Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T04:45:16.800Z Has data issue: false hasContentIssue false

Part II - Memory and Recall

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

AllenT. A. & Fortin, N. J. (2013). The evolution of episodic memoryProc. Natl. Acad. Sci. USA110(suppl. 2), 1037910386.Google Scholar
Anderson, R. J. & Dewhurst, S. A. (2009). Remembering the past and imagining the future: Differences in event specificity of spontaneously generated thought. Memory, 17(4), 367373.Google Scholar
Arndt, J. & Reder, L. M. (2002). Word frequency and receiver operating characteristic curves in recognition memory: Evidence for a dual process interpretation. J. Exp. Psychol. Learn., 28(5), 830842.Google Scholar
Babb, S. J. & Crystal, J. D. (2005). Discrimination of what, when and where: Implications for episodic-like memory in the rat. Learn. Motiv., 36 (2), 177189.Google Scholar
Babb, S. J. & Crystal, J. D. (2006). Discrimination of what, when, and where is not based on the time of the day. Learn. Behav., 34(2), 124130.Google Scholar
Basile, B. & Hampton, R. R. (2011). Monkeys recall and reproduce simple shapes from memory. Curr. Biol., 21(9), 774778.CrossRefGoogle ScholarPubMed
Bird, L. R., Roberts, W. A., Abroms, B., Kit, K. A., & Crupi, C. (2003). Spatial memory for food hidden by rats (Rattus norvegicus) on the radial maze: Studies of memory for what, where and when. J. Comp. Psychol., 117(2) 176187CrossRefGoogle ScholarPubMed
Buckner, R. L. & Carroll, D. C. (2007). Self-projection and the brain. Trends Cogn. Sci., 11(2), 4957.Google Scholar
Cheke, L. G. & Clayton, N. S. (2010). Mental time travel in animals. Wiley & Sons, Ltd. WIREs Cogn. Sci., 1(9), 116.Google Scholar
Cheke, L. G. and Clayton, N. S. (2011). Eurasian jays (Garrulus glandarius) overcome their current desires to anticipate two distinct future needs and plan for them accordingly. Biol. Lett., 8(2), 171175.Google Scholar
Cheke, L. G. & Clayton, N. S. (2013). Do different tests of episodic memory produce consistent results in human adults? Learn. Mem., 20(9), 491498.CrossRefGoogle ScholarPubMed
Cheke, L. G. & Clayton, N. S. (2015). The six blind men and the elephant: Are episodic memory tasks tests of different things or different tests of the same thing? J. Exp. Child Psychol., 137, 164171.Google Scholar
Clayton, N. S. & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272274.Google Scholar
Clayton, N. S. & Dickinson, A. (1999a). Memory for the contents of caches by scrub jays (Aphelocoma coerulescens). J. Exp. Psychol.: Anim. Behav. Proc., 25(1), 8291.Google Scholar
Clayton, N. S. & Dickinson, A. (1999b). Motivational control of caching behavior in the scrub jay, Aphelocoma coerulescens. Anim. Behav., 57(2), 435444.Google Scholar
Clayton, N. S. & Dickinson, A. (1999c). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. J. Comp. Psychol., 113(4), 403416.Google Scholar
Clayton, N. S., Yu, K. S., & Dickinson, A. (2001). Scrub-jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes. J. Exp. Psychol.: Anim. Behav. Proc., 27(1), 1729.Google Scholar
Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003a). Can animals recall the past and plan for the future? Nature Rev. Neurosci., 4(8), 685691.CrossRefGoogle ScholarPubMed
Clayton, N. S., Yu, K. S., & Dickinson, A. (2003b). Interacting cache memories: Evidence for flexible memory use by Western scrub-jays (Aphelocoma coerulescens). J. Exp. Psychol.: Anim. Behav. Proc., 29(1), 1422.Google Scholar
Conway, M. A. & Fthenaki, A. (2000). Disruption and Loss of Autobiographical Memory. In Cermac, L. S., (Ed.), Handbook of Neuropsychology: Memory and Its Disorders, (281312), Netherlands: Elsevier Science B.V.Google Scholar
Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends Cogn. Sci., 17, 56.Google Scholar
Correia, S. P. C., Dickinson, A., & Clayton, N. S. (2007). Western scrub-jays anticipate future needs independently of their current motivational state. Curr. Biol. 17, 856861.Google Scholar
Crystal, J. D. (2009). Elements of episodic-like memory in animal modelsBehav. Proc., 80, 269.Google Scholar
D’Argembeau, A. & Mathy, A. (2011). Tracking the construction of episodic future thoughts. J. Exp. Psychol. (Gen.), 140, 258271.Google Scholar
D’Argembeau, A., Renaud, O., & Van der Linden, M. (2011). Frequency, characteristics, and functions of future-oriented thoughts in daily life. Appl. Cogn. Psychol., 35, 96103.Google Scholar
Dekleva, M., Dufour, V., de Vries, H., Spruijt, B. M., & Sterck, E. H. M. (2011). Chimpanzees (Pan troglodytes) fail a what-where-when task but find rewards by using a location-based association strategy. PLoS One, 6, e16593.Google Scholar
Dere, E., Huston, J. P., & De Souza Silva, M. A. (2005). Integrated memory for objects, places and temporal order: Evidence for episodic-like memory in mice. Neurobiol. Learn. Mem., 84, 214221.CrossRefGoogle ScholarPubMed
Dere, E., Kart-Teke, E., Huston, J. P., and De Souza Silva, M. A. (2006). The case for episodic memory in animals. Neurosci. Biobehav. Rev., 30, 12061224.Google Scholar
Dere, E., Zlomuzica, A., Huston, J. P., De Souza, Silva M. A. (2008). Animal Episodic Memory. In Dere, E., Easton, A., Nadel, L., Huston, J. P., (Eds.), Handbook of Episodic Memory, (Vol. 18, pp. 155184). Amsterdam: Elsevier Science.Google Scholar
Dudai, Y. & Carruthers, M. (2005). The Janus face of Mnemosyne. Nature, 434, 567.Google Scholar
Dufour, V, & Sterck, E. H. M. (2008). Chimpanzees fail to plan in an exchange task but succeed in a tool-using procedure. Behav. Proc. 79, 1927.Google Scholar
Eacott, M. J. & Norman, G. (2004). Integrated memory for object, place and context in rats: A possible model of episodic-like memory in rats? J. Neurosci., 24, 19481953.Google Scholar
Eacott, M. J. & Gaffan, E. A. (2005). The roles of perirhinal cortex, postrhinal cortex, and the fornix in memory for objects, contexts, and events in the rat. Q. J. Exp. Psychol. B, 58, 202217.CrossRefGoogle ScholarPubMed
Eacott, M. J., Easton, A., & Zinkivsky, A. (2005), Recollection in an episodic-like memory task in the rat. Learn. Mem., 12, 221223.Google Scholar
Eacott, M. J. & Easton, A. (2010). Episodic memory in animals: Remembering which occasion. Neuropsychologia, 48, 22732280.CrossRefGoogle ScholarPubMed
Eacott, M. J. & Easton, A. (2012). Remembering the past and thinking about the future: Is it really about time? Learn. Motiv., 43, 200208.CrossRefGoogle Scholar
Easton, A., Zinkivskay, A., & Eacott, M. J. (2009). Recollection is impaired, but familiarity remains intact in rats with lesions of the fornix. Hippocampus19, 837843.Google Scholar
Easton, A.Webster, L. A. D., & Eacott, M. J. (2012). The episodic nature of episodic-like memoriesLearn. Mem19, 146150.Google Scholar
Eichenbaum, H., Fortin, N. J., Ergorul, C., Wright, S. P., & Agster, K. L. (2005). Episodic recollection in animals: “If it walks like a duck and quacks like a duck…”Learn. Motiv., 36, 190207.Google Scholar
Ergorul, C. & Eichenbaum, H. (2004). The hippocampus and memory for ‘‘what’’, ‘‘where’’, and ‘‘when’’. Learn. Mem., 11, 397405.Google Scholar
Ferkin, M. H., Combs, A., del Barco-Trillo, J., Pierce, A. A., & Franklin, S. (2008). Meadow voles, Microtus pennsylvanicus, have the capacity to recall the ‘‘what’’, ‘‘where’’ and ‘‘when’’ of a single past event. Anim. Cogn., 11, 147159.Google Scholar
Fortin, N. J., Wright, S. P. & Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature, 431, 188191.CrossRefGoogle ScholarPubMed
Friedman, W. J. (1993). Memory for the time of past events. Psychol. Bull., 113, 4466.Google Scholar
Friedman, W. J. (2007). The meaning of ‘‘time’’ in episodic memory and mental time travel. Behav. Brain Sci., 30, 323.Google Scholar
Gadian, D. G., Aicardi, J., Watkins, K. E., Porter, D. A., Mishkin, M., & Vargha-Khadem, F. (2000). Developmental amnesia associated with early hypoxic–ischaemic injury. Brain: J. Neurol., 123, 499507.CrossRefGoogle ScholarPubMed
Graham, K. S., Lee, A. C. H., Brett, M., & Patterson, K. (2003). The neural basis of autobiographical and semantic memory: New evidence from three PET studies. Cognitive Affect. Behav. Neurosci., 3, 234254.Google Scholar
Greenberg, D. L. & Verfaellie, M. (2010). Interdependence of episodic and semantic memory: Evidence from neuropsychology. J. Int. Neuropsychol. Soc., 16, 748753.CrossRefGoogle ScholarPubMed
Hampton, R. R. & Schwartz, B. L. (2004). Episodic memory in nonhumans: What, and where, is when? Curr. Opin. Neurobiol., 14, 192197.CrossRefGoogle Scholar
Hampton, R. R., Hampstead, B. M., & Murray, E. A. (2005). Rhesus monkeys (Macaca mulatta) demonstrate robust memory for what and where, but not for when, in an open-field test of memory. Learn. Motiv., 36, 245259.Google Scholar
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl. Acad. Sci., 104, 17261731.Google Scholar
Hayne, H. & Imuta, K. (2011). Episodic memory in 3- and 4-year-old children. Develop. Psychob., 53, 317322.CrossRefGoogle ScholarPubMed
Henderson, J., Hurly, T. A., Bateson, M., & Healy, S. D. (2006). Timing in free living rufous humming birds, Selasphorus rufus. Curr. Biol., 16, 512515.Google Scholar
Hirano, M. & Noguchi, K. (1998). Dissociation between specific personal episodes and other aspects of remote memory in a patient with hippocampal amnesia. Percept. Mot. Skills, 87, 99107.Google Scholar
Hockley, W. E. (1992). Item versus associative information: Further comparisons of forgetting rates. J. Exp. Psychol. Learn. Mem. Cogn., 18, 13211330.Google Scholar
Holland, S. M. & Smulders, T. V. (2011). Do humans use episodic memory to solve a What-Where-When memory task? Anim. Cogn., 1495102.Google Scholar
Jozet-Alves, C., Bertin, M., Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Curr. Biol., 23, 10331035.Google Scholar
Kabadayi, C. & OsvathM. (2017). Ravens parallel great apes in flexible planning for tool-use and barteringScience, 357202204.Google Scholar
Kart-Teke, E., De Souza Silva, M. A., Huston, J. P., & Dere, E. (2006). Wistar rats show episodic-like memory for unique experiences. Neurobiol. Learn. Mem., 85, 173182.CrossRefGoogle ScholarPubMed
Kapur, N. (1999). Syndromes of retrograde amnesia: A conceptual and empirical synthesis. Psychol. Bull., 125, 800825.CrossRefGoogle ScholarPubMed
Kelley, R. & Wixted, J. T. (2001). On the nature of associative information in recognition memory. J. Exp. Psychol. Learn., 27, 701722.CrossRefGoogle ScholarPubMed
Klein, S. B. & Nichols, S. (2012). Memory and the sense of personal identity. Mind, 121, 677702.Google Scholar
de Kort, S. R., Dickinson, A., & Clayton, N. S. (2005). Retrospective cognition by food-caching Western scrub-jays. Learn. Motiv., 36, 159176.Google Scholar
Kouwenberg, A. L, Martin, G. M., Skinner, D. M., Thorpe, C. M., & Walsh, C. J. (2012). Spontaneous Object Recognition in Animals: A Test of Episodic Memory, Advances in Object Recognition Systems, Dr. Ioannis Kypraios (Ed.), ISBN: 978-953-51-0598-5, InTech, DOI: 10.5772/35989.Google Scholar
Langston, R. F., Wood, E. R. (2010). Associative recognition and the hippocampus: Differential effects of hippocampal lesions on object-place, object-context and object-place-context memory. Hippocampus, 20, 11391153.Google Scholar
Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychol. Aging, 17, 677689.CrossRefGoogle ScholarPubMed
Lewis, A., Call, J., & Berntsen, D. (2017). Non-goal-directed recall of specific events in apes after long delays. Proc. R. Soc. B Lond., 284, 20170518.Google Scholar
Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., & Yang, Y. (2012). Rat brains also have a default mode network. Proc. Natl. Acad. Sci. USA, 109, 39793984.CrossRefGoogle ScholarPubMed
Mantini, D., Gerits, A., Nelissen, K., Durand, J. B., Joly, O., Simone, L., Sawamura, H., Wardak, C., Orban, G. A., Buckner, R. L., & VanDuffel, W. (2011). Default mode of brain function in monkeys. J. Neurosci., 31, 1295412962.CrossRefGoogle ScholarPubMed
Martín-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence of episodic-like memory in great apes. Anim. Cogn., 13, 331340.Google Scholar
Martín-Ordás, G., Atance, C., & Louw, A. (2012). The role of episodic and semantic memory in episodic foresight. Learn. Motiv., 43, 209219.Google Scholar
Martín-Ordás, GBerntsen, D, & Call, J. (2013). Memory for distant past events in chimpanzees and orangutansCurr. Biol., 2314381441.Google Scholar
Martín-Ordás, G., Atance, C. M., & Call, J. (2014). Remembering in a tooluse task in children and great apes: The role of the information atencoding. Memory, 22, 129144.Google Scholar
Martín-Ordás, G., Atance, C. M., & Caza, J. (2017). Did the popsicle melt? Preschoolers’ performance in an episodic-like memory taskMemory, 25, 12601271.Google Scholar
Martín-Ordás, G. & Atance, C. M. (2019). Adults’ performance in an episodic-like memory task: The role of experience. Front. Psychol., 9, 2688.Google Scholar
Menzel, E. (2005 .) Progress in the Study of Chimpanzee Recall and Episodic Memory. In Terrace, H. S. & Metcalfe, J. (Eds.), The Missing Link in Cognition: Origins of Self-Reflective Consciousness (pp. 188224). Oxford: Oxford University Press.Google Scholar
McKinnon, M. C., Black, S. E., Miller, B., Moscovitch, M., & Levine, B., (2006). Autobiographical memory in semantic dementia: Implications for theories of limbic-neocortical interaction in remote memory. Neuropsychologia, 44, 24212429.Google Scholar
McKenzie, T. L. B., Bird, L. R., & Roberts, W. A. (2005). The effects of cache modification on food caching and retrieval behavior by rats. Learn. Motiv., 36, 260278.Google Scholar
Morris, R. G. M. & Frey, U. (1997) Hippocampal synaptic plasticity: Role in spatial learning or the automatic recording of attended experience? Phil. Trans. R. Soc. Lond. B, 352, 14891503.Google Scholar
Mulcahy, N. J. & Call, J. (2006). Apes save tools for future use. Science, 312, 10381040.Google Scholar
Mullally, S. L., Hassabis, D., and Maguire, E. A. (2012). Scene construction in amnesia: An fMRI studyJ. Neurosci., 32, 56465653.Google Scholar
Naqshbandi, M. & Roberts, W. A. (2006). Anticipation of future events in squirrel monkeys (Saimiri sciureus) and rats (Rattus norvegicus): Tests of the Bischof- Köhler hypothesis. J. Comp. Psychol., 120, 345357.Google Scholar
Osvath, M. (2009). Spontaneous planning for stone throwing by a male chimpanzee. Curr. Biol., 19(5), R191R192.Google Scholar
Osvath, M. & Osvath, H. (2008). Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: Self-control and pre-experience in the face of future tool use. Anim. Cogn., 11, 661674.Google Scholar
Osvath, M &Karvonen, E (2012).Spontaneous innovation for future deception in a male chimpanzee. PLoS One,7(5). DOI: 10.1371/ journal.pone.0036782Google Scholar
Osvath, M., & Persson, T. (2013). Great apes can defer exchange: A replication with different results suggesting future oriented behavior. Front. Comp. Psychol. DOI: 10.3389/fpsyg.2013.00698Google Scholar
Panoz-Brown, D., Iyer, V., Carey, L. M., Sluka, C. M., Rajic, G., Kestenman, J., Gentry, M., Brotheridge, S., Somekh, I., Corbin, H. E., Tucker, K. G., Almeida, B., Hex, S. B., Garcia, K. D., Hohmann, A. G., & Crystal, J. D. (2018). Replay of episodic memories in the ratCurr. Biol., 28, 16281634.Google Scholar
Pause, B. M., Zlomuzica, A., Kinugawa, K., Mariani, J., Pietrowsky, R., & Dere, E. (2013). Perspectives on episodic-like and episodic memory. Front. Behav. Neurosci., 7, 33.Google Scholar
Premack, D. (2007). Human and animal cognition: Continuity and discontinuity. Proc. Natl. Acad. Sci. USA, 104, 1386113867.CrossRefGoogle ScholarPubMed
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by Western scrub-jays. Nature, 445, 919921.Google Scholar
RedshawJ.TaylorA. H., SuddendorfT. (2017). Flexible planning in ravens? Trends Cogn. Sci., 21821822.Google Scholar
Rilling, J. K., Barks, S. K., Parr, L. A., Preuss, T. M., Faber, T. L., Pagnoni, G., Bremner, J. D., & Votaw, J. R. (2007). A comparison of resting-state brain activity in humans and chimpanzees. Proc. Natl. Acad. Sci. USA, 104, 1714617151.Google Scholar
Roberts, W. A., Feeney, M. C., MacPherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320, 113115.Google Scholar
Rotello, C. M., Macmillan, N. A., & Van Tassel, G. (2000). Recall-to reject in recognition: Evidence from ROC curves. J. Memo. Lang., 43, 6788.Google Scholar
Salwiczek, L. H., Dickinson, A., & Clayton, N. S. (2008). What Do Animals Remember about Their Past?” In Menzel, R., (Ed.), Cognitive Psychology of Memory (pp. 441459). Oxford: Elsevier.Google Scholar
Salwiczek, L. H. & Bshary, R. (2011). Cleaner wrasses keep track of the ‘when’ and ‘what’ in a foraging task. Ethology, 117, 939948.Google Scholar
Sauvage, M. M., Fortin, N. J., Owens, C. B., Yonelinas, A. P., & Eichenbaum, H. (2008). Recognition memory: Opposite effects of hippocampal damage on recollection and familiarity. Nat. Neurosci., 11, 1618.Google Scholar
Sauvage, M. M., Beer, Z., & Eichenbaum, H. (2010). Recognition memory: Adding a response deadline eliminates recollection but spares familiarity. Learn. Mem., 17, 104108.Google Scholar
Schacter, D. L. & Addis, D. R. (2007). The ghosts of past and future. Nature, 445, 27.Google Scholar
Schwartz, B.L. (2005). Do Human Primates Have Episodic Memory? In Terrace, H. S. & Metcalfe, J. (Eds.), The Missing Link in Cognition (pp. 225241), Oxford: Oxford University Press.Google Scholar
Schwartz, B. L., Colon, M. R., Sanchez, I. C., Rodriguez, I. A., & Evans, S. (2002). Single-trial learning of ‘‘what’’ and ‘‘who’’ information in a gorilla (Gorilla gorilla gorilla): Implications for episodic memory. Anim. Cogn., 5, 8590.Google Scholar
Schwartz, B. L., Hoffman, M. L., & Evans, S. (2005). Episodic-like memory in a gorilla: A review and new findings. Learn. Motiv., 36, 226244.Google Scholar
Skov-Rackette, S. I., Miller, N. Y., & Shettleworth, S. J. (2006). What–where–when memory in pigeons. J. Exp. Psychol. Anim. Behav., 32, 345358.Google Scholar
Slotnick, S. D., Klein, S. A., Dodson, C. S., & Shimamura, A. P. (2000). An analysis of signal detection and threshold models of source memory. J. Exp. Psychol. Learn., 26, 14991517.Google Scholar
Snowden, J., Griffiths, H., & Neary, D. (1994). Semantic dementia: Autobiographical contribution to preservation of meaning. Cogn. Neuropsychol., 11, 265288.Google Scholar
Suddendorf, T. (2006). Foresight and evolution of the human mind. Science, 312, 10061007.Google Scholar
Suddendorf, T. & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genet. Soc. Gen. Psychol. Monogr., 123, 133167.Google Scholar
Suddendorf, T. & Busby, J. (2003). Like it or not? The mental time travel debate. Trends Cogn. Sci., 7, 437438.Google Scholar
Suddendorf, T. & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel and is it unique to humans? Behav. Brain Sci., 30, 299313.Google Scholar
Templer, V. L., & Hampton, R. R. (2013). Episodic memory in nonhuman animalsCurr. Biol., 23, R801R806. http://doi.org/10.1016/j.cub.2013.07.016Google Scholar
Tulving, E. (1972). Episodic and Semantic Memory. In Tulving, E. and Donaldson, W. (Eds.), Organization of Memory (pp. 381403). New York: Academic Press.Google Scholar
Tulving, E. (1983). Elements of Episodic Memory. New York: Oxford University Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annu. Rev. Psychol., 53, 125.Google Scholar
Tulving, E. (2005). Episodic Memory and Autonoesis: Uniquely Human? In Terrace, H. S. and Metcalfe, J., (Eds.), The Missing Link in Cognition, (356), Oxford: Oxford University Press.Google Scholar
Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376380.Google Scholar
Wheeler, M. A., Stuss, D. T., & Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychol. Bull., 121, 331354.Google Scholar
Wheeler, M. A. & McMillan, C. T. (2001). Focal retrograde amnesia and the episodic-semantic distinction. Cogn. Affect. Behav. Neurosci., 1, 2236.Google Scholar
Williams, J. M. G. & Broadbent, K. (1986). Autobiographical memory in suicide attempters. J. Abnorm. Psychol., 95, 144149.Google Scholar
Yonelinas, A. P. (1997). Recognition memory ROCs for item and associative information: The contribution of recollection and familiarity. Mem. Cogn., 25, 747763.Google Scholar
Yonelinas, A. P. (1999a). The contribution of recollection and familiarity to recognition and source-memory judgments: A formal dual-process model and an analysis of receiver operating characteristics. J. Exp. Psychol. Learn., 25, 14151434.Google Scholar
Yonelinas, A. P. (1999b). Recognition memory ROCs and the dual-process signal-detection model: Comment on Glanzer, Kim, Hilford, & Adams (1999). J. Exp. Psychol. Learn., 25, 514521.CrossRefGoogle Scholar
Yonelinas, A. P. (2001). Components of episodic memory: The contribution of recollection and familiarity. Phil. Trans. R. Soc. Lond. B, 356, 13631374.Google Scholar
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. J. Mem. Lang., 46, 441517.Google Scholar
Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonom. Bull. Rev., 8, 685690.Google Scholar
Zhou, W. & Crystal, J. D. (2009). Evidence for remembering when events occurred in a rodent model of episodic memory. Proc. Natl. Acad. Sci. USA, 106, 95259529.Google Scholar
Zhou, W., Hohmann, A. G., & Crystal, J. D. (2012). Rats answer an unexpected question after incidental encoding. Curr. Biol., 22, 11491153.Google Scholar
Zinkivskay, A, Nazir, F., & Smulders, T. V. (2009). What–where–when memory in magpies (Pica pica). Anim. Cogn., 12, 119125.Google Scholar

References

Abe, T. & Kudo, H. (2018). Molecular characterization and gene expression of syntaxin-1 and VAMP2 in the olfactory organ and brain during both seaward and homeward migrations of chum salmon, Oncorhynchus keta. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. doi: https://doi.org/10.1016/j.cbpa.2018.09.008Google Scholar
Agranoff, B. W., Davis, R. E., & Brink, J. J. (1965). Memory fixation in the goldfish. Proceedings of the National Academy of Sciences, 54(3), 788793. doi: 10.1073/pnas.54.3.788Google Scholar
Agranoff, B. W., Davis, R. E., & Brink, J. J. (1966). Chemical studies on memory fixation in goldfish. Brain Research, 1(3), 303309. doi: https://doi.org/10.1016/0006-8993(66)90095-3Google Scholar
Aronson, L. R. (1951). Orientation and jumping behavior in the gobiid fish, Bathygobius soporator. American Museum Noviates, 1486, 22.Google Scholar
Aronson, L. R. (1971). Further studies on orientation and jumping behaviour in the Gobiid fish, Bathygobius soporator. Annals of the New York Academy of Sciences, 188(1), 378392. doi: 10.1111/j.1749-6632.1971.tb13110.xGoogle Scholar
Bailey, C. H., Bartsch, D., & Kandel, E. R. (1996). Toward a molecular definition of long-term memory storageProceedings of the National Academy of Sciences93(24), 1344513452.Google Scholar
Bass, N. C., Mourier, J., Knott, N. A., Day, J., Guttridge, T., & Brown, C. (2017). Long-term migration patterns and bisexual philopatry in a benthic shark species. Marine and Freshwater Research, 68(8), 14141421.Google Scholar
Berejikian, B. A., Smith, R. J. F., Tezak, E. P., Schroder, S. L., & Knudsen, C. M. (1999). Chemical alarm signals and complex hatchery rearing habitats affect antipredator behavior and survival of chinook salmon (Oncorhynchus tshawytscha) juveniles. Canadian Journal of Fisheries and Aquatic Sciences, 56(5), 830838.Google Scholar
Bertucci, F., Jacob, H., Mignucci, A., Gache, C., Roux, N., Besson, M., … Lecchini, D. (2018). Decreased retention of olfactory predator recognition in juvenile surgeon fish exposed to pesticide. Chemosphere, 208, 469475. doi: https://doi.org/10.1016/j.chemosphere.2018.06.017Google Scholar
Bett, N., Hinch, S., Kaukinen, K., Li, S., & Miller, K. (2018). Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka. Journal of Fish Biology, 92(6), 20292038.Google Scholar
Beukema, J. J. (1969). Angling experiments with carp (Cyprinus carpio L.). Netherlands Journal of Zoology, 20(1), 11. doi: 10.1163/002829670X00088Google Scholar
Blank, M., Guerim, L. D., Cordeiro, R. F., & Vianna, M. R. M. (2009). A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory. Neurobiology of Learning and Memory, 92(4), 529534. doi: https://doi.org/10.1016/j.nlm.2009.07.001Google Scholar
Braida, D., Ponzoni, L., Martucci, R., Sparatore, F., Gotti, C., & Sala, M. (2014). Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology, 231(9), 19751985. doi: 10.1007/s00213-013-3340-1CrossRefGoogle ScholarPubMed
Broglio, C., Gómez, A., Durán, E., Salas, C., & Rodríguez, F. (2011). Brain and Cognition in Teleost Fish. In Brown, C., Laland, K., & Krause, J. (Eds.), Fish Cognition and Behavior (2nd ed., pp. 325358). Oxford: Wiley-Blackwell.Google Scholar
Brown, C. (2001). Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Animal Cognition, 4(2), 109113. doi: 10.1007/s100710100105Google Scholar
Brown, C. & Warburton, K. (1999). Differences in timidity and escape responses between predator‐naive and predator‐sympatric rainbowfish populations. Ethology, 105(6), 491502.Google Scholar
Brown, C., Markula, A., & Laland, K. (2003). Social learning of prey location in hatchery-reared Atlantic salmon. Journal of Fish Biology, 63(3), 738745. doi: 10.1046/j.1095-8649.2003.00186.xGoogle Scholar
Brown, C., Laland, K., & Krause, J. (2011). Fish Cognition and Behavior. Brown, C., Laland, K., & Krause, J. (Eds.) 2nd ed. Oxford: Blackwell Publishing.Google Scholar
Brown, G. E. & Smith, R. J. F. (1994). Fathead minnows use chemical cues to discriminate natural shoalmates from unfamiliar conspecifics. Journal of Chemical Ecology, 20(12), 30513061.Google Scholar
Brown, G. E. & Smith, R. J. F. (1998). Acquired predator recognition in juvenile rainbow trout (Oncorhynchus mykiss): Conditioning hatchery-reared fish to recognize chemical cues of a predator. Canadian Journal of Fisheries and Aquatic Sciences, 55(3), 611617.CrossRefGoogle Scholar
Brown, G. E., Ferrari, M. C., Malka, P. H., Oligny, M.-A., Romano, M., & Chivers, D. P. (2011). Growth rate and retention of learned predator cues by juvenile rainbow trout: Faster-growing fish forget sooner. Behavioral Ecology and Sociobiology, 65(6), 12671276.Google Scholar
Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: A primate’s eye view. Animal Cognition, 5(1), 113. doi: 10.1007/s10071-001-0116-5Google Scholar
Bshary, R. & Brown, C. (2014). Fish cognition. Current Biology, 24(19), R947R950. doi: https://doi.org/10.1016/j.cub.2014.08.043Google Scholar
Chivers, D. P. & Smith, R. J. F. (1994). Fathead minnows, Pimephales promelas, acquire predator recognition when alarm substance is associated with the sight of unfamiliar fish. Animal Behaviour, 48(3), 597605.Google Scholar
Chivers, D. P., McCormick, M. I., Nilsson, G. E., Munday, P. L., Watson, S. A., Meekan, M. G., … Ferrari, M. C. O. (2014). Impaired learning of predators and lower prey survival under elevated CO2: A consequence of neurotransmitter interference. Global Change Biology, 20(2), 515522. doi: 10.1111/gcb.12291Google Scholar
Chung, W.-S., Marshall, N. J., Watson, S.-A., Munday, P. L., & Nilsson, G. E. (2014). Ocean acidification slows retinal function in a damselfish through interference with GABA-A receptors. Journal of Experimental Biology, 217(3), 323326.Google Scholar
Clark, E. (1959). Instrumental conditioning of lemon sharks. Science, 130(3369), 217218.Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272. doi: 10.1038/26216Google Scholar
Clayton, N. S., Salwiczek, L. H., & Dickinson, A. (2007). Episodic memory. Current Biology, 17(6), R189R191.Google Scholar
Cognato, G. d. P., Bortolotto, J. W., Blazina, A. R., Christoff, R. R., Lara, D. R., Vianna, M. R., & Bonan, C. D. (2012). Y-Maze memory task in zebrafish (Danio rerio): The role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiology of Learning and Memory, 98(4), 321328. doi: https://doi.org/10.1016/j.nlm.2012.09.008Google Scholar
Colson, V., Cousture, M., Zanerato-Damasceno, D., Valotaire, C., Nguyen, T., Le Cam, A., & Bobe, J. (2018). Maternal temperature exposure triggers emotional and cognitive disorders and dysregulation of neurodevelopment genes in fish. PeerJ Preprints, 6, e26910v26911. doi: 10.7287/peerj.preprints.26910v1Google Scholar
Crick, F. (1984). Memory and molecular turnover. Nature, 312, 101. doi: 10.1038/312101a0Google Scholar
Croy, M. I. & Hughes, R. N. (1991). The role of learning and memory in the feeding behaviour of the fifteen-spined stickleback, Spinachia spinachia L. Animal Behaviour, 41(1), 149159.CrossRefGoogle Scholar
Crystal, J. D. (2010). Episodic-like memory in animals. Behavioural Brain Research, 215(2), 235243. doi: https://doi.org/10.1016/j.bbr.2010.03.005Google Scholar
Csányi, V., Csizmadia, G., & Miklosi, A. (1989). Long-term memory and recognition of another species in the paradise fish. Animal Behaviour, 37, 908911.Google Scholar
Day, J. J. & Sweatt, J. D. (2010). DNA methylation and memory formation. Nature Neuroscience, 13(11), 1319.Google Scholar
Dere, E., Huston, J. P., & De Souza Silva, M. A. (2005). Episodic-like memory in mice: Simultaneous assessment of object, place and temporal order memory. Brain Research Protocols, 16(1), 1019. doi: https://doi.org/10.1016/j.brainresprot.2005.08.001Google Scholar
Dixson, D. L., Munday, P. L., & Jones, G. P. (2010). Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecology Letters, 13(1), 6875.Google Scholar
Dou, Y., He, S., Liang, X.-F., Cai, W., Wang, J., Shi, L., & Li, J. (2018). Memory function in feeding habit transformation of mandarin fish (Siniperca chuatsi). International Journal of Molecular Sciences, 19(4), 1254.Google Scholar
Dukes, J. P., Deaville, R., Bruford, M. W., Youngson, A. F., & Jordan, W. C. (2004). Odorant receptor gene expression changes during the parr-smolt transformation in Atlantic salmon. Molecular Ecology, 13(9), 28512857. doi: 10.1111/j.1365-294X.2004.02252.xGoogle Scholar
Dunlop, R., Millsopp, S., & Laming, P. (2006). Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Applied Animal Behaviour Science, 97(2–4), 255271.Google Scholar
Eaton, L., Edmonds, E. J., Henry, T. B., Snellgrove, D. L., & Sloman, K. A. (2015). Mild maternal stress disrupts associative learning and increases aggression in offspring. Hormones and Behavior, 71, 1015. doi: https://doi.org/10.1016/j.yhbeh.2015.03.005Google Scholar
Ebbesson, L. & Braithwaite, V. (2012). Environmental effects on fish neural plasticity and cognition. Journal of Fish Biology, 81(7), 21512174.Google Scholar
Echevarria, D. J., Caramillo, E. M., & Gonzalez-Lima, F. (2016). Methylene blue facilitates memory retention in zebrafish in a dose-dependent manner. Zebrafish, 13(6), 489494.Google Scholar
Eisenberg, M. & Dudai, Y. (2004). Reconsolidation of fresh, remote, and extinguished fear memory in medaka: Old fears don’t die. European Journal of Neuroscience, 20(12), 33973403. doi: 10.1111/j.1460-9568.2004.03818.xGoogle Scholar
El-Ghundi, M., O’Dowd, B. F., & George, S. R. (2007). Insights into the role of dopamine receptor systems in learning and memory. Reviews in the Neurosciences, 18, 37.Google Scholar
Fricke, H. (1973). Individual partner recognition in fish: Field studies on Amphiprion bicinctus. Naturwissenschaften, 60(4), 204204.Google Scholar
Fukumori, K., Okuda, N., Yamaoka, K., & Yanagisawa, Y. (2010). Remarkable spatial memory in a migratory cardinalfish. Animal Cognition, 13(2), 385389. doi: 10.1007/s10071-009-0285-1Google Scholar
Fuss, T., Bleckmann, H., & Schluessel, V. (2014). Visual discrimination abilities in the gray bamboo shark (Chiloscyllium griseum). Zoology, 117(2), 104111. doi: https://doi.org/10.1016/j.zool.2013.10.009Google Scholar
Fuss, T. & Schluessel, V. (2015). Something worth remembering: Visual discrimination in sharks. Animal Cognition, 18(2), 463471.Google Scholar
Fuss, T. & Schluessel, V. (2018). Immediate early gene expression related to learning and retention of a visual discrimination task in bamboo sharks (Chiloscyllium griseum). Brain Structure and Function. doi: 10.1007/s00429-018-1728-8Google Scholar
Gaikwad, S., Stewart, A., Hart, P., Wong, K., Piet, V., Cachat, J., & Kalueff, A. V. (2011). Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: The utility of fish models to study stress–memory interplay. Behavioural Processes, 87(2), 224230. doi: https://doi.org/10.1016/j.beproc.2011.04.004Google Scholar
Ghio, S. C, Boudreau Leblanc, A., Audet, C., & Aubin-Horth, N. (2016). Effects of maternal stress and cortisol exposure at the egg stage on learning, boldness and neophobia in brook trout. Behaviour, 153(13–14), 16391663. doi: https://doi.org/10.1163/1568539X-00003377Google Scholar
Gómez, Y., Vargas, J. P., Portavella, M., & López, J. C. (2006). Spatial learning and goldfish telencephalon NMDA receptors. Neurobiology of Learning and Memory, 85(3), 252262. doi: https://doi.org/10.1016/j.nlm.2005.11.006Google Scholar
Gómez-Laplaza, L. M. & Morgan, E. (2005). Time–place learning in the cichlid angelfish, Pterophyllum scalare. Behavioural Processes, 70(2), 177181.Google Scholar
Gonzalez, R., Behrend, E. R., & Bitterman, M. (1967). Reversal learning and forgetting in bird and fish. Science, 158(3800), 519521.Google Scholar
Griffiths, S. W. & Magurran, A. E. (1997). Familiarity in schooling fish: How long does it take to acquire? Animal Behaviour, 53(5), 945949. doi: https://doi.org/10.1006/anbe.1996.0315Google Scholar
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445(7126), 429.Google Scholar
Grossman, L., Stewart, A., Gaikwad, S., Utterback, E., Wu, N., DiLeo, J., … Kalueff, A. V. (2011). Effects of piracetam on behavior and memory in adult zebrafish. Brain Research Bulletin, 85(1), 5863. https://doi.org/10.1016/j.brainresbull.2011.02.008Google Scholar
Guttridge, T. L. & Brown, C. (2014). Learning and memory in the Port Jackson shark, Heterodontus portusjacksoni. Animal Cognition, 17(2), 415425. doi: 10.1007/s10071-013-0673-4Google Scholar
Guzowski, J. F., Setlow, B., Wagner, E. K., & McGaugh, J. L. (2001). Experience-dependent gene expression in the rat hippocampus after spatial learning: A comparison of the immediate-early genes Arc, c-fos, and zif268. Journal of Neuroscience, 21(14), 50895098.Google Scholar
Halder, R., Hennion, M., Vidal, R. O., Shomroni, O., Rahman, R.-U., Rajput, A., … Bonn, S. (2015). DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nature Neuroscience, 19, 102. doi: 10.1038/nn.4194 https://www.nature.com/articles/nn.4194#supplementary-informationGoogle Scholar
Hamilton, T. J., Myggland, A., Duperreault, E., May, Z., Gallup, J., Powell, R. A., … Digweed, S. M. (2016). Episodic-like memory in zebrafish. Animal Cognition, 19(6), 10711079.Google Scholar
Hamilton, T. J., Tresguerres, M., & Kline, D. I. (2017). Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish. Biology Letters, 13(7). doi: 10.1098/rsbl.2017.0183Google Scholar
Harooni, H. E., Naghdi, N., Sepehri, H., & Rohani, A. H. (2009). The role of hippocampal nitric oxide (NO) on learning and immediate, short- and long-term memory retrieval in inhibitory avoidance task in male adult rats. Behavioral Brain Research, 201(1), 166172. doi: 10.1016/j.bbr.2009.02.011Google Scholar
Harvey‐Girard, E., Dunn, R. J., & Maler, L. (2007). Regulated expression of N‐methyl‐D‐aspartate receptors and associated proteins in teleost electrosensory system and telencephalon. Journal of Comparative Neurology, 505(6), 644668.Google Scholar
Harvey-Girard, E., Tweedle, J., Ironstone, J., Cuddy, M., Ellis, W., & Maler, L. (2010). Long-term recognition memory of individual conspecifics is associated with telencephalic expression of Egr-1 in the electric fish Apteronotus leptorhynchus. Journal of Comparative Neurology, 518(14), 26662692. doi: 10.1002/cne.22358Google Scholar
Hasler, A. D. & Scholz, A. T. (2012). Olfactory Imprinting and Homing in Salmon: Investigations into the Mechanism of the Imprinting Process (Vol. 14). Springer Science & Business Media. https://books.google.nl/books?id=EurwCAAAQBAJ&dq=Olfactory+imprinting+and+homing+in+salmon:+Investigations+into+the+mechanism+of+the+imprinting+process&source=gbs_navlinks_sGoogle Scholar
Hasselmo, M. E. (1999). Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Sciences, 3(9), 351359. https://doi.org/10.1016/S1364-6613(99)01365-0Google Scholar
He, S., Liang, X.-F., Sun, J., Li, L., Yu, Y., Huang, W., … Tao, Y.-X. (2013). Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genomics, 14(1), 601. doi: 10.1186/1471-2164-14-601Google Scholar
HedayatiRad, M., Nematollahi, M. A., Forsatkar, M. N., & Brown, C. (2017). Prozac impacts lateralization of aggression in male Siamese fighting fish. Ecotoxicology and Environmental Safety, 140, 8488. https://doi.org/10.1016/j.ecoenv.2017.02.027Google Scholar
Hotta, T., Takeyama, T., Jordan, L. A., & Kohda, M. (2014). Duration of memory of dominance relationships in a group living cichlid. Naturwissenschaften, 101(9), 745751.Google Scholar
Hughes, R. N. & Blight, C. M. (1999). Algorithmic behaviour and spatial memory are used by two intertidal fish species to solve the radial maze. Animal Behaviour, 58(3), 601613. https://doi.org/10.1006/anbe.1999.1193Google Scholar
Jenkins, J. G. & Dallenbach, K. M. (1924). Obliviscence during sleep and waking. The American Journal of Psychology, 35(4), 605612. doi: 10.2307/1414040Google Scholar
Johnston, T. D. (1982). Selective Costs and Benefits in the Evolution of Learning. In Rosenblatt, J. S., Hinde, R. A., Beer, C., & Busnel, M.-C. (Eds.), Advances in the Study of Behavior (Vol. 12, pp. 65106). New York: Academic Press.Google Scholar
Johnstone, K. A., Lubieniecki, K. P., Koop, B. F., & Davidson, W. S. (2012). Identification of olfactory receptor genes in Atlantic salmon Salmo salar. Journal of Fish Biology, 81(2), 559575. doi: 10.1111/j.1095-8649.2012.03368.xGoogle Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23(23), R1033R1035. doi: https://doi.org/10.1016/j.cub.2013.10.021CrossRefGoogle ScholarPubMed
Jun, J. J., Longtin, A., & Maler, L. (2016). Active sensing associated with spatial learning reveals memory-based attention in an electric fish. Journal of Neurophysiology, 115(5), 25772592.Google Scholar
Kart-Teke, E., De Souza Silva, M. A., Huston, J. P., & Dere, E. (2006). Wistar rats show episodic-like memory for unique experiences. Neurobiology of Learning and Memory, 85(2), 173182. https://doi.org/10.1016/j.nlm.2005.10.002Google Scholar
Kendrick, K. M., Guevara-Guzman, R., Zorrilla, J., Hinton, M. R., Broad, K. D., Mimmack, M., & Ohkura, S. (1997). Formation of olfactory memories mediated by nitric oxide. Nature, 388(6643), 670674. doi: 10.1038/41765Google Scholar
Kerr, B. & Feldman, M. W. (2003). Carving the cognitive niche: Optimal learning strategies in homogeneous and heterogeneous environments. Journal of Theoretical Biology, 220(2), 169188.Google Scholar
Kim, N. N., Choi, Y. J., Lim, S.-G., Jeong, M., Jin, D.-H., & Choi, C. Y. (2015). Effect of salinity changes on olfactory memory-related genes and hormones in adult chum salmon Oncorhynchus keta. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 4047.Google Scholar
Kim, Y.-H., Lee, Y., Kim, D., Jung, M. W., & Lee, C.-J. (2010). Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neuroscience Research, 67(2), 156161. https://doi.org/10.1016/j.neures.2010.03.003Google Scholar
Kimber, J. A., Sims, D. W., Bellamy, P. H., & Gill, A. B. (2014). Elasmobranch cognitive ability: Using electroreceptive foraging behaviour to demonstrate learning, habituation and memory in a benthic shark. Animal Cognition, 17(1), 5565.Google Scholar
Kouwenberg, A.-L., Walsh, C. J., Morgan, B. E., & Martin, G. M. (2009). Episodic-like memory in crossbred Yucatan minipigs (Sus scrofa). Applied Animal Behaviour Science, 117(3), 165172. https://doi.org/10.1016/j.applanim.2009.01.005Google Scholar
Küster, A. & Adler, N. (2014). Pharmaceuticals in the environment: Scientific evidence of risks and its regulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656). doi: 10.1098/rstb.2013.0587 %J Philosophical Transactions of the Royal Society B: Biological SciencesGoogle Scholar
Laland, K. N. & Williams, K. (1998). Social transmission of maladaptive information in the guppy. Behavioral Ecology, 9(5), 493499.Google Scholar
Le Luyer, J., Laporte, M., Beacham, T. D., Kaukinen, K. H., Withler, R. E., Leong, J. S., … Bernatchez, L. (2017). Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proceedings of the National Academy of Sciences, 114(49), 1296412969. doi: 10.1073/pnas.1711229114 %J Proceedings of the National Academy of SciencesGoogle Scholar
Lee, Y., Lee, S., Park, J.-W., Hwang, J.-S., Kim, S.-M., Lyoo, I. K., … Han, I.-O. (2018). Hypoxia-induced neuroinflammation and learning–memory impairments in adult zebrafish are suppressed by glucosamine. Molecular Neurobiology, 55(11), 87388753. doi: 10.1007/s12035-018-1017-9Google Scholar
Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279(39-issue of September 24), 4054540559.Google Scholar
Levin, E. D. & Chen, E. (2004). Nicotinic involvement in memory function in zebrafish. Neurotoxicology and Teratology, 26(6), 731735. https://doi.org/10.1016/j.ntt.2004.06.010Google Scholar
Luchiari, A. C., Chacon, D. M., & Oliveira, J. J. (2015). Dose-dependent effects of alcohol on seeking behavior and memory in the fish Betta splendens. Psychology & Neuroscience, 8(1), 143.Google Scholar
Mackney, P. & Hughes, R. (1995). Foraging behaviour and memory window in sticklebacks. Behaviour, 132(15), 12411253. doi: 10.1163/156853995X00559Google Scholar
Magurran, A. E. (1989). Acquired recognition of predator odour in the European minnow (Phoxinus phoxinus). Ethology, 82(3), 216223.Google Scholar
Martin, J. M., Bertram, M. G., Saaristo, M., Ecker, T. E., Hannington, S. L., Tanner, J. L., … Wong, B. B. M. (2019). Impact of the widespread pharmaceutical pollutant fluoxetine on behaviour and sperm traits in a freshwater fish. Science of the Total Environment, 650, 17711778. https://doi.org/10.1016/j.scitotenv.2018.09.294Google Scholar
Martinez, J. L., Jensen, R. A., Vasquez, B. J., McGuinness, T., & McGaugh, J. L. (1978). Methylene blue alters retention of inhibitory avoidance responses. Physiological Psychology, 6(3), 387390. doi: 10.3758/bf03326744Google Scholar
Mesquita, F. d. O. & Young, R. J. (2007). The behavioural responses of Nile tilapia (Oreochromis niloticus) to anti-predator training. Applied Animal Behaviour Science, 106(1), 144154. https://doi.org/10.1016/j.applanim.2006.06.013Google Scholar
Messias, J. P. M., Santos, T. P., Pinto, M., & Soares, M. C. (2016). Stimulation of dopamine D1 receptor improves learning capacity in cooperating cleaner fish. Proceedings of the Royal Society B: Biological Sciences, 283(1823). doi: 10.1098/rspb.2015.2272Google Scholar
Meyer, C. G., Holland, K. N., & Papastamatiou, Y. P. (2005). Sharks can detect changes in the geomagnetic field. Journal of the Royal Society Interface, 2(2), 129130. doi: 10.1098/rsif.2004.0021 %J Journal of The Royal Society InterfaceGoogle Scholar
Miklósi, Á., Haller, J., & Csányi, V. (1992). Different duration of memory for conspecific and heterospecific fish in the paradise fish (Macropodus opercularis L.). Ethology, 90(1), 2936.Google Scholar
Miller, C. A. & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6), 857869. https://doi.org/10.1016/j.neuron.2007.02.022Google Scholar
Miller, C. A., Campbell, S. L., & Sweatt, J. D. (2008). DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning and Memory, 89(4), 599603. doi: 10.1016/j.nlm.2007.07.016Google Scholar
Mirza, R. S. & Chivers, D. P. (2000). Predator-recognition training enhances survival of brook trout: Evidence from laboratory and field-enclosure studies. Canadian Journal of Zoology, 78(12), 21982208.Google Scholar
Miyashita, T., Kubik, S., Lewandowski, G., & Guzowski, J. F. (2008). Networks of neurons, networks of genes: An integrated view of memory consolidation. Neurobiology of Learning and Memory, 89(3), 269284. https://doi.org/10.1016/j.nlm.2007.08.012Google Scholar
Mourier, J., Brown, C., & Planes, S. (2017). Learning and robustness to catch-and-release fishing in a shark social network. Biology Letters, 13(3). doi: 10.1098/rsbl.2016.0824 %J Biology LettersGoogle Scholar
Muir, D., Simmons, D., Wang, X., Peart, T., Villella, M., Miller, J., & Sherry, J. (2017). Bioaccumulation of pharmaceuticals and personal care product chemicals in fish exposed to wastewater effluent in an urban wetland. Scientific Reports, 7(1), 16999. doi: 10.1038/s41598-017-15462-xGoogle Scholar
Naderi, M., Jamwal, A., Chivers, D. P., & Niyogi, S. (2016). Modulatory effects of dopamine receptors on associative learning performance in zebrafish (Danio rerio). Behavioural Brain Research, 303, 109119. https://doi.org/10.1016/j.bbr.2016.01.034Google Scholar
Newton, K. C. & Kajiura, S. M. (2017). Magnetic field discrimination, learning, and memory in the yellow stingray (Urobatis jamaicensis). Animal Cognition, 20(4), 603614. doi: 10.1007/s10071-017-1084-8Google Scholar
Nilsson, J., Kristiansen, T. S., Fosseidengen, J. E., Fernö, A., & van den Bos, R. (2008). Learning in cod (Gadus morhua): Long trace interval retention. Animal Cognition, 11(2), 215222.Google Scholar
Oliveira, R. F. (2013). Mind the fish: Zebrafish as a model in cognitive social neuroscience. Frontiers in Neural Circuits, 7, 131.Google Scholar
Oulton, L. J., Taylor, M. P., Hose, G. C., & Brown, C. J. E. (2014). Sublethal toxicity of untreated and treated stormwater Zn concentrations on the foraging behaviour of Paratya australiensis (Decapoda: Atyidae). Ecotoxicology, 23(6), 10221029.Google Scholar
Pastuzyn, E. D., Day, C. E., Kearns, R. B., Kyrke-Smith, M., Taibi, A. V., McCormick, J., … Shepherd, J. D. (2018). The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell, 172(1), 275288.e218. https://doi.org/10.1016/j.cell.2017.12.024Google Scholar
de Perera, T. B. (2004). Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Animal Behaviour, 68(2), 291295.Google Scholar
Pevzner, A., Miyashita, T., Schiffman, A. J., & Guzowski, J. F. (2012). Temporal dynamics of Arc gene induction in hippocampus: Relationship to context memory formation. Neurobiology of Learning and Memory, 97(3), 313320. https://doi.org/10.1016/j.nlm.2012.02.004Google Scholar
Pinheiro-da-Silva, J., Tran, S., Silva, P. F., & Luchiari, A. C. (2017). Good night, sleep tight: The effects of sleep deprivation on spatial associative learning in zebrafish. Pharmacology Biochemistry and Behavior, 159, 3647.Google Scholar
Pinheiro-da-Silva, J., Tran, S., & Luchiari, A. C. (2018). Sleep deprivation impairs cognitive performance in zebrafish: A matter of fact? Behavioural Processes, 157, 656663. https://doi.org/10.1016/j.beproc.2018.04.004Google Scholar
Poirier, R., Cheval, H., Mailhes, C., Garel, S., Charnay, P., Davis, S., & Laroche, S. (2008). Distinct functions of egr gene family members in cognitive processes. Frontiers in Neuroscience, 2, 2.Google Scholar
Pradel, G., Schachner, M., & Schmidt, R. (1999). Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. Journal of Neurobiology, 39(2), 197206.Google Scholar
Pyanov, A. I. (1993). Fish learning in response to trawl fishing. Paper presented at the ICES Marine Science Symposia.Google Scholar
Radford, A. N., Kerridge, E., & Simpson, S. D. (2014). Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? Behavioral Ecology, 25(5), 10221030.Google Scholar
Rajan, K. E, Ganesh, A., Dharaneedharan, S., & Radhakrishnan, K. (2011). Spatial learning-induced egr-1 expression in telencephalon of gold fish Carassius auratus. Fish Physiology and Biochemistry, 37(1), 153159. doi: 10.1007/s10695-010-9425-4Google Scholar
Rasch, B. & Born, J. (2013). About sleep’s role in memory. Physiological Reviews, 93(2), 681766. doi: 10.1152/physrev.00032.2012Google Scholar
Rawashdeh, O., de Borsetti, N. H., Roman, G., & Cahill, G. M. (2007). Melatonin suppresses nighttime memory formation in zebrafish. Science, 318(5853), 11441146. doi: 10.1126/science.1148564Google Scholar
Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P.-O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1560), 40514063.Google Scholar
Reebs, S. (1996). Time-place learning in golden shiners (Pisces: Cyprinidae). Behavioural Processes, 36(3), 253262.Google Scholar
Reebs, S. G. (1999). Time–place learning based on food but not on predation risk in a fish, the inanga (Galaxias maculatus). Ethology, 105(4), 361371.Google Scholar
Richetti, S. K., Blank, M., Capiotti, K. M., Piato, A. L., Bogo, M. R., Vianna, M. R., & Bonan, C. D. (2011). Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behavioural Brain Research, 217(1), 1015. https://doi.org/10.1016/j.bbr.2010.09.027Google Scholar
Rickard, N. S., Gibbs, M. E., & Ng, K. T. (1999). Inhibition of the endothelial isoform of nitric oxide synthase impairs long-term memory formation in the chick. Learning & Memory, 6(5), 458466.Google Scholar
Routtenberg, A. (2001). It’s About Time. In Gold, P. E. & Greenough, W. T. (Eds.), Memory Consolidation: Essays in Honor of James L. McGaugh (pp. 1734), Washington, DC: American Psychological Association Press.Google Scholar
Roy, T. & Bhat, A. (2016). Learning and memory in juvenile zebrafish: What makes the difference –population or rearing environment? Ethology, 122(4), 308318.Google Scholar
Ruhl, T., Prinz, N., Oellers, N., Seidel, N. I., Jonas, A., Albayram, Ö., … von der Emde, G. (2014). Acute administration of THC impairs spatial but not associative memory function in zebrafish. Psychopharmacology, 231(19), 38293842. doi: 10.1007/s00213-014-3522-5Google Scholar
Sahar, S. & Sassone-Corsi, P. (2012). Circadian rhythms and memory formation: regulation by chromatin remodeling. Frontiers in Molecular Neuroscience, 5, 37. doi: 10.3389/fnmol.2012.00037Google Scholar
Salwiczek, L. H. & Bshary, R. (2011). Cleaner wrasses keep track of the ‘when’ and ‘what’ in a foraging task. Ethology, 117(11), 939948. doi: 10.1111/j.1439-0310.2011.01959.xGoogle Scholar
Schluessel, V. (2015). Who would have thought that ‘Jaws’ also has brains? Cognitive functions in elasmobranchs. Animal Cognition, 18(1), 1937.Google Scholar
Schluessel, V. & Bleckmann, H. (2005). Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro. Journal of Comparative Physiology A, 191(8), 695706. doi: 10.1007/s00359-005-0625-9Google Scholar
Schluessel, V. & Bleckmann, H. (2012). Spatial learning and memory retention in the grey bamboo shark (Chiloscyllium griseum). Zoology, 115(6), 346353. https://doi.org/10.1016/j.zool.2012.05.001Google Scholar
Schmidt, R. (1987). Changes in subcellular distribution of ependymins in goldfish brain induced by learning. Journal of Neurochemistry, 48(6), 18701878.Google Scholar
Schmidt, R. (1995). Cell-adhesion molecules in memory formation. Behavioral Brain Research, 66(1–2), 6572.Google Scholar
Schübeler, D. (2015). Function and information content of DNA methylation. Nature, 517, 321. doi: 10.1038/nature14192Google Scholar
Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6(1), 19. doi: 10.1186/1744-9081-6-24Google Scholar
Shashoua, V. E. & Moore, M. E. (1978). Effect of antisera to β and γ goldfish brain proteins on the retention of a newly acquired behavior. Brain Research, 148(2), 441449. https://doi.org/10.1016/0006-8993(78)90731-XGoogle Scholar
Sheriff, M. J. & Love, O. P. (2013). Determining the adaptive potential of maternal stress. Ecology Letters, 16(2), 271280. doi: 10.1111/ele.12042Google Scholar
Shettleworth, S. J. (2010). Cognition, Evolution, and Behavior. Oxford: Oxford University Press.Google Scholar
Smarr, B. L., Jennings, K. J., Driscoll, J. R., & Kriegsfeld, L. J. (2014). A time to remember: The role of circadian clocks in learning and memory. Behavioral Neuroscience, 128(3), 283303. doi: 10.1037/a0035963Google Scholar
Soares, M. C., Paula, J. R., & Bshary, R. (2016). Serotonin blockade delays learning performance in a cooperative fish. Animal Cognition, 19(5), 10271030. doi: 10.1007/s10071-016-0988-zGoogle Scholar
Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R., & Kalueff, A. V. (2014). Zebrafish models for translational neuroscience research: From tank to bedside. Trends in Neurosciences, 37(5), 264278. https://doi.org/10.1016/j.tins.2014.02.011Google Scholar
Sytnyk, V., Leshchyns’ka, I., & Schachner, M. (2017). Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. Trends in Neurosciences, 40(5), 295308. https://doi.org/10.1016/j.tins.2017.03.003Google Scholar
Tarrant, R. M. (1964). Rate of extinction of a conditioned response in juvenile sockeye salmon. Transactions of the American Fisheries Society, 94(4), 3. https://doi.org/10.1577/1548-8659(1964)93[399:ROEOAC]2.0.CO;2Google Scholar
Templer, Victoria L. & Hampton, Robert R. (2013). Episodic memory in nonhuman animals. Current Biology, 23(17), R801R806. https://doi.org/10.1016/j.cub.2013.07.016Google Scholar
Tlusty, M. F., Andrew, J., Baldwin, K., & Bradley, T. M. (2008). Acoustic conditioning for recall/recapture of escaped Atlantic salmon and rainbow trout. Aquaculture, 274(1), 5764. https://doi.org/10.1016/j.aquaculture.2007.11.007Google Scholar
Tosetto, L., Williamson, J. E., & Brown, C. (2017). Trophic transfer of microplastics does not affect fish personality. Animal Behaviour, 123, 159167.Google Scholar
Tulving, E. (1972). Episodic and Semantic Memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of Memory (Vol. 1, pp. 381403), New York: Academic Press.Google Scholar
Tulving, E. (2005). Episodic Memory and Autonoesis: Uniquely Human? In Terrace, H. S. & Metcalfe, J. (Eds.), The Missing Link in Cognition: Origins of Self-Reflective Consciousness (pp. 356). New York: Oxford University Press.Google Scholar
Utne, A. C. W. & Bacchi, B. (1997). The influence of visual and chemical stimuli from cod Gadus morhua on the distribution of two-spotted goby Gobiusculus flavescens (Fabricius). Sarsia, 82(2), 129135.Google Scholar
Utne-Palm, A. C. & Hart, P. J. B. (2000). The effects of familiarity on competitive interactions between threespined sticklebacks. Oikos, 91(2), 225232. doi: 10.1034/j.1600-0706.2000.910203.xGoogle Scholar
Utne-Palm, A. C. (2001). Response of naive two-spotted gobies Gobiusculus flavescens to visual and chemical stimuli of their natural predator, cod Gadus morhua. Marine Ecology Progress Series, 218, 267274.Google Scholar
Vila Pouca, C. & Brown, C. (2017). Contemporary topics in fish cognition and behaviour. Current Opinion in Behavioral Sciences, 16, 4652.Google Scholar
Vila Pouca, C. & Brown, C. (2018). Food approach conditioning and discrimination learning using sound cues in benthic sharks. Animal Cognition, 21(4), 481492. doi: 10.1007/s10071-018-1183-1Google Scholar
Vorster, A. P. & Born, J. (2015). Sleep and memory in mammals, birds and invertebrates. Neuroscience & Biobehavioral Reviews, 50, 103119. https://doi.org/10.1016/j.neubiorev.2014.09.020Google Scholar
Warburton, K. (2003). Learning of foraging skills by fish. Fish and Fisheries, 4(3), 203215. doi:10.1046/j.1467-2979.2003.00125.xGoogle Scholar
Warburton, K. & Thomson, C. (2006). Costs of learning: The dynamics of mixed-prey exploitation by silver perch, Bidyanus bidyanus (Mitchell, 1838). Animal Behaviour, 71(2), 361370.Google Scholar
Ware, D. M. (1971). Predation by rainbow trout (Salmo gairdneri): The effect of experience. Journal of the Fisheries Research Board of Canada, 28(12), 18471852. doi:10.1139/f71-279Google Scholar
White, G. E. & Brown, C. (2014). A comparison of spatial learning and memory capabilities in intertidal gobies. Behavioral Ecology and Sociobiology, 68(9), 13931401.Google Scholar
Wilkens, H. (2010). Genes, modules and the evolution of cave fish. Heredity, 105(5), 413.Google Scholar
Williams, F. E., White, D., & Messer Jr, W. S. J. B. p. (2002). A simple spatial alternation task for assessing memory function in zebrafish. Behavioural Processes, 58(3), 125132.Google Scholar
Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5, 483. doi: 10.1038/nrn1406Google Scholar
Xu, X., Boshoven, W., Lombardo, B., & Spranger, J. (1998). Comparison of the amnestic effects on NMDA receptor antagonist MK-801 and nitric oxide synthase inhibitors: L-NAME and L-NOARG in goldfish. Behavioral Neuroscience, 112(4), 892899. doi: 10.1037/0735-7044.112.4.892Google Scholar
Xu, X., Russell, T., Bazner, J., & Hamilton, J. (2001). NMDA receptor antagonist AP5 and nitric oxide synthase inhibitor 7-NI affect different phases of learning and memory in goldfish. Brain Research, 889(1), 274277. https://doi.org/10.1016/S0006-8993(00)03216-9Google Scholar
Yokogawa, T., Marin, W., Faraco, J., Pézeron, G., Appelbaum, L., Zhang, J., … Mignot, E. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLOS Biology, 5(10), e277. doi: 10.1371/journal.pbio.0050277Google Scholar
Zhang, W., Wu, J., Ward, , Matthew, D., Yang, S., Chuang, Y.-A., Xiao, M., … Worley, , Paul, F. (2015). Structural basis of Arc binding to synaptic proteins: Implications for cognitive disease. Neuron, 86(2), 490500. https://doi.org/10.1016/j.neuron.2015.03.030Google Scholar
Zhdanova, I. V. (2011). Sleep and its regulation in zebrafish. Reviews in the Neurosciences, 22, 27.Google Scholar
Zhdanova, I. V., Yu, L., Lopez-Patino, M., Shang, E., Kishi, S., & Guelin, E. (2008). Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Research Bulletin, 75(2), 433441. https://doi.org/10.1016/j.brainresbull.2007.10.053Google Scholar
Zion, B., Barki, A., Grinshpon, J., Rosenfeld, L., & Karplus, I. (2011). Retention of acoustic conditioning in St Peter’s fish Sarotherodon galilaeus. Journal of Fish Biology, 78(3), 838847. https://doi.org/10.1111/j.1095-8649.2010.02899.xGoogle Scholar

References

Altshuler, D. L. & Dudley, . (2003). Kinematics of hovering hummingbird flight along simulated and natural elevational gradients. Journal of Experimental Biology, 206(18), 31393147. https://doi.org/10.1242/jeb.00540Google Scholar
Bené, F. (1941). Experiments on the color preferences of the black-chinned hummingbirds. Condor, (43), 237242.Google Scholar
Biegler, R., McGregor, A., Krebs, J. R., & Healy, S. D. (2001). A larger hippocampus is associated with longer-lasting spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 69416944. https://doi.org/10.1073/pnas.121034798Google Scholar
Brodbeck, D. & Shettleworth, S. (1995). Matching location and color of a compound stimulus: Comparison of a food-storing and nonstoring bird species. Journal of Experimental Psychology: Animal Behavior Processes, 21(1), 6477.Google Scholar
Dukas, R. & Waser, N. M. (1994). Categorization of food types enhances foraging performance of bumblebees. Animal Behaviour, 48, 10011006.Google Scholar
Flores-Abreu, I. N., Hurly, T. A., & Healy, S. D. (2012). One-trial spatial learning: Wild hummingbirds relocate a reward after a single visit. Animal Cognition, 15(4), 631637. https://doi.org/10.1007/s10071-012-0491-0Google Scholar
Flores-Abreu, I. N., Hurly, T. A., & Healy, S. D. (2013). Three-dimensional spatial learning in hummingbirds. Animal Behaviour, 85, 579584.Google Scholar
Gass, C. L. & Garrison, J. S. E. (1999). Energy regulation by traplining hummingbirds. Functional Ecology, 13(4), 483492. https://doi.org/10.1046/j.1365-2435.1999.00335.xGoogle Scholar
Gill, F. B. (1988). Trapline foraging by hermit hummingbirds: Competition for an undefended, renewable resource. Ecology, 69(6), 19331942.Google Scholar
Grant, K. (1966). A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. American Naturalist, 100, 8597.Google Scholar
Healy, S. D. & Hurly, T. A. (1998). Rufous hummingbirds’ (Selasphorus rufus) memory for flowers: Patterns or actual spatial locations? Journal of Experimental Psychology: Animal Behavior Processes, 24(4), 396404.Google Scholar
Henderson, J., Hurly, T. A., & Healy, S. D. (2001). Rufous hummingbirds’ memory for flower location. Animal Behaviour, 61, 981986. https://doi.org/10.1006/anbe.2000.1670Google Scholar
Henderson, J., Hurly, T. A., Bateson, M., & Healy, S. D. (2006). Timing in free-living rufous hummingbirds, Selasphorus rufus. Current Biology, 16(5), 512515. https://doi.org/10.1016/j.cub.2006.01.054Google Scholar
Hornsby, M. A. W., Hurly, T. A., Hamilton, C. E., Pritchard, D. J., & Healy, S. D. (2014). Wild, free-living rufous hummingbirds do not use geometric cues in a spatial task. Behavioural Processes, 108, 138141. https://doi.org/10.1016/j.beproc.2014.10.003Google Scholar
Hurly, T. A. & Healy, S. D. (1996). Memory for flowers in rufous hummingbirds: location or local visual cues? Animal Behaviour, 51(5), 11491157. https://doi.org/10.1006/anbe.1996.0116Google Scholar
Hurly, T. A. & Healy, S. D. (2002). Cue learning by rufous hummingbirds (Selasphorus rufus). Journal of Experimental Psychology: Animal Behavior Processes, 28, 209223. https://doi.org/10.1037//0097-7403.28.2.209Google Scholar
Hurly, T. A., Franz, S., & Healy, S. D. (2010). Do rufous hummingbirds (Selasphorus rufus) use visual beacons? Animal Cognition, 13(2), 377383. https://doi.org/10.1007/s10071-009-0280-6Google Scholar
Irwin, R. E. (2000). Hummingbird avoidance of nectar-robbed plants: Spatial location or visual cues. Oikos, 91(3), 499506. https://doi.org/10.1034/j.1600-0706.2000.910311.xGoogle Scholar
Janzen, D. H. (1971). Euglossine bees as long-distance pollinators of tropical plants. Science, 171(3967), 203205.Google Scholar
Jelbert, S. A., Hurly, T. A., Marshall, R. E. S., & Healy, S. D. (2014). Wild, free-living hummingbirds can learn what happened, where and in which context. Animal Behaviour, 89, 185189. https://doi.org/10.1016/j.anbehav.2013.12.028Google Scholar
Kodric-Brown, A. & Brown, J. H. (1978). Influence of economics, interspecific competition, and sexual dimorphism on territoriality of migrant rufous hummingbirds. Ecology, 59(2), 285296. https://doi.org/10.2307/193374Google Scholar
Lihoreau, M., Raine, N. E., Reynolds, A. M., Stelzer, R. J., Lim, K. S., Smith, A. D., … Chittka, L. (2013). Unravelling the mechanisms of trapline foraging in bees. Communicative & Integrative Biology, 6(February), 14.Google Scholar
Lyerly, S. B., Riess, B. F., & Ross, S. (1950). Color preference in the Mexican violet-eared hummingbird, Calibri T. Thalassinus (Swainson). Behaviour, 2(4), 237248. https://doi.org/10.1163/156853950X00099Google Scholar
Marshall, R. E. S., Hurly, T. A., Sturgeon, J., Shuker, D. M., & Healy, S. D. (2013). What, where and when: Deconstructing memory. Proceedings of the Royal Society B, 280, 20132194.Google Scholar
McGregor, A. & Healy, S. (1999). Spatial accuracy in food-storing and nonstoring birds. Animal Behaviour, 58(4), 727734. https://doi.org/10.1006/anbe.1999.1190Google Scholar
Ohashi, K., Leslie, A., & Thomson, J. D. (2008). Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behavioral Ecology, 19(19), 936948. https://doi.org/10.1093/beheco/arn048Google Scholar
Pravosudov, V. V & Clayton, N. S. (2002). A test of the adaptive specialization hypothesis: Population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behavioral Neuroscience, 116(4), 515522. https://doi.org/10.1037//0735-7044.116.4.515Google Scholar
Pritchard, D. J., Hurly, T. A., & Healy, S. D. (2015). Effects of landmark distance and stability on accuracy of reward relocation. Animal Cognition, 18(6), 12851297. https://doi.org/10.1007/s10071-015-0896-7Google Scholar
Pritchard, D. J., Scott, R. D., Healy, S. D., & Hurly, A. T. (2016). Wild rufous hummingbirds use local landmarks to return to rewarded locations. Behavioural Processes, 122, 5966. https://doi.org/10.1016/j.beproc.2015.11.004Google Scholar
Pritchard, D. J., Tello-Ramos, M. C. T., Muth, F., & Healy, S. D. (2017). Treating hummingbirds as feathered bees: A case of ethological cross-pollination. Biology Letters, 13, 20170610. https://doi.org/10.1098/rsbl.2017.0610Google Scholar
Pritchard, D. J. & Healy, S. D. (2018). Taking an insect-inspired approach to bird navigation. Learning and Behavior, 46(1), 722. https://doi.org/10.3758/s13420-018-0314-5Google Scholar
Pritchard, D. J., Hurly, T. A., & Healy, S. D. (2018). Wild hummingbirds require a consistent view of landmarks to pinpoint a goal location. Animal Behaviour, 137, 8394. https://doi.org/10.1016/j.anbehav.2018.01.014Google Scholar
Samuels, M., Hurly, T. A., & Healy, S. D. (2014). Colour cues facilitate learning flower refill schedules in wild hummingbirds. Behavioural Processes, 109, 157163. https://doi.org/10.1016/j.beproc.2014.09.007Google Scholar
Sherman, A. R. (1913). Experiments in feeding hummingbirds during seven summers. Wilson Bulletin, XXV, 153166.Google Scholar
Sherry, D. F., Jacobs, L., & Gaulin, S. (1992). Spatial memory and adaptative specialization of the hippocampus. Trends in Neuroscience, 15, 298303.Google Scholar
Tello-Ramos, M. C., Hurly, T. A., & Healy, S. D. (2014). Female hummingbirds do not relocate rewards using colour cues. Animal Behaviour, 93, 129133. https://doi.org/10.1016/j.anbehav.2014.04.036Google Scholar
Tello-Ramos, M. C., Hurly, T. A., & Healy, S. D. (2015a). Traplining in hummingbirds: Flying short distance sequences among several locations. Behavioral Ecology, 26, 812819. https://doi.org/10.1093/beheco/arv014Google Scholar
Tello-Ramos, M. C., Hurly, T. A., Higgott, C., & Healy, S. D. (2015b). Time-place learning in wild, free-living hummingbirds. Animal Behaviour, 104, 123129. https://doi.org/10.1016/j.anbehav.2015.03.015Google Scholar
Temeles, E. J., Shaw, K. C., Kudla, A. U., & Sander, S. E. (2006). Traplining by purple-throated carib hummingbirds: Behavioral responses to competition and nectar availability. Behavioral Ecology and Sociobiology, 61(2), 163172. https://doi.org/10.1007/s00265-006-0247-4Google Scholar
Ward, B. J., Day, L. B., Wilkening, S. R., Wylie, D. R., Saucier, D. M., & Iwaniuk, A. N. (2012). Hummingbirds have a greatly enlarged hippocampal formation. Biology Letters, 8(4), 657659. https://doi.org/10.1098/rsbl.2011.1180Google Scholar
Wolf, L. L., Stiles, F. G., & Hainsworth, F. R. (1976). Ecological organization of tropical, highland hummingbird community. Journal of Animal Ecology, 45(2), 349379.Google Scholar
Zenzal, T. J., Moore, F. R., Diehl, R. H., Ward, M. P., & Deppe, J. L. (2018). Migratory hummingbirds make their own rules: The decision to resume migration along a barrier. Animal Behaviour, 137, 215224. https://doi.org/10.1016/j.anbehav.2018.01.019Google Scholar

References

Babb, S. J. & Crystal, J. D. (2005). Discrimination of what, when, and where: Implications for episodic-like memory in rats. Learning & Motivation, 36, 177189. https://doi.org/10.1016/j.lmot.2005.02.009Google Scholar
Babb, S. J. & Crystal, J. D. (2006a). Discrimination of what, when, and where is not based on time of day. Learning & Behavior, 34, 124130. doi: 10.3758/bf03193188Google Scholar
Babb, S. J. & Crystal, J. D. (2006b). Episodic-like memory in the rat. Current Biology, 16, 13171321. https://doi.org/10.1016/j.cub.2006.05.025Google Scholar
Basile, B. M. & Hampton, R. R. (2017). Dissociation of item and source memory in rhesus monkeys. Cognition, 166, 398406. https://doi.org/10.1016/j.cognition.2017.06.009Google Scholar
Beran, Michael J. (2014). Animal memory: Rats bind event details into episodic memories. Current Biology, 24(24), R1159R1160. doi: 10.1016/j.cub.2014.11.019Google Scholar
Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 10731188. doi: 10.1002/hipo.22488Google Scholar
Carlesimo, G. A., Serra, L., Fadda, L., Cherubini, A., Bozzali, M., & Caltagirone, C. (2007). Bilateral damage to the mammillo-thalamic tract impairs recollection but not familiarity in the recognition process: A single case investigation. Neuropsychologia, 45(11), 24672479.Google Scholar
Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14(2), 147153.Google Scholar
Carr, M. F., Karlsson, M. P., & Frank, L. M. (2012). Transient slow gamma synchrony underlies hippocampal memory replay. Neuron, 75(4), 700713.Google Scholar
Cheng, S., Werning, M., & Suddendorf, T. (2016). Dissociating memory traces and scenario construction in mental time travel. Neuroscience and Biobehavioral Reviews, 60, 8289. https://doi.org/10.1016/j.neubiorev.2015.11.011Google Scholar
Clayton, N. S. & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272274.Google Scholar
Crystal, J. D. (2013). Remembering the past and planning for the future in rats. Behavioural Processes, 93(0), 3949. http://dx.doi.org/10.1016/j.beproc.2012.11.014Google Scholar
Crystal, J. D. (2016a). Animal models of source memory. Journal of the Experimental Analysis of Behavior, 105(1), 5667. doi: 10.1002/jeab.173Google Scholar
Crystal, J. D. (2016b). Comparative cognition: Action imitation using episodic memory. Current Biology, 26(23), R1226-R1228. doi: 10.1016/j.cub.2016.10.010Google Scholar
Crystal, J. D. (2018). Animal models of episodic memory. Comparative Cognition & Behavior Reviews, 13, 105122. doi: 10.3819/ccbr.2018.130012Google Scholar
Crystal, J. D., Alford, W. T., Zhou, W., & Hohmann, A. G. (2013). Source memory in the rat. Current Biology, 23(5), 387391. http://dx.doi.org/10.1016/j.cub.2013.01.023Google Scholar
Crystal, J. D. & Alford, W. T. (2014). Validation of a rodent model of source memory. Biology Letters, 10(3), 20140064. doi: 10.1098/rsbl.2014.0064Google Scholar
Crystal, J. D. & Smith, A. E. (2014). Binding of episodic memories in the rat. Current Biology, 24(24), 29572961. doi: 10.1016/j.cub.2014.10.074Google Scholar
Crystal, J. D. & Suddendorf, T. (2019). Episodic memory in nonhuman animals? Current Biology, 29(24), R1291R1295. https://doi.org/https://doi.org/10.1016/j.cub.2019.10.045Google Scholar
Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63(4), 497507. https://doi.org/10.1016/j.neuron.2009.07.027Google Scholar
Dede, A. J. O., Frascino, J. C., Wixted, J. T., & Squire, L. R. (2016). Learning and remembering real-world events after medial temporal lobe damage. Proceedings of the National Academy of Sciences, 113(47), 1348013485. doi: 10.1073/pnas.1617025113Google Scholar
Dere, E., Huston, J. P., & De Souza Silva, M. A. (2005a). Episodic-like memory in mice: Simultaneous assessment of object, place and temporal order memory. Brain Research Protocols, 16, 1019.Google Scholar
Dere, E., Huston, J. P., & de Souza Silva, M. A. (2005b). Integrated memory for objects, places, and temporal order: Evidence for episodic-like memory in mice. Neurobiology of Learning and Memory, 84, 214221.Google Scholar
Dere, E., Dere, D., de Souza Silva, M. A., Huston, J. P., & Zlomuzica, A. (2017). Fellow travellers: Working memory and mental time travel in rodents. Behavioural Brain Research, 352(2018), 2–7. https://doi.org/10.1016/j.bbr.2017.03.026Google Scholar
Devkar, D. T. & Wright, A. A. (2016). Event-based proactive interference in rhesus monkeys. Psychonomic Bulletin & Review, 23(5), 14741482. doi: 10.3758/s13423-016-1005-xGoogle Scholar
Diba, K. & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10, 1241. doi: 10.1038/nn1961 www.nature.com/articles/nn1961#supplementary-informationGoogle Scholar
Eacott, M. J. & Easton, A. (2010). Episodic memory in animals: Remembering which occasion. Neuropsychologia, 48(8), 22732280. http://dx.doi.org/10.1016/j.neuropsychologia.2009.11.002Google Scholar
Eacott, M. J., Easton, A., & Zinkivskay, A. (2005). Recollection in an episodic-like memory task in the rat. Learning & Memory, 12(3), 221223.Google Scholar
Eacott, M. J. & Norman, G. (2004). Integrated memory for object, place, and context in rats: A possible model of episodic-like memory? The Journal of Neuroscience, 24(8), 19481953.Google Scholar
Ego-Stengel, V. & Wilson, M. A. (2010). Disruption of ripple‐associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20(1), 110.Google Scholar
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. National Review of Neuroscience., 1(1), 4150. doi: 10.1038/35036213Google Scholar
Eichenbaum, H. (2007). Comparative cognition, hippocampal function, and recollection. Comparative Cognition & Behavior Reviews, 2), 4766.Google Scholar
Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123152. doi: 10.1146/annurev.neuro.30.051606.094328Google Scholar
Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R., & Lipton, P. (2012). Towards a functional organization of episodic memory in the medial temporal lobe. Neuroscience Biobehavior Review, 36(7), 15971608. doi: 10.1016/j.neubiorev.2011.07.006Google Scholar
Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3(11), 11491152.Google Scholar
Ergorul, C. & Eichenbaum, H. (2004). The hippocampus and memory for ‘what’, ‘where’, and ‘when’. Learning & Memory, 11(4), 397405.Google Scholar
Fortin, N. J., Wright, S. P., & Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature, 431(7005), 188191.Google Scholar
Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O., & Dolan, R. J. (1999). Recollection and familiarity in recognition memory: An event-related functional magnetic resonance imaging study. Journal of Neuroscience, 99, 39623972.Google Scholar
Hofer, A., Siedentopf, C. M., Ischebeck, A., Rettenbacher, M. A., Verius, M., Golaszewski, S. M., Felber, S., & Fleischhacker, W. W. (2007). Neural substrates for episodic encoding and recognition of unfamiliar faces. Brain and Cognition, 63(2), 174181.Google Scholar
Hunsaker, M. R., Lee, B., & Kesner, R. P. (2008). Evaluating the temporal context of episodic memory: The role of CA3 and CA1. Behavioural Brain Research, 188(2), 310315. doi: 10.1016/j.bbr.2007.11.015Google Scholar
Iordanova, M. D., Good, M. A., & Honey, R. C. (2008). Configural learning without reinforcement: Integrated memories for correlates of what, where, and when. Quarterly Journal of Experimental Psychology, 61(12), 17851792.Google Scholar
Iordanova, M. D., Burnett, D. J., Aggleton, J. P., Good, M., & Honey, R. C. (2009). The role of the hippocampus in mnemonic integration and retrieval: Complementary evidence from lesion and inactivation studies. European Journal of Neuroscience, 30(11), 21772189. doi: 10.1111/j.1460-9568.2009.07010.xGoogle Scholar
Iordanova, M. D., Burnett, D. J., Good, M., & Honey, R. C. (2011). Pattern memory involves both elemental and configural processes: Evidence from the effects of hippocampal lesions. Behavioral Neuroscience, 125(4), 567.Google Scholar
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science, 336(6087), 14541458. 10.1126/science.1217230Google Scholar
Janowsky, J. S., Shimamura, A. P., & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27(8), 10431056. http://dx.doi.org/10.1016/0028-3932(89)90184-XGoogle Scholar
Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114(1), 328. doi: 10.1037/0033-2909.114.1.3Google Scholar
Kart-Teke, E., De Souza Silva, M. A., Huston, J. P., & Dere, E. (2006). Wistar rats show episodic-like memory for unique experiences. Neurobiology of Learning and Memory, 85, 173182.Google Scholar
Kesner, R. P., Hunsaker, M. R., & Warthen, M. W. (2008). The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats. Behavioral Neuroscience, 122(6), 12171225. doi: 10.1037/a0013592Google Scholar
Kesner, R. P. & Hunsaker, M. R. (2010). The temporal attributes of episodic memory. Behavioural Brain Research, 215(2), 299309. doi: 10.1016/j.bbr.2009.12.029Google Scholar
Kheifets, A., Freestone, D., & Gallistel, C. R. (2017). Theoretical implications of quantitative properties of interval timing and probability estimation in mouse and rat. Journal of the Experimental Analysis of Behavior, 108, 3972. doi: 10.1002/jeab.261Google Scholar
Kurth-Nelson, Z., Economides, M., Dolan, , Raymond, J., & Dayan, P. (2016). Fast sequences of non-spatial state representations in humans. Neuron, 91(1), 194204. https://doi.org/10.1016/j.neuron.2016.05.028Google Scholar
Lancet, D. (1986). Vertebrate olfactory reception. Annual Review of Neuroscience, 9(1), 329355.Google Scholar
Mitchell, K. J. & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135(4), 638677. doi: 10.1037/a0015849Google Scholar
Mori, K., Nagao, H., & Yoshihara, Y. (1999). The olfactory bulb: Coding and processing of odor molecule information. Science, 286(5440), 711715. doi: 10.1126/science.286.5440.711Google Scholar
Moser, M.-B., Rowland, D. C., & Moser, E. I. (2015). Place cells, grid cells, and memory. Cold Spring Harbor Perspectives in Biology, 7(2). doi: 10.1101/cshperspect.a021808Google Scholar
Ólafsdóttir, H. F., Carpenter, F., & Barry, C. (2017). Task demands predict a dynamic switch in the content of awake hippocampal replay. Neuron, 96(4), 925935.e926. doi: https://doi.org/10.1016/j.neuron.2017.09.035Google Scholar
Ólafsdóttir, H. F., Bush, D., & Barry, C. (2018). The role of hippocampal replay in memory and planning. Current Biology, 28(1), R37R50. doi: 10.1016/j.cub.2017.10.073Google Scholar
Panoz-Brown, D. E., Corbin, H. E., Dalecki, S. J., Gentry, M., Brotheridge, S., Sluka, C. M., Wu, J.-E., & Crystal, J. D. (2016). Rats remember items in context using episodic memory. Current Biology, 26(20), 28212826. http://dx.doi.org/10.1016/j.cub.2016.08.023Google Scholar
Panoz-Brown, D., Iyer, V., Carey, L. M., Sluka, C. M., Rajic, G., Kestenman, J., Gentry, M., Brotheridge, S., Somekh, I., Corbin, H. E., Tucker, K. G., Almeida, B., Hex, S. B., Garcia, K. D., Hohmann, A. G., & Crystal, J. D. (2018). Replay of episodic memories in the rat. Current Biology, 28(10), 16281634.e1627. https://doi.org/10.1016/j.cub.2018.04.006Google Scholar
Pavlides, C. & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9(8), 29072918. doi: 10.1523/jneurosci.09-08-02907.1989Google Scholar
Pfeiffer, B. E. & Foster, D. J. (2013). Hippocampal place-cell sequences depict future paths to remembered goals. Nature, 497(7447), 7479.Google Scholar
Roberts, W. A., Feeney, M. C., MacPherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320(5872), 113115. doi: 10.1126/science.1152709Google Scholar
Rubin, B. D. & Katz, L. C. (2001). Spatial coding of enantiomers in the rat olfactory bulb. Nature Neuroscience, 4, 355. doi: 10.1038/85997Google Scholar
Schmitter-Edgecombe, M. & Anderson, J. W. (2007). Feeling of knowing in episodic memory following moderate to severe closed-head injury. Neuropsychology, 21(2), 224234.Google Scholar
Skaggs, W. E. & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271(5257), 18701873. doi: 10.1126/science.271.5257.1870Google Scholar
Smith, A. E., Xu, Z., Lai, Y. Y., Kulkarni, P. M., Thakur, G. A., Hohmann, A. G., & Crystal, J. D. (2016). Source memory in rats is impaired by an NMDA receptor antagonist but not by PSD95-nNOS protein–protein interaction inhibitors. Behavioural Brain Research, 305, 2329. http://dx.doi.org/10.1016/j.bbr.2016.02.021Google Scholar
Smith, A. E., Dalecki, S. J., & Crystal, J. D. (2017). A test of the reward-value hypothesis. Animal Cognition, 20(2), 215220. doi: 10.1007/s10071-016-1040-zGoogle Scholar
Smith, A. E., Slivicki, R. A., Hohmann, A. G., & Crystal, J. D. (2017). The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory. Behavioural Brain Research, 320, 4857. http://dx.doi.org/10.1016/j.bbr.2016.11.042Google Scholar
Staresina, B. P., Alink, A., Kriegeskorte, N., & Henson, R. N. (2013). Awake reactivation predicts memory in humans. Proceedings of the National Academy of Sciences, 110(52), 2115921164. doi: 10.1073/pnas.1311989110Google Scholar
Tulving, E. (1972). Episodic and Semantic Memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of Memory (381403), New York: Academic Press.Google Scholar
Tulving, E. (1983). Elements of Episodic Memory. New York: Oxford University Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual. Review of Psycholpgy, 53, 125. doi: 10.1146/annurev.psych.53.100901.135114Google Scholar
Tulving, E. & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8(3), 198204.Google Scholar
Uchida, N. & Mainen, Z. F. (2003). Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience, 6, 1224. doi: 10.1038/nn1142 www.nature.com/articles/nn1142#supplementary-informationGoogle Scholar
Wright, A. A. (2007). An experimental analysis of memory processing. Journal of the Experimental Analysis of Behavior, 88(3), 405433.Google Scholar
Wright, A. A. (2013). Episodic memory: A rat model of source memory. Current Biology, 23(5), R198–R200. http://dx.doi.org/10.1016/j.cub.2013.01.055Google Scholar
Wright, A. A. (2018). Episodic memory: Manipulation and replay of episodic memories by rats. Current Biology, 28(11), R667R669. https://doi.org/10.1016/j.cub.2018.04.060Google Scholar
Yonelinas, A. P. (2001). Components of episodic memory: The contribution of recollection and familiarity. Philosphical Transactions of the Royal. Society of London B Biol. Sci., 356(1413), 13631374. doi: 10.1098/rstb.2001.0939Google Scholar
Yonelinas, A. P. & Levy, B. J. (2002). Dissociating familiarity from recollection in human recognition memory: Different rates of forgetting over short retention intervals. Psychon Bull Review, 9(3), 575-582.Google Scholar
Zhou, W. & Crystal, J. D. (2009). Evidence for remembering when events occurred in a rodent model of episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 95259529. doi: 10.1073/pnas.0904360106Google Scholar
Zhou, W. & Crystal, J. D. (2011). Validation of a rodent model of episodic memory. Animal Cognition, 14(3), 325340. doi: 10.1007/s10071-010-0367-0Google Scholar
Zhou, W., Hohmann, A. G., & Crystal, J. D. (2012). Rats answer an unexpected question after incidental encoding. Current Biology, 22(12), 11491153. doi: 10.1016/j.cub.2012.04.040Google Scholar

References

Andrews, M. (1988). Selection of food sites by Callicebus moloch and Saimiri sciureus under spatially and temporally varying food distribution. Learning and Motivation, 19, 254268.Google Scholar
Balda, R. P. & Kamil, A. C. (1992). Long-term spatial memory in Clark’s nutcracker, Nucifraga columbiana. Animal Behaviour, 44, 761769.Google Scholar
Basile, B. M. & Hampton, R. R. (2011). Monkeys recall and reproduce simple shapes from memory. Current Biology, 21, 774778.Google Scholar
Bednekoff, P. A., Balda, R. P., Kamil, A. C., & Hile, A. G. (1997). Long-term spatial memory in seed-caching corvid species. Animal Behaviour, 53, 335341.Google Scholar
Benhamou, S. & Poucet, B. (1996). A comparative analysis of spatial memory processes. Behavioral Processes, 35, 113126.Google Scholar
Beran, M. J., Perdue, B. M., Bramlett, J. L., Menzel, C. R., & Evans, T. A. (2012). Prospective memory in a language-trained chimpanzee (Pan troglodytes). Learning and Motivation, 43, 192199.Google Scholar
Boinski, S. & Garber, P. A. (Eds.). (2000). On the Move: How and Why Animals Travel in Groups. Chicago: University of Chicago Press.Google Scholar
Cheng, K. & Sherry, D. F. (1992). Landmark-based spatial memory in birds (Parus atricapillus and Columba livia): The use of edges and distances to represent spatial positions. Journal of Comparative Psychology, 106, 331341.Google Scholar
Collett, T. S. (1996). Insect navigation en route to the goal: Multiple strategies for the use of landmarks. The Journal of Experimental Psychology, 199, 227235.Google Scholar
de Lillo, C., Visalberghi, E., & Aversano, M. (1997). The organization of exhaustive searches in a patchy space by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 111, 8290.Google Scholar
Dolins, F. L. (2009). Captive cotton-top tamarins’ (Saguinus oedipus oedipus) use of landmarks to localize hidden food items. American Journal of Primatology, 71, 316323.Google Scholar
Einstein, G. O. & McDaniel, M. A. (2005). Prospective memory: Multiple retrieval processes. Current Directions in Psychological Science, 14, 286290.Google Scholar
Evans, T. A. & Beran, M. J. (2012). Monkeys exhibit prospective memory in a computerized task. Cognition, 125, 131140.Google Scholar
Gallistel, C. R. (1989). Animal cognition: The representation of space, time and number. Annual Review of Psychology, 40, 155189.Google Scholar
Gibeault, S. & MacDonald, S. E. (2000). Spatial memory and foraging competition in captive western lowland gorillas (Gorilla gorilla gorilla). Primates, 41, 147160.Google Scholar
James, W. (1890). Principles of Psychology. New York: Holt.Google Scholar
Janmaat, K. R. L. & Chancellor, R. L. (2010). Exploring new areas: How important is long-term spatial memory for mangabey (Lophocebus albigena johnstonii) foraging efficiency? International Journal of Primatology, 31, 863886.Google Scholar
Kano, F. & Hirata, S. (2015). Great apes make anticipatory looks based on long-term memory of single events. Current Biology, 25, 25132517.Google Scholar
Köhler, W. (1925). The Mentality of Apes. New York: Liveright.Google Scholar
Lewis, A., Call, J., & Berntsen, D. (2017a). Non-goal-directed recall of specific events in apes after long delays. Proceedings of the Royal Society of London B, 284, 20170518.Google Scholar
Lewis, A., Call, J., & Berntsen, D. (2017b). Distinctiveness enhances long‐term event memory in non‐human primates, irrespective of reinforcement. American Journal of Primatology, 79, e22665.Google Scholar
Lewis, A., Berntsen, D., & Call, J. (2018). Remembering past exchanges: Apes fail to use social cues. Animal Behavior and Cognition, 5, 1940.Google Scholar
Ludvig, N., Tang, H. M., Eichenbaum, H., & Gohil, B. C. (2003). Spatial memory performance of freely moving squirrel monkeys. Behavioural Brain Research, 140, 175183.Google Scholar
MacDonald, S. E. (1994). Gorillas’ (Gorilla gorilla gorilla) spatial memory in a foraging task. Journal of Comparative Psychology, 108, 107113.Google Scholar
MacDonald, S. E. & Wilkie, D. M. (1990). Yellow-nosed monkeys’ (Cercopithecus Ascanius whitesidei) spatial memory in a simulated foraging environment. Journal of Comparative Psychology, 104, 382387.Google Scholar
MacDonald, S. E., Pang, J. C., & Gibeault, S. (1994). Marmoset (Callithrix jacchus jacchus) spatial memory in a foraging task: Win-stay versus win-shift strategies. Journal of Comparative Psychology, 108, 328334.Google Scholar
MacDonald, S. E. & Agnes, M.M. (1999). Orangutan (Pongo pygmaeus abelii) spatial memory and behavior in a foraging task. Journal of Comparative Psychology, 113, 213217.Google Scholar
Martin-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13, 331340.Google Scholar
Martin-Ordas, G., Berntsen, D., & Call, J. (2013). Memory for distant past events in chimpanzees and orangutans. Current Biology, 23, 14381441.Google Scholar
McDaniel, M. A. & Einstein, G. O. (2007). Prospective Memory. Los Angeles: Sage Publications.Google Scholar
Mendes, N. & Call, J. (2014). Chimpanzees form long‐term memories for food locations after limited exposure. American Journal of Primatology, 76, 485495.Google Scholar
Menzel, C. R. (1991). Cognitive aspects of foraging in Japanese macaques. Animal Behaviour, 41, 397–402.Google Scholar
Menzel, C. R. (1999). Unprompted recall and reporting of hidden objects by a chimpanzee (Pan troglodytes) after extended delays. Journal of Comparative Psychology, 113, 426434.Google Scholar
Menzel, C. R. (2005). Progress in the Study of Chimpanzee Recall and Episodic Memory. In Terrace, H. S. & Metcalfe, J. (Eds.), The Missing Link in Cognition: Origins of Self-Reflective Consciousness (pp. 188224). New York: Oxford University Press.Google Scholar
Menzel, E. W. Jr. (1973). Chimpanzee spatial memory organization. Science, 182, 943945.Google Scholar
Menzel, E. W. Jr. (1978). Cognitive Mapping in Chimpanzees. In Hulse, S. H., Fowler, H., & Honig, W. K. (Eds.), Cognitive Processes in Animal Behavior (pp. 375422). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Menzel, E. W. Jr. (1984). Spatial Cognition and Memory in Captive Chimpanzees. In Marler, P. & Terrace, H. S. (Eds.), The Biology of Learning (pp. 509531). New York: Springer-Verlag.Google Scholar
Menzel, E. W. & Juno, C. (1985). Social foraging in marmoset monkeys and the question of intelligence. Philosophical Transactions of the Royal Society of London, 308, 145158.Google Scholar
Menzel, R., Geiger, K., Chittka, L., Joerges, J., Kunze, J., & Muller, U. (1996). The knowledge base of bee navigation. The Journal of Experimental Biology, 199, 141146.Google Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, New Series, 83, 534548.Google Scholar
Perdue, B. M., Beran, M. J., Williamson, R. A., Gonsiorowski, A., & Evans, T. A. (2014). Prospective memory in children and chimpanzees. Animal Cognition, 17, 287295.Google Scholar
Platt, M. L., Brannon, E. M., Briese, T. L., & French, J. A. (1996). Differences in feeding ecology predict differences in performance between golden lion tamarins (Leontopithecus rosalia) and Wied’s marmosets (Callithrix kuhli) on spatial and visual memory tasks. Animal Learning and Behavior, 24, 384393.Google Scholar
Roberts, W, Mitchell, S., & Phelps, M. (1993). Foraging in Laboratory Trees: Spatial Memory in Squirrel Monkeys. In Zentall, T. (Ed.), Animal Cognition – A Tribute to Donald Riley (pp. 131151). Hillsdale, NJ: Erlbaum.Google Scholar
Scheumann, M. & Call, J. (2006). Sumatran orangutans and a yellow-cheeked crested gibbon know what is where. International Journal of Primatology, 27, 575602.Google Scholar
Schwartz, B. L., Colon, M. R., Sanchez, I. C., Rodriguez, I. A., & Evans, S. (2002). Single-trial learning of “what” and “who” information in a gorilla (Gorilla gorilla gorilla): Implications for episodic memory. Animal Cognition, 5, 8590.Google Scholar
Schwartz, B. L., Hoffman, M. L., & Evans, S. (2005). Episodic-like memory in a gorilla: A review and new findings. Learning and Motivation, 36, 226244.Google Scholar
Shettleworth, S. J. (1998). Cognition, Evolution, and Behavior. Oxford University Press.Google Scholar
Tinklepaugh, O. L. (1928). An experimental study of representative factors in monkeys. Journal of Comparative Psychology, 8, 197236.Google Scholar
Tinklepaugh, O. L. (1932). Multiple delayed reaction with chimpanzees and monkeys. Journal of Comparative Psychology, 13, 207243.Google Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189208.Google Scholar
Tujague, M. P., Janson, C. H., & Lahitte, H. B. (2015). Long-term spatial memory and learning set formation in captive capuchin monkeys (Cebus libidinosus = Sapajus cay). International Journal of Primatology, 36, 10671085.Google Scholar
Ushitani, T., Perry, C. J., Cheng, K., & Barron, A. B. (2016). Accelerated behavioural development changes fine-scale search behavior and spatial memory in honey bees (Apis mellifera L.). Journal of Experimental Biology, 219, 412418.Google Scholar
Yerkes, R. M. & Yerkes, D. N. (1928). Concerning memory in the chimpanzee. Journal of Comparative Psychology, 8, 237271.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Memory and Recall
  • Edited by Allison B. Kaufman, University of Connecticut, Josep Call, University of St Andrews, Scotland, James C. Kaufman, University of Connecticut
  • Book: The Cambridge Handbook of Animal Cognition
  • Online publication: 01 July 2021
  • Chapter DOI: https://doi.org/10.1017/9781108564113.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Memory and Recall
  • Edited by Allison B. Kaufman, University of Connecticut, Josep Call, University of St Andrews, Scotland, James C. Kaufman, University of Connecticut
  • Book: The Cambridge Handbook of Animal Cognition
  • Online publication: 01 July 2021
  • Chapter DOI: https://doi.org/10.1017/9781108564113.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Memory and Recall
  • Edited by Allison B. Kaufman, University of Connecticut, Josep Call, University of St Andrews, Scotland, James C. Kaufman, University of Connecticut
  • Book: The Cambridge Handbook of Animal Cognition
  • Online publication: 01 July 2021
  • Chapter DOI: https://doi.org/10.1017/9781108564113.008
Available formats
×