Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-h6shg Total loading time: 0 Render date: 2025-11-27T20:43:11.543Z Has data issue: false hasContentIssue false

Chapter 4 - Neuropathology of Dementia

from Section 1 - Introductory Chapters on Dementia

Published online by Cambridge University Press:  17 November 2025

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

This chapter discusses the neuropathology of dementia, focusing on the degenerative dementia syndromes commonly encountered by dementia specialists. It highlights the concept of selective vulnerability, where specific neuron types in specific brain regions decline and die, leading to progressive dysfunction. Alzheimer’s disease (AD) is the most prevalent cause of dementia, characterized by neurofibrillary pathology and the presence of neuritic plaques and neurofibrillary tangles. Dementia with Lewy Bodies (DLB), multiple system atrophy (MSA), and frontotemporal dementia (FTD) are also discussed, along with their respective clinical features and underlying pathology. The chapter emphasizes the complexity of neurodegenerative diseases and the need for more integrative models to understand their pathogenesis and develop effective therapies.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Knopman, DS, Boeve, BF, Parisi, JE, et al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol. 2005;57(4):480488.10.1002/ana.20425CrossRefGoogle ScholarPubMed
Forman, MS, Farmer, J, Johnson, JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952962.10.1002/ana.20873CrossRefGoogle ScholarPubMed
Seeley, W, Crawford, R, Zhou, J, Miller, B, Greicius, M. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):4252.10.1016/j.neuron.2009.03.024CrossRefGoogle ScholarPubMed
Fu, H, Hardy, J, Duff, KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci. 2018;21(10):13501358.10.1038/s41593-018-0221-2CrossRefGoogle ScholarPubMed
Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4(1):4960.10.1038/nrn1007CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica. 1991;82:239259.10.1007/BF00308809CrossRefGoogle ScholarPubMed
Braak, H, Ghebremedhin, E, Rub, U, Bratzke, H, Del Tredici, K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121134.10.1007/s00441-004-0956-9CrossRefGoogle ScholarPubMed
Greicius, MD, Srivastava, G, Reiss, AL, Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):46374642.10.1073/pnas.0308627101CrossRefGoogle ScholarPubMed
Zhou, J, Gennatas, ED, Kramer, JH, Miller, BL, Seeley, WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73(6):12161227.10.1016/j.neuron.2012.03.004CrossRefGoogle ScholarPubMed
Kim, EJ, Hwang, JL, Gaus, SE, et al. Evidence of corticofugal tau spreading in patients with frontotemporal dementia. Acta Neuropathol. 2020;139(1):2743.10.1007/s00401-019-02075-zCrossRefGoogle ScholarPubMed
Sanders, DW, Kaufman, SK, DeVos, SL, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82(6):12711288.10.1016/j.neuron.2014.04.047CrossRefGoogle ScholarPubMed
Ahmed, Z, Cooper, J, Murray, TK, et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 2014;127(5):667683.10.1007/s00401-014-1254-6CrossRefGoogle Scholar
de Calignon, A, Polydoro, M, Suarez-Calvet, M, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73(4):685697.10.1016/j.neuron.2011.11.033CrossRefGoogle Scholar
Volpicelli-Daley, LA, Luk, KC, Patel, TP, et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72(1):5771.10.1016/j.neuron.2011.08.033CrossRefGoogle ScholarPubMed
Clavaguera, F, Akatsu, H, Fraser, G, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A. 2013;110(23):95359540.10.1073/pnas.1301175110CrossRefGoogle ScholarPubMed
Brun, A, Gustafson, L. Limbic lobe involvement in presenile dementia. Arch Psychiatr Nervenkr. 1978;226(2):7993.10.1007/BF00345945CrossRefGoogle ScholarPubMed
Brun, A, Liu, X, Erikson, C. Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer’s disease and in frontal lobe degeneration. Neurodegeneration. 1995;4(2):171177.10.1006/neur.1995.0021CrossRefGoogle ScholarPubMed
Weintraub, S, Mesulam, M-M. From neuronal networks to dementia: four clinical profiles. In Foret, F, Christen, Y, Boller, F, eds. La demence: Pourquoi? Paris: Foundation Nationale de Gerontologie, 1996; pp. 7597.Google Scholar
Saper, CB, Wainer, BH, German, DC. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience. 1987;23(2):389398.10.1016/0306-4522(87)90063-7CrossRefGoogle ScholarPubMed
Seeley, WW, Menon, V, Schatzberg, AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):23492356.10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Ritchie, K, Lovestone, S. The dementias. Lancet. 2002;360(9347):17591766.10.1016/S0140-6736(02)11667-9CrossRefGoogle ScholarPubMed
Hebert, LE, Scherr, PA, Bienias, JL, Bennett, DA, Evans, DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60(8):11191122.10.1001/archneur.60.8.1119CrossRefGoogle ScholarPubMed
Kukull, WA, Higdon, R, Bowen, JD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 2002;59(11):17371746.10.1001/archneur.59.11.1737CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271284.10.1016/0197-4580(95)00021-6CrossRefGoogle ScholarPubMed
Hyman, BT, Damasio, AR. Hierarchical vulnerability of the entorhinal cortex and the hippocampal formation to Alzheimer neuropathological changes: a semiquantitative study. Neurology. 1990;40:403.Google Scholar
Hyman, BT, Damasio, AR, Van Hoesen, GW, Barnes, CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;298:8395.Google Scholar
Gorno-Tempini, ML, Dronkers, NF, Rankin, KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335346.10.1002/ana.10825CrossRefGoogle ScholarPubMed
Galton, CJ, Patterson, K, Xuereb, JH, Hodges, JR. Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain. 2000;123 Pt 3:484498.10.1093/brain/123.3.484CrossRefGoogle ScholarPubMed
Chand, P, Grafman, J, Dickson, D, Ishizawa, K, Litvan, I. Alzheimer’s disease presenting as corticobasal syndrome. Mov Disord. 2006;21(11):20182022.10.1002/mds.21055CrossRefGoogle ScholarPubMed
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70(2):327340.10.1002/ana.22424CrossRefGoogle ScholarPubMed
Zakzanis, KK, Boulos, MI. Posterior cortical atrophy. Neurologist. 2001;7(6):341349.10.1097/00127893-200111000-00003CrossRefGoogle ScholarPubMed
Hof, PR, Vogt, BA, Bouras, C, Morrison, JH. Atypical form of Alzheimer’s disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways. Vision Res. 1997;37(24):36093625.10.1016/S0042-6989(96)00240-4CrossRefGoogle ScholarPubMed
Johnson, J, Head, E, Kim, R, Starr, A, Cotman, C. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol. 1999;56(10):12331239.10.1001/archneur.56.10.1233CrossRefGoogle ScholarPubMed
Lehmann, M, Madison, CM, Ghosh, PM, et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2013;110(28):1160611611.10.1073/pnas.1221536110CrossRefGoogle ScholarPubMed
Pao, WC, Dickson, DW, Crook, JE, et al. Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord. 2011;25(4):364368.10.1097/WAD.0b013e31820f8f50CrossRefGoogle Scholar
Crary, JF, Trojanowski, JQ, Schneider, JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755766.10.1007/s00401-014-1349-0CrossRefGoogle Scholar
Brun, A, Gustafson, L. Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study. Arch Psychiatr Nervenkr. 1976;223(1):1533.10.1007/BF00367450CrossRefGoogle ScholarPubMed
Alzheimer, A. Uber einen eigenartigen, schweren Erkrankungsprozess der Hirnrinde. Neurol Zbl. 1906;25:1134.Google Scholar
Dickson, DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol. 1997;56(4):321339.10.1097/00005072-199704000-00001CrossRefGoogle ScholarPubMed
Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci. 1993;16(11):460465.10.1016/0166-2236(93)90078-ZCrossRefGoogle ScholarPubMed
Arnold, SE, Hyman, BT, Flory, J, Damasio, AR, Van Hoesen, GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients in Alzheimer’s disease. Cerebral Cortex. 1991;1(1):103116.10.1093/cercor/1.1.103CrossRefGoogle Scholar
Arriagada, PV, Growdon, JH, Hedley-Whyte, ET, Hyman, BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631639.10.1212/WNL.42.3.631CrossRefGoogle ScholarPubMed
Lee, WJ, Brown, JA, Kim, HR, et al. Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron. 2022;110(12):1032–1043/e5.10.1016/j.neuron.2022.03.034CrossRefGoogle ScholarPubMed
Ball, MJ. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol (Berl). 1977;37(2):111118.10.1007/BF00692056CrossRefGoogle ScholarPubMed
Vinters, HV. Cerebral amyloid angiopathy. A critical review. Stroke. 1987;18(2):311324.10.1161/01.STR.18.2.311CrossRefGoogle ScholarPubMed
Gibson, PH, Tomlinson, BE. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci. 1977;33(1-2):199206.10.1016/0022-510X(77)90193-9CrossRefGoogle ScholarPubMed
Itagaki, S, McGeer, PL, Akiyama, H, Zhu, S, Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989;24(3):173182.10.1016/0165-5728(89)90115-XCrossRefGoogle ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):18631872.10.1212/01.wnl.0000187889.17253.b1CrossRefGoogle ScholarPubMed
Uchikado, H, Lin, WL, DeLucia, MW, Dickson, DW. Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol. 2006;65(7):685697.10.1097/01.jnen.0000225908.90052.07CrossRefGoogle ScholarPubMed
Amador-Ortiz, C, Lin, WL, Ahmed, Z, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol. 2007;61(5):435445.10.1002/ana.21154CrossRefGoogle ScholarPubMed
Mirra, S, Heyman, A, McKeel, D, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41(4):479486.10.1212/WNL.41.4.479CrossRefGoogle Scholar
Braak, H, Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239259.10.1007/BF00308809CrossRefGoogle ScholarPubMed
Hyman, BT, Trojanowski, JQ. Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol. 1997;56(10):10951097.10.1097/00005072-199710000-00002CrossRefGoogle Scholar
Hyman, BT, Phelps, CH, Beach, TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8(1):113.10.1016/j.jalz.2011.10.007CrossRefGoogle ScholarPubMed
Montine, TJ, Phelps, CH, Beach, TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 2012;123(1):111.10.1007/s00401-011-0910-3CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239259.10.1007/BF00308809CrossRefGoogle ScholarPubMed
Mirra, SS, Heyman, A, McKeel, D, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41(4):479486.10.1212/WNL.41.4.479CrossRefGoogle Scholar
Thal, DR, Rüb, U, Orantes, M, Braak, H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):17911800.10.1212/WNL.58.12.1791CrossRefGoogle ScholarPubMed
Selkoe, DJ. Alzheimer’s disease. Cold Spring Harb Perspect Biol. 2011;3(7).10.1101/cshperspect.a004457CrossRefGoogle ScholarPubMed
Hardy, JA, Higgins, GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184185.10.1126/science.1566067CrossRefGoogle ScholarPubMed
Goedert, M, Spillantini, MG, Cairns, NJ, Crowther, RA. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron. 1992;8(1):159168.10.1016/0896-6273(92)90117-VCrossRefGoogle ScholarPubMed
Grudzien, A, Shaw, P, Weintraub, S, et al. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging. 2007;28(3):327335.10.1016/j.neurobiolaging.2006.02.007CrossRefGoogle ScholarPubMed
Braak, H, Thal, DR, Ghebremedhin, E, Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960969.10.1097/NEN.0b013e318232a379CrossRefGoogle ScholarPubMed
Grinberg, LT, Rüb, U, Ferretti, RE, et al. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol. 2009;35(4):406416.10.1111/j.1365-2990.2008.00997.xCrossRefGoogle ScholarPubMed
Insausti, R, Amaral, DG, Cowan, WM. The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol. 1987;264(3):396408.10.1002/cne.902640307CrossRefGoogle ScholarPubMed
Farrer, LA, Myers, RH, Cupples, LA, et al. Transmission and age-at-onset patterns in familial Alzheimer’s disease: evidence for heterogeneity. Neurology. 1990;40(3 Pt 1):395403.10.1212/WNL.40.3_Part_1.395CrossRefGoogle ScholarPubMed
St George-Hyslop, PH, Tanzi, RE, Polinsky, RJ. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science. 1987;235:885890.10.1126/science.2880399CrossRefGoogle ScholarPubMed
Schellenberg, GD, Bird, TD, Wijsman, EM, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science. 1992;258:668671.10.1126/science.1411576CrossRefGoogle ScholarPubMed
Levy-Lahad, E, Wasco, W, Poorkaj, P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973977.10.1126/science.7638622CrossRefGoogle ScholarPubMed
Schmitt, FA, Davis, DG, Wekstein, DR, et al. “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology. 2000;55(3):370376.10.1212/WNL.55.3.370CrossRefGoogle ScholarPubMed
Musiek, ES, Holtzman, DM. Origins of Alzheimer’s disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Curr Opin Neurol. 2012;25(6):715720.10.1097/WCO.0b013e32835a30f4CrossRefGoogle ScholarPubMed
McKeith, I, Galasko, D, Kosaka, K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47:11131124.10.1212/WNL.47.5.1113CrossRefGoogle Scholar
Holmes, C, Cairns, N, Lantos, P, Mann, A. Validity of current clinical criteria for Alzheimer’s disease, vascular dementia, and dementia with Lewy bodies. Br J Psychiatry. 1999;174:4551.10.1192/bjp.174.1.45CrossRefGoogle ScholarPubMed
Lim, A, Tsuang, D, Kukull, W, et al. Clinico-neuropathological correlation of Alzheimer’s disease in a community-based case series. J Am Geriatr Soc. 1999;47(5):564569.10.1111/j.1532-5415.1999.tb02571.xCrossRefGoogle Scholar
Ransmayr, G. Dementia with Lewy bodies: prevalence, clinical spectrum and natural history. J Neural Transm Suppl. 2000(60):303314.Google ScholarPubMed
McKeith, IG, Boeve, BF, Dickson, DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88100.10.1212/WNL.0000000000004058CrossRefGoogle ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):18631872.10.1212/01.wnl.0000187889.17253.b1CrossRefGoogle ScholarPubMed
Double, KL, Halliday, GM, McRitchie, DA, et al. Regional brain atrophy in idiopathic Parkinson’s disease and diffuse Lewy body disease. Dementia. 1996;7(6):304313.Google ScholarPubMed
Perry, RH, Irving, D, Blessed, G, Fairbairn, A, Perry, EK. Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci. 1990;95:119139.10.1016/0022-510X(90)90236-GCrossRefGoogle ScholarPubMed
Rezaie, P, Cairns, NJ, Chadwick, A, Lantos, PL. Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neurosci Lett. 1996;212(2):111114.10.1016/0304-3940(96)12775-0CrossRefGoogle ScholarPubMed
Gomez-Tortosa, E, Newell, K, Irizarry, MC, et al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology. 1999;53(6):12841291.10.1212/WNL.53.6.1284CrossRefGoogle ScholarPubMed
Giasson, B, Lee, M-Y Trojanowski, V JQ. Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy and the spectrum of disease with alpha synuclein inclusions. In Esiri, MM, Lee, V M-Y, Trojanowski, JQ., eds. The Neuropathology of Dementia, 2nd ed. New York: Cambridge University Press, 2004; pp. 353375.10.1017/CBO9780511526886.016CrossRefGoogle Scholar
Dickson, DW, Ruan, D, Crystal, H, et al. Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology. 1991;41(9):14021409.10.1212/WNL.41.9.1402CrossRefGoogle ScholarPubMed
Dickson, D, Schmidt, M, Lee, V, et al. Immunoreactivity profile of hippocampal Ca2/3 neurites in diffuse Lewy body disease. Acta Neuropathologica. 1994;87:269276.10.1007/BF00296742CrossRefGoogle ScholarPubMed
Spillantini, MG, Crowther, RA, Jakes, R, Hasegawa, M, Goedert, M. Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A. 1998;95(11):64696473.10.1073/pnas.95.11.6469CrossRefGoogle ScholarPubMed
Zaccai, J, Brayne, C, McKeith, I, Matthews, F, Ince, PG, MRC Cognitive Function AeNS. Patterns and stages of alpha-synucleinopathy: relevance in a population-based cohort. Neurology. 2008;70(13):10421048.10.1212/01.wnl.0000306697.48738.b6CrossRefGoogle Scholar
Braak, H, de Vos, RA, Bohl, J, Del Tredici, K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396(1):6772.10.1016/j.neulet.2005.11.012CrossRefGoogle ScholarPubMed
Gold, A, Turkalp, ZT, Munoz, DG. Enteric alpha-synuclein expression is increased in Parkinson’s disease but not Alzheimer’s disease. Mov Disord. 2013;28(2):237240.10.1002/mds.25298CrossRefGoogle Scholar
Kosaka, K. Diffuse Lewy body disease. Neuropathology. 2000; 20 Suppl:S7378.10.1046/j.1440-1789.2000.00301.xCrossRefGoogle ScholarPubMed
Morra, LF, Donovick, PJ. Clinical presentation and differential diagnosis of dementia with Lewy bodies: a review. Int J Geriatr Psychiatry. 2014;29(6):569576.10.1002/gps.4039CrossRefGoogle ScholarPubMed
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999;354(9192):17711775.10.1016/S0140-6736(99)04137-9CrossRefGoogle ScholarPubMed
Wenning, GK, Colosimo, C, Geser, F, Poewe, W. Multiple system atrophy. Lancet Neurol. 2004;3(2):93103.10.1016/S1474-4422(03)00662-8CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Ben Shlomo, Y, Daniel, SE, Quinn, NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord. 1997;12(2):133147.10.1002/mds.870120203CrossRefGoogle ScholarPubMed
Gilman, S, Low, PA, Quinn, N, et al. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci. 1999;163(1):9498.10.1016/S0022-510X(98)00304-9CrossRefGoogle ScholarPubMed
Robbins, TW, James, M, Owen, AM, et al. Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry. 1994;57(1):7988.10.1136/jnnp.57.1.79CrossRefGoogle ScholarPubMed
Meco, G, Gasparini, M, Doricchi, F. Attentional functions in multiple system atrophy and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1996;60(4):393398.10.1136/jnnp.60.4.393CrossRefGoogle ScholarPubMed
Burk, K, Daum, I, Rub, U. Cognitive function in multiple system atrophy of the cerebellar type. Mov Disord. 2006;21(6):772776.10.1002/mds.20802CrossRefGoogle ScholarPubMed
Gilman, S, Wenning, GK, Low, PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670676.10.1212/01.wnl.0000324625.00404.15CrossRefGoogle ScholarPubMed
Sato, K, Kaji, R, Matsumoto, S, Goto, S. Cell type-specific neuronal loss in the putamen of patients with multiple system atrophy. Mov Disord. 2007;22(5):738742.10.1002/mds.21385CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Elliott, L, Quinn, NP, Daniel, SE. Olivopontocerebellar pathology in multiple system atrophy. Mov Disord. 1996;11(2):157162.10.1002/mds.870110207CrossRefGoogle ScholarPubMed
Gai, WP, Power, JH, Blumbergs, PC, Blessing, WW. Multiple-system atrophy: a new alpha-synuclein disease? Lancet. 1998;352(9127):547548.10.1016/S0140-6736(05)79256-4CrossRefGoogle ScholarPubMed
Tu, PH, Galvin, JE, Baba, M, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol. 1998;44(3):415422.10.1002/ana.410440324CrossRefGoogle Scholar
Lantos, PL. The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol. 1998;57(12):10991111.10.1097/00005072-199812000-00001CrossRefGoogle ScholarPubMed
Duda, JE, Giasson, BI, Gur, TL, et al. Immunohistochemical and biochemical studies demonstrate a distinct profile of alpha-synuclein permutations in multiple system atrophy. J Neuropathol Exp Neurol. 2000;59(9):830841.10.1093/jnen/59.9.830CrossRefGoogle ScholarPubMed
Trojanowski, JQ, Revesz, T, MSA NWGo. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol. 2007;33(6):615620.10.1111/j.1365-2990.2007.00907.xCrossRefGoogle ScholarPubMed
Lin, WL, DeLucia, MW, Dickson, DW. Alpha-synuclein immunoreactivity in neuronal nuclear inclusions and neurites in multiple system atrophy. Neurosci Lett. 2004;354(2):99102.10.1016/j.neulet.2003.09.075CrossRefGoogle ScholarPubMed
Ratnavalli, E, Brayne, C, Dawson, K, Hodges, JR. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):16151621.10.1212/WNL.58.11.1615CrossRefGoogle ScholarPubMed
Knopman, DS, Petersen, RC, Edland, SD, Cha, RH, Rocca, WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology. 2004;62(3):506508.10.1212/01.WNL.0000106827.39764.7ECrossRefGoogle ScholarPubMed
Baborie, A, Griffiths, TD, Jaros, E, et al. Pathological correlates of frontotemporal lobar degeneration in the elderly. Acta Neuropathol. 2011;121(3):365371.10.1007/s00401-010-0765-zCrossRefGoogle ScholarPubMed
Seo, SW, Thibodeau, MP, Perry, DC, et al. Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. Neurology. 2018;90(12):e1047e1056.10.1212/WNL.0000000000005163CrossRefGoogle ScholarPubMed
Mackenzie, I, Neumann, M, Bigio, E, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119(1):14.10.1007/s00401-009-0612-2CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Gustafson, L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):15461554.10.1212/WNL.51.6.1546CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):10061014.10.1212/WNL.0b013e31821103e6CrossRefGoogle ScholarPubMed
Rascovsky, K, Hodges, JR, Knopman, D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):24562477.10.1093/brain/awr179CrossRefGoogle ScholarPubMed
Schroeter, ML, Raczka, K, Neumann, J, von Cramon, DY. Neural networks in frontotemporal dementia: a meta-analysis. Neurobiol Aging. 2006;29(3):418426.10.1016/j.neurobiolaging.2006.10.023CrossRefGoogle ScholarPubMed
Perry, RJ, Graham, A, Williams, G, et al. Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord. 2006;22(4):278287.10.1159/000095128CrossRefGoogle ScholarPubMed
Seeley, WW, Crawford, R, Rascovsky, K, et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol. 2008;65(2):249255.10.1001/archneurol.2007.38CrossRefGoogle ScholarPubMed
Broe, M, Hodges, JR, Schofield, E, et al. Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology. 2003;60(6):10051011.10.1212/01.WNL.0000052685.09194.39CrossRefGoogle ScholarPubMed
Seeley, WW, Carlin, DA, Allman, JM, et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol. 2006;60(6):660667.10.1002/ana.21055CrossRefGoogle ScholarPubMed
Kim, EJ, Sidhu, M, Gaus, SE, et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex. 2012;22(2):251259.10.1093/cercor/bhr004CrossRefGoogle ScholarPubMed
Santillo, AF, Englund, E. Greater loss of von Economo neurons than loss of layer II and III neurons in behavioral variant frontotemporal dementia. Am J Neurodegener Dis. 2014;3(2):6471.Google ScholarPubMed
Santillo, AF, Nilsson, C, Englund, E. von Economo neurones are selectively targeted in frontotemporal dementia. Neuropathol Appl Neurobiol. 2013;39(5):572579.10.1111/nan.12021CrossRefGoogle ScholarPubMed
Lin, LC, Nana, AL, Hepker, M, et al. Preferential tau aggregation in von Economo neurons and fork cells in frontotemporal lobar degeneration with specific MAPT variants. Acta Neuropathol Commun. 2019;7(1):159.10.1186/s40478-019-0809-0CrossRefGoogle ScholarPubMed
Nana, AL, Sidhu, M, Gaus, SE, et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol. 2019;137(1):2746.10.1007/s00401-018-1942-8CrossRefGoogle ScholarPubMed
Hodge, RD, Miller, JA, Novotny, M, et al. Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nat Commun. 2020;11(1):1172.10.1038/s41467-020-14952-3CrossRefGoogle ScholarPubMed
Hodges, JR, Patterson, K, Oxbury, S, Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain. 1992;115 (Pt 6):17831806.10.1093/brain/115.6.1783CrossRefGoogle ScholarPubMed
Snowden, J. Semantic dementia. In O’Brien, J, Ames, D, Burns, A, eds. Dementia, 2nd ed. New York: Oxford University Press, 2000; pp. 769778.Google Scholar
Seeley, WW, Bauer, AM, Miller, BL, et al. The natural history of temporal variant frontotemporal dementia. Neurology. 2005;64(8):13841390.10.1212/01.WNL.0000158425.46019.5CCrossRefGoogle ScholarPubMed
Thompson, SA, Patterson, K, Hodges, JR. Left/right asymmetry of atrophy in semantic dementia: behavioral-cognitive implications. Neurology. 2003;61(9):11961203.10.1212/01.WNL.0000091868.28557.B8CrossRefGoogle ScholarPubMed
Guo, CC, Gorno-Tempini, ML, Gesierich, B, et al. Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain. 2013;136(Pt 10):29792991.10.1093/brain/awt222CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):13851398.10.1093/brain/awl078CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Mann, DM, et al. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry. 1990;53(1):2332.10.1136/jnnp.53.1.23CrossRefGoogle ScholarPubMed
Boxer, AL, Geschwind, MD, Belfor, N, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006;63(1):8186.10.1001/archneur.63.1.81CrossRefGoogle ScholarPubMed
Litvan, I, Agid, Y, Calne, D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology. 1996;47(1):19.10.1212/WNL.47.1.1CrossRefGoogle ScholarPubMed
Höglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853864.10.1002/mds.26987CrossRefGoogle ScholarPubMed
Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy. Arch Neurol. 1964;10(April):333360.10.1001/archneur.1964.00460160003001CrossRefGoogle ScholarPubMed
Gardner, RC, Boxer, AL, Trujillo, A, et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann Neurol. 2013;73(5):603615.10.1002/ana.23844CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rüb, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197211.10.1016/S0197-4580(02)00065-9CrossRefGoogle ScholarPubMed
Miki, Y, Mori, F, Tanji, K, et al. An autopsy case of incipient Pick’s disease: immunohistochemical profile of early-stage Pick body formation. Neuropathology. 2014;34(4):386391.10.1111/neup.12104CrossRefGoogle ScholarPubMed
Mahoney, CJ, Beck, J, Rohrer, JD, et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135(Pt 3):736750.10.1093/brain/awr361CrossRefGoogle ScholarPubMed
Lee, SE, Khazenzon, AM, Trujillo, AJ, et al. Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Brain. 2014;137(Pt 11):30473060.10.1093/brain/awu248CrossRefGoogle ScholarPubMed
Munoz, DG, Dickson, DW, Bergeron, C, et al. The neuropathology and biochemistry of frontotemporal dementia. Ann Neurol. 2003;54 Suppl 5:S2428.10.1002/ana.10571CrossRefGoogle ScholarPubMed
Dickson, DW. Pick’s disease: a modern approach. Brain Pathol. 1998;8(2):339354.10.1111/j.1750-3639.1998.tb00158.xCrossRefGoogle ScholarPubMed
Probst, A, Tolnay, M, Langui, D, Goedert, M, Spillantini, MG. Pick’s disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment. Acta Neuropathol (Berl). 1996;92(6):588596.10.1007/s004010050565CrossRefGoogle Scholar
Feany, MB, Mattiace, LA, Dickson, DW. Neuropathologic overlap of progressive supranuclear palsy, Pick’s disease and corticobasal degeneration. J Neuropathol Exp Neurol. 1996;55(1):5367.10.1097/00005072-199601000-00006CrossRefGoogle ScholarPubMed
Feany, MB, Dickson, DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol. 1995;146(6):13881396.Google ScholarPubMed
Lantos, PL. The neuropathology of progressive supranuclear palsy. J Neural Transm Suppl. 1994;42:1371352.10.1007/978-3-7091-6641-3_11CrossRefGoogle ScholarPubMed
Komori, T, Arai, N, Oda, M, et al. Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol (Berl). 1998;96(4):401408.10.1007/s004010050911CrossRefGoogle Scholar
Hauw, JJ, Daniel, SE, Dickson, D, et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology. 1994;44(11):20152019.10.1212/WNL.44.11.2015CrossRefGoogle ScholarPubMed
Houlden, H, Baker, M, Morris, HR, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001;56(12):17021706.10.1212/WNL.56.12.1702CrossRefGoogle Scholar
Wilhelmsen, K, Lynch, T, Pavlou, E, et al. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet. 1994;6:11591165.Google Scholar
Foster, NL, Wilhelmsen, K, Sima, AA, et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol. 1997;41(6):706715.10.1002/ana.410410606CrossRefGoogle ScholarPubMed
Bird, TD, Wijsman, EM, Nochlin, D, et al. Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology. 1997;48(4):949954.10.1212/WNL.48.4.949CrossRefGoogle ScholarPubMed
Heutink, P, Stevens, M, Rizzu, P, et al. Hereditary frontotemporal dementia is linked to chromosome 17q21-q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol. 1997;41(2):150159.10.1002/ana.410410205CrossRefGoogle ScholarPubMed
McKee, AC, Stern, RA, Nowinski, CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):4364.10.1093/brain/aws307CrossRefGoogle ScholarPubMed
Ferrer, I, Santpere, G, van Leeuwen, FW. Argyrophilic grain disease. Brain. 2008;131(Pt 6):14161432.10.1093/brain/awm305CrossRefGoogle ScholarPubMed
Ahmed, Z, Bigio, EH, Budka, H, et al. Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol. 2013;126(4):537544.10.1007/s00401-013-1171-0CrossRefGoogle ScholarPubMed
Neumann, M, Sampathu, DM, Kwong, LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130133.10.1126/science.1134108CrossRefGoogle ScholarPubMed
Arai, T, Hasegawa, M, Akiyama, H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602611.10.1016/j.bbrc.2006.10.093CrossRefGoogle ScholarPubMed
Davidson, Y, Kelley, T, Mackenzie, IR, et al. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol (Berl). 2007;113(5):521533.10.1007/s00401-006-0189-yCrossRefGoogle ScholarPubMed
Wang, IF, Wu, LS, Chang, HY, Shen, CK. TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem. 2008;105(3):797806.10.1111/j.1471-4159.2007.05190.xCrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M, Baborie, A, Sampathu, DM, Du Plessis, D, Jaros, E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122(1):111113.10.1007/s00401-011-0845-8CrossRefGoogle ScholarPubMed
Sampathu, D, Neumann, M, Kwong, L, et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol. 2006;169(4):13431352.10.2353/ajpath.2006.060438CrossRefGoogle ScholarPubMed
Mackenzie, IR, Baborie, A, Pickering-Brown, S, et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 2006;112(5):539549.10.1007/s00401-006-0138-9CrossRefGoogle ScholarPubMed
Lee, EB, Porta, S, Michael Baer, G, X et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 2017;134(1):6578.10.1007/s00401-017-1679-9CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M. Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol. 2017;134(1):7996.10.1007/s00401-017-1716-8CrossRefGoogle ScholarPubMed
Baker, M, Mackenzie, IR, Pickering-Brown, SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916919.10.1038/nature05016CrossRefGoogle ScholarPubMed
Cruts, M, Gijselinck, I, van der Zee, J, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;4442(7105):920924.10.1038/nature05017CrossRefGoogle Scholar
Mukherjee, O, Pastor, P, Cairns, NJ, et al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol. 2006;60(3):314322.10.1002/ana.20963CrossRefGoogle ScholarPubMed
Schymick, JC, Yang, Y, Andersen, PM, et al. Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. J Neurol Neurosurg Psychiatry. 2007;78(7):754756.10.1136/jnnp.2006.109553CrossRefGoogle ScholarPubMed
Gass, J, Cannon, A, Mackenzie, IR, et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet. 2006;15(20):29883001.10.1093/hmg/ddl241CrossRefGoogle Scholar
Barmada, SJ, Finkbeiner, S. Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev Neurosci. 2010;21(4):251272.10.1515/REVNEURO.2010.21.4.251CrossRefGoogle ScholarPubMed
Borroni, B, Bonvicini, C, Alberici, A, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30(11):E974E983.10.1002/humu.21100CrossRefGoogle ScholarPubMed
Borghero, G, Floris, G, Cannas, A, et al. A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiol Aging. 2011;32(12):2327.e1-5.10.1016/j.neurobiolaging.2011.06.009CrossRefGoogle Scholar
DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245256.10.1016/j.neuron.2011.09.011CrossRefGoogle ScholarPubMed
Renton, AE, Majounie, E, Waite, A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257268.10.1016/j.neuron.2011.09.010CrossRefGoogle Scholar
Simón-Sánchez, J, Dopper, EG, Cohn-Hokke, PE, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain. 2012;135(Pt 3):723735.10.1093/brain/awr353CrossRefGoogle ScholarPubMed
Sampognaro, PJ, Vatsavayai, SC, Cosme, CG, et al. C9orf72-specific phenomena associated with frontotemporal dementia and gastrointestinal symptoms in the absence of TDP-43 aggregation. Acta Neuropathol. 2019;138(6):10931097.10.1007/s00401-019-02084-yCrossRefGoogle ScholarPubMed
Donnelly, CJ, Zhang, PW, Pham, JT, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415428.10.1016/j.neuron.2013.10.015CrossRefGoogle ScholarPubMed
Lee, YB, Chen, HJ, Peres, JN, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013;5(5):11781186.10.1016/j.celrep.2013.10.049CrossRefGoogle ScholarPubMed
Mori, K, Lammich, S, Mackenzie, IR, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 2013;125(3):413423.10.1007/s00401-013-1088-7CrossRefGoogle ScholarPubMed
Sareen, D, O’Rourke, JG, Meera, P, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5(208):208ra149.10.1126/scitranslmed.3007529CrossRefGoogle ScholarPubMed
Lall, D, Lorenzini, I, Mota, TA, et al. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron. 2021;109(14):2275–2291e8.10.1016/j.neuron.2021.05.020CrossRefGoogle ScholarPubMed
Nonaka, T, Masuda-Suzukake, M, Hosokawa, M, et al. C9ORF72 dipeptide repeat poly-GA inclusions promote: intracellular aggregation of phosphorylated TDP-43. Hum Mol Genet. 2018;27(15):26582670.10.1093/hmg/ddy174CrossRefGoogle ScholarPubMed
Khosravi, B, Hartmann, H, May, S, et al. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD. Hum Mol Genet. 2017;26(4):790800.Google ScholarPubMed
Shi, Y, Lin, S, Staats, KA, et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med. 2018;24(3):313325.10.1038/nm.4490CrossRefGoogle ScholarPubMed
Zhu, Q, Jiang, J, Gendron, TF, Mc, et al. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci. 2020;23(5):615624.10.1038/s41593-020-0619-5CrossRefGoogle ScholarPubMed
Su, Z, Zhang, Y, Gendron, TF, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 2014;83(5):10431050.10.1016/j.neuron.2014.07.041CrossRefGoogle Scholar
Kwiatkowski, TJ, Bosco, DA, Leclerc, AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):12051208.10.1126/science.1166066CrossRefGoogle ScholarPubMed
Vance, C, Rogelj, B, Hortobágyi, T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):12081211.10.1126/science.1165942CrossRefGoogle ScholarPubMed
Fujii, R, Takumi, T. TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci. 2005;118(Pt 24):57555765.10.1242/jcs.02692CrossRefGoogle ScholarPubMed
Neumann, M, Rademakers, R, Roeber, S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(Pt 11):29222931.10.1093/brain/awp214CrossRefGoogle ScholarPubMed
Neumann, M, Roeber, S, Kretzschmar, HA, et al. Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol. 2009;118(5):605616.10.1007/s00401-009-0581-5CrossRefGoogle ScholarPubMed
Munoz, DG, Neumann, M, Kusaka, H, et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathol. 2009;118(5):617627.10.1007/s00401-009-0598-9CrossRefGoogle ScholarPubMed
Roeber, S, Mackenzie, IR, Kretzschmar, HA, Neumann, M. TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol. 2008;116(2):147157.10.1007/s00401-008-0395-xCrossRefGoogle ScholarPubMed
Cairns, NJ, Zhukareva, V, Uryu, K, et al. Alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol. 2004;164(6):21532161.10.1016/S0002-9440(10)63773-XCrossRefGoogle ScholarPubMed
Cairns, NJ, Grossman, M, Arnold, SE, et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology. 2004;63(8):13761384.10.1212/01.WNL.0000139809.16817.DDCrossRefGoogle ScholarPubMed
Josephs, KA, Uchikado, H, McComb, RD, et al. Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathol. 2005;109(4):427432.10.1007/s00401-004-0974-4CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M. FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Res. 2012;1462:4043.10.1016/j.brainres.2011.12.010CrossRefGoogle ScholarPubMed
Neumann, M, Mackenzie, IRA. Review: neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2019;45(1):1940.10.1111/nan.12526CrossRefGoogle ScholarPubMed
Holm, IE, Englund, E, Mackenzie, IR, Johannsen, P, Isaacs, AM. A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol. 2007;66(10):884891.10.1097/nen.0b013e3181567f02CrossRefGoogle ScholarPubMed
Hodges, JR, Davies, RR, Xuereb, JH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56(3):399406.10.1002/ana.20203CrossRefGoogle ScholarPubMed
Knibb, JA, Xuereb, JH, Patterson, K, Hodges, JR. Clinical and pathological characterization of progressive aphasia. Ann Neurol. 2006;59(1):156165.10.1002/ana.20700CrossRefGoogle ScholarPubMed
Davies, RR, Hodges, JR, Kril, JJ, et al. The pathological basis of semantic dementia. Brain. 2005;128(Pt 9):19841995.10.1093/brain/awh582CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Murray, RC, Rankin, KP, Weiner, MW, Miller, BL. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase. 2004;10(6):426436.10.1080/13554790490894011CrossRefGoogle ScholarPubMed
Caso, F, Mandelli, ML, Henry, M, et al. In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology. Neurology. 2014;82(3):239247.10.1212/WNL.0000000000000031CrossRefGoogle ScholarPubMed
Hassan, A, Whitwell, JL, Josephs, KA. The corticobasal syndrome-Alzheimer’s disease conundrum. Expert Rev Neurother. 2011;11(11):15691578.10.1586/ern.11.153CrossRefGoogle ScholarPubMed
Shelley, BP, Hodges, JR, Kipps, CM, Xuereb, JH, Bak, TH. Is the pathology of corticobasal syndrome predictable in life? Mov Disord. 2009;24(11):15931599.10.1002/mds.22558CrossRefGoogle Scholar
Williams, DR, Holton, JL, Strand, C, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain. 2007;130(Pt 6):15661576.10.1093/brain/awm104CrossRefGoogle ScholarPubMed
Geser, F, Robinson, JL, Malunda, JA, et al. Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch Neurol. 2010;67(10):12381250.10.1001/archneurol.2010.254CrossRefGoogle ScholarPubMed
Josephs, KA, Murray, ME, Whitwell, JL, et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 2016;131(4):571585.10.1007/s00401-016-1537-1CrossRefGoogle ScholarPubMed
Nascimento, C, Suemoto, CK, Rodriguez, RD, et al. Higher prevalence of TDP-43 proteinopathy in cognitively normal Asians: a clinicopathological study on a multiethnic sample. Brain Pathol. 2016;26(2):177185.10.1111/bpa.12296CrossRefGoogle Scholar
Yang, C, Nag, S, Xing, G, Aggarwal, NT, Schneider, JA. A clinicopathological report of a 93-year-old former street boxer with coexistence of chronic traumatic encephalopathy, Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis with TDP-43 pathology. Front Neurol. 2020;11:42.10.3389/fneur.2020.00042CrossRefGoogle ScholarPubMed
Nelson, PT, Dickson, DW, Trojanowski, JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142(6):15031527.10.1093/brain/awz099CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Weigand, SD, et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 2014;127(6):811824.10.1007/s00401-014-1269-zCrossRefGoogle ScholarPubMed
Robinson, JL, Porta, S, Garrett, FG, et al. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain. 2020;143(9):28442857.10.1093/brain/awaa219CrossRefGoogle ScholarPubMed
Stern, RA, Daneshvar, DH, Baugh, CM, et al. Clinical presentation of chronic traumatic encephalopathy. Neurology. 2013;81(13):11221129.10.1212/WNL.0b013e3182a55f7fCrossRefGoogle ScholarPubMed
Montenigro, PH, Baugh, CM, Daneshvar, DH, et al. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res Ther. 2014;6(5):68.10.1186/s13195-014-0068-zCrossRefGoogle ScholarPubMed
Cantu, R, Budson, A. Management of chronic traumatic encephalopathy. Expert Rev Neurother. 2019;19(10):10151123.10.1080/14737175.2019.1633916CrossRefGoogle ScholarPubMed
Martland, H. Punch drunk. JAMA. 1928;91(15):11031107.10.1001/jama.1928.02700150029009CrossRefGoogle Scholar
Millspaugh, J. Dementia pugilistica. US Naval Med Bull. 1937; 35:297303.Google Scholar
Bowman, K, Blau, A. Psychotic states following head and brain injury in adults and children. In Brock, S, ed. Injuries of Skull, Brain and Spinal Cord: Neuropsychiatric, Surgical, and Medico-Legal Aspects. Baltimore, MD: Williams & Wilkins, 1940.Google Scholar
Corsellis, JA, Bruton, CJ, Freeman-Browne, D. The aftermath of boxing. Psychol Med. 1973;3(3):270303.10.1017/S0033291700049588CrossRefGoogle ScholarPubMed
Omalu, BI, DeKosky, ST, Minster, RL, et al. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery. 2005;57(1):128134; discussion 34.10.1227/01.NEU.0000163407.92769.EDCrossRefGoogle Scholar
Omalu, BI, DeKosky, ST, Hamilton, RL, et al. Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery. 2006;59(5):10861092; discussion 92–93.10.1227/01.NEU.0000245601.69451.27CrossRefGoogle Scholar
McKee, AC, Cairns, NJ, Dickson, DW, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016;131(1):7586.10.1007/s00401-015-1515-zCrossRefGoogle ScholarPubMed
Folstein, S. Huntington’s Disease: A Disorder of Families. Baltimore, MD: Johns Hopkins University Press, 1989.Google Scholar
Feigin, A, Kieburtz, K, Bordwell, K, et al. Functional decline in Huntington’s disease. Mov Disord. 1995;10(2):211214.10.1002/mds.870100213CrossRefGoogle ScholarPubMed
Zakzanis, KK. The subcortical dementia of Huntington’s disease. J Clin Exp Neuropsychol. 1998;20(4):565578.10.1076/jcen.20.4.565.1468CrossRefGoogle ScholarPubMed
Mendez, MF. Huntington’s disease: update and review of neuropsychiatric aspects. Int J Psychiatry Med. 1994;24(3):189208.10.2190/HU6W-3K7Q-NAEL-XU6KCrossRefGoogle ScholarPubMed
Berrios, GE, Wagle, AC, Markova, IS, et al. Psychiatric symptoms in neurologically asymptomatic Huntington’s disease gene carriers: a comparison with gene negative at risk subjects. Acta Psychiatr Scand. 2002;105(3):224230.10.1034/j.1600-0447.2002.0o456.xCrossRefGoogle ScholarPubMed
Vonsattel, JP, DiFiglia, M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369384.10.1097/00005072-199805000-00001CrossRefGoogle ScholarPubMed
Graveland, GA, Williams, RS, DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science. 1985;227(4688):770773.10.1126/science.3155875CrossRefGoogle ScholarPubMed
Vonsattel, J-P, Myers, RH, Stevens, TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropath Exp Neurol. 1985;44:559577.10.1097/00005072-198511000-00003CrossRefGoogle ScholarPubMed
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971983.10.1016/0092-8674(93)90585-ECrossRefGoogle Scholar
Andrew, SE, Goldberg, YP, Kremer, B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 1993;4(4):398403.10.1038/ng0893-398CrossRefGoogle ScholarPubMed
Duyao, M, Ambrose, C, Myers, R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4(4):387392.10.1038/ng0893-387CrossRefGoogle ScholarPubMed
Rubinsztein, DC, Barton, DE, Davison, BC, Ferguson-Smith, MA. Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington’s disease and CAG repeat number. Hum Mol Genet. 1993;2(10):17131715.10.1093/hmg/2.10.1713CrossRefGoogle Scholar
Snell, RG, MacMillan, JC, Cheadle, JP, et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet. 1993;4(4):393397.10.1038/ng0893-393CrossRefGoogle ScholarPubMed
Li, SH, Schilling, G, Young, WS 3rd, et al. Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron. 1993;11(5):985993.10.1016/0896-6273(93)90127-DCrossRefGoogle Scholar
Strong, TV, Tagle, DA, Valdes, JM, et al. Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. Nat Genet. 1993;5(3):259265.10.1038/ng1193-259CrossRefGoogle ScholarPubMed
Bhide, PG, Day, M, Sapp, E, et al. Expression of normal and mutant huntingtin in the developing brain. J Neurosci. 1996;16(17):55235535.10.1523/JNEUROSCI.16-17-05523.1996CrossRefGoogle ScholarPubMed
Duyao, MP, Auerbach, AB, Ryan, A, SM, et al. Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science. 1995;269(5222):407410.10.1126/science.7618107CrossRefGoogle ScholarPubMed
Zuccato, C, Ciammola, A, Rigamonti, D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science. 2001;293(5529):493498.10.1126/science.1059581CrossRefGoogle ScholarPubMed
Gauthier, LR, Charrin, BC, Borrell-Pages, M, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118(1):127138.10.1016/j.cell.2004.06.018CrossRefGoogle ScholarPubMed
DiFiglia, M, Sapp, E, Chase, KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277(5334):19901993.10.1126/science.277.5334.1990CrossRefGoogle ScholarPubMed
Gutekunst, CA, Li, SH, Yi, H, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci. 1999;19(7):25222534.10.1523/JNEUROSCI.19-07-02522.1999CrossRefGoogle ScholarPubMed
Tabrizi, SJ, Ghosh, R, Leavitt, BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101(5):801819.10.1016/j.neuron.2019.01.039CrossRefGoogle ScholarPubMed
Puoti, G, Bizzi, A, Forloni, G, et al. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol. 2012;11(7):618628.10.1016/S1474-4422(12)70063-7CrossRefGoogle ScholarPubMed
Cyngiser, TA. Creutzfeldt-Jakob disease: a disease overview. Am J Electroneurodiagnostic Technol. 2008;48(3):199208.10.1080/1086508X.2008.11079680CrossRefGoogle ScholarPubMed
Zerr, I, Kallenberg, K, Summers, DM, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain. 2009;132(Pt 10):26592668.10.1093/brain/awp191CrossRefGoogle ScholarPubMed
Vitali, P, Maccagnano, E, Caverzasi, E, et al. Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias. Neurology. 2011;76(20):17111719.10.1212/WNL.0b013e31821a4439CrossRefGoogle ScholarPubMed
Kim, MO, Takada, LT, Wong, K, Forner, SA, Geschwind, MD. Genetic PrP prion diseases. Cold Spring Harb Perspect Biol. 2018;10(5):a003134.10.1101/cshperspect.a033134CrossRefGoogle ScholarPubMed
Johnson, RT. Prion diseases. Lancet Neurol. 2005;4(10):635642.10.1016/S1474-4422(05)70192-7CrossRefGoogle ScholarPubMed
Venneti, S. Prion diseases. Clin Lab Med. 2010;30(1):293309.10.1016/j.cll.2009.11.002CrossRefGoogle ScholarPubMed
Ironside, JW. Variant Creutzfeldt-Jakob disease. Haemophilia. 2010;16(Suppl 5):175180.10.1111/j.1365-2516.2010.02317.xCrossRefGoogle ScholarPubMed
Liberski, PP, Brown, P. Kuru-fifty years later. Neurol Neurochir Pol. 2007;41(6):548556.Google ScholarPubMed
Budka, H, Aguzzi, A, Brown, P, et al. Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol. 1995;5(4):459466.10.1111/j.1750-3639.1995.tb00625.xCrossRefGoogle ScholarPubMed
Parchi, P, Strammiello, R, Giese, A, Kretzschmar, H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol. 2011;121(1):91112.10.1007/s00401-010-0779-6CrossRefGoogle ScholarPubMed
Ironside, JW, McCardle, L, Horsburgh, A, Lim, Z, Head, MW. Pathological diagnosis of variant Creutzfeldt-Jakob disease. APMIS. 2002;110(1):7987.10.1034/j.1600-0463.2002.100110.xCrossRefGoogle ScholarPubMed
Satoh, K, Muramoto, T, Tanaka, T, et al. Association of an 11-12 kDa protease-resistant prion protein fragment with subtypes of dura graft-associated Creutzfeldt-Jakob disease and other prion diseases. J Gen Virol. 2003;84(Pt 10):28852893.10.1099/vir.0.19236-0CrossRefGoogle ScholarPubMed
Mackenzie, IR, Bigio, EH, Ince, PG, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61(5):427434.10.1002/ana.21147CrossRefGoogle ScholarPubMed
Kim, E, Lee, S, Jang, S, et al. Comparison of neuropathological characteristics between multiple system atrophy cerebellar type and parkinsonian type. J Korean Neurol Assoc. 2020;38(3):194203.10.17340/jkna.2020.3.5CrossRefGoogle Scholar

Accessibility standard: WCAG 2.1 AA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and achieves the intermediate (AA) level of WCAG compliance, covering a wider range of accessibility requirements.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×