determinants of behavior: Evidence from primate studies. British Medical Bulletin, 53, 170184.Google Scholar
Suomi, S. (1999). Attachment in rhesus monkeys. In Cassidy, J. & Shaver, P., eds., Handbook of Attachment: Theory, Research, and Clinical Applications. New York: Guilford Press, pp. 181197.Google Scholar
Szasz, T. (1970). The Manufacture of Madness: A Comparative Study of the Inquisition and the Mental Health Movement. New York: Harper & Row.Google Scholar
Wakefield, J. (1992). The concept of mental disorder: On the boundary between biological facts and social values. American Psychologist, 47, 373388.Google Scholar
Wakefield, J. (2015). Biological function and dysfunction: Conceptual foundations of evolutionary psychopathology. In Buss, D., ed., The Handbook of Evolutionary Psychology. Hoboken, NJ: Wiley, pp. 9881006.Google Scholar
Wakefield, J. (2016). Diagnostic issues and controversies in DSM-5: Return of the false positives problem. Annual Review of Clinical Psychology, 12, 105132.Google Scholar
Walker, E., Kestler, L., Bollini, A., & Hochman, K. (2004). Schizophrenia: Etiology and course. Annual Review of Psychology, 55, 401430.CrossRefGoogle ScholarPubMed
Weiss, J. (1977). Psychosomatic disorders: Ulcers. In Maser, J. & Seligman, M., eds., Psychopathology: Experimental Models. San Francisco, CA: W. H. Freeman and Company.Google Scholar

References

Adriaens, P. R., & De Block, A. (2010). The evolutionary turn in psychiatry: A historical overview. History of Psychiatry, 21(82 Pt 2), 131143.Google Scholar
Baillie, D., McCabe, R., & Priebe, S. (2009). Aetiology of depression and schizophrenia: Current views of British psychiatrists. Psychiatric Bulletin, 33, 374377.Google Scholar
Baron-Cohen, S. (2010). Empathizing, systemizing, and the extreme male brain theory of autism. Progress Brain Research, 186, 167175.Google Scholar
Bateson, P., & Laland, K. N. (2013). Tinbergen’s four questions: An appreciation and an update. Trends in Ecology and Evolution, 28, 712718.Google Scholar
Belsky, J. (2016). The differential susceptibility hypothesis: Sensitivity to the environment for better and for worse. JAMA Pediatrics, 170(4), 321322.Google Scholar
Brockmann, H. J. (2001). The evolution of alternative strategies and tactics. Advances in the Study of Behavior, 30, 151.Google Scholar
Childs, B. (1999). Genetic Medicine. A Logic of Disease. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Chung, C. (2003). On the origin of the typological/population distinction in Ernst Mayr’s changing views of species, 1942–1959. Studies in History and Philosophy of Biology & Biomedical Sciences, 34, 277296.CrossRefGoogle Scholar
Crawford, C., & Krebs, D. (2008). Foundations of Evolutionary Psychology. New York: Lawrence Erlbaum.Google Scholar
Crespi, B. J., & Go, M. C. (2015). Diametrical diseases reflect evolutionary–genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evolution, Medicine, and Public Health, 1, 216253.Google Scholar
Davies, N. B., Krebs, J. R., & West, S. A. (2012). An Introduction to Behavioural Ecology, 4th ed. New York: Wiley-Blackwell.Google Scholar
Del Giudice, M. (2018). Evolutionary Psychopathology: A Unified Approach. New York: Oxford University Press.Google Scholar
Durrant, R., Adamson, S., Todd, F., & Sellman, D. (2009). Drug use and addiction: Evolutionary perspective. Australian New Zealand Journal of Psychiatry, 43(11), 10491056.Google Scholar
Evans, S. S., Repasky, E. A., & Fisher, D. T. (2015). Fever and the thermal regulation of immunity: The immune system feels the heat. Nature Review Immunology, 15(6), 335349.Google Scholar
Fabrega, H. Jr. (1997). Evolution of Sickness and Healing. Berkeley, CA: University of California Press.Google Scholar
Frances, A. (2012). There is a time and place for every umpire. Philosophy, Ethics, and Humanities in Medicine, 7, 2426.Google Scholar
Gabbard, G. O. (2005). Mind, brain, and personality disorders. American Journal of Psychiatry, 162(4), 648655.Google Scholar
Genné-Bacon, E. A. (2014). Thinking evolutionarily about obesity. Yale Journal of Biology and Medicine, 87(2), 99112.Google ScholarPubMed
Gibson, M. A., & Lawson, D. W. (2015). Applying evolutionary anthropology. Evolutionary Anthropology, 24(1), 314.CrossRefGoogle ScholarPubMed
Gluckman, P., & Hanson, M. (2006). Mismatch. Why Our World No Longer Fits Our Bodies. Oxford: Oxford University Press.Google Scholar
Gutwinski, S., Löscher, A., Mahler, L., et al. (2011). Understanding left-handedness. Deutsches Ärzteblatt International, 108, 849853.Google Scholar
Hale, W. W., 3rd, Jansen, J. H., Bouhuys, A. L., Jenner, J. A., & van den Hoofdakker, R. H. (1997). Non-verbal behavioral interactions of depressed patients with partners and strangers: The role of behavioral social support and involvement in depression persistence. Journal of Affective Disorders, 44, 111122.Google Scholar
Healy, D. (2014). Psychiatric “diseases” in history. History of Psychiatry, 25(4), 450458.Google Scholar
Henningsen, P. (2015). Still modern? Developing the biopsychosocial model for the 21st century. Journal of Psychosomatic Research, 79(5), 362363.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.Google Scholar
Kanaan, R. A., Armstrong, D., & Wessely, S. C. (2012). The function of “functional”: A mixed methods investigation. Journal of Neurology Neurosurgery and Psychiatry, 83(3), 248250.Google Scholar
Karen, R. (1994). Becoming Attached. New York: Warner.Google Scholar
Keller, M. C., & Miller, G. (2006). Resolving the paradox of common, harmful, heritable mental disorders: Which evolutionary genetic models work best? Behavioral Brain Sciences, 29, 385404.Google Scholar
Keller, M. C., & Nesse, R. M. (2006). The evolutionary significance of depressive symptoms: Different adverse situations lead to different depressive symptom patterns. Journal of Personality and Social Psychology, 91, 316330.Google Scholar
Kleinman, A. (1987). Anthropology and psychiatry. The role of culture in cross-cultural research on illness. British Journal of Psychiatry, 151, 447454.Google Scholar
Krupp, D. B., Sewall, L. A., Lalumière, M. L., Sheriff, C., & Harris, G. T. (2013). Psychopathy, adaptation, and disorder. Frontiers in Psychology, 4, 139.Google Scholar
Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: Is Mayr’s proximate-ultimate dichotomy still useful? Science, 334(6062), 15121516.Google Scholar
Martin, P., & Bateson, P. (2007). Measuring Behaviour. An Introductory Guide. Cambridge, UK: Cambridge University Press.Google Scholar
Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 15011506.Google Scholar
McGuire, M. T., & Troisi, A. (1998). Darwinian Psychiatry. New York: Oxford University Press.Google Scholar
Miresco, M. J., & Kirmayer, L. J. (2006). The persistence of mind–brain dualism in psychiatric reasoning about clinical scenarios. American Journal of Psychiatry, 163(5), 913918.Google Scholar
Nesse, R. M. (2004). Natural selection and the elusiveness of happiness. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1449), 13331347.Google Scholar
Nesse, R. M. (2005). Natural selection and the regulation of defenses: A signal detection analysis of the smoke detector principle. Evolution and Human Behavior, 26, 88105.Google Scholar
Nezlek, J. B., Hampton, C. P., & Shean, G. D. (2000). Clinical depression and day-to-day social interaction in a community sample. Journal of Abnormal Psychology, 109, 1119.Google Scholar
Panksepp, J., & Panksepp, J. B. (2000). The seven sins of evolutionary psychology. Evolution and Cognition, 6(2), 108131.Google Scholar
Pierre, J. (2012). Commentary. Philosophy, Ethics, and Humanities in Medicine, 7, 2122.Google Scholar
Pridmore, S. (2009). Australian Aboriginal stories and psychopathology. Asian Journal of Psychiatry, 2(4), 139142.Google Scholar
Sharpe, M., & Walker, J. (2009). Symptoms: A new approach. Psychiatry, 8, 146148.Google Scholar
Sherman, J. A. (2012). Evolutionary origin of bipolar disorder-revised: EOBD-R. Medical Hypotheses, 78(1), 113122.Google Scholar
Simpson, J. A., & Belsky, J. (2008). Attachment theory within a modern evolutionary framework. In Cassidy, J. & Shaver, P. R., eds.) Handbook of Attachment. Theory, Research, and Clinical Applications, 2nd ed. New York: Guilford Press, pp. 131157.Google Scholar
Srinivasan, S., Bettella, F., Mattingsdal, M., et al. (2016). Genetic markers of human evolution are enriched in schizophrenia. Biological Psychiatry, 80(4), 284292.Google Scholar
Stevens, A., & Price, J. (1996). Evolutionary Psychiatry: A New Beginning. New York: Routledge.Google Scholar
Symons, D. (1989). A critique of Darwinian anthropology. Ethology and Sociobiology, 10, 131144.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410433.Google Scholar
Troisi, A. (1999). Ethological research in clinical psychiatry: The study of nonverbal behavior during interviews. Neuroscience and Biobehavioral Review, 23, 905913.Google Scholar
Troisi, A. (2003). Psychopathology. In Maestripieri, D., ed., Primate Psychology. Cambridge, MA: Harvard University Press, pp. 451470.Google Scholar
Troisi, A. (2005). The concept of alternative strategies and its relevance to psychiatry and clinical psychology. Neuroscience and Biobehavioral Review, 29(1), 159168.Google Scholar
Troisi, A. (2006). Adaptationism and medicalization: The Scylla and Charybdis of Darwinian psychiatry. Behavioral and Brain Sciences, 29, 422423.Google Scholar
Troisi, A. (2011). Psychoactive drug use: Expand the scope of outcome assessment. Behavioral Brain Sciences, 34, 324325.Google Scholar
Troisi, A. (2012). Mental health and well-being: Clinical applications of Darwinian psychiatry. In Roberts, S., ed., Applied Evolutionary Psychology. New York: Oxford University Press, pp. 277289.Google Scholar
Troisi, A. (2015). The evolutionary diagnosis of mental disorder. Wiley Interdisciplinary Reviews Cognitive Science, 6(3), 323–331.Google Scholar
Troisi, A. (2017). The Painted Mind: Behavioral Science Reflected in Great Paintings. New York: Oxford University Press.Google Scholar
Troisi, A. (2018). Psychotraumatology: What researchers and clinicians can learn from an evolutionary perspective. Seminars in Cell & Developmental Biology, 77, 153160.Google Scholar
Vall, G., Gutiérrez, F., Peri, J. M., et al. (2016). Seven dimensions of personality pathology are under sexual selection in modern Spain. Evolution and Human Behavior, 37, 169178.Google Scholar

References

Alves, E., Fielder, A., Ghabriel, N., Sawyer, M., & Buisman-Pijlman, F. T. (2015). Early social environment affects the endogenous oxytocin system: A review and future directions. Frontiers in Endocrinology, 6, 32.Google Scholar
Bargh, J. (2017). Before You Know It: The Unconscious Reasons We Do What We Do. New York: Touchstone.Google Scholar
Barkow, J. H. (1989). Darwin, Sex, and Status. Toronto: Toronto University Press.Google Scholar
Bègue, L., Beauvois, J. L., Courbet, D., et al. (2015). Personality predicts obedience in a Milgram paradigm. Journal of Personality, 83(3), 299306.Google Scholar
Bergman, N. J., Linley, L. L., & Fawcus, S. R. (2004). Randomized controlled trial of skin‐to‐skin contact from birth versus conventional incubator for physiological stabilization in 1200‐to 2199‐gram newborns. Acta Paediatrica, 93(6), 779785.Google Scholar
Bornemann, B., Kok, B. E., Böckler, A., & Singer, T. (2016). Helping from the heart: Voluntary upregulation of heart rate variability predicts altruistic behavior. Biological Psychiatry, 119, 5463.Google Scholar
Bowlby, J. (1969). Attachment: Attachment and Loss, Vol. 1. London: Hogarth Press.Google Scholar
Bowlby, J. (1973). Separation, Anxiety and Anger. Attachment and Loss, Vol. 2. London: Hogarth Press.Google Scholar
Bowlby, J. (1980). Loss: Sadness and Depression. Attachment and Loss, Vol. 3. London: Hogarth Press.Google Scholar
Brown, S. L., & Brown, R. M. (2015). Connecting prosocial behavior to improved physical health: Contributions from the neurobiology of parenting. Neuroscience and Biobehavioral Reviews, 55, 117.Google Scholar
Burnstein, E., Crandall, C., & Kitayama, S. (1994). Some neo-Darwinian rules for altruism: Weighing cues for inclusive fitness as a function of biological importance of the decision. Journal of Personality and Social Psychology, 67, 773807.Google Scholar
Buss, D. (2015). Evolutionary Psychology: The New Science of the Mind. Hove: Psychology Press.Google Scholar
Carter, C. S. (2014). Oxytocin pathways and the evolution of human behavior. Annual Review of Psychology, 65, 1739.Google Scholar
Carter, C. S. (2014). Oxytocin pathways and the evolution of human behavior. Annual Review Psychology, 65, 1739.Google Scholar
Catarino, F., Gilbert, P., McEwan, K., & Baião, R. (2014). Compassion motivations: Distinguishing submissive compassion from genuine compassion and its association with shame, submissive behavior, depression, anxiety and stress. Journal of Social and Clinical Psychology, 33, 399412.Google Scholar
Cieri, R. L., Churchill, S. E., Franciscus, R. G., Tan, J., & Hare, B. (2014). Craniofacial feminization, social tolerance, and the origins of behavioral modernity. Current Anthropology, 55, 419443.Google Scholar
Cowan, C. S. M., Callaghan, B. L., Kan, J. M., & Richardson, R. (2016). The lasting impact of early‐life adversity on individuals and their descendants: Potential mechanisms and hope for intervention. Genes, Brain and Behavior, 15(1), 155168.Google Scholar
Crocker, J., & Canevello, A. (2012). Consequences of self-image and compassionate goals. In Devine, P. G. & Plant, A., eds., Advances in Experimental Social Psychology. New York: Elsevier, pp. 229277.Google Scholar
Dawkins, R. (1976). The Selfish Gene. London: Cape.Google Scholar
Decety, J., & Ickes, W., eds. (2011). The Social Neuroscience of Empathy. Cambridge, MA: Bradford Press.Google Scholar
Decety, J., & Cowell, J. M. (2014). Friends or foes: Is empathy necessary for moral behavior? Perspectives on Psychological Science, 9(5), 525537.Google Scholar
De Dreu, C. K. W., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. J. (2011). Oxytocin promotes human ethnocentrism. Proceedings of the National Academy of Sciences, 108, 12621266.Google Scholar
Del Giudice, M. (2016). The life history model of psychopathology explains the structure of psychiatric disorders and the emergence of the p factor: A simulation study. Clinical Psychological Science, 4(2), 299311.Google Scholar
Dunbar, R. I. M. (2007). Mind the bonding gap: Or why humans aren’t just great apes. Proceedings of the British Academy, 154, 403433.Google Scholar
Dunbar, R. I. M. (2010). The social role of touch in humans and primates: Behavioral function and neurobiological mechanisms. Neuroscience and Biobehavioral Reviews, 34, 260268.Google Scholar
Dunbar, R. (2016). Human Evolution. Oxford: Oxford University Press.Google Scholar
Ebert, A., Edel, M. A., Gilbert, P., & Brüne, M. (2018). Endogenous oxytocin is associated with the experience of compassion and recalled upbringing in borderline personality disorder. Depression and Anxiety, 35(1), 5057.Google Scholar
Eisenegger, C., Haushofer, J., & Fehr, E. (2011). The role of testosterone in social interaction. Trends in Cognitive Sciences, 15(6), 263271.Google Scholar
Farrelly, D., Clemson, P., & Guthrie, M. (2016). Are women’s mate preferences for altruism also influenced by physical attractiveness? Evolutionary Psychology, 14(1), 16.Google Scholar
Fogel, A., Melson, G. F., & Mistry, J. (1986). Conceptualising the determinants of nurturance: A reassessment of sex differences. In Fogel, A. & Melson, G. F., eds., Origins of Nurturance: Developmental, Biological and Cultural Perspectives on Caregiving. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., pp. 5367.Google Scholar
Fredrickson, B. L., Cohn, M. A., Coffey, K. A., Pek, J., & Finkel, S. A. (2008). Open hearts build lives: Positive emotions, induced through loving-kindness meditation, build consequential personal resources. Journal of Personality and Social Psychology, 95, 10451062.Google Scholar
Geary, D. C. (2000). Evolution and proximate expression of human parental investment. Psychological Bulletin, 126, 5577.Google Scholar
Geary, D. C., & Huffman, K. J. (2002). Brain and cognitive evolution: Forms of modularity and functions of the mind. Psychological Bulletin, 128, 667698.Google Scholar
Gilbert, P. (1989/2016). Human Nature and Suffering. Hove: Lawrence Erlbaum Associates.Google Scholar
Gilbert, P. (1994). Male violence: Towards an integration. In Archer, J., ed., Male Violence. London: Routledge and Kegan Paul, pp. 352389.Google Scholar
Gilbert, P. (1997). The evolution of social attractiveness and its role in shame, humiliation, guilt and therapy. British Journal of Medical Psychology, 70, 113147.Google Scholar
Gilbert, P. (2005). Compassion and cruelty: A biopsychosocial approach. In Gilbert, P., ed., Compassion: Conceptualisations, Research and Use in Psychotherapy. London: Routledge, pp. 374.Google Scholar
Gilbert, P. (2007). The evolution of shame as a marker for relationship security. In Tracy, J. L., Robins, R. W., & Tangney, J. P., eds., The Self-Conscious Emotions: Theory and Research. New York: Guilford, pp. 283309.Google Scholar
Gilbert, P. (2009). The Compassionate Mind: A New Approach to the Challenge of Life. London: Constable & Robinson.Google Scholar
Gilbert, P. (2010). Compassion Focused Therapy: The CBT Distinctive Features Series. London: Routledge.Google Scholar
Gilbert, P. (2014). The origins and nature of compassion focused therapy. British Journal of Clinical Psychology, 53, 641.Google Scholar
Gilbert, P. (2015). The evolution and social dynamics of compassion. Social and Personality Psychology Compass, 9, 239254.Google Scholar
Gilbert, P. (2017). Compassion as a social mentality: An evolutionary approach. In Gilbert, P., ed., Compassion: Concepts, Research and Applications. London: Routledge, pp. 3168.Google Scholar
Gilbert, P. (2018). Living Like Crazy. York: Annwyn House.Google Scholar
Gilbert, P., & Choden, (2013). Mindful Compassion. London: Constable & Robinson.Google Scholar
Gilbert, P., & Mascaro, J. (2017). Compassion: Fears, blocks, and resistances: An evolutionary investigation. In Sappla, E. & Doty, J., eds., Handbook of Compassion. New York: Oxford University Press, pp. 399420.Google Scholar
Gilbert, P., & McGuire, M. (1998). Shame, status and social roles: The psychobiological continuum from monkeys to humans. In Gilbert, P. & Andrews, B., eds., Shame: Interpersonal Behavior, Psychopathology and Culture. New York: Oxford University Press, pp. 99125.Google Scholar
Gilbert, P., Catarino, F., Duarte, C., et al. (2017a). The development of compassionate engagement and action scales for self and others. Journal of Compassionate Health Care, 4, 4.Google Scholar
Gilbert, P., Catarino, F., Sousa, J., et al. (2017b). Measuring competitive self-focus perspective taking, submissive compassion and compassion goals. Journal of Compassionate Health Care, 4, 5.Google Scholar
Gilmore, D. D. (1990). Manhood in the Making: Cultural Concepts of Masculinity. New Haven, CT: Yale University Press.Google Scholar
Goetz, J. E., Keltner, D., & Simon-Thomas, E. (2010). Compassion: An evolutionary analysis and empirical review. Psychological Bulletin. 136, 351374.Google Scholar
Goleman, D., & Davidson, R. J. (2017). Altered Traits: Science Reveals How Meditation Changes Your Mind, Brain, and Body. London: Penguin.Google Scholar
Goodall, J. (1990). Through a Window: My Thirty Years with the Chimpanzees of Gombe. London: Penguin.Google Scholar
Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108(4), 814834.Google Scholar
Harlow, H. F., & Mears, C. (1979). The Human Model: Primate Perspectives. New York: Winston & Sons.Google Scholar
Hauser, D. J., Preston, S. D., & Stansfield, R. B. (2014). Altruism in the wild: When affiliative motives to help positive people overtake empathic motives to help the distressed. Journal of Experimental Psychology: General, 143(3), 12951305.Google Scholar
Hofer, M. A. (1994). Early relationships as regulators of infant physiology and behavior. Acta Paediatiricia Supplement, 397, 918.Google Scholar
Holmes, J., & Slade, A., eds. (2018). Attachment in Therapeutic Practice. London: Routledge.Google Scholar
Hrdy, S. B. (2009). Mothers and Others. The Evolutionary Origins of Mutual Understanding. Boston, MA: Harvard University Press.Google Scholar
Huang, J. Y., & Bargh, J. A. (2014). The selfish goal: Autonomously operating motivational structures as the proximate cause of human judgment and behavior. Brain and Behavioral Sciences, 37, 121175.Google Scholar
Jaffee, S., & Hyde, J. S. (2000). Gender differences in moral orientation: A meta-analysis. Psychological Bulletin, 126, 703726.Google Scholar
Jensen-Campbell, L. A., Graziano, W. G., & West, S. G. (1995). Dominance, prosocial orientation, and female preferences: Do nice guys really finish last? Journal of Personality and Social Psychology, 68(3), 427440.Google Scholar
Johnson, S. (2002). Emergence: The Connected Lives of Ants, Brains, Cities and Software. London: Penguin.Google Scholar
Keltner, D. (2016). The Power Paradox: How We Gain and Lose Influence. London: Allen Lane.Google Scholar
Keltner, D., Kogan, A., Piff, P. K., & Saturn, S. R. (2014). The sociocultural appraisals, values, and emotions (SAVE) framework of prosociality: Core processes from gene to meme. Annual Review of Psychology, 65, 425460.Google Scholar
Kemper, T. D. (1990). Social Structure and Testosterone: Explorations of the Socio-Bio-Social Chain. New Brunswick, NJ: Rutgers University Press.Google Scholar
Kirby, J. N. (2017). Compassion interventions: The programmes, the evidence, and implications for research and practice. Psychology and Psychotherapy: Theory, Research and Practice, 90(3), 432455.Google Scholar
Kirby, J. N., & Gilbert, P. (2017). The emergence of the compassion focused therapies. In Gilbert, P., ed., Compassion: Concepts, Research and Applications. London: Routledge, pp. 258285.Google Scholar
Kirby, J. N., & Kirby, P. G. (2017). An evolutionary model to conceptualise masculinity and compassion in male teenagers: A unifying framework. Clinical Psychologist, 21(2), 7489.Google Scholar
Kirby, J. N., Doty, J., Petrocchi, N., & Gilbert, P. (2017a). The current and future role of heart rate variability for assessing and training compassion. Frontiers in Public Health, 5, 40.Google Scholar
Kirby, J. N., Tellegen, C. L., & Steindl, S. (2017b). A systematic review and meta-analysis of compassion-based interventions: Current state of knowledge and future directions. Behavior Therapy, 48(6), 778792.Google Scholar
Kogan, A., Saslow, L. R., Impett, E. A., et al. (2011). Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proceedings of the National Academy of Sciences, 108(48), 1918919192.Google Scholar
Kogan, A., Oveis, C., Carr, E. W., et al. (2014). Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality. Journal of Personality and Social Psychology, 107(6), 10511063.Google Scholar
Laursen, R. F., Siebner, H. R., Haren, T., et al. (2014). Variation in the oxytocin receptor gene is associated with behavioral and neural correlates of empathic accuracy. Frontiers in Behavioral Neuroscience, 8, 423.Google Scholar
Li, N. P., van Vugt, M., & Colarelli, S. M. (2017). The evolutionary mismatch hypothesis: Implications for psychological science. Current Directions in Psychological Science, 27, 3844.Google Scholar
Loewenstein, G., & Small, D. A. (2007). The scarecrow and the tin man: The vicissitudes of human sympathy and caring. Review of General Psychology, 11, 112126.Google Scholar
MacDonald, K. S. (2012). Sex, receptors, and attachment: A review of individual factors influencing response to oxytocin. Frontiers in Neuroscience, 6, 194.Google Scholar
MacLean, P. (1985). Brain evolution relating to family, play and the separation call. Archives of General Psychiatry, 42, 405417.Google Scholar
Mayseless, O. (2016). The Caring Motivation: An Integrated Theory. Oxford: Oxford University Press.Google Scholar
McGregor, I., & Marigold, D. C. (2003). Defensive zeal and the uncertain self: What makes you so sure? Journal of Personality and Social Psychology, 85, 838852.Google Scholar
Mikulincer, M., & Shaver, P. R. (2017). Attachment in Adulthood: Structure, Dynamics, and Change, 2nd ed. New York: Guilford.Google Scholar
Muller, M. N., Marlowe, F. W., Bugumba, R., & Ellison, P. T. (2009). Testosterone and paternal care in East African foragers and pastoralists. Proceedings of the Royal Society of Biological Sciences, 276, 347354.Google Scholar
Music, G. (2014). The Good Life: Wellbeing and the Neuroscience of Altruism, Selfishness and Immorality. London: Routledge.Google Scholar
Nell, V. (2006). Cruelty’s rewards: The gratifications of perpetrators and spectators. Behavioral and Brain Sciences, 29, 211257.Google Scholar
Nhat Hanh, T. (2009). The Blooming of a Lotus: Guided Meditation for Achieving the Miracle of Mindfulness. London: Beacon Press.Google Scholar
Park, G., & Thayer, J. F. (2014). From the heart to the mind: Cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Frontiers in Psychology, 5, 278.Google Scholar
Panksepp, J., & Panksepp, J. B. (2013). Toward a cross-species understanding of empathy. Trends in Neurosciences, 36, 489496.Google Scholar
Petrocchi, N, & Cheli, S. (2019). The social brain and heart rate variability: Implications for psychotherapy. Psychology and Psychotherapy: Special edition: Building an Integrative Science for Psychotherapy for the 21st-Century.Google Scholar
Piff, P. K. (2014). Wealth and The inflated self: Class, entitlement, and narcissism. Personality and Social Psychology Bulletin, 40, 3443.Google Scholar
Piff, P. K., Kraus, M. W., Côté, S., Cheng, B. H., & Keltner, D. (2010). Having less, giving more: The influence of social class on prosocial behavior. Journal of Personality and Social Psychology, 99, 771777.Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143.Google Scholar
Preston, S. D. (2013). The origins of altruism in offspring care. Psychological Bulletin, 139, 13051041.Google Scholar
Reed, A., & Aquino, K. F. (2003). Moral identity and the expanding circle of moral regard toward out groups. Journal of Personality and Social Psychology, 64, 12701286.Google Scholar
Rutter, M., Beckett, C., Castle, J., et al. (2007). Effects of profound early institutional deprivation: An overview of findings from a UK longitudinal study of Romanian adoptees. European Journal of Developmental Psychology, 4(3), 332350.Google Scholar
Sachs, J. (2012). The Price of Civilization: Economics and Ethics after the Fall. New York: Vintage.Google Scholar
Sapolsky, R. M. (2017). Behave: The Biology of Humans at Our Best and Worst. London: Penguin.Google Scholar
Sedikides, C., & Skowronski, J. J. (1997). The symbolic self in evolutionary context. Personality and Social Psychology Review, 1, 80102.Google Scholar
Seppälä, E. M., Simon-Thomas, E., Brown, S. L., Worline, M. C., Cameron, C. D., & Doty, J. R. (Eds.). (2017). The Oxford handbook of compassion science. New York: Oxford University Press.Google Scholar
Shamay-Tsoory, S. G., & Abu-Akel, A. (2016). The social salience hypothesis of oxytocin. Biological Psychiatry, 79(3), 194202.Google Scholar
Shonkoff, J. P., Garner, A. S., Siegel, B. S., et al.; Committee on Early Childhood, Adoption, and Dependent Care (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129(1), e232e246.Google Scholar
Siegel, D. J. (2016) Mind: A Journey to the Heart of Being Human. New York: Norton.Google Scholar
Siegel, D. J. (2011). Mindsight: Transform Your Brain with the New Science of Kindness. New York: One World Publications.Google Scholar
Singer, J. L. (2006). Imagery in Psychotherapy: New York: American Psychological Association.Google Scholar
Singer, T., & Bolz, M., eds. (2012). Compassion: Bridging practice and science. www.compassion-training.org.Google Scholar
Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24(18), r875r878.Google Scholar
Spikins, P. (2017). Prehistoric origin: The compassion of distant strangers. In Gilbert, P., ed., Compassion: Concepts, Research and Applications. London: Routledge, pp. 1630.Google Scholar
Spikins, P., Rutherford, H. E., & Needham, A. P. (2010). From homininity to humanity: Compassion from the earliest archaics to modern humans. Journal of Archaeology, Conscious and Culture, 3, 303325.Google Scholar
Suddendorf, T., & Whitten, A. (2001). Mental evolutions and development: Evidence for secondary representation in children, great apes and other animals. Psychological Bulletin, 127, 629650.Google Scholar
Taylor, C. (1989). Sources of the Self: The Making of the Modern Identity. Cambridge, UK: Cambridge University PressGoogle Scholar
Taylor, S. E. (2006). Tend and befriend: Biobehavioral bases of affiliation under stress. Current Directions in Psychological Science, 15, 273277.Google Scholar
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, self-regulation and the neurovisceral model of health. Annals of Behavioral Medicine, 37, 141153.Google Scholar
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747756.Google Scholar
Tinbergen, N. (1963). On the aims and methods of ethology. Zeit-schrift für Tierpsychologie, 20, 410433.Google Scholar
Trevarthen, C., & Aitken, K. (2001). Infant intersubjectivity: Research, theory, and clinical applications. Journal of Child Psychology and Psychiatry, 42, 348.Google Scholar
Tsering, G. T. (2005). The Four Noble Truths: The Foundation of Buddhist Thought, Vol. 1. Boston, MA: Wisdom Publications.Google Scholar
Tsering, G. T. (2008). The Awakening Mind: The Foundation of Buddhist Thought, Vol. 4. London: Wisdom Publications.Google Scholar
Warneken, F., & Tomasello, M. (2009). The roots of human altruism. British Journal of Psychology, 100, 455471.Google Scholar
Van Vugt, M., & Park, J. H. (2009). Guns, germs, and sex: How evolution shaped our intergroup psychology. Social and Personality Psychology Compass, 3, 927938.Google Scholar
Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2014). Oxytocin administration, salivary testosterone, and father–infant social behavior. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 49, 4752.Google Scholar
Weissbourd, R., & Jones, S. (2014). The children we mean to raise: The real messages adults are sending about values. Making Caring Common Project, Graduate School of Education, Harvard University. https://mcc.gse.harvard.edu/reports/children-mean-raise.Google Scholar
Weng, H. Y., Fox, A. S., Shackman, A. J., et al. (2013). Compassion training alters altruism and neural responses to suffering. Psychological Science, 24, 11711180.Google Scholar
Weng, H. Y., Lapate, R. C., Stodola, D. E., Rogers, G. M., & Davidson, R. J. (2018). Visual attention to suffering after compassion training is associated with decreased amygdala responses. Frontiers in Psychology, 9, 771.Google Scholar
Wesołowski, T. (2004). The origin of parental care in birds: A reassessment. Behavioral Ecology, 15(3), 520523.Google Scholar
Whitten, A. (1999). The evolution of deep social mind in humans. In Corballis, M. C. & Lea, S. E. G., eds., The Descent of Mind: Psychological Perspectives on Humanoid Evolution. New York: Oxford University Press, pp. 173193.Google Scholar
Zaki, J. (2014). Empathy: A motivated account. Psychological Bulletin, 140, 16081647.CrossRefGoogle ScholarPubMed
Zimbardo, P. (2007). The Lucifer Effect: How Good People Turn Evil. London: Rider.Google Scholar

References

Abi-Dargham, A., Rodenhiser, J., Printz, D., et al. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences, 97(14), 81048109.Google Scholar
Abramson, L., McClelland, D. C., Brown, D., & Kelner, S. (1991). Alexithymic characteristics and metabolic control in diabetic and healthy adults. Journal of Nervous and Mental Disease, 179(8), 490494.Google Scholar
Ainley, V., Brass, M., & Tsakiris, M. (2014). Heartfelt imitation: High interoceptive awareness is linked to greater automatic imitation. Neuropsychologia, 60, 2128.Google Scholar
Aïte, A., Barrault, S., Cassotti, M., et al. (2014). The impact of alexithymia on pathological gamblers’ decision making: A preliminary study of gamblers recruited in “sportsbook” casinos. Cognitive and Behavioral Neurology, 27(2), 5967.Google Scholar
Anagnostou, E., & Taylor, M. J. (2011). Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Molecular Autism, 2(1), 4.Google Scholar
Ardizzi, M., Ambrosecchia, M., Buratta, L., et al. (2016). Interoception and positive symptoms in schizophrenia. Frontiers in Human Neuroscience, 10, 379.Google Scholar
Assogna, F., Palmer, K., Pontieri, F. E., et al. (2012). Alexithymia is a non-motor symptom of Parkinson disease. American Journal of Geriatric Psychiatry, 20(2), 133141.Google Scholar
Bagby, R. M., Parker, J. D. A., & Taylor, G. J. (1994). The twenty-item Toronto Alexithymia Scale – I. Item selection and cross-validation of the factor structure. Journal of Psychosomatic Research, 38(1), 2332.Google Scholar
Bagby, R. M., Quilty, L. C., Taylor, G. J., et al. (2009). Are there subtypes of alexithymia? Personality and Individual Differences, 47(5), 413418.Google Scholar
Barlow, M., Woodman, T., Chapman, C., et al. (2015). Who takes risks in high-risk sport?: The role of alexithymia. Journal of Sport & Exercise Psychology, 37(1), 8396.Google Scholar
Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23(2–3), 183187.Google Scholar
Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 16751689.Google Scholar
Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40(10), 16901705.Google Scholar
Bellebaum, C., Brodmann, K., & Thoma, P. (2014). Active and observational reward learning in adults with autism spectrum disorder: Relationship with empathy in an atypical sample. Cognitive Neuropsychiatry, 19(3), 205225.Google Scholar
Berenbaum, H. (1996). Childhood abuse, alexithymia and personality disorder. Journal of Psychosomatic Research, 41(6), 585595.Google Scholar
Bermond, B. (1997). Brain and alexithymia. In Vingerhoets, A., Bussel, F., & Boelhouwer, J., eds., The (Non)expression of Emotions in Health and Disease. Tilburg: Tilburg University Press, pp. 115130.Google Scholar
Berthoz, S., & Hill, E. L. (2005). The validity of using self-reports to assess emotion regulation abilities in adults with autism spectrum disorder. European Psychiatry, 20(3), 291298.Google Scholar
Berthoz, S., Artiges, E., Van de Moortele, P. F., et al. (2002). Effect of impaired recognition and expression of emotions on frontocingulate cortices: An fMRI study of men with alexithymia. American Journal of Psychiatry, 159(6), 961967.Google Scholar
Berthoz, S., Lalanne, C., Crane, L., & Hill, E. L. (2013). Investigating emotional impairments in adults with autism spectrum disorders and the broader autism phenotype. Psychiatry Research, 208(3), 257264.Google Scholar
Bird, G., & Viding, E. (2014). The self to other model of empathy: Providing a new framework for understanding empathy impairments in psychopathy, autism, and alexithymia. Neuroscience & Biobehavioral Reviews, 47, 520532.Google Scholar
Bird, G., Silani, G., Brindley, R., et al. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(5), 15151525.Google Scholar
Borhani, K., Borgomaneri, S., Làdavas, E., & Bertini, C. (2016). The effect of alexithymia on early visual processing of emotional body postures. Biological Psychology, 115, 18.Google Scholar
Borsci, G., Boccardi, M., Rossi, R., et al. (2009). Alexithymia in healthy women: A brain morphology study. Journal of Affective Disorders, 114(1–3), 208215.Google Scholar
Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective & Behavioral Neuroscience, 7(4), 356366.Google Scholar
Brass, M., & Haggard, P. (2007). To do or not to do: The neural signature of self-control. Journal of Neuroscience, 27(34), 91419145.Google Scholar
Brewer, R., Collins, F., Cook, R., & Bird, G. (2015a). Atypical trait inferences from facial cues in alexithymia. Emotion, 15(5), 637643.Google Scholar
Brewer, R., Cook, R., Cardi, V., Treasure, J., & Bird, G. (2015b). Emotion recognition deficits in eating disorders are explained by co-occurring alexithymia. Royal Society Open Science, 2(1), 140382.Google Scholar
Brewer, R., Happé, F., Cook, R., & Bird, G. (2015c). Commentary on “Autism, oxytocin and interoception”: Alexithymia, not autism spectrum disorders, is the consequence of interoceptive failure. Neuroscience & Biobehavioral Reviews, 56, 348353.Google Scholar
Brewer, R., Marsh, A. A., Catmur, C., et al. (2015d). The impact of autism spectrum disorder and alexithymia on judgments of moral acceptability. Journal of Abnormal Psychology, 124(3), 589595.Google Scholar
Brewer, R., Cook, R., & Bird, G. (2016). Alexithymia: A general deficit of interoception. Royal Society Open Science, 3(10), 150664.Google Scholar
Brewer, R., Cook, R., Cardi, V., et al. (2019). Alexithymia (and predictive coding) explains personal distress in individuals with eating disorders. Journal of Affective Disorders, 72(7), 18271836.Google Scholar
Broft, A. I., Berner, L. A., Martinez, D., & Walsh, B. T. (2011). Bulimia nervosa and evidence for striatal dopamine dysregulation: A conceptual review. Physiology and Behavior, 104(1), 122127.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222.Google Scholar
Bushara, K. O., Grafman, J., & Hallett, M. (2001). Neural correlates of auditory–visual stimulus onset asynchrony detection. Journal of Neuroscience, 21(1), 300304.Google Scholar
Cai, W., Ryali, S., Chen, T., Li, C.-S. R., & Menon, V. (2014). Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. Journal of Neuroscience, 34(44), 1465214667.Google Scholar
Carta, M. G., Sancassiani, F., Pippia, V., et al. (2013). Alexithymia is associated with delayed treatment seeking in acute myocardial infarction. Psychotherapy and Psychosomatics, 82(3), 190192.Google Scholar
Cascio, C. J., Foss-Feig, J. H., Heacock, J. L., et al. (2012). Response of neural reward regions to food cues in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 4(1), 9.Google Scholar
Caspi, A., Houts, R. M., Belsky, D. W., & Goldman-Mellor, S. J. (2015). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119137.Google Scholar
Chahraoui, K., Duchene, C., Rollot, F., Bonin, B., & Moreau, T. (2014). Longitudinal study of alexithymia and multiple sclerosis. Brain and Behavior, 4(1), 7582.Google Scholar
Chen, T., Michels, L., Supekar, K., et al. (2015). Role of the anterior insular cortex in integrative causal signaling during multisensory auditory–visual attention. European Journal of Neuroscience, 41(2), 264274.Google Scholar
Cochrane, C. E., Brewerton, T. D., Wilson, D. B., & Hodges, E. L. (1993). Alexithymia in the eating disorders. International Journal of Eating Disorders, 14(2), 219222.Google Scholar
Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343360.Google Scholar
Coll, M., Penton, T., Hobson, H., & Hobson, H. (2017). Important methodological issues regarding the use of transcranial magnetic stimulation to investigate interoceptive processing: A comment on Pollatos et al. (2016). Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160506.Google Scholar
Cook, J. L., & Bird, G. (2012). Atypical social modulation of imitation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 42(6), 10451051.Google Scholar
Cook, R., Brewer, R., Shah, P., & Bird, G. (2013). Alexithymia, not autism, predicts poor recognition of emotional facial expressions. Psychological Science, 24(5), 723732.Google Scholar
Coricelli, G., Critchley, H. D., Joffily, M., et al. (2005). Regret and its avoidance: A neuroimaging study of choice behavior. Nature Neuroscience, 8(9), 12551262.Google Scholar
Cowdrey, F. A., Park, R. J., Harmer, C. J., & McCabe, C. (2011). Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa. Biological Psychiatry, 70(8), 736743.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655666.Google Scholar
Craig, A. D. (2003a). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13(4), 500505.Google Scholar
Craig, A. D. (2003b). Pain mechanisms: Labeled lines versus convergence in central processing. Annual Review of Neuroscience, 26, 130.Google Scholar
Craig, A. D. (2009). How do you feel – Now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970.Google Scholar
Critchley, H. D., & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77(4), 624638.Google Scholar
Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron, 29(2), 537545.Google Scholar
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189195.Google Scholar
Cushman, F., Young, L., & Greene, J. (2010). Our multi-system moral psychology: Towards a consensus view. In Doris, J., Harman, G., Nichols, S., et al., eds., The Oxford Handbook of Moral Psychology. Oxford: Oxford University Press, pp. 4772.Google Scholar
Damasio, A. R., Tranel, D., & Damasio, H. (1991). Somatic markers and the guidance of behaviour: Theory and preliminary testing. In Levin, H. S., Eisenberg, H. M., & Benton, A. L., eds., Frontal Lobe Function and Dysfunction. New York: Oxford University Press, pp. 217229.Google Scholar
Damasio, A., Damasio, H., & Tranel, D. (2013). Persistence of feelings and sentience after bilateral damage of the insula. Cerebral Cortex, 23(4), 833846.Google Scholar
Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology, 53, 545574.Google Scholar
De Beradis, D., Conti, C., Iasevoli, F., et al. (2014). Alexithymia and its relationships with acute phase proteins and cytokine release: An updated review. Journal of Biological Regulators & Homeostatic Agents, 28(4), 1317.Google Scholar
de Haan, H. A., van der Palen, J., Wijdeveld, T. G. M., Buitelaar, J. K., & De Jong, C. A. J. (2014). Alexithymia in patients with substance use disorders: State or trait? Psychiatry Research, 216(1), 137145.Google Scholar
Del Giudice, M. (2014). An evolutionary life history framework for psychopathology. Psychological Inquiry, 25(3–4), 261300.Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The Adaptive Calibration Model of stress responsivity. Neuroscience and Biobehavioral Reviews, 35(7), 15621592.Google Scholar
Delle-Vigne, D., Kornreich, C., Verbanck, P., & Campanella, S. (2014). Subclinical alexithymia modulates early audio-visual perceptive and attentional event-related potentials. Frontiers in Human Neuroscience, 8, 106.Google Scholar
Deng, Y., Ma, X., & Tang, Q. (2013). Brain response during visual emotional processing: An fMRI study of alexithymia. Psychiatry Research, 213(3), 225229.Google Scholar
Dichter, G. S., Richey, J. A., Rittenberg, A. M., Sabatino, A., & Bodfish, J. W. (2012). Reward circuitry function in autism during face anticipation and outcomes. Journal of Autism and Developmental Disorders, 42(2), 147160.Google Scholar
Domschke, K., Stevens, S., Pfleiderer, B., & Gerlach, A. L. (2010). Interoceptive sensitivity in anxiety and anxiety disorders: An overview and integration of neurobiological findings. Clinical Psychology Review, 30(1), 111.Google Scholar
Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 1107311078.Google Scholar
Dunn, B. D., Galton, H. C., Morgan, R., et al. (2010). Listening to your heart. How interoception shapes emotion experience and intuitive decision making. Psychological Science, 21(12), 18351844.Google Scholar
Ebisch, S. J. H., Salone, A., Ferri, F., et al. (2013). Out of touch with reality? Social perception in first-episode schizophrenia. Social Cognitive and Affective Neuroscience, 8(4), 394403.Google Scholar
Edwards, J., Jackson, H. J., & Pattison, P. E. (2002). Emotion recognition via facial expression and affective prosody in schizophrenia: A methodological review. Clinical Psychology Review, 22, 789832.Google Scholar
Ehlers, A., & Breuer, P. (1992). Increased cardiac awareness in panic disorder. Journal of Abnormal Psychology, 101(3), 371382.Google Scholar
Eichele, T., Debener, S., Calhoun, V. D., Spe, et al. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences, 105(16), 61736178.Google Scholar
Ernst, J., Böker, H., Hättenschwiler, J., et al. (2014). The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Social Cognitive and Affective Neuroscience, 9(6), 857863.Google Scholar
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 8593.Google Scholar
Fassino, S., Pierò, A., Gramaglia, C., & Abbate-Daga, G. (2004). Clinical, psychopathological and personality correlates of interoceptive awareness in anorexia nervosa, bulimia nervosa and obesity. Psychopathology, 37(4), 168174.Google Scholar
Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1594), 13381349.Google Scholar
Forbes, E. E., & Dahl, R. E. (2012). Altered reward function in adolescent depression: What, when, and how? Journal of Child Psychology and Psychiatry, 53(1), 315.Google Scholar
Franklin, T. R., Acton, P. D., Maldjian, J. A., et al. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51(2), 134142.Google Scholar
Frewen, P. A., Pain, C., Dozois, D. J. A., & Lanius, R. A. (2006). Alexithymia in PTSD: Psychometric and fMRI studies. Annals of the New York Academy of Sciences, 1071, 397400.Google Scholar
Frewen, P. A., Dozois, D. J. A., Neufeld, R. W. J., & Lanius, R. A. (2008a). Meta-analysis of alexithymia in posttraumatic stress disorder. Journal of Traumatic Stress, 21(2), 243246.Google Scholar
Frewen, P. A., Lanius, R. A., Dozois, D. J. A., et al. (2008b). Clinical and neural correlates of alexithymia in posttraumatic stress disorder. Journal of Abnormal Psychology, 117(1), 171181.Google Scholar
Fukunishi, I., Kawamura, N., Ishikawa, T., et al. (1997). Mothers’ low care in the development of alexithymia: A preliminary study in Japanese college students. Psychological Reports, 80(1), 143146.Google Scholar
Furl, N., & Averbeck, B. B. (2011). Parietal cortex and insula relate to evidence seeking relevant to reward-related decisions. Journal of Neuroscience, 31(48), 1757217582.Google Scholar
Gaigg, S. B., Maurice, A. S. F., & Bird, G. (2018). The psychophysiological mechanisms of alexithymia in autism spectrum disorder. Autism, 22(2), 227231.Google Scholar
Garfinkel, S. N., & Critchley, H. D. (2013). Interoception, emotion and brain: New insights link internal physiology to social behaviour. Commentary on: “Anterior insular cortex mediates bodily sensibility and social anxiety” by Terasawa et al. (2012). Social Cognitive and Affective Neuroscience, 8(3), 231234.Google Scholar
Garfinkel, S. N., Manassei, M. F., Hamilton-Fletcher, G., et al. (2016a). Interoceptive dimensions across cardiac and respiratory axes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160014.Google Scholar
Garfinkel, S. N., Tiley, C., O’Keeffe, S., et al. (2016b). Discrepancies between dimensions of interoception in autism: Implications for emotion and anxiety. Biological Psychology, 114, 117126.Google Scholar
Ghahremani, A., Rastogi, A., & Lam, S. (2015). The role of right anterior insula and salience processing in inhibitory control. Journal of Neuroscience, 35(8), 32913292.Google Scholar
Gleichgerrcht, E., Tomashitis, B., & Sinay, V. (2015). The relationship between alexithymia, empathy and moral judgment in patients with multiple sclerosis. European Journal of Neurology, 22(9), 12951303.Google Scholar
Goerlich, K. S., Witteman, J., Aleman, A., & Martens, S. (2011). Hearing feelings: Affective categorization of music and speech in alexithymia, an ERP study. PLoS ONE, 6(5), e19501.Google Scholar
Goerlich-Dobre, K. S., Bruce, L., Martens, S., Aleman, A., & Hooker, C. I. (2014a). Distinct associations of insula and cingulate volume with the cognitive and affective dimensions of alexithymia. Neuropsychologia, 53, 284292.Google Scholar
Goerlich-Dobre, K. S., Witteman, J., Schiller, N. O., et al. (2014b). Blunted feelings: Alexithymia is associated with a diminished neural response to speech prosody. Social Cognitive and Affective Neuroscience, 9(8), 11081117.Google Scholar
Goerlich-Dobre, K. S., Votinov, M., Habel, U., Pripfl, J., & Lamm, C. (2015). Neuroanatomical profiles of alexithymia dimensions and subtypes. Human Brain Mapping, 36(10), 38053818.Google Scholar
Grabe, H. J., Spitzer, C., & Freyberger, H. J. (2004). Alexithymia and personality in relation to dimensions of psychopathology. American Journal of Psychiatry, 161(7), 12991301.Google Scholar
Grabe, H. J., Wittfeld, K., Hegenscheid, K., et al. (2014). Alexithymia and brain gray matter volumes in a general population sample. Human Brain Mapping, 35(12), 59325945.Google Scholar
Gray, M. A., & Critchley, H. D. (2007). Interoceptive basis to craving. Neuron, 54(2), 183186.Google Scholar
Griffin, C., Lombardo, M. V., & Auyeung, B. (2016). Alexithymia in children with and without autism spectrum disorders. Autism Research, 9(7), 773780.Google Scholar
Grynberg, D., Luminet, O., Corneille, O., Grèzes, J., & Berthoz, S. (2010). Alexithymia in the interpersonal domain: A general deficit of empathy? Personality and Individual Differences, 49(8), 845850.Google Scholar
Grynberg, D., Chang, B., Corneille, O., et al. (2012). Alexithymia and the processing of emotional facial expressions (EFEs): Systematic review, unanswered questions and further perspectives. PLoS ONE, 7(8), e42429.Google Scholar
Gündel, H., López-Sala, A., Ceballos-Baumann, A., et al. (2004). Alexithymia correlates with the size of the right anterior cingulate. Journal of Psychosomatic Research, 56(6), 609610.Google Scholar
Guttman, H., & Laporte, L. (2002). Alexithymia, empathy, and psychological symptoms in a family context. Comprehensive Psychiatry, 43(6), 448455.Google Scholar
Hahn, A. M., Simons, R. M., & Simons, J. S. (2016). Childhood maltreatment and sexual risk taking: The mediating role of alexithymia. Archives of Sexual Behavior, 45(1), 5362.Google Scholar
Ham, B. J., Lee, M. S., Lee, Y. M., et al. (2005). Association between the catechol O-methyltransferase Val108/158 Met polymorphism and alexithymia. Neuropsychobiology, 52(3), 151154.Google Scholar
Harms, M. B., Martin, A., & Wallace, G. L. (2010). Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychology Review, 20(3), 290322.Google Scholar
Harshaw, C. (2015). Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141(2), 311363.Google Scholar
Heaton, P., Reichenbacher, L., Sauter, D., et al. (2012). Measuring the effects of alexithymia on perception of emotional vocalizations in autistic spectrum disorder and typical development. Psychological Medicine, 42(11), 24532459.Google Scholar
Heerey, E. A., Bell-Warren, K. R., & Gold, J. M. (2008). Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biological Psychiatry, 64(1), 6269.Google Scholar
Heiberg, A. N., & Heiberg, A. (1978). A possible genetic contribution to the alexithymia trait. Psychotherapy and Psychosomatics, 30(3–4), 205210.Google Scholar
Heinzel, A., Schäfer, R., Müller, H. W., et al. (2010). Increased activation of the supragenual anterior cingulate cortex during visual emotional processing in male subjects with high degrees of alexithymia: An event-related fMRI study. Psychotherapy and Psychosomatics, 79(6), 363370.Google Scholar
Henry, J. D., Phillips, L. H., Crawford, J. R., Theodorou, G., & Summers, F. (2006). Cognitive and psychosocial correlates of alexithymia following traumatic brain injury. Neuropsychologia, 44(1), 6272.Google Scholar
Herbert, B. M., Herbert, C., & Pollatos, O. (2011). On the relationship between interoceptive awareness and alexithymia: Is interoceptive awareness related to emotional awareness? Journal of Personality, 79(5), 11491175.Google Scholar
Heshmati, R., Jafari, E., Hoseinifar, J., & Ahmadi, M. (2010). Comparative study of alexithymia in patients with schizophrenia spectrum disorders, non-psychotic disorders and normal people. Procedia: Social and Behavioral Sciences, 5, 10841089.Google Scholar
Hill, E., Berthoz, S., & Frith, U. (2004). Brief report: Cognitive processing of own emotions in individuals with autistic spectrum disorder and in their relatives. Journal of Autism and Developmental Disorders, 34(2), 229235.Google Scholar
Hogeveen, J., Bird, G., Chau, A., Krueger, F., & Grafman, J. (2016). Acquired alexithymia following damage to the anterior insula. Neuropsychologia, 82, 142148.Google Scholar
Honkalampi, K., Hintikka, J., Tanskanen, A., Lehtonen, J., & Viinamäki, H. (2000). Depression is strongly associated with alexithymia in the general population. Journal of Psychosomatic Research, 48(1), 99104.Google Scholar
Honkalampi, K., Hintikka, J., Laukkanen, E., & Viinamäki, J. L. H. (2001). Alexithymia and depression: A prospective study of patients with major depressive disorder. Psychosomatics, 42(3), 229234.Google Scholar
Honkalampi, K., Koivumaa-Honkanen, H., Lehto, S. M., et al. (2010). Is alexithymia a risk factor for major depression, personality disorder, or alcohol use disorders? A prospective population-based study. Journal of Psychosomatic Research, 68(3), 269273.Google Scholar
Ibañez, A., Gleichgerrcht, E., & Manes, F. (2010). Clinical effects of insular damage in humans. Brain Structure and Function, 214(5–6), 397410.Google Scholar
Ihme, K., Dannlowski, U., Lichev, V., et al. (2013). Alexithymia is related to differences in gray matter volume: A voxel-based morphometry study. Brain Research, 1491, 6067.Google Scholar
Jardri, R., Pins, D., Lafargue, G., et al. (2011). Increased overlap between the brain areas involved in self-other distinction in schizophrenia. PLoS ONE, 6(3), e17500.Google Scholar
Jessimer, M., & Markham, R. (1997). Alexithymia: A right hemisphere dysfunction specific to recognition of certain facial expressions? Brain and Cognition, 34(2), 246258.Google Scholar
Jongen, S., Axmacher, N., Kremers, N. A., et al. (2014). An investigation of facial emotion recognition impairments in alexithymia and its neural correlates. Behavioural Brain Research, 271, 129139.Google Scholar
Jørgensen, M. M., Zachariae, R., Skytthe, A., & Kyvik, K. (2007). Genetic and environmental factors in alexithymia: A population-based study of 8,785 Danish twin pairs. Psychotherapy and Psychosomatics, 76(6), 369375.Google Scholar
Joukamaa, M., Kokkonen, P., Veijola, J., et al. (2003). Social situation of expectant mothers and alexithymia 31 years later in their offspring: A prospective study. Psychosomatic Medicine, 65(2), 307312.Google Scholar
Kano, M., & Fukudo, S. (2013). The alexithymic brain: The neural pathways linking alexithymia to physical disorders. BioPsychoSocial Medicine, 7(1), 1.Google Scholar
Kano, M., Fukado, S., Jiro, G., et al. (2003). Specific brain processing of facial expressions in people with alexithymia: An H215O-PET study. Brain, 126(6), 14741484.Google Scholar
Kano, M., Hamaguchi, T., Itoh, M., Yanai, K., & Fukudo, S. (2007). Correlation between alexithymia and hypersensitivity to visceral stimulation in human. Pain, 132(3), 252263.Google Scholar
Karukivi, M., Pölönen, T., Vahlberg, T., Saikkonen, S., & Saarijärvi, S. (2014). Stability of alexithymia in late adolescence: Results of a 4-year follow-up study. Psychiatry Research, 219(2), 386390.Google Scholar
Kaye, W. (2008). Neurobiology of anorexia and bulimia nervosa. Physiology & Behavior, 94(1), 121135.Google Scholar
Keating, C., Tilbrook, A. J., Rossell, S. L., Enticott, P. G., & Fitzgerald, P. B. (2012). Reward processing in anorexia nervosa. Neuropsychologia, 50(5), 567575.Google Scholar
Keller, M. C., & Miller, G. (2006). Resolving the paradox of common, harmful, heritable mental disorders: Which evolutionary genetic models work best? Behavioral and Brain Sciences, 29(4), 385452.Google Scholar
Khalsa, S. S., & Lapidus, R. C. (2016). Can interoception improve the pragmatic search for biomarkers in psychiatry? Frontiers in Psychiatry, 7, 121.Google Scholar
Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009a). The pathways of interoceptive awareness. Nature Neuroscience, 12(12), 14941496.Google Scholar
Khalsa, S. S., Rudrauf, D., Sandesara, C., Olshansky, B., & Tranel, D. (2009b). Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. International Journal of Psychophysiology, 72(1), 3445.Google Scholar
Kober, H., Barrett, L. F., Joseph, J., et al. (2008). Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42(2), 9981031.Google Scholar
Kohls, G., Schulte-Ruther, M., Nehrkorn, B., et al. (2013). Reward system dysfunction in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 8(5), 565572.Google Scholar
Kokkonen, P., Karvonen, J. T., Veijola, J., et al. (2001). Prevalence and sociodemographic correlates of alexithymia in a population sample of young adults. Comprehensive Psychiatry, 42(6), 471476.Google Scholar
Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24(2), 97129.Google Scholar
Kooiman, C. G., van Rees Vellinga, S., Spinhoven, P., et al. (2004). Childhood adversities as risk factors for alexithymia and other aspects of affect dysregulation in adulthood. Psychotherapy and Psychosomatics, 73(2), 107116.Google Scholar
Koven, N. S., Roth, R. M., Garlinghouse, M. A., Flashman, L. A., & Saykin, A. J. (2011). Regional gray matter correlates of perceived emotional intelligence. Social Cognitive and Affective Neuroscience, 6(5), 582590.Google Scholar
Krolak-Salmon, P., Hénaff, M. A., Isnard, J., et al. (2003). An attention modulated response to disgust in human ventral anterior insula. Annals of Neurology, 53(4), 446453.Google Scholar
Kugel, H., Eichmann, M., Dannlowski, U., et al. (2008). Alexithymic features and automatic amygdala reactivity to facial emotion. Neuroscience Letters, 435(1), 4044.Google Scholar
Lahey, B. B., Applegate, B., Hakes, J. K., et al. (2012). Is there a general factor of prevalent psychopathology during adulthood? Journal of Abnormal Psychology, 121(4), 971977.Google Scholar
Lane, R. D., Quinlan, D. M., Schwartz, G. E., Walker, P. A., & Zeitlin, S. B. (1990). The Levels of Emotional Awareness Scale: A cognitive–developmental measure of emotion. Journal of Personality Assessment, 55(1–2), 124134.Google Scholar
Lane, R. D., Sechrest, L., Riedel, R., Shapiro, D. E., & Kaszniak, A. W. (2000). Pervasive emotion recognition deficit common to alexithymia and the repressive coping style. Psychosomatic Medicine, 62(4), 492501.Google Scholar
Lane, R. D., Weihs, K. L., Herring, A., Hishaw, A., & Smith, R. (2015). Affective agnosia: Expansion of the alexithymia construct and a new opportunity to integrate and extend Freud’s legacy. Neuroscience & Biobehavioral Reviews, 55, 594611.Google Scholar
Larson, M. J., South, M., Krauskopf, E., Clawson, A., & Crowley, M. J. (2011). Feedback and reward processing in high-functioning autism. Psychiatry Research, 187(1–2), 198203.Google Scholar
Lazarov, A., Dar, R., Oded, Y., & Liberman, N. (2010). Are obsessive–compulsive tendencies related to reliance on external proxies for internal states? Evidence from biofeedback-aided relaxation studies. Behaviour Research and Therapy, 48(6), 516523.Google Scholar
Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37(5), 894910.Google Scholar
Leighton, J., Bird, G., Orsini, C., & Heyes, C. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46(6), 905910.Google Scholar
Lilenfeld, L. R. R., Wonderlich, S., Riso, L. P., Crosby, R., & Mitchell, J. (2006). Eating disorders and personality: A methodological and empirical review. Clinical Psychology Review, 26(3), 299320.Google Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121143.Google Scholar
Livesey, A. C., Wall, M. B., & Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45(2), 321331.Google Scholar
Longarzo, M., D’Olimpio, F., Chiavazzo, A., et al. (2015). The relationships between interoception and alexithymic trait. The Self-Awareness Questionnaire in healthy subjects. Frontiers in Psychology, 6, 1149.Google Scholar
Luminet, O., Vermeulen, N., Demaret, C., Taylor, G. J., & Bagby, R. M. (2006). Alexithymia and levels of processing: Evidence for an overall deficit in remembering emotion words. Journal of Research in Personality, 40(5), 713733.Google Scholar
Lyvers, M., Hasking, P., Albrecht, B., & Thorberg, F. A. (2012). Alexithymia and alcohol: The roles of punishment sensitivity and drinking motives. Addiction Research & Theory, 20(4), 348357.Google Scholar
Lyvers, M., Duric, N., & Thorberg, F. A. (2014). Caffeine use and alexithymia in university students. Journal of Psychoactive Drugs, 46(4), 340346.Google Scholar
Magnani, B., Frassinetti, F., Ditye, T., et al. (2014). Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: Evidence from fMRI. NeuroImage, 92, 340348.Google Scholar
Mann, L., Wise, T., Trinidad, A., & Kohanski, R. (1995). Alexithymia, affect recognition, and five factors of personality in substance abusers. Perceptual and Motor Skills, 81(1), 3540.Google Scholar
Marchesi, C., Brusamonti, E., & Maggini, C. (2000). Are alexithymia, depression, and anxiety distinct constructs in affective disorders? Journal of Psychosomatic Research, 49(1), 4349.Google Scholar
Mason, M. F., Norton, M. I., Van Horn, J. D., et al. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393395.Google Scholar
Mattila, A. K., Salminen, J. K., Nummi, T., & Joukamaa, M. (2006). Age is strongly associated with alexithymia in the general population. Journal of Psychosomatic Research, 61(5), 629635.Google Scholar
McClenon, J. (2011). Evolutionary theories of schizophrenia: An experience-centered review. Journal of Mind and Behavior, 32(2), 135150.Google Scholar
McDonald, P. W., & Prkachin, K. M. (1990). The expression and perception of facial emotion in alexithymia: A pilot study. Psychosomatic Medicine, 52(2), 199210.Google Scholar
Mezzavilla, M., Ulivi, S., Bianca, M. L., et al. (2015). Analysis of functional variants reveals new candidate genes associated with alexithymia. Psychiatry Research, 227(2–3), 363365.Google Scholar
Miyake, Y., Okamoto, Y., Onoda, K., et al. (2012). Brain activation during the perception of stressful word stimuli concerning interpersonal relationships in anorexia nervosa patients with high degrees of alexithymia in an fMRI paradigm. Psychiatry Research – Neuroimaging, 201(2), 113119.Google Scholar
Moormann, P. P., Bermond, B., Vorst, H. C. M., et al. (2008). New avenues in alexithymia research: The creation of alexithymia types. In Vingerhoets, A., Nyklicek, I., & Denollet, J., eds., Emotion Regulation. New York: Springer, pp. 2742.Google Scholar
Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: Physical, affective, and social perspectives. BioPsychoSocial Medicine, 7(1), 8.Google Scholar
Moriguchi, Y., Decety, J., Ohnishi, T., et al. (2007). Empathy and judging other’s pain: An fMRI study of alexithymia. Cerebral Cortex, 17(9), 22232234.Google Scholar
Mundy, P. (2003). Annotation: The neural basis of social impairments in autism: The role of the dorsal medial–frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry, 44(6), 793809.Google Scholar
Murphy, J., Brewer, R., & Bird, G. (2017). Interoception and psychopathology: A developmental neuroscience perspective. Developmental Cognitive Neuroscience, 23, 4556.Google Scholar
Murphy, J., Catmur, C., & Bird, G. (2018). Alexithymia is associated with a multi-domain, multi-dimensional failure of interoception: Evidence from novel tests. Journal of Experimental Psychology: General, 147, 398408.Google Scholar
Nagai, M., Kishi, K., & Kato, S. (2007). Insular cortex and neuropsychiatric disorders: A review of recent literature. European Psychiatry, 22(6), 387394.Google Scholar
Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: The insula. Trends in Neurosciences, 32(1), 5667.Google Scholar
Naqvi, N. H., & Bechara, A. (2010). The insula and drug addiction: An interoceptive view of pleasure, urges and decision-making. Brain Structure and Function, 214(5–6), 435450.Google Scholar
Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315(5811), 531534.Google Scholar
Nemiah, J. C., Freyberger, H. J., & Sifneos, P. E. (1976). Alexithymia: A view of the psychosomatic process. In Hill, O. W., ed., Modern Trends in Psychosomatic Medicine. London: Butterworths, pp. 430439.Google Scholar
Neumann, D., Zupan, B., Malec, J. F., & Hammond, F. (2014). Relationships between alexithymia, affect recognition, and empathy after traumatic brain injury. Journal of Head Trauma Rehabilitation, 29(1), E18E27.Google Scholar
Noble, E. P. (2000). Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. European Psychiatry, 15(2), 7989.Google Scholar
Nowakowski, M. E., McFarlane, T., & Cassin, S. (2013). Alexithymia and eating disorders: A critical review of the literature. Journal of Eating Disorders, 1(1), 21.Google Scholar
Oldershaw, A., Hambrook, D., Stahl, D., et al. (2011). The socio-emotional processing stream in anorexia nervosa. Neuroscience and Biobehavioral Reviews, 35(3), 970988.Google Scholar
Paradiso, S., Vaidaya, J. G., McCormick, L. M., Jones, A., & Robinson, R. G. (2008). Aging and alexithymia association with reduced right rostral cingulate volume. American Journal of Geriatric Psychiatry, 16(9), 760769.Google Scholar
Parker, J. D. A., Bagby, R. M., & Taylor, G. J. (1991). Alexithymia and depression: Distinct or overlapping constructs? Comprehensive Psychiatry, 32(5), 387394.Google Scholar
Parker, J. D. A., Taylor, G. J., & Bagby, R. (1993). Alexithymia and the recognition of facial expressions of emotion. Psychotherapy and Psychosomatics, 59(3–4), 197202.Google Scholar
Parker, J. D. A., Taylor, G. J., & Bagby, R. M. (2003). The 20-Item Toronto Alexithymia Scale III. Reliability and factorial validity in a community population. Journal of Psychosomatic Research, 55(3), 269275.Google Scholar
Parker, J. D. A., Wood, L. M., Bond, B. J., & Shaughnessy, P. (2005). Alexithymia in young adulthood: A risk factor for pathological gambling. Psychotherapy and Psychosomatics, 74(1), 5155.Google Scholar
Parker, P. D., Prkachin, K. M., & Prkachin, G. C. (2005). Processing of facial expressions of negative emotion in alexithymia: The influence of temporal constraint. Journal of Personality, 73(4), 10871107.Google Scholar
Patil, I., & Silani, G. (2014a). Alexithymia increases moral acceptability of accidental harms. Journal of Cognitive Psychology, 26(5), 118.Google Scholar
Patil, I., & Silani, G. (2014b). Reduced empathic concern leads to utilitarian moral judgments in trait alexithymia. Frontiers in Psychology, 5, 501.Google Scholar
Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60(4), 383387.Google Scholar
Penfield, W., & Faulk, M. E. (1955). The insula: Further observations on its function. Brain, 78(4), 445470.Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331348.Google Scholar
Picardi, A., Fagnani, C., Gigantesco, A., et al. (2011). Genetic influences on alexithymia and their relationship with depressive symptoms. Journal of Psychosomatic Research, 71(4), 256263.Google Scholar
Pollatos, O., Kurz, A. L., Albrecht, J., et al. (2008). Reduced perception of bodily signals in anorexia nervosa. Eating Behaviors, 9(4), 381388.Google Scholar
Pollatos, O., Herbert, B. M., Mai, S., & Kammer, T. (2016). Changes in interoceptive processes following brain stimulation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 371, 20160016.Google Scholar
Pouga, L., Berthoz, S., De Gelder, B., & Grèzes, J. (2010). Individual differences in socioaffective skills influence the neural bases of fear processing: The case of alexithymia. Human Brain Mapping, 31(10), 14691481.Google Scholar
Press, C., Richardson, D., & Bird, G. (2010). Intact imitation of emotional facial actions in autism spectrum conditions. Neuropsychologia, 48(11), 32913297.Google Scholar
Prkachin, G. C., Casey, C., & Prkachin, K. M. (2009). Alexithymia and perception of facial expressions of emotion. Personality and Individual Differences, 46(4), 412417.Google Scholar
Prochnow, D., Donell, J., Schäfer, R., et al. (2011). Alexithymia and impaired facial affect recognition in multiple sclerosis. Journal of Neurology, 258(9), 16831688.Google Scholar
Quattrocki, E., & Friston, K. (2014). Autism, oxytocin and interoception. Neuroscience and Biobehavioral Reviews, 47, 410430.Google Scholar
Reker, M., Ohrmann, P., Rauch, A. V., et al. (2010). Individual differences in alexithymia and brain response to masked emotion faces. Cortex, 46(5), 658667.Google Scholar
Reuter, J., Raedler, T., Rose, M., et al. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8(2), 147148.Google Scholar
Rogers, M. A., Yamasue, H., Abe, O., et al. (2009). Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Research: Neuroimaging, 174(3), 210216.Google Scholar
Säkkinen, P., Kaltiala-Heino, R., Ranta, K., Haataja, R., & Joukamaa, M. (2007). Psychometric properties of the 20-item Toronto Alexithymia Scale and prevalence of alexithymia in a Finnish adolescent population. Psychosomatics, 48(2), 154161.Google Scholar
Salminen, J. K., Saarija, S., & Rela, E. A. A. (1999). Prevalence of alexithymia and its association with sociodemographic variables in the general population of Finland. Journal of Psychosomatic Research, 46(1), 7582.Google Scholar
Sass, L. A., & Parnas, J. (2003). Schizophrenia, consciousness, and the self. Schizophrenia Bulletin, 29(3), 427444.Google Scholar
Schandry, R., & Weitkunat, R. (1990). Enhancement of heartbeat-related brain potentials through cardiac awareness training. International Journal of Neuroscience, 53(2–4), 243253.Google Scholar
Schmitz, N., Rubia, K., Van Amelsvoort, T., et al. (2008). Neural correlates of reward in autism. British Journal of Psychiatry, 192(1), 1924.Google Scholar
Schoenbaum, G., Roesch, M. R., & Stalnaker, T. A. (2006). Orbitofrontal cortex, decision-making and drug addiction. Trends in Neurosciences, 29(2), 116124.Google Scholar
Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395.Google Scholar
Shah, P., Catmur, C., & Bird, G. (2016). Emotional decision-making in autism spectrum disorder: the roles of interoception and alexithymia. Molecular Autism, 7(1), 43.Google Scholar
Shah, P., Hall, R., Catmur, C., & Bird, G. (2016). Alexithymia, not autism, is associated with impaired interoception. Cortex, 81, 215220.Google Scholar
Sherrington, C. S. (1900). Cutaneous sensations. In Schäfer, E. A., ed., Text-Book of Physiology. Edinburgh: Pentland, pp. 9201001.Google Scholar
Shishido, H., Gaher, R. M., & Simons, J. S. (2013). I don’t know how I feel, therefore I act: Alexithymia, urgency, and alcohol problems. Addictive Behaviors, 38(4), 20142017.Google Scholar
Silani, G., Bird, G., Brindley, R., et al. (2008). Levels of emotional awareness and autism: An fMRI study. Social Neuroscience, 3(2), 97112.Google Scholar
Simon, J. J., Biller, A., Walther, S., et al. (2010). Neural correlates of reward processing in schizophrenia – Relationship to apathy and depression. Schizophrenia Research, 118(1–3), 154161.Google Scholar
Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 8196.Google Scholar
Sowden, S., Brewer, R., Catmur, C., & Bird, G. (2016). The specificity of the link between alexithymia, interoception and imitation. Journal of Experimental Psychology: Human Perception and Performance, 42(11), 16871692.Google Scholar
Stasiewicz, P. R., Bradizza, C. M., Gudleski, G. D., et al. (2012). The relationship of alexithymia to emotional dysregulation within an alcohol dependent treatment sample. Addictive Behaviors, 37(4), 469476.Google Scholar
Stephan, E., Pardo, J. V., Faris, P. L., et al. (2003). Functional neuroimaging of gastric distention. Journal of Gastrointestinal Surgery, 7(6), 740749.Google Scholar
Stern, E. R. (2014). Neural circuitry of interoception: New insights into anxiety and obsessive–compulsive disorders. Current Treatment Options in Psychiatry, 1, 235247.Google Scholar
Sturm, V. E., & Levenson, R. W. (2011). Alexithymia in neurodegenerative disease. Neurocase, 17(3), 242250.Google Scholar
Suslow, T., & Junghanns, K. (2002). Impairments of emotion situation priming in alexithymia. Personality and Individual Differences, 32(3), 541550.Google Scholar
Swart, M., Kortekaas, R., & Aleman, A. (2009). Dealing with feelings: Characterization of trait alexithymia on emotion regulation strategies and cognitive-emotional processing. PLoS ONE, 4(6), e5751.Google Scholar
Tanaka, S. C., Doya, K., Okada, G., et al. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887893.Google Scholar
Taylor, G. J., Parker, J. D. A., & Bagby, R. M. (1990). A preliminary investigation of alexithymia in men with psychoactive substance dependence. American Journal of Psychiatry, 147(9), 12281230.Google Scholar
Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. American Journal of Occupational Therapy, 61(2), 190200.Google Scholar
Torrente, F., Ashwood, P., Day, R., et al. (2002). Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Molecular Psychiatry, 7(4), 375382.Google Scholar
Ugazio, G., Lamm, C., & Singer, T. (2012). The role of emotions for moral judgments depends on the type of emotion and moral scenario. Emotion, 12(3), 579590.Google Scholar
Valera, E. M., & Berenbaum, H. (2001). A twin study of alexithymia. Psychotherapy and Psychosomatics, 70(5), 239246.Google Scholar
Vandenbergh, J., Dupont, P., Fischler, B., et al. (2005). Regional brain activation during proximal stomach distention in humans: A positron emission tomography study. Gastroenterology, 128(3), 564573.Google Scholar
van der Velde, J., Servaas, M. N., Goerlich, K. S., et al. (2013). Neural correlates of alexithymia: A meta-analysis of emotion processing studies. Neuroscience and Biobehavioral Reviews, 37(8), 17741785.Google Scholar
van der Velde, J., Swart, M., van Rijn, S., et al. (2015). Cognitive alexithymia is associated with the degree of risk for psychosis. PLoS ONE, 10(6), e0124803.Google Scholar
Venta, A., Hart, J., & Sharp, C. (2013). The relation between experiential avoidance, alexithymia and emotion regulation in inpatient adolescents. Clinical Child Psychology and Psychiatry, 18(3), 398410.Google Scholar
Verdejo-Garcia, A., Clark, L., & Dunn, B. D. (2012). The role of interoception in addiction: A critical review. Neuroscience and Biobehavioral Reviews, 36(8), 18571869.Google Scholar
Vorst, H. C. M., & Bermond, B. (2001). Validity and reliability of the Bermond–Vorst Alexithymia Questionnaire. Personality and Individual Differences, 30(3), 413434.Google Scholar
Wagner, A., Aizenstein, H., Venkatraman, V. K., et al. (2007). Altered reward processing in women recovered from anorexia nervosa. American Journal of Psychiatry, 164(12), 18421849.Google Scholar
Wakefield, A. J., Anthony, A., Murch, S. H., et al. (2000). Enterocolitis in children with developmental disorders. American Journal of Gastroenterology, 95(9), 22852295.Google Scholar
Wakefield, A. J., Ashwood, P., Limb, K., & Andrew, A. (2005). The significance of ileo-colonic lymphoid nodular hyperplasia in children with autistic spectrum disorder. European Journal of Gastroenterology and Hepatology, 17, 827836.Google Scholar
Walter, N. T., Montag, C., Markett, S. A., & Reuter, M. (2011). Interaction effect of functional variants of the BDNF and DRD2/ANKK1 gene is associated with alexithymia in healthy human subjects. Psychosomatic Medicine, 73(1), 2328.Google Scholar
Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971978.Google Scholar
Werner, N. S., Jung, K., Duschek, S., & Schandry, R. (2009). Enhanced cardiac perception is associated with benefits in decision-making. Psychophysiology, 46(6), 11231129.Google Scholar
White, J. F. (2003). Intestinal pathophysiology in autism. Experimental Biology and Medicine, 228(6), 639649.Google Scholar
Williams, B. L., Hornig, M., Buie, T., et al. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE, 6(9), e24585.Google Scholar
Williams, C., & Wood, R. L. (2010). Alexithymia and emotional empathy following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 32(3), 259267.Google Scholar
Wittmann, M., Lovero, K. L., Lane, S. D., & Paulus, M. P. (2010). Now or later? Striatum and insula activation to immediate versus delayed rewards. Journal of Neuroscience, Psychology, and Economics, 3(1), 1526.Google Scholar
Zhang, X., Salmeron, B. J., Ross, T. J., et al. (2011). Factors underlying prefrontal and insula structural alterations in smokers. Neuroimage, 54(1), 4248.Google Scholar
Zotev, V., Krueger, F., Phillips, R., et al. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS ONE, 6(9), e24522.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×