Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-bkbbk Total loading time: 0 Render date: 2025-11-30T20:32:34.346Z Has data issue: false hasContentIssue false

Chapter 7 - Magnetic Resonance Imaging in Dementia

from Section 1 - Introductory Chapters on Dementia

Published online by Cambridge University Press:  17 November 2025

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Magnetic resonance imaging (MRI) has become essential for the study of dementia. It is a supporting tool for the diagnosis of most neurodegenerative diseases and has shed light on many important aspects of disease etiology and progression. In Alzheimer’s disease and frontotemporal lobar degeneration in particular, it has helped to describe brain networks exhibiting selective vulnerability to neurodegeneration and facilitated the characterization of heterogeneity between clinical and genetic subtypes. MRI is also important for assessing vascular pathology and prion disease. Finally, most MRI modalities capture changes occurring up to decades prior to symptom onset, enabling early disease diagnosis and even prevention. Here,the main MRI techniques used to assess gray matter atrophy, among others, are described. We review recent studies in the different neurodegenerative diseases and describe the most common methodologies used, from visual rating scales to automated morphometry algorithms. Finally, we highlight progress in the theoretical modeling of neurodegenerative diseases and discuss more applied uses of MRI.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

National Institute for Health and Care Excellence (NICE) (UK). Dementia: assessment, management and support for people living with dementia and their carers. 2018. www.ncbi.nlm.nih.gov/pubmed/30011160 (Accessed 20 January 2021)Google Scholar
Elahi, FM, Miller, BL. A clinicopathological approach to the diagnosis of dementia. Nat Rev Neurol 2017; 13(8): 457476.10.1038/nrneurol.2017.96CrossRefGoogle Scholar
Seeley, WW, Crawford, RK, Zhou, J, et al. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009; 62: 4252.10.1016/j.neuron.2009.03.024CrossRefGoogle ScholarPubMed
Lerch, JP, van der Kouwe, AJW, Raznahan, A, et al. Studying neuroanatomy using MRI. Nat Neurosci 2017; 20(3): 314326.10.1038/nn.4501CrossRefGoogle ScholarPubMed
Wahlund, L-O, Westman, E, van Westen, D, et al. Imaging biomarkers of dementia: recommended visual rating scales with teaching cases. Insights Imaging 2017; 8(1): 7990.10.1007/s13244-016-0521-6CrossRefGoogle ScholarPubMed
Koikkalainen, J, Rhodius-Meester, H, Tolonen, A, et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. Neuroimage Clin 2016; 11: 435449.10.1016/j.nicl.2016.02.019CrossRefGoogle ScholarPubMed
Pini, L, Pievani, M, Bocchetta, M, et al. Brain atrophy in AD and aging. Ageing Res Rev 2016; 30: 2548.10.1016/j.arr.2016.01.002CrossRefGoogle ScholarPubMed
Jack, CR Jr, Wiste, HJ, Weigand, SD, et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain 2015; 138(12): 37473759.10.1093/brain/awv283CrossRefGoogle ScholarPubMed
Mak, E, Gabel, S, Mirette, H, et al. Structural neuroimaging in preclinical dementia: From microstructural deficits and grey matter atrophy to macroscale connectomic changes. Ageing Res Rev 2017; 35: 250264.10.1016/j.arr.2016.10.001CrossRefGoogle ScholarPubMed
McKiernan, EF, O’Brien, JT. 7T MRI for neurodegenerative dementias in vivo: a systematic review of the literature. J Neurol Neurosurg Psychiatry 2017; 88(7): 564574.10.1136/jnnp-2016-315022CrossRefGoogle ScholarPubMed
Bruun, M, Koikkalainen, J, Rhodius-Meester, HFM, et al. Detecting FTD syndromes using MRI biomarkers. Neuroimage Clin 2019; 22: 101711.10.1016/j.nicl.2019.101711CrossRefGoogle Scholar
Häkkinen, S, Chu, SA, Lee, SE. Neuroimaging in genetic FTD and ALS. Neurobiol Dis 2020; 145: 105063.10.1016/j.nbd.2020.105063CrossRefGoogle Scholar
Bocchetta, M, Iglesias, JE, Russell, LL, et al. Segmentation of medial temporal subregions reveals early right-sided involvement in svPPA. Alzheimers Res Ther 2019; 11(1):41.10.1186/s13195-019-0489-9CrossRefGoogle Scholar
Ferreira, D, Nordberg, A, Westman, E. Biological subtypes of AD: a systematic review and meta-analysis. Neurology 2020; 94(10): 436448.10.1212/WNL.0000000000009058CrossRefGoogle Scholar
Ledig, C, Schuh, A, Guerrero, R, et al. Structural brain imaging in AD and MCI: biomarker analysis and shared morphometry database. Sci Rep 2018; 8(1): 11258.10.1038/s41598-018-29295-9CrossRefGoogle Scholar
Möller, C, Hafkemeijer, A, Pijnenburg, YAL, et al. Different patterns of cortical gray matter loss over time in bvFTD and AD. Neurobiol Aging 2016; 38: 2131.10.1016/j.neurobiolaging.2015.10.020CrossRefGoogle Scholar
Racine, AM, Brickhouse, M, Wolk, DA, et al. The personalized AD cortical thickness index predicts likely pathology and clinical progression in MCI. Alzheimers Dement 2018; 10: 301310.Google Scholar
Manuello, J, Nani, A, Premi, E, et al. The pathoconnectivity profile of AD: a Morphometric Coalteration Network Analysis. Frontiers Neurol. 2018; 8: 739.10.3389/fneur.2017.00739CrossRefGoogle Scholar
McCarthy, J, Louis Collins, D, Ducharme, S. Morphometric MRI as a diagnostic biomarker of FTD: a systematic review to determine clinical applicability. Neuroimage Clin 2018; 20: 685696.10.1016/j.nicl.2018.08.028CrossRefGoogle ScholarPubMed
Rosen, HJ, Boeve, BF, Boxer, AL. Tracking disease progression in familial and sporadic FTLD: recent findings from ARTFL and LEFFTDS. Alzheimers Dement 2020; 16(1): 7178.10.1002/alz.12004CrossRefGoogle ScholarPubMed
Borrego-Écija, S, Sala-Llonch, R, van Swieten, J, et al. Disease-related cortical thinning in presymptomatic granulin mutation carriers. Neuroimage Clin 2020; 29: 102540.10.1016/j.nicl.2020.102540CrossRefGoogle ScholarPubMed
Le Blanc, G, Jetté Pomerleau, V, McCarthy, J, et al. Faster cortical thinning and surface area loss in presymptomatic and symptomatic C9orf72 repeat expansion adult carriers. Ann Neurol 2020; 88(1): 113122.10.1002/ana.25748CrossRefGoogle ScholarPubMed
Perry, DC, Brown, JA, Possin, KL, et al. Clinicopathological correlations in bvFTD. Brain 2017; 140(12): 33293345.10.1093/brain/awx254CrossRefGoogle Scholar
Rohrer, JD, Caso, F, Mahoney, C, et al. Patterns of longitudinal brain atrophy in lvPPA. Brain Lang 2013; 127 (2): 121126.10.1016/j.bandl.2012.12.008CrossRefGoogle Scholar
Schmitz, TW, Nathan Spreng, R, Alzheimer’s Disease Neuroimaging Initiative. Basal forebrain degeneration precedes and predicts the cortical spread of AD. Nat Commun 2016; 7: 13249.10.1038/ncomms13249CrossRefGoogle Scholar
Pan, PL, Song, W, Yang, J, et al. Gray matter atrophy in bvFTD: a meta-analysis of VBM studies. Dement Geriatr Cogn Disord 2012; 33(2-3): 141148.10.1159/000338176CrossRefGoogle Scholar
Cash, DM, Bocchetta, M, Thomas, DL, et al. Patterns of gray matter atrophy in genetic FTD: results from the GENFI study. Neurobiol Aging 2018; 62: 191196.10.1016/j.neurobiolaging.2017.10.008CrossRefGoogle ScholarPubMed
Staffaroni, AM, Goh, S-YM, Cobigo, Y, et al. Rates of brain atrophy across disease stages in familial FTD associated with MAPT, GRN, and C9orf72 pathogenic variants. JAMA Netw Open 2020; 3(10): e2022847.10.1001/jamanetworkopen.2020.22847CrossRefGoogle Scholar
Jorgensen, DR, Shaaban, CE, Wiley, CA, et al. A population neuroscience approach to the study of CSVD in midlife and late life: an invited review. Am J Physiol Heart Circ Physiol 2018; 314 (6): H1117–36.10.1152/ajpheart.00535.2017CrossRefGoogle Scholar
Sudre, CH, Bocchetta, M, Heller, C, et al. White matter hyperintensities in progranulin-associated FTD: a longitudinal GENFI study. Neuroimage Clin 2019; 24: 102077.10.1016/j.nicl.2019.102077CrossRefGoogle ScholarPubMed
Fragoso, DC, Gonçalves Filho, AL da M, Pacheco, FT, et al. Imaging of Creutzfeldt-Jakob disease: imaging patterns and their differential diagnosis. Radiographics 2017; 37(1): 234257.10.1148/rg.2017160075CrossRefGoogle ScholarPubMed
Mayo, CD, Garcia-Barrera, MA, Mazerolle, EL, et al. Relationship between DTI metrics and cognitive function in AD. Front Aging Neurosci 2019; 10: 436.10.3389/fnagi.2018.00436CrossRefGoogle Scholar
Alves, PN, Foulon, C, Karolis, V, et al. An improved neuroanatomical model of the DMN reconciles previous neuroimaging and neuropathological findings. Commun Biol 2019; 2: 370.10.1038/s42003-019-0611-3CrossRefGoogle ScholarPubMed
Mito, R, Raffelt, D, Dhollander, T, et al. Fibre-specific white matter reductions in AD and MCI. Brain 2018; 141: 888902.10.1093/brain/awx355CrossRefGoogle Scholar
Elahi, FM, Marx, G, Cobigo, Y, et al. Longitudinal white matter change in FTD subtypes and sporadic LOAD. Neuroimage Clin 2017; 16: 595603.10.1016/j.nicl.2017.09.007CrossRefGoogle Scholar
Galantucci, S, Tartaglia, MC, Wilson, SM, et al. White matter damage in PPA: a DTI study. Brain 2011; 134(10): 30113029.10.1093/brain/awr099CrossRefGoogle Scholar
Jiskoot, LC, Bocchetta, M, Nicholas, JM, et al. Presymptomatic white matter integrity loss in familial FTD in the GENFI cohort: a cross‐sectional DTI study. Ann Clin Transl Neurol 2018; 5 (9): 10251036.10.1002/acn3.601CrossRefGoogle Scholar
Braun, DJ, Van Eldik, LJ. In vivo brainstem imaging in ad: potential for biomarker development. Front Aging Neurosci 2018; 10: 266.10.3389/fnagi.2018.00266CrossRefGoogle ScholarPubMed
Charidimou, A, Boulouis, G, Gurol, ME, et al. Emerging concepts in sporadic CAA. Brain 2017; 140 (7): 18291850.10.1093/brain/awx047CrossRefGoogle Scholar
Chen, JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2019; 187: 209–25.10.1016/j.neuroimage.2018.05.050CrossRefGoogle ScholarPubMed
Iturria-Medina, Y, Alzheimer’s Disease Neuroimaging Initiative, Sotero, RC, et al. Early role of vascular dysregulation on LOAD based on multifactorial data-driven analysis. Nat Commun 2016: 7: 11934.10.1038/ncomms11934CrossRefGoogle ScholarPubMed
Mutsaerts, HJMM, Mirza, SS, Petr, J, et al. Cerebral perfusion changes in presymptomatic genetic FTD: a GENFI study. Brain 2019; 142(4): 11081120.10.1093/brain/awz039CrossRefGoogle Scholar
Bayram, E, Caldwell, JZK, Banks, SJ. Current understanding of MRI biomarkers and memory in AD. Alzheimers Dement 2018; 4: 395413.Google Scholar
Landin-Romero, R, Tan, R, Hodges, JR, Kumfor, F. An update on semantic dementia: genetics, imaging, and pathology. Alzheimer Res Ther 2016: 8(1): 52.10.1186/s13195-016-0219-5CrossRefGoogle ScholarPubMed
Filippi, M, Spinelli, EG, Cividini, C, Agosta, F. Resting state dynamic functional connectivity in neurodegenerative conditions: a review of MRI findings. Front Neurosci 2019; 13: 657.10.3389/fnins.2019.00657CrossRefGoogle Scholar
Kaur, J, Davoodi-Bojd, E, Fahmy, LM, et al. MRI and modeling of the glymphatic system. Diagnostics (Basel) 2020; 10(6): 344.10.3390/diagnostics10060344CrossRefGoogle ScholarPubMed
Cleeland, C, Pipingas, A, Scholey, A, White, D. Neurochemical changes in the aging brain: a systematic review. Neurosci Biobehav Rev 2019; 98: 306319.10.1016/j.neubiorev.2019.01.003CrossRefGoogle ScholarPubMed
Chen, Q, Kantarci, K. Imaging biomarkers for neurodegeneration in presymptomatic familial FTLD. Front Neurol 2020; 11: 80.10.3389/fneur.2020.00080CrossRefGoogle Scholar
Arbabshirani, MR, Plis, S, Sui, J, Calhoun, VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 2017; 145(B): 137165.10.1016/j.neuroimage.2016.02.079CrossRefGoogle ScholarPubMed
Jack, CR Jr, Knopman, DS, Jagust, WJ, et al. Tracking pathophysiological processes in AD: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207216.10.1016/S1474-4422(12)70291-0CrossRefGoogle ScholarPubMed
Iturria-Medina, Y, Carbonell, FM, Sotero, RC, et al. Multifactorial causal model of brain (dis)organization and therapeutic intervention: application to AD. Neuroimage 2017; 152: 6077.10.1016/j.neuroimage.2017.02.058CrossRefGoogle Scholar
Young, AL, Marinescu, RV, Oxtoby, NP, et al. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference. Nat Commun 2018; 9(1): 4273.10.1038/s41467-018-05892-0CrossRefGoogle ScholarPubMed
Raj, A, Powell, F. Models of network spread and network degeneration in brain disorders. Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3(9): 788797.Google ScholarPubMed
Bhagwat, N, Viviano, JD, Voineskos, AN, et al. Modeling and prediction of clinical symptom trajectories in AD using longitudinal data. PLoS Comput Biol 2018; 14 (9): e1006376.10.1371/journal.pcbi.1006376CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.1 AA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and achieves the intermediate (AA) level of WCAG compliance, covering a wider range of accessibility requirements.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×