Skip to main content Accessibility help
×
Hostname: page-component-7857688df4-74lm6 Total loading time: 0 Render date: 2025-11-17T05:38:55.948Z Has data issue: false hasContentIssue false

Chapter 12 - Primary Progressive Aphasia

from Section 2 - The Dementias

Published online by Cambridge University Press:  aN Invalid Date NaN

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Primary progressive aphasia (PPA) is a neurodegenerative disorder that primarily affects language abilities. There are three main variants of PPA: semantic variant PPA (svPPA), nonfluent variant PPA (nfvPPA), and logopenic variant PPA (lvPPA). Each variant has distinct clinical features, neuroimaging findings, and genetic and pathological associations. However, some cases do not fit neatly into these categories, known as PPA not otherwise specified. Diagnosis of PPA requires a comprehensive evaluation of language and cognitive abilities, along with neuroimaging and biomarker data. Future directions in PPA research include the development of computerized algorithms for speech analysis, the exploration of non-verbal aspects of the disorder, and the investigation of potential therapeutic interventions.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Damasio, A. R., & Geschwind, N. (1984). The neural basis of language. Annu Rev Neurosci, 7, 127147. https://doi.org/10.1146/annurev.ne.07.030184.001015CrossRefGoogle ScholarPubMed
Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., et al. (2007). Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(Pt 5), Article Pt 5. https://doi.org/10.1093/brain/awm042CrossRefGoogle ScholarPubMed
Mesulam, M.-M., Thompson, C. K., Weintraub, S., et al. (2015). The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain, 138(8), 24232437. https://doi.org/10.1093/brain/awv154CrossRefGoogle ScholarPubMed
Harrison, D. W. (2015). Functional cerebral systems theory: an integrated brain. In Harrison, D. W., ed. Brain Asymmetry and Neural Systems: Foundations in Clinical Neuroscience and Neuropsychology. Springer International; pp. 5358. https://doi.org/10.1007/978-3-319-13069-9_6CrossRefGoogle Scholar
Hickok, G. (2022). The dual stream model of speech and language processing. In Hillis, A. E., Fridriksson, J., eds. Handbook of Clinical Neurology (vol. 185). Elsevier; pp. 5769. https://doi.org/10.1016/B978-0-12-823384-9.00003-7Google Scholar
Mesulam, M. M. (1982). Slowly progressive aphasia without generalized dementia. Ann Neurol, 11(6), Article 6.10.1002/ana.410110607CrossRefGoogle ScholarPubMed
Pick, A. (1892). Uber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Medizinische Wochenschrift, 17, 165167.Google Scholar
Déjerine, J. J., & Sérieux, P. (1897). Un cas de surdité verbale pure, terminée par aphasie sensorielle, suivi d’autopsie. Paris.Google Scholar
Sasanuma, S., & Monoi, H. (1975). The syndrome of Gogi (word meaning) aphasia. Selective impairment of kanji processing. Neurology, 25(7), 627632. https://doi.org/10.1212/wnl.25.7.627CrossRefGoogle ScholarPubMed
Warrington, E. K. (1975). The selective impairment of semantic memory. Quart J Exp Psychology, 27, 635657.10.1080/14640747508400525CrossRefGoogle ScholarPubMed
Snowden, J. S., Goulding, P. J., & Neary, D. (1989). Semantic dementia: a form of circumscribed cerebral atrophy. Behavl Neurol, 2, 167182.10.1155/1989/124043CrossRefGoogle Scholar
Grossman, M., Mickanin, J., Onishi, K., et al. (1996). Progressive non-fluent aphasia: language, cognitive and PET measures contrasted with probable Alzheimer’s disease. J Cog Neurosci, 8, 135154.10.1162/jocn.1996.8.2.135CrossRefGoogle Scholar
Neary, D., Snowden, J. S., Gustafson, L., et al. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria see comments. Neurology, 51(6), Article 6.10.1212/WNL.51.6.1546CrossRefGoogle Scholar
Gorno-Tempini, M. L., Dronkers, N. F., Rankin, K. P., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol, 55(3), Article 3.10.1002/ana.10825CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014. https://doi.org/10.1212/WNL.0b013e31821103e6CrossRefGoogle ScholarPubMed
Mesulam, M. M. (2001). Primary progressive aphasia. Ann Neurol, 49(4), Article 4.10.1002/ana.91CrossRefGoogle ScholarPubMed
Tastevin, M., Lavoie, M., de la Sablonnière, J., et al. (2021). Survival in the three common variants of primary progressive aphasia: a retrospective study in a tertiary memory clinic. Brain Sci, 11(9), Article 9. https://doi.org/10.3390/brainsci11091113CrossRefGoogle Scholar
Coyle-Gilchrist, I. T. S., Dick, K. M., Patterson, K., et al. (2016). Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology, 86(18), 17361743. https://doi.org/10.1212/WNL.0000000000002638CrossRefGoogle ScholarPubMed
Hendriks, S., Peetoom, K., Bakker, C., et al. (2021). Global prevalence of young-onset dementia: a systematic review and meta-analysis. JAMA Neurol, 78(9), 10801090. https://doi.org/10.1001/jamaneurol.2021.2161CrossRefGoogle ScholarPubMed
Rohrer, J. D., Guerreiro, R., Vandrovcova, J., et al. (2009). The heritability and genetics of frontotemporal lobar degeneration. Neurology, 73(18), Article 18.10.1212/WNL.0b013e3181bf997aCrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., Oxbury, S., et al. (1992). Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain, 115(Pt 6), Article Pt 6.Google ScholarPubMed
Seeley, W. W., Bauer, A. M., Miller, B. L., et al. (2005). The natural history of temporal variant frontotemporal dementia. Neurology, 64(8), Article 8.10.1212/01.WNL.0000158425.46019.5CCrossRefGoogle ScholarPubMed
Younes, K., Borghesani, V., Montembeault, M., et al. (2022). Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain, 145(11), 40804096. https://doi.org/10.1093/brain/awac217CrossRefGoogle ScholarPubMed
Kertesz, A., Jesso, S., Harciarek, M., et al. (2010). What is semantic dementia?: a cohort study of diagnostic features and clinical boundaries. Arch Neurol, 67(4), 483489. https://doi.org/10.1001/archneurol.2010.55CrossRefGoogle ScholarPubMed
Van den Bosch, A., Content, A., Daelemans, W., et al. (1994). Measuring the complexity of writing systems*. J Quant Linguist, 1(3), 178188. https://doi.org/10.1080/09296179408590015CrossRefGoogle Scholar
Patterson, K., & Hodges, J. R. (1992). Deterioration of word meaning: implications for reading. Neuropsychologia, 30(12), Article 12.10.1016/0028-3932(92)90096-5CrossRefGoogle ScholarPubMed
Irish, M., Bunk, S., Tu, S., et al. (2016). Preservation of episodic memory in semantic dementia: the importance of regions beyond the medial temporal lobes. Neuropsychologia, 81, 5060. https://doi.org/10.1016/j.neuropsychologia.2015.12.005CrossRefGoogle ScholarPubMed
Chan, D., Fox, N. C., Scahill, R. I., et al. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol, 49(4), 433442.10.1002/ana.92CrossRefGoogle ScholarPubMed
Galton, C. J., Patterson, K., Xuereb, J. H., et al. (2000). Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain, 123(Pt 3), 484498.10.1093/brain/123.3.484CrossRefGoogle ScholarPubMed
Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P., et al. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), Article 2.10.1212/WNL.58.2.198CrossRefGoogle ScholarPubMed
Miller, Z. A., Mandelli, M. L., Rankin, K. P., et al. (2013). Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain, 136(11), 34613473. https://doi.org/10.1093/brain/awt242CrossRefGoogle ScholarPubMed
Miller, Z. A., Hinkley, L. B., Herman, A., et al. (2015). Anomalous functional language lateralization in semantic variant PPA. Neurology, 84(2), 204206. https://doi.org/10.1212/WNL.0000000000001131CrossRefGoogle ScholarPubMed
Miller, Z., Hinkley, L., Bogley, R., et al. (2022). Anomalous language lateralization in semantic dementia: a neurodevelopmental hypothesis (P8-3.003). Neurology, 98(18 Suppl). https://n.neurology.org/content/98/18_Supplement/372710.1212/WNL.98.18_supplement.3727CrossRefGoogle Scholar
Bocchetta, M., Iglesias Espinosa, M. del M., Lashley, T., et al. (2020). In vivo staging of frontotemporal lobar degeneration TDP-43 type C pathology. Alzheimers Res Ther, 12(1), 34. https://doi.org/10.1186/s13195-020-00600-xCrossRefGoogle ScholarPubMed
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci, 8(12), Article 12. https://doi.org/10.1038/nrn2277CrossRefGoogle Scholar
Migliaccio, R., Boutet, C., Valabregue, R., et al. (2016). The brain network of naming: a lesson from primary progressive aphasia. PLoS One, 11(2), e0148707. https://doi.org/10.1371/journal.pone.0148707CrossRefGoogle ScholarPubMed
Bocchetta, M., Iglesias, J. E., Russell, L. L., et al. (2019). Segmentation of medial temporal subregions reveals early right-sided involvement in semantic variant PPA. Alzheimers Res The, 11(1), 41. https://doi.org/10.1186/s13195-019-0489-9CrossRefGoogle ScholarPubMed
Thompson, S. A., Patterson, K., & Hodges, J. R. (2003). Left/right asymmetry of atrophy in semantic dementia: behavioral-cognitive implications. Neurology, 61(9), Article 9.10.1212/01.WNL.0000091868.28557.B8CrossRefGoogle ScholarPubMed
Henry, M. L., Wilson, S. M., Ogar, J. M., et al. (2014). Neuropsychological, behavioral, and anatomical evolution in right temporal variant frontotemporal dementia: a longitudinal and post-mortem single case analysis. Neurocase, 20(1), 10.1080/13554794.2012.732089. https://doi.org/10.1080/13554794.2012.732089CrossRefGoogle ScholarPubMed
Guo, C. C., Gorno-Tempini, M. L., Gesierich, B., et al. (2013). Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain, 136(Pt 10), Article Pt 10. https://doi.org/10.1093/brain/awt222CrossRefGoogle ScholarPubMed
Schwab, S., Afyouni, S., Chen, Y., et al. (2020). Functional connectivity alterations of the temporal lobe and hippocampus in semantic dementia and Alzheimer’s disease. J Alzheimers Dis, 76(4), 14611475. https://doi.org/10.3233/JAD-191113CrossRefGoogle ScholarPubMed
Goldman, J. S., Farmer, J. M., Van Deerlin, V. M., et al. (2004). Frontotemporal dementia: genetics and genetic counseling dilemmas. Neurologist, 10(5), Article 5.10.1097/01.nrl.0000138735.48533.26CrossRefGoogle ScholarPubMed
Pickering-Brown, S. M., Rollinson, S., Du Plessis, D., et al. (2008). Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain, 131(Pt 3), Article Pt 3.10.1093/brain/awm331CrossRefGoogle ScholarPubMed
Benajiba, L., Le Ber, I., Camuzat, A., et al. (2009). TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol, 65(4), 470473. https://doi.org/10.1002/ana.21612CrossRefGoogle ScholarPubMed
Caroppo, P., Camuzat, A., De Septenville, A., et al. (2015). Semantic and nonfluent aphasic variants, secondarily associated with amyotrophic lateral sclerosis, are predominant frontotemporal lobar degeneration phenotypes in TBK1 carriers. Alzheimers Dement, 1(4), 481486. https://doi.org/10.1016/j.dadm.2015.10.002Google ScholarPubMed
Snowden, J. S., Rollinson, S., Thompson, J. C., et al. (2012). Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain, 135(3), 693708. https://doi.org/10.1093/brain/awr355CrossRefGoogle ScholarPubMed
Borroni, B., Ferrari, F., Galimberti, D., et al. (2014). Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol Aging, 35(4), 934.e7–934.e10. https://doi.org/10.1016/j.neurobiolaging.2013.09.017CrossRefGoogle ScholarPubMed
Van Schoor, E., Vandenbulcke, M., Bercier, V., et al. (2022). frontotemporal lobar degeneration case with an N-Terminal Tuba4a mutation exhibits reduced TUBA4A levels in the brain and TDP-43 pathology. Biomolecules, 12(3), 440. https://doi.org/10.3390/biom12030440CrossRefGoogle ScholarPubMed
Pellerin, D., Ellezam, B., Korathanakhun, P., et al. (2020). multisystem proteinopathy associated with a VCP G156S mutation in a French Canadian family. Can J Neurol Sci, 47(3), 412415. https://doi.org/10.1017/cjn.2020.25CrossRefGoogle Scholar
Bergeron, D., Gorno-Tempini, M. L., Rabinovici, G. D., et al. (2018). Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia. Ann Neurol, 84(5), Article 5. https://doi.org/10.1002/ana.25333CrossRefGoogle ScholarPubMed
Spinelli, E. G., Mandelli, M. L., Miller, Z. A., et al. (2017). Typical and atypical pathology in primary progressive aphasia variants: pathology in PPA Variants. Ann Neurol, 81(3), Article 3. https://doi.org/10.1002/ana.24885CrossRefGoogle Scholar
Diggs, R. Neylan, K., Allen, I. E. et al. (2019). Getting to the root cause: an increased prevalence of stem careers in frontotemporal dementia. Poster presented at the Alzheimer’s Association International Conference, 2019, Los Angeles, CA. https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2019.06.4088CrossRefGoogle Scholar
Miller, Z. A., Rankin, K. P., Graff-Radford, N. R., et al. (2013). TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry, 84(9), 956962. https://doi.org/10.1136/jnnp-2012-304644CrossRefGoogle ScholarPubMed
Miller, Z. A., Sturm, V. E., Camsari, G. B., et al. (2016). Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts. Neurol Neuroimmunol Neuroinflamm, 3(6), Article 6. https://doi.org/10.1212/NXI.0000000000000301CrossRefGoogle ScholarPubMed
Illán-Gala, I., Lorca-Puls, D. L., Ezzes, Z., et al. (2024). Clinical dimensions along the progressive nonfluent variant primary progressive aphasia spectrum. Brain, 147(4), 15111525. https://doi.org/10.1101/2023.04.18.23288702CrossRefGoogle Scholar
Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2013). Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. Neurology, 81(4), Article 4. https://doi.org/10.1212/WNL.0b013e31829c5ed5CrossRefGoogle ScholarPubMed
Tetzloff, K. A., Duffy, J. R., Clark, H. M., et al. (2019). Progressive agrammatic aphasia without apraxia of speech as a distinct syndrome. Brain, 142(8), 24662482. https://doi.org/10.1093/brain/awz157CrossRefGoogle ScholarPubMed
Wilson, S., Henry, M., Besbri, M., et al. (2010). Connected speech production in three variants of primary progressive aphasia. Brain, 133(Pt 7), 20692088.10.1093/brain/awq129CrossRefGoogle ScholarPubMed
Thompson, C. K., & Mack, J. E. (2014). Grammatical impairments in PPA. Aphasiology, 28(8–9), 10181037. https://doi.org/10.1080/02687038.2014.912744CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2006). Clinicopathologic and imaging correlates of progressive aphasia and apraxia of speech. Brain, 129(Pt 6), Article Pt 6. https://doi.org/10.1093/brain/awl078CrossRefGoogle ScholarPubMed
Foxe, D., Irish, M., Hu, A., et al. (2021). Longitudinal cognitive and functional changes in primary progressive aphasia. J Neurol, 268(5), 19511961. https://doi.org/10.1007/s00415-020-10382-9CrossRefGoogle ScholarPubMed
Goodglass, H., & Kaplan, E. (1983). Boston Diagnostic Aphasia Examination (BDAE). Lea and Febiger. Distributed by Psychological Assessment Resources, Odessa, FL.Google Scholar
Kertesz, A. (1980). Western Aphasia Battery. University of Western Ontario Press.Google Scholar
Ogar, J. M., Dronkers, N. F., Brambati, S. M., et al. (2007). Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis Assoc Disord, 21(4), Article 4. https://doi.org/10.1097/WAD.0b013e31815d19feCrossRefGoogle ScholarPubMed
Ash, S., McMillan, C., Gunawardena, D., et al. (2010). Speech errors in progressive non-fluent aphasia. Brain Lang, 113(1), Article 1. https://doi.org/10.1016/j.bandl.2009.12.001CrossRefGoogle ScholarPubMed
Wertz, R. T., LaPointe, L. L., & Rosenbek, J. C. (1984). Apraxia of Speech: The Disorders and Its Management. Grune and Stratton.Google Scholar
Utianski, R. L., Duffy, J. R., Clark, H. M., et al. (2018). Prosodic and phonetic subtypes of primary progressive apraxia of speech. Brain Lang, 184, 5465. https://doi.org/10.1016/j.bandl.2018.06.004CrossRefGoogle ScholarPubMed
Thompson, C. K., Lukic, S., King, M. C., et al. (2012). Verb and noun deficits in stroke-induced and primary progressive aphasia: the Northwestern Naming Battery. Aphasiology, 26(5), 632655. https://doi.org/10.1080/02687038.2012.676852CrossRefGoogle ScholarPubMed
Rohrer, J. D., Rossor, M. N., & Warren, J. D. (2010). Syndromes of nonfluent primary progressive aphasia: a clinical and neurolinguistic analysis. Neurology, 75(7), Article 7. https://doi.org/10.1212/WNL.0b013e3181ed9c6bCrossRefGoogle ScholarPubMed
Rosen, H. J., Allison, S. C., Ogar, J. M., et al. (2006). Behavioral features in semantic dementia versus other forms of progressive aphasias. Neurology, 67(10), Article 10.10.1212/01.wnl.0000247630.29222.34CrossRefGoogle Scholar
Mandelli, M. L., Vitali, P., Santos, M., et al. (2016). Two insular regions are differentially involved in behavioral variant FTD and nonfluent/agrammatic variant PPA. Cortex, 74, 149157. doi: 10.1016/j.cortex.2015.10.012.CrossRefGoogle ScholarPubMed
Mandelli, M. L., Vilaplana, E., Brown, J. A., et al. (2016). Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia. Brain, 139(Pt 10), 27782791. doi: 10.1093/brain/aww195.CrossRefGoogle ScholarPubMed
Tetzloff, K. A., Duffy, J. R., Clark, H. M., et al. (2018). Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain, 141(1), 302317. https://doi.org/10.1093/brain/awx293CrossRefGoogle ScholarPubMed
Catani, M., Mesulam, M. M., Jakobsen, E., et al. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136(Pt 8), Article Pt 8. https://doi.org/10.1093/brain/awt163CrossRefGoogle ScholarPubMed
Mandelli, M. L., Caverzasi, E., Binney, R. J., et al. (2014). Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci, 34(29), 97549767. https://doi.org/10.1523/JNEUROSCI.3464-13.2014CrossRefGoogle ScholarPubMed
Galantucci, S., Tartaglia, M. C., Wilson, S. M., et al. (2011). White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain, 134(Pt 10), Article Pt 10. https://doi.org/10.1093/brain/awr099CrossRefGoogle ScholarPubMed
Grossman, M., Powers, J., Ash, S., et al. (2013). Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain Lang, 127(2), 106120. https://doi.org/10.1016/j.bandl.2012.10.005CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2012). Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain, 135(Pt 5), Article Pt 5. https://doi.org/10.1093/brain/aws032CrossRefGoogle ScholarPubMed
Mandelli, M. L., Welch, A. E., Vilaplana, E., et al. (2018). Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex, 108, 252264. https://doi.org/10.1016/j.cortex.2018.08.002CrossRefGoogle ScholarPubMed
Wilson, S. M., Dronkers, N. F., Ogar, J. M., et al. (2010). Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J Neurosci, 30(50), Article 50. https://doi.org/10.1523/JNEUROSCI.2547-10.2010CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Ogar, J. M., Brambati, S. M., et al. (2006). Anatomical correlates of early mutism in progressive nonfluent aphasia. Neurology, 67(10), Article 10. https://doi.org/10.1212/01.wnl.0000237038.55627.5bCrossRefGoogle ScholarPubMed
Santos-Santos, M. A., Rabinovici, G. D., Iaccarino, L., et al. (2018). Rates of amyloid imaging positivity in patients with primary progressive aphasia. JAMA Neurol, 75(3), Article 3. https://doi.org/10.1001/jamaneurol.2017.4309CrossRefGoogle ScholarPubMed
Josephs, K. A., Martin, P. R., Botha, H., et al. (2018). [18F]AV-1451 tau-PET and primary progressive aphasia. Ann Neurol, 83(3), 599611. https://doi.org/10.1002/ana.25183CrossRefGoogle ScholarPubMed
Schaeverbeke, J., Evenepoel, C., Declercq, L., et al. (2018). Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants. Eur J Nucl Med Mol Imaging, 45(13), 23422357. https://doi.org/10.1007/s00259-018-4075-3CrossRefGoogle ScholarPubMed
Yoon, C. W., Jeong, H. J., Seo, S., et al. (2018). 18F-THK5351 PET imaging in nonfluent-agrammatic variant primary progressive aphasia. Dement Neurocog Disord, 17(3), 110119. https://doi.org/10.12779/dnd.2018.17.3.110CrossRefGoogle ScholarPubMed
Lee, H., Seo, S., Lee, S.-Y., J., et al. (2018). 18F.-THK5351 PET imaging in patients with semantic variant primary progressive aphasia. Alzheimer Dis Assoc Disord, 32(1), 62. https://doi.org/10.1097/WAD.0000000000000216CrossRefGoogle ScholarPubMed
Makaretz, S. J., Quimby, M., Collins, J., et al. (2018). Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. J Neuro lNeurosurg Psychiatry, 89(10), 10241031. https://doi.org/10.1136/jnnp-2017-316409CrossRefGoogle ScholarPubMed
Deleon, J., & Miller, B. L. (2018). Frontotemporal dementia. In Geschwind, D. H., Paulson, H. L., Klein, C., eds. Handbook of Clinical Neurology (vol. 148). Elsevier; pp. 409430. https://doi.org/10.1016/B978-0-444-64076-5.00027-2Google Scholar
Santos-Santos, M. A., Mandelli, M. L., Binney, R. J., et al. (2016). Features of patients with nonfluent/agrammatic primary progressive aphasia with underlying progressive supranuclear palsy pathology or corticobasal degeneration. JAMA Neurol, 73(6), 733742. https://doi.org/10.1001/jamaneurol.2016.0412CrossRefGoogle ScholarPubMed
Rohrer, J. D., Lashley, T., Schott, J. M., et al. (2011). Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain, 134(Pt 9), Article Pt 9. https://doi.org/10.1093/brain/awr198CrossRefGoogle ScholarPubMed
Caso, F., Gesierich, B., Henry, M., et al. (2013). Nonfluent/agrammatic PPA with in-vivo cortical amyloidosis and Pick’s disease pathology. Behav Neurol, 26(1–2), Article 1–2. https://doi.org/10.3233/BEN-2012-120255CrossRefGoogle ScholarPubMed
Miller, Z., Bogley, R., Miller, C., et al. (2021). Increased prevalence of developmental stuttering across lvPPA, nfvPPA, and CBS spectrum degenerative disorders (2205). Neurology, 96(15 Suppl). https://n.neurology.org/content/96/15_Supplement/220510.1212/WNL.96.15_supplement.2205CrossRefGoogle Scholar
Weintraub, S., Rubin, N. P., & Mesulam, M.-M. (1990). Primary progressive aphasia: longitudinal course, neuropsychological profile, and language features. Arch Neurol, 47, 13291335.10.1001/archneur.1990.00530120075013CrossRefGoogle ScholarPubMed
Conca, F., Esposito, V., Giusto, G., et al. (2022). Characterization of the logopenic variant of primary progressive aphasia: a systematic review and meta-analysis. Ageing Res Rev, 82, 101760. https://doi.org/10.1016/j.arr.2022.101760CrossRefGoogle ScholarPubMed
Chare, L., Hodges, J. R., Leyton, C. E., et al. (2014). New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry, 85(8), Article 8. https://doi.org/10.1136/jnnp-2013-306948CrossRefGoogle ScholarPubMed
Catricalà, E., Santi, G. C., Polito, C., et al. (2022). Comprehensive qualitative characterization of linguistic performance profiles in primary progressive aphasia: a multivariate study with FDG-PET. Neurobiol Aging, 120, 137148. https://doi.org/10.1016/j.neurobiolaging.2022.09.001CrossRefGoogle ScholarPubMed
Rohrer, J. D., Ridgway, G. R., Crutch, S. J., et al. (2010). Progressive logopenic/phonological aphasia: erosion of the language network. NeuroImage, 49(1), 984993. https://doi.org/10.1016/j.neuroimage.2009.08.002CrossRefGoogle ScholarPubMed
Basaglia-Pappas, S., Laurent, B., Getenet, J.-C., et al. (2023). Executive profile of the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants and Alzheimer’s disease. Brain Sci, 13(3), Article 3. https://doi.org/10.3390/brainsci13030406CrossRefGoogle ScholarPubMed
Leyton, C. E., Hsieh, S., Mioshi, E., et al. (2013). Cognitive decline in logopenic aphasia: more than losing words. Neurology, 80(10), Article 10. https://doi.org/10.1212/WNL.0b013e318285c15bCrossRefGoogle ScholarPubMed
Leyton, C. E., Landin-Romero, R., Liang, C. T., et al. (2019). Correlates of anomia in non-semantic variants of primary progressive aphasia converge over time. Cortex, 120, 201211. https://doi.org/10.1016/j.cortex.2019.06.008CrossRefGoogle ScholarPubMed
Haley, K. L., Jacks, A., Jarrett, J., et al. (2021). Speech metrics and samples that differentiate between nonfluent/agrammatic and logopenic variants of primary progressive aphasia. JSLHR, 64(3), Article 3. https://doi.org/10.1044/2020_JSLHR-20-00445Google ScholarPubMed
Sajjadi, S. A., Patterson, K., Arnold, R. J., et al. (2012). Primary progressive aphasia: a tale of two syndromes and the rest. Neurology, 78(21), Article 21. https://doi.org/10.1212/WNL.0b013e3182574f79CrossRefGoogle ScholarPubMed
Tippett, D. C. (2020). Classification of primary progressive aphasia: challenges and complexities. F1000Research, 9, 64. https://doi.org/10.12688/f1000research.21184.1CrossRefGoogle ScholarPubMed
Kaplan, E. F., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Lea & Febiger.Google Scholar
Mack, J. E., Chandler, S. D., Meltzer-Asscher, A., et al. (2015). What do pauses in narrative production reveal about the nature of word retrieval deficits in PPA? Neuropsychologia, 77, 211222. https://doi.org/10.1016/j.neuropsychologia.2015.08.019CrossRefGoogle ScholarPubMed
Beeson, P. M., Rising, K., Kim, E. S., et al. (2010). A treatment sequence for phonological alexia/agraphia. J Speech Lang Hear Res, 53(2), Article 2. https://doi.org/10.1044/1092-4388(2009/08-0229)CrossRefGoogle ScholarPubMed
Teichmann, M., Kas, A., Boutet, C., et al. (2013). Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain, 136(Pt 11), Article Pt 11. https://doi.org/10.1093/brain/awt266CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Brambati, S. M., Ginex, V., et al. (2008). The logopenic/phonological variant of primary progressive aphasia. Neurology, 71(16), 12271234. https://doi.org/10.1212/01.wnl.0000320506.79811.daCrossRefGoogle ScholarPubMed
Migliaccio, R., Agosta, F., Possin, K. L., et al. (2012). White matter atrophy in Alzheimer’s disease variants. Alzheimers Dement, 8(5 Suppl), Article 5 Suppl. https://doi.org/10.1016/j.jalz.2012.04.010CrossRefGoogle ScholarPubMed
Whitwell, J. L., Jones, D. T., Duffy, J. R., et al. (2014). Working memory and language network dysfunctions in logopenic aphasia: a task-free fMRI comparison with Alzheimer’s dementia. Neurobiol Aging, 36(3),12451252. https://doi.org/10.1016/j.neurobiolaging.2014.12.013CrossRefGoogle ScholarPubMed
Tu, S., Leyton, C. E., Hodges, J. R., et al. (2015). Divergent longitudinal propagation of white matter degradation in logopenic and semantic variants of primary progressive aphasia. J Alzheimers Dis, 49(3), Article 3. https://doi.org/10.3233/JAD-150626CrossRefGoogle Scholar
Rogalski, E. J., Rademaker, A., Harrison, T. M., et al. (2011). ApoE E4 is a susceptibility factor in amnestic but not aphasic dementias. Alzheimer Dis Assoc Disorde, 25(2), Article 2. https://doi.org/10.1097/WAD.0b013e318201f249CrossRefGoogle Scholar
Munoz, D. G., Woulfe, J., & Kertesz, A. (2007). Argyrophilic thorny astrocyte clusters in association with Alzheimer’s disease pathology in possible primary progressive aphasia. Acta Neuropathol, 114(4), Article 4. https://doi.org/10.1007/s00401-007-0266-xCrossRefGoogle ScholarPubMed
Miller, Z. A., Spina, S., Pakvasa, M., et al. (2019). Cortical developmental abnormalities in logopenic variant primary progressive aphasia with dyslexia. Brain Commun, 1(1). https://doi.org/10.1093/braincomms/fcz027CrossRefGoogle ScholarPubMed
Ramos, E. M., Dokuru, D. R., Van Berlo, V., et al. (2019). Genetic screen in a large series of patients with primary progressive aphasia. Alzheimers & Dement, 15(4), 553560. https://doi.org/10.1016/j.jalz.2018.10.009CrossRefGoogle Scholar
Rohrer, J. D., Warren, J. D., Omar, R., et al. (2008). Parietal lobe deficits in frontotemporal lobar degeneration caused by a mutation in the progranulin gene. Arch Neuroly, 65(4), 506513. https://doi.org/10.1001/archneur.65.4.506CrossRefGoogle ScholarPubMed
Saracino, D., Ferrieux, S., Noguès-Lassiaille, M., et al. (2021). Primary progressive aphasia associated with GRN mutations: new insights into the nonamyloid logopenic variant. Neurology, 9 7(1), e88e102. https://doi.org/10.1212/WNL.0000000000012174Google Scholar
Momota, Y., Konishi, M., Takahata, K., et al. (2022). Case report: non-Alzheimer’s disease tauopathy with logopenic variant primary progressive aphasia diagnosed using amyloid and tau PET. Front Neurol, 13,1049113. https://doi.org/10.3389/fneur.2022.1049113CrossRefGoogle ScholarPubMed
Rogalski, E., Johnson, N., Weintraub, S., et al. (2008). Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives. Arch Neurol, 65(2), Article 2. https://doi.org/10.1001/archneurol.2007.34CrossRefGoogle ScholarPubMed
Miller, Z. A., Rosenberg, L., Santos-Santos, M. A., et al. (2018). Prevalence of mathematical and visuospatial learning disabilities in patients with posterior cortical atrophy. JAMA Neurol, 75(6), 728737. https://doi.org/10.1001/jamaneurol.2018.0395CrossRefGoogle ScholarPubMed
Harris, J. M., Gall, C., Thompson, J. C., et al. (2013). Classification and pathology of primary progressive aphasia. Neurology, 81(21), 18321839. https://doi.org/10.1212/01.wnl.0000436070.28137.7bCrossRefGoogle ScholarPubMed
Leyton, C. E., Villemagne, V. L., Savage, S., et al. (2011). Subtypes of progressive aphasia: application of the International Consensus Criteria and validation using beta-amyloid imaging. Brain, 134(Pt 10), Article Pt 10. https://doi.org/10.1093/brain/awr216CrossRefGoogle ScholarPubMed
Wicklund, M. R., Duffy, J. R., Strand, E. A., et al. (2014). Quantitative application of the primary progressive aphasia consensus criteria. Neurology, 82(13), 11191126. https://doi.org/10.1212/WNL.0000000000000261CrossRefGoogle ScholarPubMed
Leyton, C. E., Hodges, J. R., Piguet, O., et al. (2017). Common and divergent neural correlates of anomia in amnestic and logopenic presentations of Alzheimer’s disease. Cortex, 86, 4554. https://doi.org/10.1016/j.cortex.2016.10.019CrossRefGoogle ScholarPubMed
Reilly, J., Peelle, J. E., Antonucci, S. M., et al. (2011). Anomia as a marker of distinct semantic memory impairments in Alzheimer’s disease and semantic dementia. Neuropsychology, 25(4), 413426. https://doi.org/10.1037/a0022738CrossRefGoogle ScholarPubMed
Leyton, C. E., Savage, S., Irish, M., et al. (2014). Verbal repetition in primary progressive aphasia and Alzheimer’s disease. J Alzheimers Dis, 41(2), Article 2. https://doi.org/10.3233/JAD-132468CrossRefGoogle ScholarPubMed
Rohrer, J. D., Crutch, S. J., Warrington, E. K., et al. (2010). Progranulin-associated primary progressive aphasia: a distinct phenotype? Neuropsychologia, 48(1), 288297. https://doi.org/10.1016/j.neuropsychologia.2009.09.017CrossRefGoogle ScholarPubMed
Rogalski, E. J., & Mesulam, M. M. (2009). Clinical trajectories and biological features of primary progressive aphasia (PPA). Curr Alzheimer Res, 6(4), Article 4.10.2174/156720509788929264CrossRefGoogle ScholarPubMed
Boschi, V., Catricalà, E., Consonni, M., et al. (2017). connected speech in neurodegenerative language disorders: a review. Front Psychol, 8, 269. https://doi.org/10.3389/fpsyg.2017.00269CrossRefGoogle ScholarPubMed
Miller, B. L., Cummings, J., Mishkin, F., et al. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51(4), Article 4.10.1212/WNL.51.4.978CrossRefGoogle ScholarPubMed
Viskontas, I. V., Boxer, A. L., Fesenko, J., et al. (2011). Visual search patterns in semantic dementia show paradoxical facilitation of binding processes. Neuropsychologia, 49(3), 468478. https://doi.org/10.1016/j.neuropsychologia.2010.12.039CrossRefGoogle ScholarPubMed
Tee, B. L., Watson Pereira, C., Lukic, S., et al. (2022). Neuroanatomical correlations of visuospatial processing in primary progressive aphasia. Brain Commun, 4(2), fcac060. https://doi.org/10.1093/braincomms/fcac060CrossRefGoogle ScholarPubMed
Binney, R. J., Henry, M. L., Babiak, M., et al. (2016). Reading words and other people: a comparison of exception word, familiar face and affect processing in the left and right temporal variants of primary progressive aphasia. Cortex, 82, 147163. https://doi.org/10.1016/j.cortex.2016.05.014CrossRefGoogle ScholarPubMed
Omar, R., Rohrer, J. D., Hailstone, J. C., et al. (2011). Structural neuroanatomy of face processing in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry, 82(12), Article 12. https://doi.org/10.1136/jnnp.2010.227983CrossRefGoogle ScholarPubMed
Perry, R. J., Rosen, H. R., Kramer, J. H., et al. (2001). Hemispheric dominance for emotions, empathy and social behaviour: evidence from right and left handers with frontotemporal dementia. Neurocase, 7(2), Article 2.Google ScholarPubMed
Kumfor, F., & Piguet, O. (2012). Disturbance of emotion processing in frontotemporal dementia: a synthesis of cognitive and neuroimaging findings. Neuropsychol Rev, 22(3), 280297. https://doi.org/10.1007/s11065-012-9201-6CrossRefGoogle ScholarPubMed
Rosen, H. J., Perry, R. J., Murphy, J., et al. (2002). Emotion comprehension in the temporal variant of frontotemporal dementia. Brain, 125(Pt 10), Article Pt 10.10.1093/brain/awf225CrossRefGoogle ScholarPubMed
Pascual, B., Funk, Q., Zanotti-Fregonara, P., et al. (2021). Neuroinflammation in semantic variant primary progressive aphasia. J Nucl Med, 62(supplement 1), 101101.Google Scholar
Zhang, J. (2015). Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging. J Neuroinflamm, 12(1), 108. https://doi.org/10.1186/s12974-015-0236-5CrossRefGoogle ScholarPubMed
Volkmer, A., Rogalski, E., Henry, M., et al. (2020). Speech and language therapy approaches to managing primary progressive aphasia. Pract Neurol, 20(2), Article 2. https://doi.org/10.1136/practneurol-2018-001921CrossRefGoogle ScholarPubMed
Gervits, F., Ash, S., Coslett, H. B., et al. (2016). Transcranial direct current stimulation for the treatment of primary progressive aphasia: an open-label pilot study. Brain Lang, 162, 3541. https://doi.org/10.1016/j.bandl.2016.05.007CrossRefGoogle ScholarPubMed
Pytel, V., Cabrera-Martín, M. N., Delgado-Álvarez, A., et al. (2021). Personalized Repetitive Transcranial Magnetic Stimulation for Primary Progressive Aphasia. J Alzheimers Dis, 84(1), 151167. https://doi.org/10.3233/JAD-210566CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.1 AA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and achieves the intermediate (AA) level of WCAG compliance, covering a wider range of accessibility requirements.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×