Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T04:52:57.626Z Has data issue: false hasContentIssue false

18 - Computational Models of Episodic Memory

from Part III - Computational Modeling of Basic Cognitive Functionalities

Published online by Cambridge University Press:  21 April 2023

Ron Sun
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

Computational models of episodic memory provide tools to better understand the latent neurocognitive processes underlying retention of information about specific events from one’s life. This chapter discusses the representations, associations, and dynamics of influential models of episodic memory, with particular emphasis on models of recognition and free recall tasks. In-depth discussion and model-fitting results of four models – the retrieving effectively from memory (REM) model, the bind cue decide model of episodic memory (BCDMEM), the search of associative memory (SAM) model, and the temporal context model (TCM) – are provided to facilitate understanding of these models, as well as similarities and differences between them. Alternative modeling frameworks, including neural network models, are discussed. Throughout, the importance of context in models of episodic memory is emphasized, particularly for free recall tasks.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anacker, C., & Hen, R. (2017). Adult hippocampal neurogenesis and cognitive flexibility linking memory and mood. Nature Reviews Neuroscience, 18, 335346.Google Scholar
Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of list memory. Journal of Memory and Language, 38(4), 341380. https://doi.org/10.1006/jmla.1997.2553Google Scholar
Annis, J., Lenes, J. G., Westfall, H. A., Criss, A. H., & Malmberg, K. J. (2015). The list-length effect does not discriminate between models of recognition memory. Journal of Memory and Language, 85, 2741. https://doi.org/10.1016/j.jml.2015.06.001Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: a proposed system and its control processes. Psychology of Learning and Motivation, 2, 89195.Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 4789. https://doi.org/10.1016/S0079-7421(08)60452-1CrossRefGoogle Scholar
Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709721.e5. https://doi.org/10.1016/j.neuron.2017.06.041Google Scholar
Bjork, R. A., & Whitten, W. B. (1974). Recency-sensitive retrieval processes in long-term free recall. Cognitive Psychology, 6(2), 173189.CrossRefGoogle Scholar
Bousfield, W. A. (1953). The occurrence of clustering in the recall of randomly arranged associates. The Journal of General Psychology, 48, 229240.Google Scholar
Bower, G. H. (1981). Mood and memory. American Psychologist, 36(2), 129148.Google Scholar
Bowles, N. L., & Glanzer, M. (1983). An analysis of interference in recognition memory. Memory & Cognition, 11, 307315.Google Scholar
Brady, T. F., Konkle, T., Gill, J., Oliva, A., & Alvarez, G. A. (2013). Visual long-term memory has the same limit on fidelity as visual working memory. Psychological Science, 24(6), 981990.Google Scholar
Bright, I. M., Meister, M. L. R., Cruzado, N. A., Tiganj, Z., Buffalo, E. A., & Howard, M. W. (2020). A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proceedings of the National Academy of Sciences, 117(33), 2027420283.CrossRefGoogle ScholarPubMed
Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539576. https://doi.org/10.1037/0033-295X.114.3.539Google Scholar
Bruce, D., & Papay, J. P. (1970). Primacy effect in single-trial free recall. Journal of Verbal Learning and Verbal Behavior, 9(5), 472486.Google Scholar
Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625641. https://doi.org/10.1016/S0896-6273(02)00830-9Google Scholar
Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review, 114(2), 340375. https://doi.org/10.1037/0033-295X.114.2.340Google Scholar
Caporale, N., & Dan, Y. (2008). Spike timing: a Hebbian learning rule. Annual Review of Neuroscience, 31(1), 2546. https://doi.org/10.1146/annurev.neuro.31.060407.125639Google Scholar
Cho, K. W., & Neely, J. H. (2013). Null category-length and targetlure relatedness effects in episodic recognition: a constraint on item-noise interference models. Quarterly Journal of Experimental Psychology, 66(7), 13311355.Google Scholar
Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: how the models match the data. Psychonomic Bulletin & Review, 3(1), 3760. https://doi.org/10.3758/BF03210740Google Scholar
Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87114. https://doi.org/10.1017/S0140525X01003922Google Scholar
Criss, A. H., Malmberg, K. J., & Shiffrin, R. M. (2011). Output interference in recognition memory. Journal of Memory and Language, 64(4), 316326. https://doi.org/10.1016/j.jml.2011.02.003CrossRefGoogle Scholar
Criss, A. H., & Shiffrin, R. M. (2004). Context noise and item noise jointly determine recognition memory: a comment on Dennis and Humphreys (2001). Psychological Review, 111(3), 800807. https://doi.org/10.1037/0033-295X.111.3.800Google Scholar
Curran, T. (2000). Brain potentials of recollection and familiarity. Memory & Cognition, 28(6), 923938. https://doi.org/10.3758/BF03209340Google Scholar
Curran, T., & Cleary, A. M. (2003). Using ERPs to dissociate recollection from familiarity in picture recognition. Cognitive Brain Research, 15(2), 191205. https://doi.org/10.1016/S0926-6410(02)00192-1Google Scholar
Darby, K. P., & Sederberg, P. B. (2022). Transparency, replicability, and discovery in cognitive aging research: a computational modeling approach. Psychology and Aging, 37(1), 10. https://doi.org/10.1037/pag0000665Google Scholar
Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2006). Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. Journal of Neurophysiology, 96(4), 19021911. https://doi.org/10.1152/jn.01029.2005Google Scholar
Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cerebral Cortex, 16(12), 17711782. https://doi.org/10.1093/cercor/bhj112Google Scholar
Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16(6), 693700. https://doi.org/10.1016/j.conb.2006.10.012Google Scholar
Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences, 100(4), 21572162. https://doi.org/10.1073/pnas.0337195100CrossRefGoogle ScholarPubMed
Davachi, L., & Preston, A. R. (2014). The medial temporal lobe and memory. In The Cognitive Neurosciences (5th ed., pp. 539546). Cambridge, MA: MIT Press.Google Scholar
Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: empirical and computational investigations of recency effects. Psychological Review, 112(1), 342.Google Scholar
Deese, J. (1959a). Influence of inter-item associative strength upon immediate free recall. Psychological Reports, 5, 305312. https://doi.org/10.2466/PR0.5.3.305-312Google Scholar
Deese, J. (1959b). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58(1), 1722. https://doi.org/10.1037/h0046671Google Scholar
Deffenbacher, K. A., Johanson, J., Vetter, T., & O’Toole, A. J. (2000). The face typicality-recognizability relationship: encoding or retrieval locus? Memory & Cognition, 28(7), 11731182. https://doi.org/10.3758/BF03211818Google Scholar
Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic word recognition. Psychological Review, 108(2), 452478.Google Scholar
Dennis, S., Lee, M. D., & Kinnell, A. (2008). Bayesian analysis of recognition memory: the case of the list-length effect. Journal of Memory and Language, 59(3), 361376.Google Scholar
Diller, D. E., Nobel, P. A., & Shiffrin, R. M. (2001). An ARC model for accuracy and response time in recognition and recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(2), 414435. https://doi.org/10.1037/0278-7393.27.2.414Google Scholar
Dudukovic, N. M., & Wagner, A. M. (2007). Goal-dependent modulation of declarative memory: neural correlates of temporal recency decisions and novelty detection. Neuropsychologia, 45(11), 26082620.Google Scholar
Ebbinghaus, H. (1885). Memory: A Contribution to Experimental Psychology. New York, NY: Teachers College, Columbia University.Google Scholar
Eichenbaum, H. (2014). Time cells in the hippocampus: a new dimension for mapping memories. Nature Reviews Neuroscience, 15, 732744.Google Scholar
Estes, W. K. (1955). Statistical theory of distributional phenomena in learning. Psychological Review, 62(5), 369377.Google Scholar
Farrell, S. (2010). Dissociating conditional recency in immediate and delayed free recall: a challenge for unitary models of recency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(2), 324347.Google Scholar
Farrell, S. (2012). Temporal clustering and sequencing in short-term memory and episodic memory. Psychological Review, 119(2), 223271. https://doi.org/10.1037/a0027371Google Scholar
Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499504. https://doi.org/10.1111/1467-9280.00392Google Scholar
Fox, J., Dennis, S., & Osth, A. F. (2020). Accounting for the build-up of proactive interference across lists in a list length paradigm reveals a dominance of item-noise in recognition memory. Journal of Memory and Language, 110, 104126.Google Scholar
Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. A., & Sederberg, P. B. (2012). The successor representation and temporal context. Neural Computation, 24(6), 15531568. https://doi.org/10.1162/NECO_a_00282Google Scholar
Glanzer, M., & Adams, J. K. (1985). The mirror effect in recognition memory. Memory & Cognition, 13(1), 820. https://doi.org/10.3758/BF03198438Google Scholar
Glanzer, M., & Adams, J. K. (1990). The mirror effect in recognition memory: data and theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 516. https://doi.org/10.1037/0278-7393.16.1.5Google Scholar
Glanzer, M., & Bowles, N. (1976). Analysis of the word-frequency effect in recognition memory. Journal of Experimental Psychology: Human Learning and Memory, 2(1), 2131. https://doi.org/10.1037/0278-7393.2.1.21Google Scholar
Glenberg, A. M., & Swanson, N. G. (1986). A temporal distinctiveness theory of recency and modality effects. Journal of Experimental Psychology: Learning, Memory, and Cogntion, 12(1), 315.Google Scholar
Godden, D. R., & Baddeley, A. D. (1965). Context-dependent memory in two natural environments: on land and underwater. British Journal of Psychology, 6(3), 325331.Google Scholar
Gold, A. E., & Kesner, R. P. (2005). The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus, 15, 808814.Google Scholar
Gravina, M. T., & Sederberg, P. B. (2017). The neural architecture of prediction over a continuum of spatiotemporal scales. Current Opinion in Behavioral Sciences, 17, 194202. https://doi.org/10.1016/j.cobeha.2017.09.001Google Scholar
Hall, J. F. (1954). Learning as a function of word-frequency. The American Journal of Psychology, 67(1), 138140. https://doi.org/10.2307/1418080Google Scholar
Harris, J. J., Jolivert, R., & Attwell, D. (2012). Synaptic energy use and supply. Neuron, 75(5), 762777.Google Scholar
Healey, M. K., Long, N. M., & Kahana, M. J. (2019). Contiguity in episodic memory. Psychonomic Bulletin & Review, 26(3), 699720.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York, NY: Wiley.Google Scholar
Hintzman, D. L. (1984). MINERVA 2: a simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 16(2), 96101. https://doi.org/10.3758/BF03202365Google Scholar
Honey, C. J., Thesen, T., Donner, T. H., et al. (2012). Slow cortical dynamics and the accumulation of information over long timescales. Neuron, 76(2), 423434. https://doi.org/10.1016/j.neuron.2012.08.011Google Scholar
Horner, A. J., Bisby, J. A., Bush, D., Lin, W.-J., & Burgess, N. (2015). Evidence for holistic episodic recollection via hippocampal pattern completion. Nature Communications, 6, 7462.Google Scholar
Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 923941.Google Scholar
Howard, M. W., & Kahana, M. J. (2002a). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269299.Google Scholar
Howard, M. W., & Kahana, M. J. (2002b). When does semantic similarity help episodic retrieval? Journal of Memory and Language, 46(1), 8598. https://doi.org/10.1006/jmla.2001.2798Google Scholar
Howard, M. W., MacDonald, C. J., Tiganj, Z., et al. (2014). A unified mathematical framework for coding time, space, and sequences in the hippocampal region. Journal of Neuroscience, 34(13), 46924707. https://doi.org/10.1523/JNEUROSCI.5808-12.2014Google Scholar
Howard, M. W., Shankar, K. H., Aue, W. R., & Criss, A. H. (2015). A distributed representation of internal time. Psychological Review, 122(1), 2453. https://doi.org/10.1037/a0037840Google Scholar
Howard, M. W., Shankar, K. H., & Jagadisan, U. K. K. (2011). Constructing semantic representations from a gradually changing representation of temporal context. Topics in Cognitive Science, 3(1), 4873. https://doi.org/10.1111/j.1756-8765.2010.01112.xGoogle Scholar
Howard, M. W., Youker, T. E., & Venkatadass, V. S. (2008). The persistence of memory: contiguity effects across hundreds of seconds. Psychonomic Bulletin & Review, 15(1), 5863. https://doi.org/10.3758/PBR.15.1.58Google Scholar
Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different ways to cue a coherent memory system: a theory for episodic, semantic, and procedural tasks. Psychological Review, 96(2), 208233. https://doi.org/10.1037/0033-295X.96.2.208Google Scholar
Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory & Cognition, 24(1), 103109.Google Scholar
Kahana, M. J., Howard, M. W., & Polyn, S. M. (2008). Associative retrieval processes in episodic memory. In J. H. Byrne (Ed.), Learning and Memory: A Comprehensive Reference: Vol. 2. Cognitive Psychology of Memory (pp. 467490). Oxford: Elsevier.Google Scholar
Kesner, R. P., & Rolls, E. T. (2015). A computational theory of hippocampal function, and tests of the theory: new developments. Neuroscience & Biobehavioral Reviews, 48, 92147. https://doi.org/10.1016/j.neubiorev.2014.11.009Google Scholar
Kimball, D. R., Smith, T. A., & Kahana, M. J. (2007). The fSAM model of false recall. Psychological Review, 114, 954993.CrossRefGoogle ScholarPubMed
Kinnell, A., & Dennis, S. (2011). The list length effect in recognition memory: an analysis of potential confounds. Memory & Cognition, 39(2), 348363. https://doi.org/10.3758/s13421-010-0007-6Google Scholar
Kinnell, A., & Dennis, S. (2012). The role of stimulus type in list length effects in recognition memory. Memory & Cognition, 40(3), 311325.Google Scholar
Kragel, J. E., Morton, N. W., & Polyn, S. M. (2015). Neural activity in the medial temporal lobe reveals the fidelity of mental time travel. Journal of Neuroscience, 35(7), 29142926. https://doi.org/10.1523/JNEUROSCI.3378-14.2015Google Scholar
Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20(7), 512534. https://doi.org/10.1016/j.tics.2016.05.004Google Scholar
Laming, D. (2010). Serial position curves in free recall. Psychological Review, 117(1), 93133.CrossRefGoogle ScholarPubMed
Lee, S.-H., Kravitz, D. J., & Baker, C. I. (2013). Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nature Neuroscience, 16, 997999.Google Scholar
Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493497.Google Scholar
Levy, W. B. (1996). A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus, 6(6), 579590. https://doi.org/10.1002/(SICI)1098-1063(1996)6:6%3C579::AID-HIPO3%3E3.0.CO;2-CGoogle Scholar
Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8(3), 531543.Google Scholar
Light, L. L., Kayra-Stuart, F., & Hollander, S. (1979). Recognition memory for typical and unusual faces. Journal of Experimental Psychology: Human Learning and Memory, 5(3), 212228. https://doi.org/10.1037/0278-7393.5.3.212Google Scholar
Lohnas, L. J., Polyn, S. M., & Kahana, M. J. (2015). Expanding the scope of memory search: modeling intralist and interlist effects in free recall. Psychological Review, 122(2), 337363.Google Scholar
Long, N. M., Danoff, M. S., & Kahana, M. J. (2015). Recall dynamics reveal the retrieval of emotional context. Psychonomic Bulletin & Review, 22(5), 13281333. https://doi.org/10.3758/s13423-014-0791-2Google Scholar
MacDonald, C. J., LePage, K. Q., Eden, U. T., & Eichenbaum, H. (2012). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71(4), 737749.Google Scholar
Malmberg, K. J. (2008). Recognition memory: a review of the critical findings and an integrated theory for relating them. Cognitive Psychology, 57(4), 335384. https://doi.org/10.1016/j.cogpsych.2008.02.004Google Scholar
Malmberg, K. J., Holden, J. E., & Shiffren, R. M. (2004). Modeling the effects of repetitions, similarity, and normative word frequency on old-new recognition and judgments of frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 319331. https://doi.org/10.1037/0278-7393.30.2.319Google Scholar
Malmberg, K. J., & Shiffrin, R. M. (2005). The “one-shot” hypothesis for context storage. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 322336. https://doi.org/10.1037/0278-7393.31.2.322Google Scholar
Manning, J. R., Norman, K. A., & Kahana, M. J. (2015). The Role of Context in Episodic Memory. Cambridge, MA: MIT Press.Google Scholar
Marshall, P. H., & Werder, P. R. (1972). The effects of the elimination of rehearsal on primacy and recency. Journal of Verbal Learning and Verbal Behavior, 11(5), 649653. https://doi.org/10.1016/S0022-5371(72)80049-5Google Scholar
McClelland, J. L. (1994). The organization of memory: a parallel distributed processing perspective. Revue Neurologique, 150(8–9), 570579.Google Scholar
McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105(4), 724760. https://doi.org/10.1037/0033-295X.105.4.734-760Google Scholar
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419457. https://doi.org/10.1037/0033-295X.102.3.419Google Scholar
Meeter, M., & Murre, J. (2004). Simulating episodic memory deficits in semantic dementia with the TraceLink model. Memory, 12(3), 272287. https://doi.org/10.1080/09658210244000658Google Scholar
Mensink, G.-J., & Raaijmakers, J. G. W. (1988). A model for interference and forgetting. Psychological Review, 95(4), 434455.Google Scholar
Miletic, S., & van Maanen, L. (2019). Caution in decision-making under time pressure is mediated by timing ability. Cognitive Psychology, 110, 1629.Google Scholar
Miller, J. F., Neufang, M., Solway, A., et al. (2013). Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. Science, 342(6162), 11111114.Google Scholar
Modigliani, V., & Hedges, D. G. (1987). Distributed rehearsals and the primacy effect in single-trial free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(3), 426436.Google Scholar
Molitor, R. J., Sherrill, K. R., Morton, N. W., Miller, A. A., & Preston, A. R. (2021). Memory reactivation during learning simultaneously promotes dentate gyrus/CA2,3 pattern differentiation and CA1 memory integration. Journal of Neuroscience, 41(4), 726738. https://doi.org/10.1523/JNEUROSCI.0394-20.2020Google Scholar
Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M., Daw, N. D., & Gershman, S. J. (2017). The successor representation in human reinforcement learning. Nature Human Behaviour, 1(9), 680692. https://doi.org/10.1038/s41562-017-0180-8Google Scholar
Morton, N. W., Kahana, M. J., Rosenberg, E. A., et al. (2013). Category-specific neural oscillations predict recall organization during memory search. Cerebral Cortex, 23(10), 24072422. https://doi.org/10.1093/cercor/bhs229Google Scholar
Morton, N. W., & Polyn, S. M. (2016). A predictive framework for evaluating models of semantic organization in free recall. Journal of Memory and Language, 86, 119140.Google Scholar
Morton, N. W., & Polyn, S. M. (Submitted). A neurocognitive theory of episodic and semantic interactions during memory search.Google Scholar
Mullennix, J. W., Ross, A., Smith, C., Kuykendall, K., Conard, J., & Barb, S. (2011). Typicality effects on memory for voice: implications for earwitness testimony. Applied Cognitive Psychology, 25(1), 2934. https://doi.org/10.1002/acp.1635Google Scholar
Müller, G. E., & Pilzecker, A. (1900). Experimentelle Beiträge zur Lehre vom Gedächtniss. Leipzig: J. A. Barth.Google Scholar
Murdock, B. B. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64(5), 482488.CrossRefGoogle Scholar
Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89(6), 609626. https://doi.org/10.1037/0033-295X.89.6.609Google Scholar
Murdock, B. B. (1997). Context and mediators in a theory of distributed associative memory (TODAM2). Psychological Review, 104(4), 839862. https://doi.org/10.1037/0033-295X.104.4.839Google Scholar
Murdock, B. B., & Okada, R. (1970). Interresponse times in single-trial free recall. Journal of Experimental Psychology, 86(2), 263267. https://doi.org/10.1037/h0029993Google Scholar
Murre, J. M. J., Graham, K. S., & Hodges, J. R. (2001). Semantic dementia: relevance to connectionist models of long-term memory. Brain, 124(4), 647675. https://doi.org/10.1093/brain/124.4.647Google Scholar
Nielson, D. M., Smith, T. A., Sreekumar, V., Dennis, S., & Sederberg, P. B. (2015). Human hippocampus represents space and time during retrieval of real-world memories. Proceedings of the National Academy of Sciences, 112(35), 1107811083. https://doi.org/10.1073/pnas.1507104112CrossRefGoogle ScholarPubMed
Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychological Review, 110(4), 611646.Google Scholar
Osth, A. F., & Dennis, S. (2015). Sources of interference in item and associative recognition memory. Psychological Review, 122(2), 260311.CrossRefGoogle ScholarPubMed
Osth, A. F., & Dennis, S. (2020). Global matching models of recognition memory (advance online publication).https://doi.org/10.31234/osf.io/mja6cGoogle Scholar
Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., & Turner, B. M. (2018). A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 84, 2048. https://doi.org/10.1016/j.jmp.2018.03.003Google Scholar
Phillips, J. L., Shiffrin, R. M., & Atkinson, R. C. (1967). Effects of list length on short-term memory. Journal of Verbal Learning and Verbal Behavior, 6(3), 303311.Google Scholar
Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009a). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116(1), 129156. https://doi.org/10.1037/a0014420Google Scholar
Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009b). Task context and organization in free recall. Neuropsychologia, 47(11), 21582163.Google Scholar
Post, E. L. (1930). Generalized differentiation. Transactions of the American Mathematical Society, 32(4), 723723. https://doi.org/10.1090/S0002-9947-1930-1501560-XGoogle Scholar
Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764R773. https://doi.org/10.1016/j.cub.2013.05.041Google Scholar
Preston, A. R., Shrager, Y., Dudukovic, N. M., & Gabrieli, J. D. (2004). Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus, 14(2), 148152.Google Scholar
Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: application of the SAM model. Cognitive Science, 27(3), 431452.Google Scholar
Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88(2), 93134.Google Scholar
Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 13(10), 713726. https://doi.org/10.1038/nrn3338Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59108.Google Scholar
Ratcliff, R., Voskuilen, C., & Teodorescu, A. (2018). Modeling 2-alternative forced-choice tasks: accounting for both magnitude and difference effects. Cognitive Psychology, 103, 122.Google Scholar
Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 803814. https://doi.org/10.1037/0278-7393.21.4.803Google Scholar
Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Frontiers in Systems Neuroscience, 7, 121.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928. https://doi.org/10.1126/science.274.5294.1926Google Scholar
Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 26(8), 17361747. https://doi.org/10.1162/jocn_a_00578Google Scholar
Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160049. https://doi.org/10.1098/rstb.2016.0049Google Scholar
Schlichting, M. L., & Preston, A. R. (2017). The hippocampus and memory integration: building knowledge to navigate future decisions. In Hannula, D. E. & Duff, M. C. (Eds.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition (pp. 405437). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-50406-3_13Google Scholar
Schmidt, S. R. (1996). Category typicality effects in episodic memory: testing models of distinctiveness. Memory & Cognition, 24(5), 595607. https://doi.org/10.3758/BF03201086CrossRefGoogle ScholarPubMed
Schooler, L. J., Shiffrin, R. M., & Raaijmakers, J. G. W. (2001). A Bayesian model for implicit effects in perceptual identification. Psychological Review, 108(1), 257272. https://doi.org/10.1037/0033-295X.108.1.257Google Scholar
Sederberg, P. B., Gauthier, L. V., Terushkin, V., Miller, J. F., Barnathan, J. A., & Kahana, M. J. (2006). Oscillatory correlates of the primacy effect in episodic memory. Neuroimage, 32(3), 14221431.Google Scholar
Sederberg, P. B., Gershman, S. J., Polyn, S. M., & Norman, K. A. (2011). Human memory reconsolidation can be explained using the temporal context model. Psychonomic Bulletin and Review, 18(3), 455468.Google Scholar
Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of recency and contiguity in free recall. Psychological Review, 115(4), 893912.Google Scholar
Sederberg, P. B., Miller, J. F., Howard, M. W., & Kahana, M. J. (2010). The temporal contiguity effect predicts episodic memory performance. Memory & Cognition, 88, 389399.Google Scholar
Shankar, K. H., & Howard, M. W. (2012). A scale-invariant internal representation of time. Neural Computation, 24(1), 134193. https://doi.org/10.1162/NECO_a_00212Google Scholar
Shankar, K. H., & Howard, M. W. (2013). Optimally fuzzy temporal memory. Journal of Machine Learning Research, 14(83), 37853812.Google Scholar
Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM retrieving effectively from memory. Psychonomic Bulletin & Review, 4(2), 145166.Google Scholar
Siefke, B. M., Smith, T. A., & Sederberg, P. B. (2019). A context-change account of temporal distinctiveness. Memory & Cognition, 47(6), 11581172. https://doi.org/10.3758/s13421-019-00925-5Google Scholar
Sirotin, Y. B., Kimball, D. R., & Kahana, M. J. (2005). Going beyond a single list: modeling the effects of prior experience on episodic free recall. Psychonomic Bulletin & Review, 12, 787805.Google Scholar
Smith, D. A., & Graesser, A. C. (1981). Memory for actions in scripted activities as a function of typicality, retention interval, and retrieval task. Memory & Cognition, 9(6), 550559. https://doi.org/10.3758/BF03202349Google Scholar
Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: a review and meta-analysis. Psychonomic Bulletin & Review, 8, 203220.Google Scholar
Socher, R., Gershman, S. J., Perotte, A. J., Sederberg, P. B., Blei, D. M., & Norman, K. A. (2009). A Bayesian analysis of dynamics in free recall. In M. I. Jordan, Y. LeCun, & S. A. Solla (Eds.), Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press.Google Scholar
Staudigl, T., & Hanslmayr, S. (2013). Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Current Biology, 23(12), 11011106.CrossRefGoogle ScholarPubMed
Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2005). Word association spaces for predicting semantic similarity effects in episodic memory. In A. F. Healy (Ed.), Experimental Cognitive Psychology and Its Applications (pp. 237249). Washington, DC: American Psychological Association. https://doi.org/10.1037/10895-018Google Scholar
Strong, E. K. (1912). The effect of length of series upon recognition memory. Psychological Review, 19(6), 447462.Google Scholar
Talmi, D., Lohnas, L. J., & Daw, N. D. (2019). A retrieved context model of the emotional modulation of memory. Psychological Review, 126(4), 455485. https://doi.org/10.1037/rev0000132Google Scholar
Talmi, D., & Moscovitch, M. (2004). Can semantic relatedness explain the enhancement of memory for emotional words? Memory & Cognition, 32(5), 742751. https://doi.org/10.3758/BF03195864Google Scholar
Tan, L., & Ward, G. (2000). A recency-based account of the primacy effect in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 15891625. https://doi.org/10.1037/0278-7393.26.6.1589Google Scholar
Tsao, A., Sugar, J., Lu, L., et al. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature, 561, 5762.Google Scholar
Tulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie Canadienne, 26(1), 112. https://doi.org/10.1037/h0080017Google Scholar
Tulving, E. (1993). What is episodic memory? Current Directions in Psychological Science, 2(3), 6770. https://doi.org/10.1111/1467-8721.ep10770899Google Scholar
Turner, B. M., & Sederberg, P. B. (2012). Approximate Bayesian computation with differential evolution. Journal of Mathematical Psychology, 56(5), 375385.Google Scholar
Turner, B. M., & Sederberg, P. B. (2014). A generalized, likelihood-free method for posterior estimation. Psychonomic Bulletin & Review, 21(2), 227250.Google Scholar
Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A method for efficiently sampling from distributions with correlated dimensions. Psychological Methods, 18(3), 368384.Google Scholar
Turner, B. M., & Van Zandt, T. (2012). A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology, 56(2), 6985.Google Scholar
Urgolites, Z. J., & Wood, J. N. (2013). Visual long-term memory stores high-fidelity representations of observed actions. Psychological Science, 24(4), 403411.Google Scholar
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108(3), 550592. https://doi.org/10.1037/0033-295X.108.3.550CrossRefGoogle ScholarPubMed
Usher, M., Olami, Z., & McClelland, J. L. (2002). Hick’s Law in a stochastic race model with speed-accuracy tradeoff. Journal of Mathematical Psychology, 46, 704715.Google Scholar
van Ravenzwaaij, D., Brown, S. D., Marley, A. A. J., & Heathcote, A. (2020). Accumulating advantages: a new conceptualization of rapid multiple choice. Psychological Review, 127(2), 186215.Google Scholar
Wagenmakers, E.-J., Steyvers, M., Raaijmakers, J. G. W., Shiffrin, R. M., van Rijn, H., & Zeelenberg, R. (2004). A model for evidence accumulation in the lexical decision task. Cognitive Psychology, 48(3), 332367. https://doi.org/10.1016/j.cogpsych.2003.08.001Google Scholar
Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychological Review, 114(1), 152176. https://doi.org/10.1037/0033-295X.114.1.152Google Scholar
Xu, J., & Malmberg, K. J. (2007). Modeling the effects of verbal and nonverbal pair strength on associative recognition. Memory & Cognition, 35(3), 526544. https://doi.org/10.3758/BF03193292Google Scholar
Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years of research. Journal of Memory and Language, 46(3), 441517. https://doi.org/10.1006/jmla.2002.2864Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×