Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:01:22.978Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 May 2023

Tasho Kaletha
Affiliation:
University of Michigan, Ann Arbor
Gopal Prasad
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bruhat–Tits Theory
A New Approach
, pp. 708 - 714
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramenko, P. and Brown, K. S., Buildings: Theory and Applications, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008, Theory and applications.Google Scholar
Achinger, P., Wild ramification and K(π,1)-spaces, Invent. Math. 210, no.2 (2017), pp.453499.Google Scholar
Adler, J. D. and DeBacker, S., Some applications of Bruhat–Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group, Michigan Math. J. 50 (2002), no. 2, 263286.Google Scholar
Aschbacher, M., Finite Group Theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1993, Corrected reprint of the 1986 original.Google Scholar
Berkovich, V. G., Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 5161 (1994).Google Scholar
Bertapelle, A. and González-Avilés, C. D., The Greenberg functor revisited, Eur. J. of Math. 4 (2018), pp.13401389.Google Scholar
Bosch, S. and Güntzer, U. and Remmert, R., Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984.Google Scholar
Bridson, M. R. and Haefliger, A., Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.Google Scholar
Bosch, S. and Lütkebohmert, W. and Raynaud, M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21, Springer-Verlag, Berlin, 1990.Google Scholar
Borel, A., Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math. 16 (1963), 530.Google Scholar
Borel, A., Linear Algebraic Groups, second edn., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991.Google Scholar
Borel, A. and Prasad, G., Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119171.Google Scholar
Borel, A. and Serre, J.-P., Cohomologie d'immeubles et de groupes S- arithmétiques, Topology 15 (1976), no. 3, 211232.CrossRefGoogle Scholar
Borovoi, M., Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626, viii+50.Google Scholar
Bourbaki, N., Lie Groups and Lie Algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, translated from the 1968 French original by Andrew Pressley.Google Scholar
Bruhat, F. and Tits, J., Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5251.CrossRefGoogle Scholar
Borel, A. and Tits, J., Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499571.Google Scholar
Bruhat, F. and Tits, J., Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197376.Google Scholar
Bruhat, F. and Tits, J., Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), no. 2, 259301.CrossRefGoogle Scholar
Bruhat, F. and Tits, J., Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 671698.Google Scholar
Bruhat, F. and Tits, J., Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France 115 (1987), no. 2, 141195.Google Scholar
Cassels, J. W. S., Global fields, in Algebraic Number Theory, (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 4284.Google Scholar
Chai, C.-L. and Yu, J.-K., Congruences of Néron models for tori and the Artin conductor, Ann. of Math. (2) 154 (2001), no. 2, 347382, With an appendix by Ehud de Shalit.Google Scholar
Chevalley, C., Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, No. VI, American Mathematical Society, New York, N. Y., 1951.Google Scholar
Conrad, B. and Gabber, O. and Prasad, G., Pseudo-Reductive Groups, second edn., New Mathematical Monographs, vol. 26, Cambridge University Press, Cambridge, 2015.Google Scholar
Conrad, B., Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012), no. 1-2, 6197.Google Scholar
Conrad, B., Reductive group schemes, Autour des schémas en groupes. vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93444.Google Scholar
Conrad, B., Lecture Notes on Algebraic Groups II.Google Scholar
DeBacker, S., Some applications of Bruhat–Tits theory to harmonic analysis on a reductive p-adic group, Michigan Math. J. 50 (2002), no. 2, 241261.Google Scholar
DeBacker, S., Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory, Michigan Math. J. 54 (2006), no. 1, 157178.Google Scholar
Demazure, M. and Gabriel, P., Groupes Algébriques. Tome I: Géométrie Algébrique, Généralités, Groupes Commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, Avec un appendice ıt Corps de classes local par Michiel Hazewinkel.Google Scholar
Deuring, M., Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics, vol. 314, Springer-Verlag, Berlin-New York, 1973.Google Scholar
Eberlein, P. B., Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.Google Scholar
Edixhoven, B., Néron models and tame ramification, Compositio Math. 81 (1992), no. 3, 291306.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361.Google Scholar
Fulton, W. and Lang, S., Riemann–Roch Algebra, Grundlehren der Mathematischen Wissenschaften, vol. 277, Springer-Verlag, New York, 1985.Google Scholar
Fintzen, J., On the Moy–Prasad filtration J. Eur. Math. Soc. (JEMS) 23 (2021), no. 12, 40094063.Google Scholar
Fintzen, J. and Romano, B., Stable vectors in Moy–Prasad filtrations, Compos. Math. 153 (2017), no. 2, 358372.Google Scholar
Fesenko, I. B. and Vostokov, S. V., Local Fields and Their Extensions, second ed., Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 2002, With a foreword by I. R. Shafarevich.Google Scholar
Gabber, O. and Gille, P. and Moret-Bailly, L., Fibrés principaux sur les corps valués henséliens, Algebr. Geom. 1 (2014), no. 5, 573612.Google Scholar
Gan, W. T. and Yu, J.-K., Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. I. Le groupe G2, Bull. Soc. Math. France 131 (2003), no. 3, 307358.Google Scholar
Gan, W. T. and Yu, J.-K., Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. II. Les groupes F4 et E6 , Bull. Soc. Math. France 133 (2005), no. 2, 159197.CrossRefGoogle Scholar
Goldman, O. and Iwahori, N., The space of p-adic norms, Acta Math. 109 (1963), 137177.Google Scholar
Gaitsgory, D. and Lurie, J., Weil's Conjecture for Function Fields. vol. 1, Annals of Mathematics Studies, vol. 199, Princeton University Press, Princeton, NJ, 2019.Google Scholar
Greenberg, M. J., Schemata over Local Rings: I, Ann. Math., 73 (1961), no.3, 624648.Google Scholar
Greenberg, M. J., Schemata over Local Rings: II, Ann. Math., 78 (1963), no.2, 256266.Google Scholar
Harder, G., Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969), 3354.Google Scholar
Harder, G., A Gauss–Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup. (4) 4 (1971), 409455.Google Scholar
Harder, G., Chevalley groups over function fields and automorphic forms, Ann. of Math. (2) 100 (1974), 249306.Google Scholar
Haines, T. J. and Rostami, S., The Satake isomorphism for special maximal parahoric Hecke algebras, Rep. Theory 14 (2010), 264284.Google Scholar
Jacquet, H. and Langlands, R. P., Automorphic Forms on GL(2), Lecture Notes in Mathematics, vol. 114, Springer-Verlag, Berlin-New York, 1970.Google Scholar
Kempf, G. R., Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299316.Google Scholar
Kottwitz, R. E., Isocrystals with additional structure, Compositio Math. 56 (1985), no. 2, 201220.Google Scholar
Kottwitz, R. E., Tamagawa numbers, Ann. of Math. (2) 127 (1988), no. 3, 629646.Google Scholar
Kottwitz, R. E., Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255339.Google Scholar
Kottwitz, R. E. and Shelstad, D., Foundations of Twisted Endoscopy, Astérisque (1999), no. 255, vi+190.Google Scholar
Lai, K. F., Tamagawa number of reductive algebraic groups, Compositio Math. 41 (1980), no. 2, 153188.Google Scholar
Landvogt, E., A Compactification of the Bruhat–Tits Building, Lecture Notes in Mathematics, vol. 1619, Springer-Verlag, Berlin, 1996.Google Scholar
Landvogt, E., Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math. 518 (2000), 213241.Google Scholar
Langlands, R. P., The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, RI, 1966, pp. 143148.Google Scholar
Langlands, R. P., Stable conjugacy: definitions and lemmas, Canad. J. Math. 31 (1979), no. 4, 700725.Google Scholar
Larmour, D. W., A Springer theorem for Hermitian forms, Math. Z. 252 (2006), no. 3, 459472.Google Scholar
Lipman, J., The Picard group of a scheme over an Artin ring, Publ. Math IHES 46 (1976), pp. 1586.Google Scholar
Lourenço, J., Théorie de Bruhat–Tits pour les groupes quasi-réductifs, J. Inst. Math. Jussieu (2021), 132.Google Scholar
Macdonald, I. G., Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91143.Google Scholar
Macdonald, I. G., The volume of a compact Lie group, Invent. Math. 56 (1980), no. 2, 9395.Google Scholar
Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 17, Springer-Verlag, Berlin, 1991.Google Scholar
Matsumura, H., Commutative ring theory, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid.Google Scholar
Mayeux, A. and Richarz, T. and Romagny, M., Néron blowups and low-degree cohomological applications, arXiv:2001.03597.Google Scholar
Milne, J. S., Étale Cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980.Google Scholar
Moy, A. and Prasad, G., Unrefined minimal K -types for p-adic groups, Invent. Math. 116 (1994), no. 1-3, 393408.Google Scholar
Moy, A. and Prasad, G., Jacquet functors and unrefined minimal K -types, Comment. Math. Helv. 71 (1996), no. 1, 98121.Google Scholar
Neukirch, J. and Schmidt, A. and Wingberg, K., Cohomology of Number Fields, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 323, Springer-Verlag, Berlin, 2008.Google Scholar
Oesterlé, J., Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math. 78 (1984), no. 1, 1388.Google Scholar
Ono, T., On the relative theory of Tamagawa numbers. Ann. of Math. (2) 82 (1965), 88111.Google Scholar
Ono, T., On algebraic groups and discontinuous groups, Nagoya Math. J. 27 (1966), 279322.CrossRefGoogle Scholar
Ono, T., On Tamagawa numbers, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, RI, 1966, pp. 122132.Google Scholar
Yu. Popov, S., The standard integral model of an algebraic torus, Vestn. Samar. Gos. Univ. Mat. Mekh. Fiz. Khim. Biol. (2001), no. 4, 85108.Google Scholar
Prasad, G. and Raghunathan, M. S., Topological central extensions of semisimple groups over local fields, Ann. of Math. (2) 119 (1984), no. 2, 143268.Google Scholar
Prasad, G. and Raghunathan, M. S., On the Kneser–Tits problem, Comment. Math. Helv. 60 (1985), no. 1, 107121.Google Scholar
Pappas, G. and Rapoport, M., Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118198, With an appendix by T. Haines and Rapoport.Google Scholar
Prasad, G., Strong approximation for semi-simple groups over function fields, Ann. of Math. (2) 105 (1977), no. 3, 553572.Google Scholar
Prasad, G., Lattices in semisimple groups over local fields, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp. 285356.Google Scholar
Prasad, G., Elementary proof of a theorem of Bruhat–Tits–Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197202.Google Scholar
Prasad, G., Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91117, with an appendix by Moshe Jarden and the author.Google Scholar
Prasad, G., Weakly-split spherical Tits systems in quasi-reductive groups, Amer. J. Math. 136 (2014), no. 3, 807832.Google Scholar
Prasad, G., Finite group actions on reductive groups and buildings and tamely-ramified descent in Bruhat–Tits theory, Amer. J. Math. 142 (2020), no. 4, 12391267.Google Scholar
Prasad, G., A new approach to unramified descent in Bruhat–Tits theory, Amer. J. Math. 142 (2020), no. 1, 215253.Google Scholar
Prasad, G. and Yu, J.-K., On finite group actions on reductive groups and buildings, Invent. Math. 147 (2002), no. 3, 545560.Google Scholar
Prasad, G. and Yu, J.-K., On quasi-reductive group schemes, J. Algebraic Geom. 15 (2006), no. 3, 507549, with an appendix by Brian Conrad.Google Scholar
Prasad, G. and Yeung, S.-K., Fake projective planes, Invent. Math. 168 (2007), no. 2, 321370.Google Scholar
Reeder, M., Torsion automorphisms of simple Lie algebras, Enseign. Math. (2) 56 (2010), no. 1-2, 347.Google Scholar
Reeder, M. and Yu, J.-K., Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), no. 2, 437477.CrossRefGoogle Scholar
Richardson, R. W., On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), no. 1, 128.Google Scholar
Richarz, T., On the Iwahori Weyl group, Bull. Soc. Math. France 144 (2016), no. 1, 117124.Google Scholar
Richarz, T., Affine Grassmannians and geometric Satake equivalences, Int. Math. Res. Not. (2016), no. 12, 37173767.Google Scholar
Rousseau, G., Immeubles des groupes réducitifs sur les corps locaux, U.E.R. Mathématique, Université Paris XI, Orsay, 1977, Thèse de doctorat, Publications Mathématiques d'Orsay, No. 221-77.68.Google Scholar
Scharlau, W., Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, vol. 270, Springer-Verlag, Berlin, 1985.Google Scholar
Schneider, P. and Stuhler, U., Representation theory and sheaves on the Bruhat–Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97191.Google Scholar
Schrijver, A., Theory of Linear and Integer Programming, Wiley–Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986, A Wiley–Interscience Publication.Google Scholar
Serre, J.-P., Cohomologie des groupes discrets, in Prospects in Mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), 1971, pp. 77169. Ann. of Math. Studies, No. 70.Google Scholar
Serre, J.-P., Local Fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979, Translated from the French by Marvin Jay Greenberg.Google Scholar
Serre, J.-P., Galois Cohomology, Springer-Verlag, Berlin, 1997, Translated from the French by Patrick Ion and revised by the author.Google Scholar
Serre, J.-P., Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, Corrected 2nd printing.Google Scholar
Artin, M., Bertin, J. E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., and Serre, J.-P., Schémas en Groupes. I, II, III, Lecture Notes in Mathematics, 151, 152, 153, Springer-Verlag, New York, 1970.Google Scholar
Shatz, S. S., Profinite Groups, Arithmetic, and Geometry, Annals of Mathematics Studies, no. 67, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972.Google Scholar
Spice, L., Topological Jordan decompositions, J. Algebra 319 (2008), no. 8, 31413163.Google Scholar
Springer, T. A., Reductive groups, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 327.Google Scholar
Springer, T. A., Linear Algebraic Groups, second ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009.Google Scholar
Stasinski, A., Reductive group schemes, the Greenberg functor, and associated algebraic groups, Journal of Pure and Applied Algebra, 216 (2012), pp.10921101.Google Scholar
Steinberg, R., Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. (1965), no. 25, 4980.Google Scholar
Steinberg, R., Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, RI, 1968.Google Scholar
Thilmany, F., Lattices of minimal covolume in SLn (R), Proc. Lond. Math. Soc. (3) 118 (2019), no. 1, 78102.Google Scholar
Tits, J., Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, RI, 1966, 1966, pp. 3362.Google Scholar
Tits, J., Buildings of Spherical type and Finite BN-Pairs, Lecture Notes in Mathematics, vol. 386, Springer-Verlag, Berlin–New York, 1974.Google Scholar
Tits, J., Reductive groups over local fields, in Automorphic Forms, Representations and L -Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 2969.Google Scholar
Voskresenski, V. E.ĭ, Kunyavskiĭ, B. È., and Moroz, B. Z., On integral models of algebraic tori, Algebra i Analiz 14 (2002), no. 1, 4670.Google Scholar
Weil, A., Algebras with involution and the classical groups, J. Indian Math.Soc.(N.S.) 24 (1960), 589623.Google Scholar
Yu, J.-K., Smooth models associated to concave functions in Bruhat–Tits theory, in Autour des Schémas en Groupes. vol. III, Panor. Synthèses, vol. 47, Soc. Math. France, Paris, 2015, pp. 227258.Google Scholar
Zhu, X., The geometric Satake correspondence for ramified groups, Ann.Sci.Éc.Supér.(4), 48 (2015), 409451.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tasho Kaletha, University of Michigan, Ann Arbor, Gopal Prasad, University of Michigan, Ann Arbor
  • Book: Bruhat–Tits Theory
  • Online publication: 16 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781108933049.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tasho Kaletha, University of Michigan, Ann Arbor, Gopal Prasad, University of Michigan, Ann Arbor
  • Book: Bruhat–Tits Theory
  • Online publication: 16 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781108933049.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tasho Kaletha, University of Michigan, Ann Arbor, Gopal Prasad, University of Michigan, Ann Arbor
  • Book: Bruhat–Tits Theory
  • Online publication: 16 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781108933049.028
Available formats
×