Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T12:53:15.204Z Has data issue: false hasContentIssue false

16 - Solution of the three-dimensional convection-diffusion equation by means of the Finite Element Method

Published online by Cambridge University Press:  05 June 2012

Cees Oomens
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Marcel Brekelmans
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Frank Baaijens
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Get access

Summary

Introduction

The two- and three-dimensional convection-diffusion equation plays an important role in many applications in biomedical engineering. One typical example from recent research is the analysis of the effectiveness of different types of bioreactors for tissue engineering. Tissue engineering is a rapidly evolving interdisciplinary research area aiming at the replacement or restoration of diseased or damaged tissue. In many cases devices made of artificial materials are only capable of partially restoring the original function of native tissues, and may not last for the full lifetime of a patient. In addition, there is no artificial replacement for a large number of tissues and organs. In tissue engineering new, autologous tissues are grown outside the human body by seeding cultured cells on scaffolds and further developed in a bioreactor for later implantation. The tissue proliferation and differentiation process is strongly affected by mechanical stimuli and transport of oxygen, minerals, nutrients and growth factors. To optimize bioreactor systems it is necessary to analyse how these systems behave. The convection-diffusion equation plays an important role in this kind of simulating analysis.

Fig. 16.1 shows two different bioreactor configurations, which both have been used in the past to tissue engineer articular cartilage. The work was especially focussed on glucose, oxygen and lactate, because these metabolites play a major role in the chondrocyte biosynthesis and survival. Questions ranged from: ‘Does significant nutrient depletion occur at the high cell concentrations required for chondrogenesis?’ to ‘Do increasing transport limitations due to matrix accumulation significantly affect metabolite distributions?

Type
Chapter
Information
Biomechanics
Concepts and Computation
, pp. 277 - 294
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×