Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-11-24T23:50:29.174Z Has data issue: false hasContentIssue false

Section 2 - The Dementias

Published online by Cambridge University Press:  17 November 2025

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Morris, J. Clinical presentation and course of Alzheimer disease. In Terry, R, Katzman, R, Bick, K, Sisodia, S, eds. Alzheimer Disease. Philadelphia, PA: Lippincott Williams & Wilkins, 1999; pp. 1124.Google Scholar
Moller, HJ, Graeber, MB. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci. 1998;248(3):111122.Google ScholarPubMed
Braak, H, Thal, DR, Ghebremedhin, E, Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011 Nov;70(11):960969.10.1097/NEN.0b013e318232a379CrossRefGoogle ScholarPubMed
Wimo, A, Ali, G-C, Guerchet, M, et al. World Alzheimer Report 2015: The global impact of dementia: an analysis of prevalence, incidence, cost and trends. September 21, 2015 [cited 2021 Feb 9]. Available from: www.alzint.org/resource/world-alzheimer-report-2015/Google Scholar
Wolters, FJ, Chibnik, LB, Waziry, R, et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States: the Alzheimer Cohorts Consortium. Neurology. 2020 Aug 4;95(5):e519e531.10.1212/WNL.0000000000010022CrossRefGoogle ScholarPubMed
Chen, Y, Wilson, L, Kornak, J, et al. The costs of dementia subtypes to California Medicare fee-for-service, 2015. Alzheimers Dement. 2019 Jul;15(7):899906.10.1016/j.jalz.2019.03.015CrossRefGoogle ScholarPubMed
Snyder, HM, Asthana, S, Bain, L, et al. Sex biology contributions to vulnerability to Alzheimer’s disease: a think tank convened by the Women’s Alzheimer’s Research Initiative. Alzheimers Dement. 2016 Nov;12(11):11861196.10.1016/j.jalz.2016.08.004CrossRefGoogle ScholarPubMed
Davis, EJ, Lobach, I, Dubal, DB. Female XX sex chromosomes increase survival and extend lifespan in aging mice. Aging Cell. 2019 Feb;18(1):e12871.10.1111/acel.12871CrossRefGoogle ScholarPubMed
Cannon-Albright, LA, Foster, NL, Schliep, K, et al. Relative risk for Alzheimer disease based on complete family history. Neurology. 2019 Apr 9;92(15):e1745e1753.10.1212/WNL.0000000000007231CrossRefGoogle ScholarPubMed
Peloso, GM, Beiser, AS, Satizabal, CL, et al. Cardiovascular health, genetic risk, and risk of dementia in the Framingham Heart Study. Neurology. 2020 Sep 8;95(10):e1341e1350.10.1212/WNL.0000000000010306CrossRefGoogle ScholarPubMed
Martínez-Lapiscina, EH, Clavero, P, Toledo, E, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013 Dec;84(12):13181325.10.1136/jnnp-2012-304792CrossRefGoogle ScholarPubMed
Iaccarino, L, La Joie, R, Lesman-Segev, OH, et al. Association between ambient air pollution and amyloid positron emission tomography positivity in older adults with cognitive impairment. JAMA Neurol. 2021 Feb 1;78(2):197207.10.1001/jamaneurol.2020.3962CrossRefGoogle ScholarPubMed
Livingston, G, Huntley, J, Sommerlad, A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020 Aug 8;396(10248):413446.10.1016/S0140-6736(20)30367-6CrossRefGoogle ScholarPubMed
Arenaza-Urquijo, EM, Landeau, B, La Joie, R, et al. Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage. 2013 Dec;83:450745.10.1016/j.neuroimage.2013.06.053CrossRefGoogle ScholarPubMed
Busatto, GF, de Gobbi Porto, FH, Faria, D de P, et al. In vivo imaging evidence of poor cognitive resilience to Alzheimer’s disease pathology in subjects with very low cognitive reserve from a low-middle income environment. Alzheimers Dement Amst Neth. 2020;12(1):e12122.Google ScholarPubMed
Kornblith, E, Peltz, CB, Xia, F, et al. Sex, race, and risk of dementia diagnosis after traumatic brain injury among older veterans. Neurology. 2020 Sep 29;95(13):e1768e1775.10.1212/WNL.0000000000010617CrossRefGoogle ScholarPubMed
Holth, J, Patel, T, Holtzman, DM. Sleep in Alzheimer’s disease – beyond amyloid. Neurobiol Sleep Circadian Rhythms. 2017 Jan;2:414.10.1016/j.nbscr.2016.08.002CrossRefGoogle ScholarPubMed
Winer, JR, Mander, BA, Kumar, S, et al. Sleep disturbance forecasts β-amyloid accumulation across subsequent years. Curr Biol CB. 2020 Nov 2;30(21):42914298.e3.10.1016/j.cub.2020.08.017CrossRefGoogle ScholarPubMed
Ehrenberg, AJ, Suemoto, CK, França Resende, E de P, et al. Neuropathologic correlates of psychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2018 Oct 16;66(1):115126.10.3233/JAD-180688CrossRefGoogle ScholarPubMed
Jack, CR, Bennett, DA, Blennow, K, et al. NIA-AA Research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 Apr;14(4):535562.10.1016/j.jalz.2018.02.018CrossRefGoogle Scholar
Jansen, IE, Savage, JE, Watanabe, K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019 Mar;51(3):404413.10.1038/s41588-018-0311-9CrossRefGoogle ScholarPubMed
Bateman, RJ, Xiong, C, Benzinger, TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012 Aug 30;367(9):795804.10.1056/NEJMoa1202753CrossRefGoogle ScholarPubMed
Serrano-Pozo, A, Das, S, Hyman, BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 Jan;20(1):6880.10.1016/S1474-4422(20)30412-9CrossRefGoogle ScholarPubMed
Snyder, HM, Bain, LJ, Brickman, AM, et al. Further understanding the connection between Alzheimer’s disease and Down syndrome. Alzheimers Dement. 2020 Jul;16(7):10651077.10.1002/alz.12112CrossRefGoogle ScholarPubMed
Fortea, J, Vilaplana, E, Carmona-Iragui, M, et al. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet. 2020 Jun 27;395(10242):19881997.10.1016/S0140-6736(20)30689-9CrossRefGoogle ScholarPubMed
McKhann, G, Drachman, D, Folstein, M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984 Jul;34(7):939944.10.1212/WNL.34.7.939CrossRefGoogle ScholarPubMed
Aisen, PS, Cummings, J, Jack, CR, et al. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res Ther. 2017 Aug 9;9(1):60.10.1186/s13195-017-0283-5CrossRefGoogle ScholarPubMed
Dubois, B, Hampel, H, Feldman, HH, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016 Mar;12(3):292323.10.1016/j.jalz.2016.02.002CrossRefGoogle ScholarPubMed
McKhann, GM, Knopman, DS, Chertkow, H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 May;7(3):263269.10.1016/j.jalz.2011.03.005CrossRefGoogle ScholarPubMed
Albert, MS, DeKosky, ST, Dickson, D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 May;7(3):270279.10.1016/j.jalz.2011.03.008CrossRefGoogle ScholarPubMed
Jack, CR, Knopman, DS, Jagust, WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010 Jan;9(1):119128.10.1016/S1474-4422(09)70299-6CrossRefGoogle ScholarPubMed
van der Linde, RM, Dening, T, Stephan, BCM, et al. Longitudinal course of behavioural and psychological symptoms of dementia: systematic review. Br J Psychiatry J Ment Sci. 2016 Nov;209(5):366377.10.1192/bjp.bp.114.148403CrossRefGoogle ScholarPubMed
Theofilas, P, Dunlop, S, Heinsen, H, Grinberg, LT. Turning on the light within: subcortical nuclei of the isodentritic core and their role in Alzheimer’s disease pathogenesis. J Alzheimers Dis. 2015 May 7;46(1):1734.10.3233/JAD-142682CrossRefGoogle ScholarPubMed
Jacobs, HIL, Riphagen, JM, Ramakers, IHGB, Verhey, FRJ. Alzheimer’s disease pathology: pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms. Mol Psychiatry. 2019 May 28;26(3):897906.10.1038/s41380-019-0437-xCrossRefGoogle ScholarPubMed
Morris, JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993 Nov;43(11):24122414.10.1212/WNL.43.11.2412-aCrossRefGoogle ScholarPubMed
Horváth, A, Szűcs, A, Barcs, G, Noebels, JL, Kamondi, A. Epileptic seizures in Alzheimer disease: a review. Alzheimer Dis Assoc Disord. 2016 Jun;30(2):186192.10.1097/WAD.0000000000000134CrossRefGoogle ScholarPubMed
Jack, CR, Wiste, HJ, Weigand, SD, et al. Predicting future rates of tau accumulation on PET. Brain J Neurol. 2020 Oct 1;143(10):31363150.10.1093/brain/awaa248CrossRefGoogle ScholarPubMed
Smits, LL, Pijnenburg, YAL, van der Vlies, AE, et al. Early onset APOE E4-negative Alzheimer’s disease patients show faster cognitive decline on non-memory domains. Eur Neuropsychopharmacol. 2015 Jul;25(7):10101017.10.1016/j.euroneuro.2015.03.014CrossRefGoogle ScholarPubMed
Bolton, CJ, Tam, JW. Differential involvement of the locus coeruleus in early- and late-onset Alzheimer’s disease: a potential mechanism of clinical differences? J Geriatr Psychiatry Neurol. 2022 Sep;35(5):733739.10.1177/08919887211044755CrossRefGoogle ScholarPubMed
Graff-Radford, J, Yong, KXX, Apostolova, LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021 Mar;20(3):222234.10.1016/S1474-4422(20)30440-3CrossRefGoogle ScholarPubMed
Petersen, C, Nolan, AL, de Paula França Resende, E, et al. Alzheimer’s disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol (Berl). 2019 Oct;138(4):597612.10.1007/s00401-019-02036-6CrossRefGoogle ScholarPubMed
Murray, ME, Graff-Radford, NR, Ross, OA, et al. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011 Sep;10(9):785796.10.1016/S1474-4422(11)70156-9CrossRefGoogle ScholarPubMed
Ossenkoppele, R, Cohn-Sheehy, BI, La Joie, R, et al. Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease. Hum Brain Mapp. 2015 Nov;36(11):44214437.10.1002/hbm.22927CrossRefGoogle ScholarPubMed
Miller, ZA, Rosenberg, L, Santos-Santos, MA, et al. Prevalence of mathematical and visuospatial learning disabilities in patients with posterior cortical atrophy. JAMA Neurol. 2018 Jun 1;75(6):728737.10.1001/jamaneurol.2018.0395CrossRefGoogle ScholarPubMed
Spina, S, La Joie, R, Petersen, C, et al. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain. 2021 Aug 17;144(7):21862198.10.1093/brain/awab099CrossRefGoogle ScholarPubMed
Hyman, BT, Phelps, CH, Beach, TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012 Jan;8(1):113.10.1016/j.jalz.2011.10.007CrossRefGoogle ScholarPubMed
Thal, DR, Rüb, U, Orantes, M, Braak, H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002 Jun 25;58(12):17911800.10.1212/WNL.58.12.1791CrossRefGoogle ScholarPubMed
Jack, CR Jr, Knopman, DS, Jagust, WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013 Feb;12(2):207216.10.1016/S1474-4422(12)70291-0CrossRefGoogle ScholarPubMed
Jack CR, Jr, Andrews, JS, Beach, TG, Buracchio, T, Dunn, B, Graf, A, Hansson, O, Ho, C, Jagust, W, McDade, E, Molinuevo, JL, Okonkwo, OC, Pani, L, Rafii, MS, Scheltens, P, Siemers, E, Snyder, HM, Sperling, R, Teunissen, CE, Carrillo, MC. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement. 2024 Aug;20(8):5143-5169. doi: 10.1002/alz.13859. Epub 2024 Jun 27. PMID: 38934362; PMCID: PMC11350039.CrossRefGoogle Scholar
Dubois, B, Villain, N, Schneider, L, Fox, N, Campbell, N, Galasko, D, Kivipelto, M, Jessen, F, Hanseeuw, B, Boada, M, Barkhof, F, Nordberg, A, Froelich, L, Waldemar, G, Frederiksen, KS, Padovani, A, Planche, V, Rowe, C, Bejanin, A, Ibanez, A, Cappa S, Caramelli P, Nitrini R, Allegri R, Slachevsky A, de Souza LC, Bozoki A, Widera E, Blennow K, Ritchie C, Agronin M, Lopera F, Delano-Wood L, Bombois S, Levy R, Thambisetty M, Georges J, Jones DT, Lavretsky H, Schott J, Gatchel J, Swantek S, Newhouse P, Feldman HH, Frisoni GB. Alzheimer Disease as a Clinical-Biological Construct-An International Working Group Recommendation. JAMA Neurol. 2024 Dec 1;81(12):1304-1311. doi: 10.1001/jamaneurol.2024.3770. PMID: 39483064; PMCID: PMC12010406.CrossRefGoogle Scholar

References

Elahi, FM, Miller, BL. A clinicopathological approach to the diagnosis of dementia. Nat Rev Neurol 2017;13:457476. https://doi.org/10.1038/nrneurol.2017.96.CrossRefGoogle Scholar
Rascovsky, K, Hodges, JR, Knopman, D, et al. Sensitivity of revised diagnostic criteria for the behavioral variant of frontotemporal dementia. Brain 2011;134:24562477. https://doi.org/10.1093/brain/awr179.CrossRefGoogle Scholar
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:10061014. https://doi.org/10.1212/WNL.0b013e31821103e6.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Gustafson, L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:15461554. https://doi.org/10.1212/WNL.51.6.1546.CrossRefGoogle ScholarPubMed
Harris, JM, Gall, C, Thompson, JC, et al. Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology 2013;80:18811887. https://doi.org/10.1212/WNL.0b013e318292a342.CrossRefGoogle ScholarPubMed
Coyle-Gilchrist, ITS, Dick, KM, Patterson, K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016;86:17361743.10.1212/WNL.0000000000002638CrossRefGoogle ScholarPubMed
Logroscino, G, Piccininni, M, Binetti, G, et al. Incidence of frontotemporal lobar degeneration in Italy: the Salento-Brescia Registry study. Neurology 2019;92:e2355e2363.10.1212/WNL.0000000000007498CrossRefGoogle ScholarPubMed
Onyike, CU, Diehl-Schmid, J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry 2013;25:130137.10.3109/09540261.2013.776523CrossRefGoogle ScholarPubMed
Marelli, C, Gutierrez, L-A, Menjot de Champfleur, N, et al. Late-onset behavioral variant of frontotemporal lobar degeneration versus Alzheimer’s disease: interest of cerebrospinal fluid biomarker ratios. Alzheimers Dement (Amst) 2015;1:371379.10.1016/j.dadm.2015.06.004CrossRefGoogle ScholarPubMed
Woolley, JD, Khan, BK, Murthy, NK, Miller, BL, Rankin, KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011;72:126133. https://doi.org/10.4088/JCP.10m06382oli.CrossRefGoogle ScholarPubMed
Seo, SW, Thibodeau, M-P, Perry, DC, et al. Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. Neurology 2018;90:e1047e1056.10.1212/WNL.0000000000005163CrossRefGoogle ScholarPubMed
Murley, AG, Coyle-Gilchrist, I, Rouse, MA, et al. Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. Brain 2020;143:15551571. https://doi.org/10.1093/brain/awaa097.CrossRefGoogle ScholarPubMed
Kansal, K, Mareddy, M, Sloane, KL, et al. Survival in frontotemporal dementia phenotypes: a meta-analysis. Dement Geriatr Cogn Disord 2016;41:109122. https://doi.org/10.1159/000443205.CrossRefGoogle ScholarPubMed
Agarwal, S, Ahmed, RM, D’Mello, M, et al. Predictors of survival and progression in behavioural variant frontotemporal dementia. Eur J Neurol 2019;26:774779. https://doi.org/10.1111/ene.13887.CrossRefGoogle ScholarPubMed
Garcin, B, Lillo, P, Hornberger, M, et al. Determinants of survival in behavioral variant frontotemporal dementia. Neurology 2009;73:16561661.10.1212/WNL.0b013e3181c1dee7CrossRefGoogle ScholarPubMed
Caswell, C, McMillan, CT, Xie, SX, et al. Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology 2019;93:e1707e1714. https://doi.org/10.1212/WNL.0000000000008387.CrossRefGoogle ScholarPubMed
Mauvais-Jarvis, F, Bairey Merz, N, Barnes, PJ, et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 2020;396:565582. https://doi.org/10.1016/S0140-6736(20)31561-0.CrossRefGoogle ScholarPubMed
Perry, DC, Brown, JA, Possin, KL, et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain 2017;140:33293345. https://doi.org/10.1093/brain/awx254.CrossRefGoogle ScholarPubMed
O’Connor, CM, Landin-Romero, R, Clemson, L, et al. Behavioral-variant frontotemporal dementia: distinct phenotypes with unique functional profiles. Neurology 2017;89:570577. https://doi.org/10.1212/WNL.0000000000004215.CrossRefGoogle ScholarPubMed
Illan-Gala, I, Montal, V, Borrego-Ecija, S, et al. Cortical microstructure in the behavioural variant of frontotemporal dementia: looking beyond atrophy. Brain 2019;142:11211133. https://doi.org/10.1093/brain/awz031.CrossRefGoogle ScholarPubMed
Spinelli, EG, Mandelli, ML, Miller, ZA, et al. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol 2017;81:430443.10.1002/ana.24885CrossRefGoogle ScholarPubMed
Illán-Gala, I, Casaletto, KB, Borrego-Écija, S, et al. Sex differences in the behavioral variant of frontotemporal dementia: a new window to executive and behavioral reserve. Alzheimers Dement 2021 Aug;17(8):13291341. https://doi.org/1002/alz.12299.CrossRefGoogle ScholarPubMed
Miller, BL. Frontotemporal Dementia. Oxford University Press, 2014.10.1093/med/9780195380491.001.0001CrossRefGoogle ScholarPubMed
Karageorgiou, E, Miller, BL. Frontotemporal lobar degeneration: a clinical approach. Semin Neurol 2014;34:189201.10.1055/s-0034-1381735CrossRefGoogle ScholarPubMed
Miller, BL, Seeley, WW, Mychack, P, et al. Neuroanatomy of the self: evidence from patients with frontotemporal dementia. Neurology 2001;57:817821. https://doi.org/10.1212/wnl.57.5.817.CrossRefGoogle ScholarPubMed
Ducharme, S, Dols, A, Laforce, R, et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 2020;143:16321650. https://doi.org/10.1093/brain/awaa018.CrossRefGoogle ScholarPubMed
Perry, DC, Datta, S, Sturm, VE et al. Reward deficits in behavioural variant frontotemporal dementia include insensitivity to negative stimuli. Brain 2017;140:33463356. https://doi.org/10.1093/brain/awx259.CrossRefGoogle ScholarPubMed
Liljegren, M, Naasan, G, Temlett, J, et al. Criminal behavior in frontotemporal dementia and Alzheimer disease. JAMA Neurol 2015;72:295300.10.1001/jamaneurol.2014.3781CrossRefGoogle ScholarPubMed
Liljegren, M, Landqvist Waldö, M, Frizell Santillo, A, et al. Association of neuropathologically confirmed frontotemporal dementia and Alzheimer disease with criminal and socially inappropriate behavior in a Swedish cohort. JAMA Netw Open 2019;2:e190261. https://doi.org/10.1001/jamanetworkopen.2019.0261.CrossRefGoogle Scholar
Lansdall, CJ, Coyle-Gilchrist, ITS, Vázquez Rodríguez, P, et al. Prognostic importance of apathy in syndromes associated with frontotemporal lobar degeneration. Neurology 2019;92:e1547e1557. https://doi.org/10.1212/WNL.0000000000007249.CrossRefGoogle ScholarPubMed
Perry, DC, Sturm, VE, Seeley, WW, et al. Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia. Brain 2014;137:16211626.10.1093/brain/awu075CrossRefGoogle ScholarPubMed
Piguet, O, Petersén, A, Yin Ka Lam, B, et al. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 2011;69:312319.10.1002/ana.22244CrossRefGoogle ScholarPubMed
Ahmed, RM, Ke, YD, Vucic, S, et al. Physiological changes in neurodegeneration – mechanistic insights and clinical utility. Nat Rev Neurol 2018;14:259271. https://doi.org/10.1038/nrneurol.2018.23.CrossRefGoogle ScholarPubMed
Ranasinghe, KG, Rankin, KP, Lobach, IV, et al. Cognition and neuropsychiatry in behavioral variant frontotemporal dementia by disease stage. Neurology 2016;86:6006–10. https://doi.org/10.1212/WNL.0000000000002373.CrossRefGoogle ScholarPubMed
Henry, JD, von Hippel, W, Molenberghs, P, Lee, T, Sachdev, PS. Clinical assessment of social cognitive function in neurological disorders. Nat Rev Neurol 2016;12:2839.10.1038/nrneurol.2015.229CrossRefGoogle ScholarPubMed
Rowe, JB. Parkinsonism in frontotemporal dementias. Int Rev Neurobiol 2019;149:249275. https://doi.org/10.1016/bs.irn.2019.10.012.Google ScholarPubMed
Baborie, A, Griffiths, TD, Jaros, E, et al. Frontotemporal dementia in elderly individuals. Arch Neurol 2012;69:10521060.10.1001/archneurol.2011.3323CrossRefGoogle ScholarPubMed
Illán-Gala, I, Falgàs, N, Friedberg, A, et al. Diagnostic utility of measuring cerebral atrophy in the behavioral variant of frontotemporal dementia and association with clinical deterioration. JAMA Netw Open. 2021;4(3):e211290. https://doi.org/10.1001/jamanetworkopen.2021.1290CrossRefGoogle Scholar
Harper, L, Fumagalli, G G, Barkhof, F, et al. MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 2016;139:12111225, https://doi.org/10.1093/brain/aww005CrossRefGoogle ScholarPubMed
McCarthy, J, Collins, DL, Ducharme, S. Morphometric MRI as a diagnostic biomarker of frontotemporal dementia: a systematic review to determine clinical applicability. NeuroImage Clin 2018;20:685696. https://doi.org/10.1016/j.nicl.2018.08.028.CrossRefGoogle ScholarPubMed
Chételat, G, Arbizu, J, Barthel, H, et al. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol 2020;19:951962. https://doi.org/10.1016/S1474-4422(20)30314-8.CrossRefGoogle Scholar
Zimmer, ER, Parent, MJ, Souza, DG, et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci 2017;20:393395. https://doi.org/10.1038/nn.4492.CrossRefGoogle ScholarPubMed
Ranasinghe, KG, Rankin, KP, Pressman, PS, et al. Distinct subtypes of behavioral variant frontotemporal dementia based on patterns of network degeneration. JAMA Neurol 2016;73:1078. https://doi.org/10.1001/jamaneurol.2016.2016.CrossRefGoogle ScholarPubMed
Kertesz, A, McMonagle, P, Blair, M, Davidson, W, Munoz, DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128:19962005. https://doi.org/10.1093/brain/awh598.CrossRefGoogle ScholarPubMed
Devenney, E, Swinn, T, Mioshi, E, et al. The behavioural variant frontotemporal dementia phenocopy syndrome is a distinct entity – evidence from a longitudinal study. BMC Neurol 2018;18:56. https://doi.org/10.1186/s12883-018-1060-1.CrossRefGoogle ScholarPubMed
Ossenkoppele, R, Pijnenburg, YAL, Perry, DC, et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 2015;138:27322749. https://doi.org/10.1093/brain/awv191.CrossRefGoogle ScholarPubMed
Meeter, LH, Kaat, LD, Rohrer, JD, van Swieten, JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017;13:406419. https://doi.org/10.1038/nrneurol.2017.75.CrossRefGoogle ScholarPubMed
Leuzy, A, Smith, R, Ossenkoppele, R, et al. Diagnostic performance of RO948 F 18 Tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders. JAMA Neurol 2020;77:955965. https://doi.org/10.1001/jamaneurol.2020.0989.CrossRefGoogle ScholarPubMed
Palmqvist, S, Janelidze, S, Quiroz, YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 2020;324:772. https://doi.org/10.1001/jama.2020.12134.CrossRefGoogle ScholarPubMed
Illán-Gala, I, Lleo, A, Karydas, A, et al. Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer’s disease. Neurology 2020;96:e671e683. https://doi.org/10.1212/WNL.0000000000011226.Google Scholar
van der Ende, EL, Meeter, LH, Poos, JM, et al. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol 2019;18:11031111. https://doi.org/10.1016/S1474-4422(19)30354-0.CrossRefGoogle ScholarPubMed
Al Shweiki, MR, Steinacker, P, Oeckl, P, et al. Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. J Psychiatr Res 2019;113:137140. https://doi.org/10.1016/j.jpsychires.2019.03.019.CrossRefGoogle ScholarPubMed
Whitwell, JL, Przybelski, SA, Weigand, SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 2009;132:29322946. https://doi.org/10.1093/brain/awp232.CrossRefGoogle ScholarPubMed
Seeley, WW. Behavioral variant frontotemporal dementia. Continuum (Minneap Minn) 2019;25:76100.10.1212/CON.0000000000000698CrossRefGoogle ScholarPubMed
Ulugut Erkoyun, H, Groot, C, Heilbron, R, et al. A clinical-radiological framework of the right temporal variant of frontotemporal dementia. Brain 2020;143:28312843. https://doi.org/10.1093/brain/awaa225.CrossRefGoogle ScholarPubMed
Illán-Gala, I, Montal, V, Pegueroles, J, et al. Cortical microstructure in the amyotrophic lateral sclerosis–frontotemporal dementia continuum. Neurology 2020;95:e2565e2576. https://doi.org/10.1212/WNL.0000000000010727.CrossRefGoogle ScholarPubMed
Cortes-Vicente, E, Turon-Sans, J, Gelpi, E, et al. Distinct clinical features and outcomes in motor neuron disease associated with behavioural variant frontotemporal dementia. Dement Geriatr Cogn Disord 2018;45:220231. https://doi.org/10.1159/000488528.CrossRefGoogle ScholarPubMed
Brown, RH, Al-Chalabi, A. Amyotrophic lateral sclerosis. N Engl J Med 2017;377:162172. https://doi.org/10.1056/NEJMra1603471.CrossRefGoogle ScholarPubMed
Goldstein, LH, Abrahams, S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol 2013;12:368380. https://doi.org/10.1016/S1474-4422(13)70026-7.CrossRefGoogle ScholarPubMed
Höglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 2017;32:853864.10.1002/mds.26987CrossRefGoogle ScholarPubMed
Walker, Z, Possin, KL, Boeve, BF, Aarsland, D. Lewy body dementias. Lancet 2015;386:16831697.10.1016/S0140-6736(15)00462-6CrossRefGoogle ScholarPubMed
Bologna, M, Paparella, G, Fasano, A, Hallett, M, Berardelli, A. Evolving concepts on bradykinesia. Brain 2020;143:727750. https://doi.org/10.1093/brain/awz344.CrossRefGoogle ScholarPubMed
Lesman-Segev, OH, Edwards, L, Rabinovici, GD. Chronic traumatic encephalopathy: a comparison with Alzheimer’s disease and frontotemporal dementia. Semin Neurol 2020;40:394410. https://doi.org/10.1055/s-0040-1715134.Google ScholarPubMed
Wicklund, MR, Mokri, B, Drubach, DA, et al. Frontotemporal brain sagging syndrome: an SIH-like presentation mimicking FTD. Neurology 2011;76:13771382. https://doi.org/10.1212/WNL.0b013e3182166e42.CrossRefGoogle ScholarPubMed
Ducharme, S, Price, BH, Larvie, M, Dougherty, DD, Dickerson, BC. Clinical approach to the differential diagnosis between behavioral variant frontotemporal dementia and primary psychiatric disorders. Am J Psychiatry 2015;172:827837.10.1176/appi.ajp.2015.14101248CrossRefGoogle Scholar
Ducharme, S, Pearl-Dowler, L, Gossink, F, et al. the frontotemporal dementia versus primary psychiatric disorder (FTD versus PPD) checklist: a bedside clinical tool to identify behavioral variant FTD in patients with late-onset behavioral changes. J Alzheimers Dis 2019;67:113124. https://doi.org/10.3233/JAD-180839.CrossRefGoogle ScholarPubMed
Mackenzie, IRA, Neumann, M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem 2016;138 Suppl 1:5470.10.1111/jnc.13588CrossRefGoogle ScholarPubMed
Mioshi, E, Kipps, CM, Dawson, K, et al. Activities of daily living in frontotemporal dementia and Alzheimer disease. Neurology 2007;68:20772084.10.1212/01.wnl.0000264897.13722.53CrossRefGoogle ScholarPubMed
Mioshi, E, Hsieh, S, Savage, S, Hornberger, M, Hodges, JR. Clinical staging and disease progression in frontotemporal dementia. Neurology 2010;74:15911597.10.1212/WNL.0b013e3181e04070CrossRefGoogle ScholarPubMed
Miyagawa, T, Brushaber, D, Syrjanen, J, et al. Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: data from the ARTFL/LEFFTDS Consortium. Alzheimers Dement 2020;16:106117. https://doi.org/10.1002/alz.12033.CrossRefGoogle ScholarPubMed
Rohrer, JD, Nicholas, JM, Cash, DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 2015;14:253262.10.1016/S1474-4422(14)70324-2CrossRefGoogle ScholarPubMed
Rosen, HJ, Boeve, BF, Boxer, AL. Tracking disease progression in familial and sporadic frontotemporal lobar degeneration: recent findings from ARTFL and LEFFTDS. Alzheimers Dement 2020;16:7178. https://doi.org/10.1002/alz.12004.CrossRefGoogle ScholarPubMed
Staffaroni, AM, Ljubenkov, PA, Kornak, J, et al. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials. Brain 2019;142:443459. https://doi.org/10.1093/brain/awy319.CrossRefGoogle ScholarPubMed

References

Damasio, A. R., & Geschwind, N. (1984). The neural basis of language. Annu Rev Neurosci, 7, 127147. https://doi.org/10.1146/annurev.ne.07.030184.001015CrossRefGoogle ScholarPubMed
Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., et al. (2007). Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(Pt 5), Article Pt 5. https://doi.org/10.1093/brain/awm042CrossRefGoogle ScholarPubMed
Mesulam, M.-M., Thompson, C. K., Weintraub, S., et al. (2015). The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain, 138(8), 24232437. https://doi.org/10.1093/brain/awv154CrossRefGoogle ScholarPubMed
Harrison, D. W. (2015). Functional cerebral systems theory: an integrated brain. In Harrison, D. W., ed. Brain Asymmetry and Neural Systems: Foundations in Clinical Neuroscience and Neuropsychology. Springer International; pp. 5358. https://doi.org/10.1007/978-3-319-13069-9_6CrossRefGoogle Scholar
Hickok, G. (2022). The dual stream model of speech and language processing. In Hillis, A. E., Fridriksson, J., eds. Handbook of Clinical Neurology (vol. 185). Elsevier; pp. 5769. https://doi.org/10.1016/B978-0-12-823384-9.00003-7Google Scholar
Mesulam, M. M. (1982). Slowly progressive aphasia without generalized dementia. Ann Neurol, 11(6), Article 6.10.1002/ana.410110607CrossRefGoogle ScholarPubMed
Pick, A. (1892). Uber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Medizinische Wochenschrift, 17, 165167.Google Scholar
Déjerine, J. J., & Sérieux, P. (1897). Un cas de surdité verbale pure, terminée par aphasie sensorielle, suivi d’autopsie. Paris.Google Scholar
Sasanuma, S., & Monoi, H. (1975). The syndrome of Gogi (word meaning) aphasia. Selective impairment of kanji processing. Neurology, 25(7), 627632. https://doi.org/10.1212/wnl.25.7.627CrossRefGoogle ScholarPubMed
Warrington, E. K. (1975). The selective impairment of semantic memory. Quart J Exp Psychology, 27, 635657.10.1080/14640747508400525CrossRefGoogle ScholarPubMed
Snowden, J. S., Goulding, P. J., & Neary, D. (1989). Semantic dementia: a form of circumscribed cerebral atrophy. Behavl Neurol, 2, 167182.10.1155/1989/124043CrossRefGoogle Scholar
Grossman, M., Mickanin, J., Onishi, K., et al. (1996). Progressive non-fluent aphasia: language, cognitive and PET measures contrasted with probable Alzheimer’s disease. J Cog Neurosci, 8, 135154.10.1162/jocn.1996.8.2.135CrossRefGoogle Scholar
Neary, D., Snowden, J. S., Gustafson, L., et al. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria see comments. Neurology, 51(6), Article 6.10.1212/WNL.51.6.1546CrossRefGoogle Scholar
Gorno-Tempini, M. L., Dronkers, N. F., Rankin, K. P., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol, 55(3), Article 3.10.1002/ana.10825CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014. https://doi.org/10.1212/WNL.0b013e31821103e6CrossRefGoogle ScholarPubMed
Mesulam, M. M. (2001). Primary progressive aphasia. Ann Neurol, 49(4), Article 4.10.1002/ana.91CrossRefGoogle ScholarPubMed
Tastevin, M., Lavoie, M., de la Sablonnière, J., et al. (2021). Survival in the three common variants of primary progressive aphasia: a retrospective study in a tertiary memory clinic. Brain Sci, 11(9), Article 9. https://doi.org/10.3390/brainsci11091113CrossRefGoogle Scholar
Coyle-Gilchrist, I. T. S., Dick, K. M., Patterson, K., et al. (2016). Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology, 86(18), 17361743. https://doi.org/10.1212/WNL.0000000000002638CrossRefGoogle ScholarPubMed
Hendriks, S., Peetoom, K., Bakker, C., et al. (2021). Global prevalence of young-onset dementia: a systematic review and meta-analysis. JAMA Neurol, 78(9), 10801090. https://doi.org/10.1001/jamaneurol.2021.2161CrossRefGoogle ScholarPubMed
Rohrer, J. D., Guerreiro, R., Vandrovcova, J., et al. (2009). The heritability and genetics of frontotemporal lobar degeneration. Neurology, 73(18), Article 18.10.1212/WNL.0b013e3181bf997aCrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., Oxbury, S., et al. (1992). Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain, 115(Pt 6), Article Pt 6.Google ScholarPubMed
Seeley, W. W., Bauer, A. M., Miller, B. L., et al. (2005). The natural history of temporal variant frontotemporal dementia. Neurology, 64(8), Article 8.10.1212/01.WNL.0000158425.46019.5CCrossRefGoogle ScholarPubMed
Younes, K., Borghesani, V., Montembeault, M., et al. (2022). Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain, 145(11), 40804096. https://doi.org/10.1093/brain/awac217CrossRefGoogle ScholarPubMed
Kertesz, A., Jesso, S., Harciarek, M., et al. (2010). What is semantic dementia?: a cohort study of diagnostic features and clinical boundaries. Arch Neurol, 67(4), 483489. https://doi.org/10.1001/archneurol.2010.55CrossRefGoogle ScholarPubMed
Van den Bosch, A., Content, A., Daelemans, W., et al. (1994). Measuring the complexity of writing systems*. J Quant Linguist, 1(3), 178188. https://doi.org/10.1080/09296179408590015CrossRefGoogle Scholar
Patterson, K., & Hodges, J. R. (1992). Deterioration of word meaning: implications for reading. Neuropsychologia, 30(12), Article 12.10.1016/0028-3932(92)90096-5CrossRefGoogle ScholarPubMed
Irish, M., Bunk, S., Tu, S., et al. (2016). Preservation of episodic memory in semantic dementia: the importance of regions beyond the medial temporal lobes. Neuropsychologia, 81, 5060. https://doi.org/10.1016/j.neuropsychologia.2015.12.005CrossRefGoogle ScholarPubMed
Chan, D., Fox, N. C., Scahill, R. I., et al. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol, 49(4), 433442.10.1002/ana.92CrossRefGoogle ScholarPubMed
Galton, C. J., Patterson, K., Xuereb, J. H., et al. (2000). Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain, 123(Pt 3), 484498.10.1093/brain/123.3.484CrossRefGoogle ScholarPubMed
Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P., et al. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), Article 2.10.1212/WNL.58.2.198CrossRefGoogle ScholarPubMed
Miller, Z. A., Mandelli, M. L., Rankin, K. P., et al. (2013). Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain, 136(11), 34613473. https://doi.org/10.1093/brain/awt242CrossRefGoogle ScholarPubMed
Miller, Z. A., Hinkley, L. B., Herman, A., et al. (2015). Anomalous functional language lateralization in semantic variant PPA. Neurology, 84(2), 204206. https://doi.org/10.1212/WNL.0000000000001131CrossRefGoogle ScholarPubMed
Miller, Z., Hinkley, L., Bogley, R., et al. (2022). Anomalous language lateralization in semantic dementia: a neurodevelopmental hypothesis (P8-3.003). Neurology, 98(18 Suppl). https://n.neurology.org/content/98/18_Supplement/372710.1212/WNL.98.18_supplement.3727CrossRefGoogle Scholar
Bocchetta, M., Iglesias Espinosa, M. del M., Lashley, T., et al. (2020). In vivo staging of frontotemporal lobar degeneration TDP-43 type C pathology. Alzheimers Res Ther, 12(1), 34. https://doi.org/10.1186/s13195-020-00600-xCrossRefGoogle ScholarPubMed
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci, 8(12), Article 12. https://doi.org/10.1038/nrn2277CrossRefGoogle Scholar
Migliaccio, R., Boutet, C., Valabregue, R., et al. (2016). The brain network of naming: a lesson from primary progressive aphasia. PLoS One, 11(2), e0148707. https://doi.org/10.1371/journal.pone.0148707CrossRefGoogle ScholarPubMed
Bocchetta, M., Iglesias, J. E., Russell, L. L., et al. (2019). Segmentation of medial temporal subregions reveals early right-sided involvement in semantic variant PPA. Alzheimers Res The, 11(1), 41. https://doi.org/10.1186/s13195-019-0489-9CrossRefGoogle ScholarPubMed
Thompson, S. A., Patterson, K., & Hodges, J. R. (2003). Left/right asymmetry of atrophy in semantic dementia: behavioral-cognitive implications. Neurology, 61(9), Article 9.10.1212/01.WNL.0000091868.28557.B8CrossRefGoogle ScholarPubMed
Henry, M. L., Wilson, S. M., Ogar, J. M., et al. (2014). Neuropsychological, behavioral, and anatomical evolution in right temporal variant frontotemporal dementia: a longitudinal and post-mortem single case analysis. Neurocase, 20(1), 10.1080/13554794.2012.732089. https://doi.org/10.1080/13554794.2012.732089CrossRefGoogle ScholarPubMed
Guo, C. C., Gorno-Tempini, M. L., Gesierich, B., et al. (2013). Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain, 136(Pt 10), Article Pt 10. https://doi.org/10.1093/brain/awt222CrossRefGoogle ScholarPubMed
Schwab, S., Afyouni, S., Chen, Y., et al. (2020). Functional connectivity alterations of the temporal lobe and hippocampus in semantic dementia and Alzheimer’s disease. J Alzheimers Dis, 76(4), 14611475. https://doi.org/10.3233/JAD-191113CrossRefGoogle ScholarPubMed
Goldman, J. S., Farmer, J. M., Van Deerlin, V. M., et al. (2004). Frontotemporal dementia: genetics and genetic counseling dilemmas. Neurologist, 10(5), Article 5.10.1097/01.nrl.0000138735.48533.26CrossRefGoogle ScholarPubMed
Pickering-Brown, S. M., Rollinson, S., Du Plessis, D., et al. (2008). Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain, 131(Pt 3), Article Pt 3.10.1093/brain/awm331CrossRefGoogle ScholarPubMed
Benajiba, L., Le Ber, I., Camuzat, A., et al. (2009). TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol, 65(4), 470473. https://doi.org/10.1002/ana.21612CrossRefGoogle ScholarPubMed
Caroppo, P., Camuzat, A., De Septenville, A., et al. (2015). Semantic and nonfluent aphasic variants, secondarily associated with amyotrophic lateral sclerosis, are predominant frontotemporal lobar degeneration phenotypes in TBK1 carriers. Alzheimers Dement, 1(4), 481486. https://doi.org/10.1016/j.dadm.2015.10.002Google ScholarPubMed
Snowden, J. S., Rollinson, S., Thompson, J. C., et al. (2012). Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain, 135(3), 693708. https://doi.org/10.1093/brain/awr355CrossRefGoogle ScholarPubMed
Borroni, B., Ferrari, F., Galimberti, D., et al. (2014). Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol Aging, 35(4), 934.e7–934.e10. https://doi.org/10.1016/j.neurobiolaging.2013.09.017CrossRefGoogle ScholarPubMed
Van Schoor, E., Vandenbulcke, M., Bercier, V., et al. (2022). frontotemporal lobar degeneration case with an N-Terminal Tuba4a mutation exhibits reduced TUBA4A levels in the brain and TDP-43 pathology. Biomolecules, 12(3), 440. https://doi.org/10.3390/biom12030440CrossRefGoogle ScholarPubMed
Pellerin, D., Ellezam, B., Korathanakhun, P., et al. (2020). multisystem proteinopathy associated with a VCP G156S mutation in a French Canadian family. Can J Neurol Sci, 47(3), 412415. https://doi.org/10.1017/cjn.2020.25CrossRefGoogle Scholar
Bergeron, D., Gorno-Tempini, M. L., Rabinovici, G. D., et al. (2018). Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia. Ann Neurol, 84(5), Article 5. https://doi.org/10.1002/ana.25333CrossRefGoogle ScholarPubMed
Spinelli, E. G., Mandelli, M. L., Miller, Z. A., et al. (2017). Typical and atypical pathology in primary progressive aphasia variants: pathology in PPA Variants. Ann Neurol, 81(3), Article 3. https://doi.org/10.1002/ana.24885CrossRefGoogle Scholar
Diggs, R. Neylan, K., Allen, I. E. et al. (2019). Getting to the root cause: an increased prevalence of stem careers in frontotemporal dementia. Poster presented at the Alzheimer’s Association International Conference, 2019, Los Angeles, CA. https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2019.06.4088CrossRefGoogle Scholar
Miller, Z. A., Rankin, K. P., Graff-Radford, N. R., et al. (2013). TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry, 84(9), 956962. https://doi.org/10.1136/jnnp-2012-304644CrossRefGoogle ScholarPubMed
Miller, Z. A., Sturm, V. E., Camsari, G. B., et al. (2016). Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts. Neurol Neuroimmunol Neuroinflamm, 3(6), Article 6. https://doi.org/10.1212/NXI.0000000000000301CrossRefGoogle ScholarPubMed
Illán-Gala, I., Lorca-Puls, D. L., Ezzes, Z., et al. (2024). Clinical dimensions along the progressive nonfluent variant primary progressive aphasia spectrum. Brain, 147(4), 15111525. https://doi.org/10.1101/2023.04.18.23288702CrossRefGoogle Scholar
Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2013). Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. Neurology, 81(4), Article 4. https://doi.org/10.1212/WNL.0b013e31829c5ed5CrossRefGoogle ScholarPubMed
Tetzloff, K. A., Duffy, J. R., Clark, H. M., et al. (2019). Progressive agrammatic aphasia without apraxia of speech as a distinct syndrome. Brain, 142(8), 24662482. https://doi.org/10.1093/brain/awz157CrossRefGoogle ScholarPubMed
Wilson, S., Henry, M., Besbri, M., et al. (2010). Connected speech production in three variants of primary progressive aphasia. Brain, 133(Pt 7), 20692088.10.1093/brain/awq129CrossRefGoogle ScholarPubMed
Thompson, C. K., & Mack, J. E. (2014). Grammatical impairments in PPA. Aphasiology, 28(8–9), 10181037. https://doi.org/10.1080/02687038.2014.912744CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2006). Clinicopathologic and imaging correlates of progressive aphasia and apraxia of speech. Brain, 129(Pt 6), Article Pt 6. https://doi.org/10.1093/brain/awl078CrossRefGoogle ScholarPubMed
Foxe, D., Irish, M., Hu, A., et al. (2021). Longitudinal cognitive and functional changes in primary progressive aphasia. J Neurol, 268(5), 19511961. https://doi.org/10.1007/s00415-020-10382-9CrossRefGoogle ScholarPubMed
Goodglass, H., & Kaplan, E. (1983). Boston Diagnostic Aphasia Examination (BDAE). Lea and Febiger. Distributed by Psychological Assessment Resources, Odessa, FL.Google Scholar
Kertesz, A. (1980). Western Aphasia Battery. University of Western Ontario Press.Google Scholar
Ogar, J. M., Dronkers, N. F., Brambati, S. M., et al. (2007). Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis Assoc Disord, 21(4), Article 4. https://doi.org/10.1097/WAD.0b013e31815d19feCrossRefGoogle ScholarPubMed
Ash, S., McMillan, C., Gunawardena, D., et al. (2010). Speech errors in progressive non-fluent aphasia. Brain Lang, 113(1), Article 1. https://doi.org/10.1016/j.bandl.2009.12.001CrossRefGoogle ScholarPubMed
Wertz, R. T., LaPointe, L. L., & Rosenbek, J. C. (1984). Apraxia of Speech: The Disorders and Its Management. Grune and Stratton.Google Scholar
Utianski, R. L., Duffy, J. R., Clark, H. M., et al. (2018). Prosodic and phonetic subtypes of primary progressive apraxia of speech. Brain Lang, 184, 5465. https://doi.org/10.1016/j.bandl.2018.06.004CrossRefGoogle ScholarPubMed
Thompson, C. K., Lukic, S., King, M. C., et al. (2012). Verb and noun deficits in stroke-induced and primary progressive aphasia: the Northwestern Naming Battery. Aphasiology, 26(5), 632655. https://doi.org/10.1080/02687038.2012.676852CrossRefGoogle ScholarPubMed
Rohrer, J. D., Rossor, M. N., & Warren, J. D. (2010). Syndromes of nonfluent primary progressive aphasia: a clinical and neurolinguistic analysis. Neurology, 75(7), Article 7. https://doi.org/10.1212/WNL.0b013e3181ed9c6bCrossRefGoogle ScholarPubMed
Rosen, H. J., Allison, S. C., Ogar, J. M., et al. (2006). Behavioral features in semantic dementia versus other forms of progressive aphasias. Neurology, 67(10), Article 10.10.1212/01.wnl.0000247630.29222.34CrossRefGoogle Scholar
Mandelli, M. L., Vitali, P., Santos, M., et al. (2016). Two insular regions are differentially involved in behavioral variant FTD and nonfluent/agrammatic variant PPA. Cortex, 74, 149157. doi: 10.1016/j.cortex.2015.10.012.CrossRefGoogle ScholarPubMed
Mandelli, M. L., Vilaplana, E., Brown, J. A., et al. (2016). Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia. Brain, 139(Pt 10), 27782791. doi: 10.1093/brain/aww195.CrossRefGoogle ScholarPubMed
Tetzloff, K. A., Duffy, J. R., Clark, H. M., et al. (2018). Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain, 141(1), 302317. https://doi.org/10.1093/brain/awx293CrossRefGoogle ScholarPubMed
Catani, M., Mesulam, M. M., Jakobsen, E., et al. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136(Pt 8), Article Pt 8. https://doi.org/10.1093/brain/awt163CrossRefGoogle ScholarPubMed
Mandelli, M. L., Caverzasi, E., Binney, R. J., et al. (2014). Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci, 34(29), 97549767. https://doi.org/10.1523/JNEUROSCI.3464-13.2014CrossRefGoogle ScholarPubMed
Galantucci, S., Tartaglia, M. C., Wilson, S. M., et al. (2011). White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain, 134(Pt 10), Article Pt 10. https://doi.org/10.1093/brain/awr099CrossRefGoogle ScholarPubMed
Grossman, M., Powers, J., Ash, S., et al. (2013). Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain Lang, 127(2), 106120. https://doi.org/10.1016/j.bandl.2012.10.005CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2012). Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain, 135(Pt 5), Article Pt 5. https://doi.org/10.1093/brain/aws032CrossRefGoogle ScholarPubMed
Mandelli, M. L., Welch, A. E., Vilaplana, E., et al. (2018). Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex, 108, 252264. https://doi.org/10.1016/j.cortex.2018.08.002CrossRefGoogle ScholarPubMed
Wilson, S. M., Dronkers, N. F., Ogar, J. M., et al. (2010). Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J Neurosci, 30(50), Article 50. https://doi.org/10.1523/JNEUROSCI.2547-10.2010CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Ogar, J. M., Brambati, S. M., et al. (2006). Anatomical correlates of early mutism in progressive nonfluent aphasia. Neurology, 67(10), Article 10. https://doi.org/10.1212/01.wnl.0000237038.55627.5bCrossRefGoogle ScholarPubMed
Santos-Santos, M. A., Rabinovici, G. D., Iaccarino, L., et al. (2018). Rates of amyloid imaging positivity in patients with primary progressive aphasia. JAMA Neurol, 75(3), Article 3. https://doi.org/10.1001/jamaneurol.2017.4309CrossRefGoogle ScholarPubMed
Josephs, K. A., Martin, P. R., Botha, H., et al. (2018). [18F]AV-1451 tau-PET and primary progressive aphasia. Ann Neurol, 83(3), 599611. https://doi.org/10.1002/ana.25183CrossRefGoogle ScholarPubMed
Schaeverbeke, J., Evenepoel, C., Declercq, L., et al. (2018). Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants. Eur J Nucl Med Mol Imaging, 45(13), 23422357. https://doi.org/10.1007/s00259-018-4075-3CrossRefGoogle ScholarPubMed
Yoon, C. W., Jeong, H. J., Seo, S., et al. (2018). 18F-THK5351 PET imaging in nonfluent-agrammatic variant primary progressive aphasia. Dement Neurocog Disord, 17(3), 110119. https://doi.org/10.12779/dnd.2018.17.3.110CrossRefGoogle ScholarPubMed
Lee, H., Seo, S., Lee, S.-Y., J., et al. (2018). 18F.-THK5351 PET imaging in patients with semantic variant primary progressive aphasia. Alzheimer Dis Assoc Disord, 32(1), 62. https://doi.org/10.1097/WAD.0000000000000216CrossRefGoogle ScholarPubMed
Makaretz, S. J., Quimby, M., Collins, J., et al. (2018). Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. J Neuro lNeurosurg Psychiatry, 89(10), 10241031. https://doi.org/10.1136/jnnp-2017-316409CrossRefGoogle ScholarPubMed
Deleon, J., & Miller, B. L. (2018). Frontotemporal dementia. In Geschwind, D. H., Paulson, H. L., Klein, C., eds. Handbook of Clinical Neurology (vol. 148). Elsevier; pp. 409430. https://doi.org/10.1016/B978-0-444-64076-5.00027-2Google Scholar
Santos-Santos, M. A., Mandelli, M. L., Binney, R. J., et al. (2016). Features of patients with nonfluent/agrammatic primary progressive aphasia with underlying progressive supranuclear palsy pathology or corticobasal degeneration. JAMA Neurol, 73(6), 733742. https://doi.org/10.1001/jamaneurol.2016.0412CrossRefGoogle ScholarPubMed
Rohrer, J. D., Lashley, T., Schott, J. M., et al. (2011). Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain, 134(Pt 9), Article Pt 9. https://doi.org/10.1093/brain/awr198CrossRefGoogle ScholarPubMed
Caso, F., Gesierich, B., Henry, M., et al. (2013). Nonfluent/agrammatic PPA with in-vivo cortical amyloidosis and Pick’s disease pathology. Behav Neurol, 26(1–2), Article 1–2. https://doi.org/10.3233/BEN-2012-120255CrossRefGoogle ScholarPubMed
Miller, Z., Bogley, R., Miller, C., et al. (2021). Increased prevalence of developmental stuttering across lvPPA, nfvPPA, and CBS spectrum degenerative disorders (2205). Neurology, 96(15 Suppl). https://n.neurology.org/content/96/15_Supplement/220510.1212/WNL.96.15_supplement.2205CrossRefGoogle Scholar
Weintraub, S., Rubin, N. P., & Mesulam, M.-M. (1990). Primary progressive aphasia: longitudinal course, neuropsychological profile, and language features. Arch Neurol, 47, 13291335.10.1001/archneur.1990.00530120075013CrossRefGoogle ScholarPubMed
Conca, F., Esposito, V., Giusto, G., et al. (2022). Characterization of the logopenic variant of primary progressive aphasia: a systematic review and meta-analysis. Ageing Res Rev, 82, 101760. https://doi.org/10.1016/j.arr.2022.101760CrossRefGoogle ScholarPubMed
Chare, L., Hodges, J. R., Leyton, C. E., et al. (2014). New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry, 85(8), Article 8. https://doi.org/10.1136/jnnp-2013-306948CrossRefGoogle ScholarPubMed
Catricalà, E., Santi, G. C., Polito, C., et al. (2022). Comprehensive qualitative characterization of linguistic performance profiles in primary progressive aphasia: a multivariate study with FDG-PET. Neurobiol Aging, 120, 137148. https://doi.org/10.1016/j.neurobiolaging.2022.09.001CrossRefGoogle ScholarPubMed
Rohrer, J. D., Ridgway, G. R., Crutch, S. J., et al. (2010). Progressive logopenic/phonological aphasia: erosion of the language network. NeuroImage, 49(1), 984993. https://doi.org/10.1016/j.neuroimage.2009.08.002CrossRefGoogle ScholarPubMed
Basaglia-Pappas, S., Laurent, B., Getenet, J.-C., et al. (2023). Executive profile of the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants and Alzheimer’s disease. Brain Sci, 13(3), Article 3. https://doi.org/10.3390/brainsci13030406CrossRefGoogle ScholarPubMed
Leyton, C. E., Hsieh, S., Mioshi, E., et al. (2013). Cognitive decline in logopenic aphasia: more than losing words. Neurology, 80(10), Article 10. https://doi.org/10.1212/WNL.0b013e318285c15bCrossRefGoogle ScholarPubMed
Leyton, C. E., Landin-Romero, R., Liang, C. T., et al. (2019). Correlates of anomia in non-semantic variants of primary progressive aphasia converge over time. Cortex, 120, 201211. https://doi.org/10.1016/j.cortex.2019.06.008CrossRefGoogle ScholarPubMed
Haley, K. L., Jacks, A., Jarrett, J., et al. (2021). Speech metrics and samples that differentiate between nonfluent/agrammatic and logopenic variants of primary progressive aphasia. JSLHR, 64(3), Article 3. https://doi.org/10.1044/2020_JSLHR-20-00445Google ScholarPubMed
Sajjadi, S. A., Patterson, K., Arnold, R. J., et al. (2012). Primary progressive aphasia: a tale of two syndromes and the rest. Neurology, 78(21), Article 21. https://doi.org/10.1212/WNL.0b013e3182574f79CrossRefGoogle ScholarPubMed
Tippett, D. C. (2020). Classification of primary progressive aphasia: challenges and complexities. F1000Research, 9, 64. https://doi.org/10.12688/f1000research.21184.1CrossRefGoogle ScholarPubMed
Kaplan, E. F., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Lea & Febiger.Google Scholar
Mack, J. E., Chandler, S. D., Meltzer-Asscher, A., et al. (2015). What do pauses in narrative production reveal about the nature of word retrieval deficits in PPA? Neuropsychologia, 77, 211222. https://doi.org/10.1016/j.neuropsychologia.2015.08.019CrossRefGoogle ScholarPubMed
Beeson, P. M., Rising, K., Kim, E. S., et al. (2010). A treatment sequence for phonological alexia/agraphia. J Speech Lang Hear Res, 53(2), Article 2. https://doi.org/10.1044/1092-4388(2009/08-0229)CrossRefGoogle ScholarPubMed
Teichmann, M., Kas, A., Boutet, C., et al. (2013). Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain, 136(Pt 11), Article Pt 11. https://doi.org/10.1093/brain/awt266CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Brambati, S. M., Ginex, V., et al. (2008). The logopenic/phonological variant of primary progressive aphasia. Neurology, 71(16), 12271234. https://doi.org/10.1212/01.wnl.0000320506.79811.daCrossRefGoogle ScholarPubMed
Migliaccio, R., Agosta, F., Possin, K. L., et al. (2012). White matter atrophy in Alzheimer’s disease variants. Alzheimers Dement, 8(5 Suppl), Article 5 Suppl. https://doi.org/10.1016/j.jalz.2012.04.010CrossRefGoogle ScholarPubMed
Whitwell, J. L., Jones, D. T., Duffy, J. R., et al. (2014). Working memory and language network dysfunctions in logopenic aphasia: a task-free fMRI comparison with Alzheimer’s dementia. Neurobiol Aging, 36(3),12451252. https://doi.org/10.1016/j.neurobiolaging.2014.12.013CrossRefGoogle ScholarPubMed
Tu, S., Leyton, C. E., Hodges, J. R., et al. (2015). Divergent longitudinal propagation of white matter degradation in logopenic and semantic variants of primary progressive aphasia. J Alzheimers Dis, 49(3), Article 3. https://doi.org/10.3233/JAD-150626CrossRefGoogle Scholar
Rogalski, E. J., Rademaker, A., Harrison, T. M., et al. (2011). ApoE E4 is a susceptibility factor in amnestic but not aphasic dementias. Alzheimer Dis Assoc Disorde, 25(2), Article 2. https://doi.org/10.1097/WAD.0b013e318201f249CrossRefGoogle Scholar
Munoz, D. G., Woulfe, J., & Kertesz, A. (2007). Argyrophilic thorny astrocyte clusters in association with Alzheimer’s disease pathology in possible primary progressive aphasia. Acta Neuropathol, 114(4), Article 4. https://doi.org/10.1007/s00401-007-0266-xCrossRefGoogle ScholarPubMed
Miller, Z. A., Spina, S., Pakvasa, M., et al. (2019). Cortical developmental abnormalities in logopenic variant primary progressive aphasia with dyslexia. Brain Commun, 1(1). https://doi.org/10.1093/braincomms/fcz027CrossRefGoogle ScholarPubMed
Ramos, E. M., Dokuru, D. R., Van Berlo, V., et al. (2019). Genetic screen in a large series of patients with primary progressive aphasia. Alzheimers & Dement, 15(4), 553560. https://doi.org/10.1016/j.jalz.2018.10.009CrossRefGoogle Scholar
Rohrer, J. D., Warren, J. D., Omar, R., et al. (2008). Parietal lobe deficits in frontotemporal lobar degeneration caused by a mutation in the progranulin gene. Arch Neuroly, 65(4), 506513. https://doi.org/10.1001/archneur.65.4.506CrossRefGoogle ScholarPubMed
Saracino, D., Ferrieux, S., Noguès-Lassiaille, M., et al. (2021). Primary progressive aphasia associated with GRN mutations: new insights into the nonamyloid logopenic variant. Neurology, 9 7(1), e88e102. https://doi.org/10.1212/WNL.0000000000012174Google Scholar
Momota, Y., Konishi, M., Takahata, K., et al. (2022). Case report: non-Alzheimer’s disease tauopathy with logopenic variant primary progressive aphasia diagnosed using amyloid and tau PET. Front Neurol, 13,1049113. https://doi.org/10.3389/fneur.2022.1049113CrossRefGoogle ScholarPubMed
Rogalski, E., Johnson, N., Weintraub, S., et al. (2008). Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives. Arch Neurol, 65(2), Article 2. https://doi.org/10.1001/archneurol.2007.34CrossRefGoogle ScholarPubMed
Miller, Z. A., Rosenberg, L., Santos-Santos, M. A., et al. (2018). Prevalence of mathematical and visuospatial learning disabilities in patients with posterior cortical atrophy. JAMA Neurol, 75(6), 728737. https://doi.org/10.1001/jamaneurol.2018.0395CrossRefGoogle ScholarPubMed
Harris, J. M., Gall, C., Thompson, J. C., et al. (2013). Classification and pathology of primary progressive aphasia. Neurology, 81(21), 18321839. https://doi.org/10.1212/01.wnl.0000436070.28137.7bCrossRefGoogle ScholarPubMed
Leyton, C. E., Villemagne, V. L., Savage, S., et al. (2011). Subtypes of progressive aphasia: application of the International Consensus Criteria and validation using beta-amyloid imaging. Brain, 134(Pt 10), Article Pt 10. https://doi.org/10.1093/brain/awr216CrossRefGoogle ScholarPubMed
Wicklund, M. R., Duffy, J. R., Strand, E. A., et al. (2014). Quantitative application of the primary progressive aphasia consensus criteria. Neurology, 82(13), 11191126. https://doi.org/10.1212/WNL.0000000000000261CrossRefGoogle ScholarPubMed
Leyton, C. E., Hodges, J. R., Piguet, O., et al. (2017). Common and divergent neural correlates of anomia in amnestic and logopenic presentations of Alzheimer’s disease. Cortex, 86, 4554. https://doi.org/10.1016/j.cortex.2016.10.019CrossRefGoogle ScholarPubMed
Reilly, J., Peelle, J. E., Antonucci, S. M., et al. (2011). Anomia as a marker of distinct semantic memory impairments in Alzheimer’s disease and semantic dementia. Neuropsychology, 25(4), 413426. https://doi.org/10.1037/a0022738CrossRefGoogle ScholarPubMed
Leyton, C. E., Savage, S., Irish, M., et al. (2014). Verbal repetition in primary progressive aphasia and Alzheimer’s disease. J Alzheimers Dis, 41(2), Article 2. https://doi.org/10.3233/JAD-132468CrossRefGoogle ScholarPubMed
Rohrer, J. D., Crutch, S. J., Warrington, E. K., et al. (2010). Progranulin-associated primary progressive aphasia: a distinct phenotype? Neuropsychologia, 48(1), 288297. https://doi.org/10.1016/j.neuropsychologia.2009.09.017CrossRefGoogle ScholarPubMed
Rogalski, E. J., & Mesulam, M. M. (2009). Clinical trajectories and biological features of primary progressive aphasia (PPA). Curr Alzheimer Res, 6(4), Article 4.10.2174/156720509788929264CrossRefGoogle ScholarPubMed
Boschi, V., Catricalà, E., Consonni, M., et al. (2017). connected speech in neurodegenerative language disorders: a review. Front Psychol, 8, 269. https://doi.org/10.3389/fpsyg.2017.00269CrossRefGoogle ScholarPubMed
Miller, B. L., Cummings, J., Mishkin, F., et al. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51(4), Article 4.10.1212/WNL.51.4.978CrossRefGoogle ScholarPubMed
Viskontas, I. V., Boxer, A. L., Fesenko, J., et al. (2011). Visual search patterns in semantic dementia show paradoxical facilitation of binding processes. Neuropsychologia, 49(3), 468478. https://doi.org/10.1016/j.neuropsychologia.2010.12.039CrossRefGoogle ScholarPubMed
Tee, B. L., Watson Pereira, C., Lukic, S., et al. (2022). Neuroanatomical correlations of visuospatial processing in primary progressive aphasia. Brain Commun, 4(2), fcac060. https://doi.org/10.1093/braincomms/fcac060CrossRefGoogle ScholarPubMed
Binney, R. J., Henry, M. L., Babiak, M., et al. (2016). Reading words and other people: a comparison of exception word, familiar face and affect processing in the left and right temporal variants of primary progressive aphasia. Cortex, 82, 147163. https://doi.org/10.1016/j.cortex.2016.05.014CrossRefGoogle ScholarPubMed
Omar, R., Rohrer, J. D., Hailstone, J. C., et al. (2011). Structural neuroanatomy of face processing in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry, 82(12), Article 12. https://doi.org/10.1136/jnnp.2010.227983CrossRefGoogle ScholarPubMed
Perry, R. J., Rosen, H. R., Kramer, J. H., et al. (2001). Hemispheric dominance for emotions, empathy and social behaviour: evidence from right and left handers with frontotemporal dementia. Neurocase, 7(2), Article 2.Google ScholarPubMed
Kumfor, F., & Piguet, O. (2012). Disturbance of emotion processing in frontotemporal dementia: a synthesis of cognitive and neuroimaging findings. Neuropsychol Rev, 22(3), 280297. https://doi.org/10.1007/s11065-012-9201-6CrossRefGoogle ScholarPubMed
Rosen, H. J., Perry, R. J., Murphy, J., et al. (2002). Emotion comprehension in the temporal variant of frontotemporal dementia. Brain, 125(Pt 10), Article Pt 10.10.1093/brain/awf225CrossRefGoogle ScholarPubMed
Pascual, B., Funk, Q., Zanotti-Fregonara, P., et al. (2021). Neuroinflammation in semantic variant primary progressive aphasia. J Nucl Med, 62(supplement 1), 101101.Google Scholar
Zhang, J. (2015). Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging. J Neuroinflamm, 12(1), 108. https://doi.org/10.1186/s12974-015-0236-5CrossRefGoogle ScholarPubMed
Volkmer, A., Rogalski, E., Henry, M., et al. (2020). Speech and language therapy approaches to managing primary progressive aphasia. Pract Neurol, 20(2), Article 2. https://doi.org/10.1136/practneurol-2018-001921CrossRefGoogle ScholarPubMed
Gervits, F., Ash, S., Coslett, H. B., et al. (2016). Transcranial direct current stimulation for the treatment of primary progressive aphasia: an open-label pilot study. Brain Lang, 162, 3541. https://doi.org/10.1016/j.bandl.2016.05.007CrossRefGoogle ScholarPubMed
Pytel, V., Cabrera-Martín, M. N., Delgado-Álvarez, A., et al. (2021). Personalized Repetitive Transcranial Magnetic Stimulation for Primary Progressive Aphasia. J Alzheimers Dis, 84(1), 151167. https://doi.org/10.3233/JAD-210566CrossRefGoogle ScholarPubMed

References

Rebeiz, JJ, Kolodny, EH, Richardson, EP Jr. Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol. 1968 Jan;18(1):2033.10.1001/archneur.1968.00470310034003CrossRefGoogle ScholarPubMed
Gibb, WR, Luthert, PJ, Marsden, CD. Corticobasal degeneration. Brain. 1989 Oct;112 (Pt 5):11711192.10.1093/brain/112.5.1171CrossRefGoogle ScholarPubMed
Riley, DE, Lang, AE, Lewis, A, et al. Cortical-basal ganglionic degeneration. Neurology. 1990 Aug;40(8):12031212.10.1212/WNL.40.8.1203CrossRefGoogle ScholarPubMed
Constantinidis, J, Richard, J, Tissot, R. Pick’s disease. Histological and clinical correlations. Eur Neurol. 1974;11(4):208217.10.1159/000114320CrossRefGoogle ScholarPubMed
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011 Aug;70(2):327340.10.1002/ana.22424CrossRefGoogle ScholarPubMed
Vanvoorst, WA, Greenaway, MC, Boeve, BF, et al. Neuropsychological findings in clinically atypical autopsy confirmed corticobasal degeneration and progressive supranuclear palsy. Parkinsonism Relat Disord. 2008;14(4):376378.10.1016/j.parkreldis.2007.09.006CrossRefGoogle ScholarPubMed
Grimes, DA, Lang, AE, Bergeron, CB. Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology. 1999 Dec 10;53(9):1969–1674.10.1212/WNL.53.9.1969CrossRefGoogle Scholar
Murray, R, Neumann, M, Forman, MS, et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology. 2007 Apr 17;68(16):12741283.10.1212/01.wnl.0000259519.78480.c3CrossRefGoogle ScholarPubMed
Kertesz, A, McMonagle, P, Blair, M, Davidson, W, Munoz, DG. The evolution and pathology of frontotemporal dementia. Brain. 2005 Sep;128(Pt 9):19962005.10.1093/brain/awh598CrossRefGoogle ScholarPubMed
Geda, YE, Boeve, BF, Negash, S, et al. Neuropsychiatric features in 36 pathologically confirmed cases of corticobasal degeneration. J Neuropsychiatry Clin Neurosci. 2007 Winter;19(1):7780.10.1176/jnp.2007.19.1.77CrossRefGoogle ScholarPubMed
Togasaki, DM, Tanner, CM. Epidemiologic aspects. Adv Neurol. 2000;82:5359.Google ScholarPubMed
Morimatsu, M, Negoro, K. [Provisional diagnostic criteria of corticobasal degeneration (CBD) and the survey of patients with CBD in Japan]. Rinsho Shinkeigaku. 2002 Nov;42(11):11501153.Google ScholarPubMed
Wenning, GK, Litvan, I, Jankovic, J, et al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry. 1998 Feb;64(2):184189.10.1136/jnnp.64.2.184CrossRefGoogle ScholarPubMed
Armstrong, MJ, Litvan, I, Lang, AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013 Jan 29;80(5):496503.10.1212/WNL.0b013e31827f0fd1CrossRefGoogle ScholarPubMed
Bugiani, O, Murrell, JR, Giaccone, G, et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol. 1999 Jun;58(6):667677.10.1097/00005072-199906000-00011CrossRefGoogle Scholar
Spillantini, MG, Yoshida, H, Rizzini, C, 9 et al. A novel tau mutation (N296 N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann Neurol. 2000 Dec;48(6):939943.10.1002/1531-8249(200012)48:6<939::AID-ANA17>3.0.CO;2-13.0.CO;2-1>CrossRefGoogle Scholar
Rossi, G, Marelli, C, Farina, L, et al. The G389 R mutation in the MAPT gene presenting as sporadic corticobasal syndrome. Mov Disord. 2008 Apr 30;23(6):892895.10.1002/mds.21970CrossRefGoogle Scholar
Yu, CE, Bird, TD, Bekris, LM, et al. The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol. 2010 Feb;67(2):161170.10.1001/archneurol.2009.328CrossRefGoogle ScholarPubMed
Rohrer, JD, Beck, J, Warren, JD, et al. Corticobasal syndrome associated with a novel 1048_1049insG progranulin mutation. J Neurol Neurosurg Psychiatry. 2009 Nov;80(11):12971298.10.1136/jnnp.2008.169383CrossRefGoogle ScholarPubMed
Masellis, M, Momeni, P, Meschino, W, et al. Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain. 2006 Nov;129(Pt 11):31153123.10.1093/brain/awl276CrossRefGoogle ScholarPubMed
Conrad, C, Amano, N, Andreadis, A, et al. Differences in a dinucleotide repeat polymorphism in the tau gene between Caucasian and Japanese populations: implication for progressive supranuclear palsy. Neurosci Lett. 1998 Jul 3;250(2):135137.10.1016/S0304-3940(98)00417-0CrossRefGoogle Scholar
Evans, W, Fung, HC, Steele, J, et al. The tau H2 haplotype is almost exclusively Caucasian in origin. Neurosci Lett. 2004 Oct 21;369(3):183185.10.1016/j.neulet.2004.05.119CrossRefGoogle ScholarPubMed
Baker, M, Litvan, I, Houlden, H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet. 1999 Apr;8(4):711715.10.1093/hmg/8.4.711CrossRefGoogle ScholarPubMed
Houlden, H, Baker, M, Morris, HR, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001 Jun 26;56(12):17021706.10.1212/WNL.56.12.1702CrossRefGoogle Scholar
Verpillat, P, Camuzat, A, Hannequin, D, et al. Association between the extended tau haplotype and frontotemporal dementia. Arch Neurol. 2002 Jun;59(6):935939.10.1001/archneur.59.6.935CrossRefGoogle ScholarPubMed
Hughes, A, Mann, D, Pickering-Brown, S. Tau haplotype frequency in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Exp Neurol. 2003 May;181(1):1216.10.1016/S0014-4886(03)00024-4CrossRefGoogle ScholarPubMed
Sobrido, MJ, Abu-Khalil, A, Weintraub, S, et al. Possible association of the tau H1/H1 genotype with primary progressive aphasia. Neurology. 2003 Mar 11;60(5):862864.10.1212/01.WNL.0000049473.36612.F2CrossRefGoogle ScholarPubMed
Kouri, N, Ross, OA, Dombroski, B, et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun. 2015 Jun 16;6:7247.10.1038/ncomms8247CrossRefGoogle ScholarPubMed
Kertesz, A, Martinez-Lage, P, Davidson, W, Munoz, DG. The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology. 2000 Nov 14;55(9):13681375.10.1212/WNL.55.9.1368CrossRefGoogle ScholarPubMed
Graham, NL, Bak, TH, Hodges, JR. Corticobasal degeneration as a cognitive disorder. Mov Disord. 2003 Nov;18(11):12241232.10.1002/mds.10536CrossRefGoogle ScholarPubMed
Pillon, B, Blin, J, Vidailhet, M, et al. The neuropsychological pattern of corticobasal degeneration: comparison with progressive supranuclear palsy and Alzheimer’s disease. Neurology. 1995 Aug;45(8):14771483.10.1212/WNL.45.8.1477CrossRefGoogle ScholarPubMed
Belfor, N, Amici, S, Boxer, AL, et al. Clinical and neuropsychological features of corticobasal degeneration. Mech Ageing Dev. 2006 Feb;127(2):203207.10.1016/j.mad.2005.09.013CrossRefGoogle ScholarPubMed
Rascovsky, K, Hodges, JR, Knopman, D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. Aug 2;2011;134(Pt 9):24562477.10.1093/brain/awr179CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011 Mar 15;76(11):10061014.10.1212/WNL.0b013e31821103e6CrossRefGoogle ScholarPubMed
Boeve, BF, Maraganore, DM, Parisi, JE, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology. 1999 Sep 11;53(4):795800.10.1212/WNL.53.4.795CrossRefGoogle ScholarPubMed
Josephs, KA, Dickson, DW. Diagnostic accuracy of progressive supranuclear palsy in the Society for Progressive Supranuclear Palsy brain bank. Mov Disord. 2003 Sep;18(9):10181026.10.1002/mds.10488CrossRefGoogle Scholar
Josephs, KA, Petersen, RC, Knopman, DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006 Jan 10;66(1):4148.10.1212/01.wnl.0000191307.69661.c3CrossRefGoogle ScholarPubMed
Rohrer, JD, Geser, F, Zhou, J, et al. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology. 2010 Dec 14;75(24):22042211.10.1212/WNL.0b013e318202038cCrossRefGoogle ScholarPubMed
Spinelli, EG, Mandelli, ML, Miller, ZA, et al. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol. 2017 Mar 20;81(3):430443.10.1002/ana.24885CrossRefGoogle ScholarPubMed
Wakabayashi, K, Oyanagi, K, Makifuchi, T, et al. Corticobasal degeneration: etiopathological significance of the cytoskeletal alterations. Acta Neuropathol. 1994;87(6):545553.10.1007/BF00293314CrossRefGoogle ScholarPubMed
Buee Scherrer, V, Hof, PR, Buee, L, et al. Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick’s disease. Acta Neuropathol. 1996;91(4):351359.10.1007/s004010050436CrossRefGoogle ScholarPubMed
Grundke-Iqbal, I, Iqbal, K, Quinlan, M, et al. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986 May 5;261(13):60846089.10.1016/S0021-9258(17)38495-8CrossRefGoogle ScholarPubMed
Witman, GB, Cleveland, DW, Weingarten, MD, Kirschner, MW. Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci U S A. 1976 Nov;73(11):40704074.10.1073/pnas.73.11.4070CrossRefGoogle ScholarPubMed
Cairns, NJ, Bigio, EH, Mackenzie, IR, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 2007 Jul;114(1):522.10.1007/s00401-007-0237-2CrossRefGoogle Scholar
Dickson, DW, Bergeron, C, Chin, SS, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002 Nov;61(11):935946.10.1093/jnen/61.11.935CrossRefGoogle ScholarPubMed
Komori, T, Arai, N, Oda, M, et al. Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol. 1998 Oct;96(4):401840.10.1007/s004010050911CrossRefGoogle Scholar
Feany, MB, Dickson, DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol. 1995 Jun;146(6):13881396.Google ScholarPubMed
Litvan, I, Agid, Y, Goetz, C, et al. Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study. Neurology. 1997 Jan;48(1):119125.10.1212/WNL.48.1.119CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M, Bigio, EH, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010 Jan;119(1):14.10.1007/s00401-009-0612-2CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006 Jun;129(Pt 6):13851398.10.1093/brain/awl078CrossRefGoogle ScholarPubMed
Ling, H, O’Sullivan, SS, Holton, JL, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain. 2010 Jul;133(Pt 7):20452057.10.1093/brain/awq123CrossRefGoogle ScholarPubMed
Hu, WT, Rippon, GW, Boeve, BF, et al. Alzheimer’s disease and corticobasal degeneration presenting as corticobasal syndrome. Mov Disord. 2009 Jul 15;24(9):13751379.10.1002/mds.22574CrossRefGoogle ScholarPubMed
Shelley, BP, Hodges, JR, Kipps, CM, Xuereb, JH, Bak, TH. Is the pathology of corticobasal syndrome predictable in life? Mov Disord. 2009 Aug 15;24(11):15931599.10.1002/mds.22558CrossRefGoogle Scholar
Sha, SJ, Ghosh, PM, Lee, SE, et al. Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. Alzheimers Res Ther. 2015;7(1):8.10.1186/s13195-014-0093-yCrossRefGoogle ScholarPubMed
Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy. a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964 Apr;10:333359.10.1001/archneur.1964.00460160003001CrossRefGoogle ScholarPubMed
Chambers, CB, Lee, JM, Troncoso, JC, Reich, S, Muma, NA. Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer’s disease. Ann Neurol. 1999 Sep;46(3):325332.10.1002/1531-8249(199909)46:3<325::AID-ANA8>3.0.CO;2-V3.0.CO;2-V>CrossRefGoogle Scholar
Steele, JC. Progressive supranuclear palsy. Brain. 1972;95(4):693704.Google ScholarPubMed
David, NJ, Mackey, EA, Smith, JL. Further observations in progressive supranuclear palsy. Neurology. 1968 Apr;18(4):349356.10.1212/WNL.18.4.349CrossRefGoogle ScholarPubMed
Litvan, I, Agid, Y, Calne, D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology. 1996 Jul;47(1):19.10.1212/WNL.47.1.1CrossRefGoogle ScholarPubMed
Höglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853864.10.1002/mds.26987CrossRefGoogle ScholarPubMed
Osaki, Y, Ben-Shlomo, Y, Lees, AJ, et al. Accuracy of clinical diagnosis of progressive supranuclear palsy. Movement Disord. 2004 Feb;19(2):181189.10.1002/mds.10680CrossRefGoogle ScholarPubMed
Litvan, I, Agid, Y, Jankovic, J, et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Neurology. 1996 Apr;46(4):922930.10.1212/WNL.46.4.922CrossRefGoogle ScholarPubMed
Hughes, AJ, Daniel, SE, Ben-Shlomo, Y, Lees, AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain. 2002 Apr;125(Pt 4):861870.10.1093/brain/awf080CrossRefGoogle Scholar
Daniel, SE, de Bruin, VM, Lees, AJ. The clinical and pathological spectrum of Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy): a reappraisal. Brain. 1995 Jun;118 (Pt 3):759770.10.1093/brain/118.3.759CrossRefGoogle ScholarPubMed
Litvan, I, Grimes, DA, Lang, AE, et al. Clinical features differentiating patients with postmortem confirmed progressive supranuclear palsy and corticobasal degeneration. J Neurol. 1999 Sep;246 (Suppl 2):II1–II5.10.1007/BF03161075CrossRefGoogle ScholarPubMed
Morris, HR, Gibb, G, Katzenschlager, R, et al. Pathological, clinical and genetic heterogeneity in progressive supranuclear palsy. Brain. 2002 May;125(Pt 5):969975.10.1093/brain/awf109CrossRefGoogle ScholarPubMed
Respondek, G, Stamelou, M, Kurz, C, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord. 2014 Dec;29(14):17581766.10.1002/mds.26054CrossRefGoogle ScholarPubMed
Wadia, PM, Lang, AE. The many faces of corticobasal degeneration. Parkinsonism Relat Disord. 2007;13(Suppl 3):S336S340.10.1016/S1353-8020(08)70027-0CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, et al. The prevalence of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) in the UK. Brain. 2001 Jul;124(Pt 7):14381449.10.1093/brain/124.7.1438CrossRefGoogle ScholarPubMed
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999 Nov 20;354(9192):17711775.10.1016/S0140-6736(99)04137-9CrossRefGoogle ScholarPubMed
Bower, JH, Maraganore, DM, McDonnell, SK, Rocca, WA. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology. 1997 Nov;49(5):12841288.10.1212/WNL.49.5.1284CrossRefGoogle ScholarPubMed
Takigawa, H, Kitayama, M, Wada-Isoe, K, Kowa, H, Nakashima, K. Prevalence of progressive supranuclear palsy in Yonago: change throughout a decade. Brain Behav. 2016 Dec;6(12):e00557.10.1002/brb3.557CrossRefGoogle ScholarPubMed
Maher, ER, Lees, AJ. The clinical features and natural history of the Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology. 1986 Jul;36(7):10051008.10.1212/WNL.36.7.1005CrossRefGoogle ScholarPubMed
Golbe, LI, Davis, PH, Schoenberg, BS, Duvoisin, RC. Prevalence and natural history of progressive supranuclear palsy. Neurology. 1988 Jul;38(7):10311034.10.1212/WNL.38.7.1031CrossRefGoogle ScholarPubMed
Donker Kaat, L, Boon, AJ, Azmani, A, et al. Familial aggregation of parkinsonism in progressive supranuclear palsy. Neurology. 2009 Jul 14;73(2):98105.10.1212/WNL.0b013e3181a92bccCrossRefGoogle ScholarPubMed
Dickson, DW, Rademakers, R, Hutton, ML. Progressive supranuclear palsy: pathology and genetics. Brain Pathol. 2007 Jan;17(1):7482.10.1111/j.1750-3639.2007.00054.xCrossRefGoogle ScholarPubMed
Hoglinger, GU, Melhem, NM, Dickson, DW, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011 Jul;43(7):699705.10.1038/ng.859CrossRefGoogle ScholarPubMed
Bonham, LW, Karch, CM, Fan, CC, et al. CXCR4 involvement in neurodegenerative diseases. Transl Psychiatry. 2018 Apr 11;8(1):73.10.1038/s41398-017-0049-7CrossRefGoogle ScholarPubMed
Zhao, Y, Tseng, I-C, Heyser, CJ, et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron. 2015 Sep 2;87(5):963975.10.1016/j.neuron.2015.08.020CrossRefGoogle ScholarPubMed
Boxer, AL, Garbutt, S, Seeley, WW, et al. Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch Neurol. Apr;69(4):509517.10.1001/archneurol.2011.1021CrossRefGoogle Scholar
Rivaud-Pechoux, S, Vidailhet, M, Gallouedec, G, et al. Longitudinal ocular motor study in corticobasal degeneration and progressive supranuclear palsy. Neurology. 2000 Mar 14;54(5):10291032.10.1212/WNL.54.5.1029CrossRefGoogle ScholarPubMed
Garbutt, S, Matlin, A, Hellmuth, J, et al. Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer’s disease. Brain. 2008 May;131(Pt 5):12681281.10.1093/brain/awn047CrossRefGoogle ScholarPubMed
Vidailhet, M, Rivaud, S, Gouider-Khouja, N, et al. Eye movements in parkinsonian syndromes. Ann Neurol. 1994 Apr;35(4):420426.10.1002/ana.410350408CrossRefGoogle ScholarPubMed
Rottach, KG, Riley, DE, DiScenna, AO, Zivotofsky, AZ, Leigh, RJ. Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes. Ann Neurol. 1996 Mar;39(3):368377.10.1002/ana.410390314CrossRefGoogle ScholarPubMed
Golbe, LI, Davis, PH, Lepore, FE. Eyelid movement abnormalities in progressive supranuclear palsy. Mov Disord. 1989;4(4):297302.10.1002/mds.870040402CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, Lees, AJ, Burn, DJ. Clinical features and natural history of progressive supranuclear palsy: a clinical cohort study. Neurology. 2003 Mar 25;60(6):910916.10.1212/01.WNL.0000052991.70149.68CrossRefGoogle ScholarPubMed
Donker Kaat, L, Boon, AJ, Kamphorst, W, et al. Frontal presentation in progressive supranuclear palsy. Neurology. 2007 Aug 21;69(8):723729.10.1212/01.wnl.0000267643.24870.26CrossRefGoogle ScholarPubMed
Kertesz, A, McMonagle, P. Behavior and cognition in corticobasal degeneration and progressive supranuclear palsy. J Neurol Sci. 2010 Feb 15;289(1–2):138143.10.1016/j.jns.2009.08.036CrossRefGoogle ScholarPubMed
Litvan, I, Mega, MS, Cummings, JL, Fairbanks, L. Neuropsychiatric aspects of progressive supranuclear palsy. Neurology. 1996 Nov;47(5):11841189.10.1212/WNL.47.5.1184CrossRefGoogle ScholarPubMed
Pillon, B, Gouider-Khouja, N, Deweer, B, et al. Neuropsychological pattern of striatonigral degeneration: comparison with Parkinson’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1995 Feb;58(2):174179.10.1136/jnnp.58.2.174CrossRefGoogle ScholarPubMed
Lantos, PL. The neuropathology of progressive supranuclear palsy. J Neural Transm Suppl. 1994;42:137152.10.1007/978-3-7091-6641-3_11CrossRefGoogle ScholarPubMed
Williams, DR, de Silva, R, Paviour, DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain. 2005 Jun;128(Pt 6):12471258.10.1093/brain/awh488CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, C, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain. 2007 Jun;130(Pt 6):15661576.10.1093/brain/awm104CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, K, Revesz, T, Lees, AJ. Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Move Disord. 2007 Nov 15;22(15):22352241.10.1002/mds.21698CrossRefGoogle ScholarPubMed
Dickson, DW, Ahmed, Z, Algom, AA, Tsuboi, Y, Josephs, KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol. 2010 Aug;23(4):394400.10.1097/WCO.0b013e32833be924CrossRefGoogle ScholarPubMed
Tagliavini, F, Pilleri, G, Bouras, C, Constantinidis, J. The basal nucleus of Meynert in patients with progressive supranuclear palsy. Neurosci Lett. 1984 Jan 27;44(1):3742.10.1016/0304-3940(84)90217-9CrossRefGoogle ScholarPubMed
Nishimura, M, Namba, Y, Ikeda, K, Oda, M. Glial fibrillary tangles with straight tubules in the brains of patients with progressive supranuclear palsy. Neurosci Lett. 1992 Aug 31;143(1–2):3538.10.1016/0304-3940(92)90227-XCrossRefGoogle ScholarPubMed
Matsusaka, H, Ikeda, K, Akiyama, H, et al. Astrocytic pathology in progressive supranuclear palsy: significance for neuropathological diagnosis. Acta Neuropathol. 1998 Sep;96(3):248252.10.1007/s004010050891CrossRefGoogle ScholarPubMed
Arima, K, Nakamura, M, Sunohara, N, et al. Ultrastructural characterization of the tau-immunoreactive tubules in the oligodendroglial perikarya and their inner loop processes in progressive supranuclear palsy. Acta Neuropathol. 1997 Jun;93(6):558566.10.1007/s004010050652CrossRefGoogle ScholarPubMed
Arai, H, Morikawa, Y, Higuchi, M, et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun. 1997 Jul 18;236(2):262264.10.1006/bbrc.1997.6908CrossRefGoogle ScholarPubMed
Noguchi, M, Yoshita, M, Matsumoto, Y, et al. Decreased beta-amyloid peptide42 in cerebrospinal fluid of patients with progressive supranuclear palsy and corticobasal degeneration. J Neurol Sci. 2005 Oct 15;237(1–2):6165.10.1016/j.jns.2005.05.015CrossRefGoogle ScholarPubMed
Urakami, K, Wada, K, Arai, H, et al. Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. J Neurol Sci. 2001 Jan 15;183(1):9598.10.1016/S0022-510X(00)00480-9CrossRefGoogle ScholarPubMed
Mitani, K, Furiya, Y, Uchihara, T, et al. Increased CSF tau protein in corticobasal degeneration. J Neurol. 1998 Jan;245(1):4446.10.1007/s004150050173CrossRefGoogle ScholarPubMed
Rojas, JC, Bang, J, Lobach, IV, et al. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology. 2018 Jan 23;90(4):e273e281.10.1212/WNL.0000000000004859CrossRefGoogle ScholarPubMed
Verbeek, MM, Abdo, WF, De Jong, D, et al. Cerebrospinal fluid Abeta42 levels in multiple system atrophy. Mov Disord. 2004 Feb;19(2):238240; author reply 240–241.10.1002/mds.10687CrossRefGoogle ScholarPubMed
Holmberg, B, Johnels, B, Blennow, K, Rosengren, L. Cerebrospinal fluid Abeta42 is reduced in multiple system atrophy but normal in Parkinson’s disease and progressive supranuclear palsy. Mov Disord. 2003 Feb;18(2):186190.10.1002/mds.10321CrossRefGoogle ScholarPubMed
Brettschneider, J, Petzold, A, Sussmuth, SD, et al. Neurofilament heavy-chain NfH(SMI35) in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Mov Disord. 2006 Dec;21(12):22242227.10.1002/mds.21124CrossRefGoogle ScholarPubMed
Rojas, JC, Karydas, A, Bang, J, et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Clin Transl Neurol. 2016 Mar;3(3):216225.10.1002/acn3.290CrossRefGoogle ScholarPubMed
Whitwell, JL, Jack, CR, Boeve, BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology. 2010 Nov 23;75(21):18791887.10.1212/WNL.0b013e3181feb2e8CrossRefGoogle ScholarPubMed
Oba, H, Yagishita, A, Terada, H, et al. New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology. 2005 Jun 28;64(12):20502055.10.1212/01.WNL.0000165960.04422.D0CrossRefGoogle ScholarPubMed
Quattrone, A, Nicoletti, G, Messina, D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology. 2008 Jan;246(1):214221.10.1148/radiol.2453061703CrossRefGoogle ScholarPubMed
Brenneis, C, Seppi, K, Schocke, M, et al. Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2004 Feb;75(2):246249.Google ScholarPubMed
Boxer, AL, Geschwind, MD, Belfor, N, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006 Jan;63(1):8186.10.1001/archneur.63.1.81CrossRefGoogle ScholarPubMed
Price, S, Paviour, D, Scahill, R, et al. Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson’s disease. NeuroImage. 2004 Oct;23(2):663669.10.1016/j.neuroimage.2004.06.013CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Dickson, DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging. 2008 Feb;29(2):280289.10.1016/j.neurobiolaging.2006.09.019CrossRefGoogle ScholarPubMed
Okamura, N, Furumoto, S, Fodero-Tavoletti, MT, et al. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain. 2014 Jun;137(Pt 6):17621771.10.1093/brain/awu064CrossRefGoogle ScholarPubMed
Sander, K, Lashley, T, Gami, P, et al. Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer’s disease, primary tauopathies, and other dementias. Alzheimers Dement. 2016 Nov 1;12(11):11161124.10.1016/j.jalz.2016.01.003CrossRefGoogle ScholarPubMed
Marquié, M, Normandin, MD, Vanderburg, CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787800.10.1002/ana.24517CrossRefGoogle ScholarPubMed
Lowe, VJ, Curran, G, Fang, P, et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun. 2016 Jun 13;4(1):58.10.1186/s40478-016-0315-6CrossRefGoogle ScholarPubMed
Cho, H, Choi, JY, Hwang, MS, et al. Subcortical 18F-AV-1451 binding patterns in progressive supranuclear palsy. Mov Disord. 2017;32(1):134140.10.1002/mds.26844CrossRefGoogle ScholarPubMed
Passamonti, L, Vázquez Rodríguez, P, Hong, YT, et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017 Mar 1;140(3):781791.Google ScholarPubMed
Schonhaut, DR, McMillan, CT, Spina, S, et al. 18F-Flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol. 2017;82(4):622634.10.1002/ana.25060CrossRefGoogle ScholarPubMed
Soleimani-Meigooni, DN, Iaccarino, L, La Joie, R, et al. 18F-Flortaucipir PET to autopsy comparisons in Alzheimer’s disease and other neurodegenerative diseases. Brain. 2020 Dec 5;143(11):34773494.10.1093/brain/awaa276CrossRefGoogle ScholarPubMed
Whitwell, JL, Lowe, VJ, Tosakulwong, N, et al. [18F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord. 2017 Jan;32(1):124133.10.1002/mds.26834CrossRefGoogle ScholarPubMed
Passamonti, L, Vázquez Rodríguez, P, Hong, YT et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017 Mar 1;140(3):781791.Google ScholarPubMed
Coakeley, S, Cho, SS, Koshimori, Y, et al. Positron emission tomography imaging of tau pathology in progressive supranuclear palsy. J Cereb Blood Flow Metab. 2017 Sep 1;37(9):31503160.10.1177/0271678X16683695CrossRefGoogle ScholarPubMed
Smith, R, Schöll, M, Honer, M, et al. Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy. Acta Neuropathol. 2017 Jan 1;133(1):149151.10.1007/s00401-016-1650-1CrossRefGoogle Scholar
Soleimani‐Meigooni, DN, Iaccarino, L, Joie, RL, et al. [18F]Flortaucipir PET to autopsy pathology comparisons in Alzheimer’s disease and other neurodegenerative diseases. Alzheimers Dement. 2020;16(S4):e046262.10.1002/alz.046262CrossRefGoogle Scholar
Ono, M, Sahara, N, Kumata, K, et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain. 2017 Mar 1;140(3):764780.Google ScholarPubMed
Endo, H, Shimada, H, Sahara, N, et al. In vivo binding of a tau imaging probe, [11C]PBB3, in patients with progressive supranuclear palsy. Mov Disord. 2019;34(5):744754.10.1002/mds.27643CrossRefGoogle Scholar
Ishiki, A, Harada, R, Kai, H, et al. Neuroimaging-pathological correlations of [18F]THK5351 PET in progressive supranuclear palsy. Acta Neuropathol Commun. 2018 Jun 29;6(1):53.10.1186/s40478-018-0556-7CrossRefGoogle ScholarPubMed
Brendel, M, Barthel, H, van Eimeren, T, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol. 2020 Nov 1;77(11):14081419.10.1001/jamaneurol.2020.2526CrossRefGoogle ScholarPubMed
Whitwell, JL, Tosakulwong, N, Schwarz, CG et al. MRI outperforms [18F]AV-1451 PET as a longitudinal biomarker in progressive supranuclear palsy. Mov Disord. 2019;34(1):105113.10.1002/mds.27546CrossRefGoogle ScholarPubMed
Coughlin, DG, Litvan, I. Progressive supranuclear palsy: advances in diagnosis and management. Parkinsonism Relat Disord. 2020;73:105116.10.1016/j.parkreldis.2020.04.014CrossRefGoogle ScholarPubMed
Kompoliti, K, Goetz, CG, Litvan, I, Jellinger, K, Verny, M. Pharmacological therapy in progressive supranuclear palsy. Arch Neurol. 1998 Aug;55(8):10991102.10.1001/archneur.55.8.1099CrossRefGoogle ScholarPubMed
Stamelou, M, de Silva, R, Arias-Carrion, O, et al. Rational therapeutic approaches to progressive supranuclear palsy. Brain. 2010 Jun;133(Pt 6):15781590.10.1093/brain/awq115CrossRefGoogle ScholarPubMed

References

Reisberg, B, Ferris, SH, de Leon, MJ, Crook, T. Global Deterioration Scale (GDS). Psychopharmacol Bull. 1988;24:661663.Google ScholarPubMed
Petersen, RC, Smith, GE, Waring, SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303308.10.1001/archneur.56.3.303CrossRefGoogle ScholarPubMed
Winblad, B, Palmer, K, Kivipelto, M, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240246.10.1111/j.1365-2796.2004.01380.xCrossRefGoogle Scholar
Petersen, RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183194.10.1111/j.1365-2796.2004.01388.xCrossRefGoogle ScholarPubMed
Petersen, RC. Mild cognitive impairment. Continuum (Minneap Minn). 2016;22:404418.10.1212/CON.0000000000000313CrossRefGoogle ScholarPubMed
Petersen, RC, Caracciolo, B, Brayne, C, et al. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275:214228.10.1111/joim.12190CrossRefGoogle ScholarPubMed
Petersen, RC. Clinical practice. Mild cognitive impairment.N Engl J Med. 2011;364:22272234.10.1056/NEJMcp0910237CrossRefGoogle ScholarPubMed
Petersen, RC, Thomas, RG, Grundman, M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352:23792388.10.1056/NEJMoa050151CrossRefGoogle ScholarPubMed
Albert, MS, DeKosky, ST, Dickson, D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s Association Workgroup. Alzheimers Dement. 2011;7:270279.10.1016/j.jalz.2011.03.008CrossRefGoogle Scholar
McKhann, GM, Knopman, DS, Chertkow, H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup. Alzheimers Dement. 2011;7:263269.10.1016/j.jalz.2011.03.005CrossRefGoogle Scholar
Jack, CR Jr, Albert, MS, Knopman, DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:2572562.10.1016/j.jalz.2011.03.004CrossRefGoogle Scholar
Sperling, RA, Aisen, PS, Beckett, LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280292.10.1016/j.jalz.2011.03.003CrossRefGoogle ScholarPubMed
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Washington, DC: American Psychiatric Publishing, 2013.Google Scholar
Jack, CR Jr, Bennett, DA, Blennow, K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535562.10.1016/j.jalz.2018.02.018CrossRefGoogle Scholar
Petersen, RC. How early can we diagnose Alzheimer disease (and is it sufficient)? The 2017 Wartenberg Lecture. Neurology. 2018;91:395402.10.1212/WNL.0000000000006088CrossRefGoogle ScholarPubMed
Petersen, RC, Wiste, HJ, Weigand, SD, et al. NIA-AA Alzheimer’s Disease Framework: clinical characterization of stages. Ann Neurol. 2021;89:11451156.10.1002/ana.26071CrossRefGoogle ScholarPubMed
Dubois, B, Villain, N, Frisoni, GB, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021;20:484496.10.1016/S1474-4422(21)00066-1CrossRefGoogle ScholarPubMed
Vos, SJ, Verhey, F, Frolich, L, et al. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain. 2015;138:13271338.10.1093/brain/awv029CrossRefGoogle ScholarPubMed
Petersen, RC, Lopez, O, Armstrong, MJ, et al. Practice guideline update summary: mild cognitive impairment: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90:126135.Google Scholar
van Harten, AC, Mielke, MM, Swenson-Dravis, DM, et al. Subjective cognitive decline and risk of MCI: the Mayo Clinic Study of Aging. Neurology. 2018;91:e300e312.10.1212/WNL.0000000000005863CrossRefGoogle ScholarPubMed
Folstein, MF, Folstein, SE, McHugh, PR. “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189198.10.1016/0022-3956(75)90026-6CrossRefGoogle ScholarPubMed
Kokmen, E, Smith, GE, Petersen, RC, Tangalos, E, Ivnik, RC. The short test of mental status. Correlations with standardized psychometric testing. Arch Neurol. 1991;48:725728.10.1001/archneur.1991.00530190071018CrossRefGoogle ScholarPubMed
Nasreddine, ZS, Phillips, NA, Bedirian, V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695699.10.1111/j.1532-5415.2005.53221.xCrossRefGoogle Scholar
Nelson, PT, Dickson, DW, Trojanowski, JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:15031527.10.1093/brain/awz099CrossRefGoogle ScholarPubMed
Abner, EL, Kryscio, RJ, Schmitt, FA, et al. Outcomes after diagnosis of mild cognitive impairment in a large autopsy series. Ann Neurol. 2017;81:549559.10.1002/ana.24903CrossRefGoogle Scholar
Mattsson, N, Zetterberg, H, Hansson, O, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302:385393.10.1001/jama.2009.1064CrossRefGoogle ScholarPubMed
Blennow, K, Chen, C, Cicognola, C, et al. Cerebrospinal fluid tau fragment correlates with tau PET: a candidate biomarker for tangle pathology. Brain. 2020;143:650660.10.1093/brain/awz346CrossRefGoogle ScholarPubMed
Zetterberg, H, Skillback, T, Mattsson, N, et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol. 2016;73:6067.10.1001/jamaneurol.2015.3037CrossRefGoogle ScholarPubMed
Klunk, WE, Engler, H, Nordberg, A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306319.10.1002/ana.20009CrossRefGoogle ScholarPubMed
de Wolf, F, Ghanbari, M, Licher, S, et al. Plasma tau, neurofilament light chain and amyloid-beta levels and risk of dementia; a population-based cohort study. Brain. 2020;143:12201232.10.1093/brain/awaa054CrossRefGoogle ScholarPubMed
Altomare, D, Ferrari, C, Caroli, A, et al. Prognostic value of Alzheimer’s biomarkers in mild cognitive impairment: the effect of age at onset. J Neurol. 2019;266:25352545.10.1007/s00415-019-09441-7CrossRefGoogle ScholarPubMed
Fink, HA, Jutkowitz, E, McCarten, JR, et al. Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: a systematic review. Ann Intern Med. 2018;168:3951.10.7326/M17-1529CrossRefGoogle ScholarPubMed
Knopman, DS, Jack, CR Jr, Wiste, HJ, et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging. 2014;35:20962106.10.1016/j.neurobiolaging.2014.03.006CrossRefGoogle ScholarPubMed
Graff-Radford, J, Murray, ME, Lowe, VJ, et al. Dementia with Lewy bodies: basis of cingulate island sign. Neurology. 2014;83:801809.10.1212/WNL.0000000000000734CrossRefGoogle ScholarPubMed
Chen, Q, Lowe, VJ, Boeve, BF, et al. Beta-amyloid PET and (123)I-FP-CIT SPECT in mild cognitive impairment at risk for Lewy body dementia. Neurology. 2021;96(8):e1180e1189.10.1212/WNL.0000000000011454CrossRefGoogle ScholarPubMed
Petersen, RC, Stevens, JC, Ganguli, M, et al. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56:11331142.10.1212/WNL.56.9.1133CrossRefGoogle Scholar
Jicha, GA, Parisi, JE, Dickson, DW, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol. 2006;63:674681.10.1001/archneur.63.5.674CrossRefGoogle ScholarPubMed
Schneider, JA, Arvanitakis, Z, Leurgans, SE, Bennett, DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol. 2009;66:200820.10.1002/ana.21706CrossRefGoogle ScholarPubMed
Petersen, RC, Parisi, JE, Dickson, DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol. 2006;63:665672.10.1001/archneur.63.5.665CrossRefGoogle ScholarPubMed
Litvan, I, Goldman, JG, Troster, AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27:349356.10.1002/mds.24893CrossRefGoogle ScholarPubMed
Boeve, B, Ferman, T, Smith, G, et al. Mild cognitive impairment preceding dementia with Lewy bodies. Neurology. 2004;62(Suppl. 5):A86.Google Scholar
Fereshtehnejad, SM, Montplaisir, JY, Pelletier, A, et al. Validation of the MDS research criteria for prodromal Parkinson’s disease: longitudinal assessment in a REM sleep behavior disorder (RBD) cohort. Mov Disord. 2017;32:865873.10.1002/mds.26989CrossRefGoogle Scholar
Goldman, JG, Holden, SK, Litvan, I, et al. Evolution of diagnostic criteria and assessments for Parkinson’s disease mild cognitive impairment. Mov Disord. 2018;33:503510.10.1002/mds.27323CrossRefGoogle ScholarPubMed
Weil, RS, Costantini, AA, Schrag, AE. Mild cognitive impairment in Parkinson’s disease – what is it? Curr Neurol Neurosci Rep. 2018;18:17.10.1007/s11910-018-0823-9CrossRefGoogle ScholarPubMed
Janvin, CC, Larsen, JP, Aarsland, D, Hugdahl, K. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord. 2006;21:13431349.10.1002/mds.20974CrossRefGoogle ScholarPubMed
Domellof, ME, Ekman, U, Forsgren, L, Elgh, E. Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol Scand. 2015;132:7988.10.1111/ane.12375CrossRefGoogle ScholarPubMed
Pedersen, KF, Larsen, JP, Tysnes, OB, Alves, G. Natural course of mild cognitive impairment in Parkinson disease: a 5-year population-based study. Neurology. 2017;88:767774.10.1212/WNL.0000000000003634CrossRefGoogle ScholarPubMed
Litvan, I, Aarsland, D, Adler, CH, et al. MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord. 2011;26:18141824.10.1002/mds.23823CrossRefGoogle ScholarPubMed
Uysal-Canturk, P, Hanagasi, HA, Bilgic, B, Gurvit, H, Emre, M. An assessment of Movement Disorder Society Task Force diagnostic criteria for mild cognitive impairment in Parkinson’s disease. Eur J Neurol. 2018;25:148153.10.1111/ene.13467CrossRefGoogle ScholarPubMed
Litvan, I, Kieburtz, K, Troster, AI, Aarsland, D. Strengths and challenges in conducting clinical trials in Parkinson’s disease mild cognitive impairment. Mov Disord. 2018;33:520527.10.1002/mds.27345CrossRefGoogle ScholarPubMed
Donaghy, PC, Taylor, JP, O’Brien, JT, et al. Neuropsychiatric symptoms and cognitive profile in mild cognitive impairment with Lewy bodies. Psychol Med. 2018;48:23842390.10.1017/S0033291717003956CrossRefGoogle ScholarPubMed
Hemminghyth, MS, Chwiszczuk, LJ, Rongve, A, Breitve, MH. The cognitive profile of mild cognitive impairment due to dementia with Lewy bodies – an updated review. Front Aging Neurosci. 2020;12:597579.10.3389/fnagi.2020.597579CrossRefGoogle ScholarPubMed
McKeith, IG, Ferman, TJ, Thomas, AJ, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94:743755.10.1212/WNL.0000000000009323CrossRefGoogle ScholarPubMed
van de Beek, M, van Steenoven, I, van der Zande, JJ, et al. Prodromal dementia with Lewy bodies: clinical characterization and predictors of progression. Mov Disord. 2020;35:859867.10.1002/mds.27997CrossRefGoogle ScholarPubMed
Roberts, G, Donaghy, PC, Lloyd, J, et al. Accuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodies. Br J Psychiatry. 2021;218(5):276282.10.1192/bjp.2020.234CrossRefGoogle ScholarPubMed
Kantarci, K, Boeve, BF, Przybelski, SA, et al. FDG PET metabolic signatures distinguishing prodromal DLB and prodromal AD. Neuroimage Clin. 2021;31:102754.10.1016/j.nicl.2021.102754CrossRefGoogle ScholarPubMed
Boeve, BF, Boxer, AL, Kumfor, F, Pijnenburg, Y, Rohrer, JD. Advances and controversies in frontotemporal dementia: characterization, diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022;21(3):268272.10.1016/S1474-4422(21)00341-0CrossRefGoogle ScholarPubMed
Barker, MS, Gottesman, RT, Manoochehri, BA, et al. Proposed research criteria for prodromal behavioral variant frontotemporal dementia. Brain. 2022;145(3):10791097.10.1093/brain/awab365CrossRefGoogle Scholar
Petersen, RC, Thomas, RG, Grundman, M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352:23792388.10.1056/NEJMoa050151CrossRefGoogle ScholarPubMed
Doody, RS, Ferris, SH, Salloway, S, et al. Donepezil treatment of patients with MCI: a 48-week randomized, placebo-controlled trial. Neurology. 2009;72:15551561.10.1212/01.wnl.0000344650.95823.03CrossRefGoogle ScholarPubMed
Salloway, S, Ferris, S, Kluger, A, et al. Efficacy of donepezil in mild cognitive impairment: a randomized placebo-controlled trial. Neurology. 2004;63:651657.10.1212/01.WNL.0000134664.80320.92CrossRefGoogle ScholarPubMed
Feldman, HH, Lane, R, Study, G. Rivastigmine: a placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2007;78:10561063.10.1136/jnnp.2006.099424CrossRefGoogle ScholarPubMed
Caracciolo, B, Palmer, K, Monastero, R, et al. Occurrence of cognitive impairment and dementia in the community: a 9-year-long prospective study. Neurology. 2008;70:17781785.10.1212/01.wnl.0000288180.21984.cbCrossRefGoogle Scholar
Desideri, G, Kwik-Uribe, C, Grassi, D, et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: the Cocoa, Cognition, and Aging (CoCoA) study. Hypertension. 2012;60:794801.10.1161/HYPERTENSIONAHA.112.193060CrossRefGoogle ScholarPubMed
Boeve, BF, Molano, JR, Ferman, TJ, et al. Validation of the Mayo Sleep Questionnaire to screen for REM sleep behavior disorder in an aging and dementia cohort. Sleep Med. 2011;12:445453.10.1016/j.sleep.2010.12.009CrossRefGoogle Scholar
Gold, M, Newhouse, PA, Howard, D, Kryscio, RJ. Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology. 2012;78:1895; author reply.Google ScholarPubMed
Thal, LJ, Ferris, SH, Kirby, L, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology. 2005;30:12041215.10.1038/sj.npp.1300690CrossRefGoogle ScholarPubMed
Naeini, AM, Elmadfa, I, Djazayery, A, et al. The effect of antioxidant vitamins E and C on cognitive performance of the elderly with mild cognitive impairment in Isfahan, Iran: a double-blind, randomized, placebo-controlled trial. Eur J Nutr. 2014;53:12551262.10.1007/s00394-013-0628-1CrossRefGoogle Scholar
Raschetti, R, Albanese, E, Vanacore, N, Maggini, M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 2007;4:e338.10.1371/journal.pmed.0040338CrossRefGoogle ScholarPubMed
Tricco, AC, Soobiah, C, Berliner, S, et al. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ. 2013;185:13931401.10.1503/cmaj.130451CrossRefGoogle ScholarPubMed
National Academies of Sciences. Preventing Cognitive Decline and Dementia: A Way Forward. Leshner, AI, Landis, S, Stroud, C, Downey, A, eds. Washington, DC: The National Academies Press, 2017.10.17226/24782CrossRefGoogle Scholar
Nagamatsu, LS, Handy, TC, Hsu, CL, Voss, M, Liu-Ambrose, T. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med. 2012;172:666668.10.1001/archinternmed.2012.379CrossRefGoogle ScholarPubMed
Suzuki, T, Shimada, H, Makizako, H, et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One. 2013;8:e61483.10.1371/journal.pone.0061483CrossRefGoogle ScholarPubMed
Kinsella, GJ, Ames, D, Storey, E, et al. Strategies for improving memory: a randomized trial of memory groups for older people, including those with mild cognitive impairment. J Alzheimers Dis. 2016;49:3143.10.3233/JAD-150378CrossRefGoogle ScholarPubMed
Lam, LC, Chan, WC, Leung, T, Fung, AW, Leung, EM. Would older adults with mild cognitive impairment adhere to and benefit from a structured lifestyle activity intervention to enhance cognition?: a cluster randomized controlled trial. PLoS One. 2015;10:e0118173.10.1371/journal.pone.0118173CrossRefGoogle ScholarPubMed
Nakatsuka, M, Nakamura, K, Hamanosono, R, et al. A cluster randomized controlled trial of nonpharmacological interventions for old-old subjects with a clinical dementia rating of 0.5: the Kurihara Project. Dement Geriatr Cogn Dis Extra. 2015;5:221232.10.1159/000380816CrossRefGoogle ScholarPubMed
Tsolaki, M, Kounti, F, Agogiatou, C, et al. Effectiveness of nonpharmacological approaches in patients with mild cognitive impairment. Neurodegener Dis. 2011;8:138145.10.1159/000320575CrossRefGoogle ScholarPubMed
Kinsella, EA, Whiteford, GE. Knowledge generation and utilisation in occupational therapy: towards epistemic reflexivity. Aust Occup Ther J. 2009;56:249258.10.1111/j.1440-1630.2007.00726.xCrossRefGoogle ScholarPubMed
Haeberlein, SB, Aisen, PS, Barkhof, F, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9(2):197210.10.14283/jpad.2022.30CrossRefGoogle Scholar
Dunn, B, Stein, P, Temple, R, Cavazzoni, P. an appropriate use of accelerated approval – aducanumab for Alzheimer’s disease. N Engl J Med. 2021;385:856857.10.1056/NEJMc2111960CrossRefGoogle ScholarPubMed
Rabinovici, GD. Controversy and progress in Alzheimer’s disease – FDA approval of aducanumab. N Engl J Med. 2021;385:771774.10.1056/NEJMp2111320CrossRefGoogle ScholarPubMed
Koychev, I, Gunn, RN, Firouzian, A, et al. PET tau and amyloid-beta burden in mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimers Dis. 2017;60:283293.10.3233/JAD-170129CrossRefGoogle ScholarPubMed
Mintun, MA, Lo, AC, Duggan Evans, C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384:16911704.10.1056/NEJMoa2100708CrossRefGoogle ScholarPubMed
Swanson, CJ, Zhang, Y, Dhadda, S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Abeta protofibril antibody. Alzheimers Res Ther. 2021;13:80.10.1186/s13195-021-00813-8CrossRefGoogle ScholarPubMed
Emanuel, EJ. A middle ground for accelerated drug approval-lessons from aducanumab. JAMA. 2021;326:13671368.10.1001/jama.2021.14861CrossRefGoogle ScholarPubMed
Manly, JJ, Tang, MX, Schupf, N, et al. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. 2008;63:494506.10.1002/ana.21326CrossRefGoogle Scholar
Unverzagt, FW, Gao, S, Baiyewu, O, et al. Prevalence of cognitive impairment: data from the Indianapolis Study of Health and Aging. Neurology. 2001;57:16551662.10.1212/WNL.57.9.1655CrossRefGoogle ScholarPubMed
Gonzalez, HM, Tarraf, W, Schneiderman, N, et al. Prevalence and correlates of mild cognitive impairment among diverse Hispanics/Latinos: study of Latinos-Investigation of Neurocognitive Aging results. Alzheimers Dement. 2019;15:15071515.10.1016/j.jalz.2019.08.202CrossRefGoogle ScholarPubMed
Angevaare, MJ, Vonk, JMJ, Bertola, L, et al. Predictors of incident mild cognitive impairment and its course in a diverse community-based population. Neurology. 2022;98(1):e15e26.10.1212/WNL.0000000000013017CrossRefGoogle Scholar
Roberts, JS, Karlawish, JH, Uhlmann, WR, Petersen, RC, Green, RC. Mild cognitive impairment in clinical care: a survey of American Academy of Neurology members. Neurology. 2010;75:425431.10.1212/WNL.0b013e3181eb5872CrossRefGoogle Scholar
Delgado, C, Araneda, A, Behrens, MI. Validation of the Spanish-language version of the Montreal Cognitive Assessment test in adults older than 60 years. Neurologia. 2019;34:376385.10.1016/j.nrl.2017.01.013CrossRefGoogle ScholarPubMed
Diaz-Mardomingo, MDC, Garcia-Herranz, S, Rodriguez-Fernandez, R, Venero, C, Peraita, H. Problems in classifying mild cognitive impairment (MCI): one or multiple syndromes? Brain Sci. 2017;7.10.3390/brainsci7090111CrossRefGoogle ScholarPubMed
Knopman, DS, Beiser, A, Machulda, MM, et al. Spectrum of cognition short of dementia: Framingham Heart Study and Mayo Clinic Study of Aging. Neurology. 2015;85:17121721.10.1212/WNL.0000000000002100CrossRefGoogle ScholarPubMed
Farias, ST, Mungas, D, Reed, BR, Harvey, D, DeCarli, C. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol. 2009;66:11511157.10.1001/archneurol.2009.106CrossRefGoogle ScholarPubMed
Petersen, RC, Roberts, RO, Knopman, DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology. 2010;75:889897.10.1212/WNL.0b013e3181f11d85CrossRefGoogle ScholarPubMed
Machulda, MM, Lundt, ES, Albertson, SM, et al. Neuropsychological subtypes of incident mild cognitive impairment in the Mayo Clinic Study of Aging. Alzheimers Dement. 2019;15:878887.10.1016/j.jalz.2019.03.014CrossRefGoogle ScholarPubMed
Bondi, MW, Edmonds, EC, Jak, AJ, et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis. 2014;42:275289.10.3233/JAD-140276CrossRefGoogle ScholarPubMed
Roberts, RO, Geda, YE, Knopman, DS, al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology. 2008;30:5869.10.1159/000115751CrossRefGoogle Scholar
Roberts, RO, Knopman, DS, Mielke, MM, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology. 2014;82:317325.10.1212/WNL.0000000000000055CrossRefGoogle ScholarPubMed
Mitchell, AJ, Shiri-Feshki, M. Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119:252625.10.1111/j.1600-0447.2008.01326.xCrossRefGoogle ScholarPubMed
Lopez, OL, Becker, JT, Chang, YF, et al. Incidence of mild cognitive impairment in the Pittsburgh Cardiovascular Health Study-Cognition Study. Neurology. 2012;79:15991606.10.1212/WNL.0b013e31826e25f0CrossRefGoogle ScholarPubMed
Cullen, NC, Zetterberg, H, Insel, PS, Olsson, B, Andreasson, U, Alzheimer’s Disease Neuroimaging I, et al. Comparing progression biomarkers in clinical trials of early Alzheimer’s disease. Ann Clin Transl Neurol. 2020;7:16612673.10.1002/acn3.51158CrossRefGoogle ScholarPubMed
Cullen, NC, Leuzy, A, Palmqvist, S, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nat Aging. 2021;1(1):114123.10.1038/s43587-020-00003-5CrossRefGoogle ScholarPubMed
Palmqvist, S, Janelidze, S, Quiroz, YT, et al. discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324:772781.10.1001/jama.2020.12134CrossRefGoogle ScholarPubMed
Mielke, MM, Syrjanen, JA, Blennow, K, et al. Plasma and CSF neurofilament light: relation to longitudinal neuroimaging and cognitive measures. Neurology. 2019;93:e252e260.10.1212/WNL.0000000000007767CrossRefGoogle ScholarPubMed
Preische, O, Schultz, SA, Apel, A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25:277283.10.1038/s41591-018-0304-3CrossRefGoogle ScholarPubMed
Jack, CR Jr, Wiste, HJ, Weigand, SD, et al. Age-specific and sex-specific prevalence of cerebral beta-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 2017;16:435444.10.1016/S1474-4422(17)30077-7CrossRefGoogle ScholarPubMed

References

United Nations. Global Issues: Ageing. 2019. www.un.org/en/global-issues/ageing.Google Scholar
Lucca, U, Tettamanti, M, Logroscino, G, et al. Prevalence of dementia in the oldest old: the Monzino 80-plus population based study. Alzheimers Dement. 2015;11(3):258270.10.1016/j.jalz.2014.05.1750CrossRefGoogle ScholarPubMed
Gardner, RC, Valcour, V, Yaffe, K. Dementia in the oldest old: a multi-factorial and growing public health issue. Alzheimers Res Ther. 2013;5(4):27.10.1186/alzrt181CrossRefGoogle ScholarPubMed
Gurland, BJ, Wilder, DE, Lantigua, R, et al. Rates of dementia in three ethnoracial groups. Int J Geriatr Psychiatry. 1999;14(6):481493.10.1002/(SICI)1099-1166(199906)14:6<481::AID-GPS959>3.0.CO;2-53.0.CO;2-5>CrossRefGoogle ScholarPubMed
Matthews, KA, Xu, W, Gaglioti, AH, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged >/=65 years. Alzheimers Dement. 2019;15(1):1724.10.1016/j.jalz.2018.06.3063CrossRefGoogle ScholarPubMed
Farfel, JM, Nitrini, R, Suemoto, CK, et al. Very low levels of education and cognitive reserve: a clinicopathologic study. Neurology. 2013;81(7):650657.10.1212/WNL.0b013e3182a08f1bCrossRefGoogle ScholarPubMed
Lucca, U, Tettamanti, M, Tiraboschi, P, et al. Incidence of dementia in the oldest-old and its relationship with age: the Monzino 80-Plus Population-Based Study. Alzheimers Dement. 2020;16(3):472481.10.1016/j.jalz.2019.09.083CrossRefGoogle ScholarPubMed
Middleton, LE, Grinberg, LT, Miller, B, Kawas, C, Yaffe, K. Neuropathologic features associated with Alzheimer disease diagnosis: age matters. Neurology. 2011;77(19):17371744.10.1212/WNL.0b013e318236f0cfCrossRefGoogle ScholarPubMed
Suemoto, CK, Leite, REP, Ferretti-Rebustini, REL, et al. Neuropathological lesions in the very old: results from a large Brazilian autopsy study. Brain Pathol. 2019;29(6):771781.10.1111/bpa.12719CrossRefGoogle ScholarPubMed
Corrada, MM, Brookmeyer, R, Paganini-Hill, A, Berlau, D, Kawas, CH. Dementia incidence continues to increase with age in the oldest old: the 90+ study. Ann Neurol. 2010;67(1):114121.10.1002/ana.21915CrossRefGoogle ScholarPubMed
Zaccai, J, McCracken, C, Brayne, C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing. 2005;34(6):561566.10.1093/ageing/afi190CrossRefGoogle ScholarPubMed
Nourhashemi, F, Gillette-Guyonnet, S, Rolland, Y, et al. Alzheimer’s disease progression in the oldest old compared to younger elderly patient: data from the REAL.FR study. Int J Geriatr Psychiatry. 2009;24(2):149155.10.1002/gps.2084CrossRefGoogle ScholarPubMed
Karanth, S, Nelson, PT, Katsumata, Y, et al. Prevalence and clinical phenotype of quadruple misfolded proteins in older adults. JAMA Neurol. 2020;77(10):12991307.10.1001/jamaneurol.2020.1741CrossRefGoogle ScholarPubMed
Larson, EB, Yaffe, K, Langa, KM. New insights into the dementia epidemic. N Engl J Med. 2013;369(24):22752277.10.1056/NEJMp1311405CrossRefGoogle ScholarPubMed
Satizabal, CL, Beiser, AS, Chouraki, V, et al. Incidence of dementia over three decades in the Framingham Heart Study. N Engl J Med. 2016;374(6):523532.10.1056/NEJMoa1504327CrossRefGoogle ScholarPubMed
Seblova, D, Quiroga, ML, Fors, S, et al. Thirty-year trends in dementia: a nationwide population study of Swedish inpatient records. Clin Epidemiol. 2018;10:16791693.10.2147/CLEP.S178955CrossRefGoogle ScholarPubMed
Noble, JM, Schupf, N, Manly, JJ, et al. Secular trends in the incidence of dementia in a multi-ethnic community. J Alzheimers Dis. 2017;60(3):10651075.10.3233/JAD-170300CrossRefGoogle Scholar
Livingston, G, Huntley, J, Sommerlad, A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413446.10.1016/S0140-6736(20)30367-6CrossRefGoogle ScholarPubMed
Sibbett, RA, Russ, TC, Allerhand, M, Deary, IJ, Starr, JM. Physical fitness and dementia risk in the very old: a study of the Lothian Birth Cohort 1921. BMC Psychiatry. 2018;18.10.1186/s12888-018-1851-3CrossRefGoogle Scholar
Legdeur, N, van der Lee, SJ, de Wilde, M, et al. The association of vascular disorders with incident dementia in different age groups. Alzheimers Res Ther. 2019;11.10.1186/s13195-019-0496-xCrossRefGoogle ScholarPubMed
Streit, S, Poortvliet, RKE, Gussekloo, J. Lower blood pressure during antihypertensive treatment is associated with higher all-cause mortality and accelerated cognitive decline in the oldest-old. Data from the Leiden 85-plus Study. Age Ageing. 2018;47(4):545550.10.1093/ageing/afy072CrossRefGoogle ScholarPubMed
Peters, R, Anstey, KJ, Booth, A, et al. Orthostatic hypotension and symptomatic subclinical orthostatic hypotension increase risk of cognitive impairment: an integrated evidence review and analysis of a large older adult hypertensive cohort. Eur Heart J. 2018;39(33):31353143.10.1093/eurheartj/ehy418CrossRefGoogle ScholarPubMed
Bennett, DA, Schneider, JA, Arvanitakis, Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66(12):18371844.10.1212/01.wnl.0000219668.47116.e6CrossRefGoogle ScholarPubMed
Kawas, CH, Legdeur, N, Corrada, MM. What have we learned from cognition in the oldest-old. Curr Opin Neurol. 2021;34(2):258265.10.1097/WCO.0000000000000910CrossRefGoogle ScholarPubMed
Hall, A, Pekkala, T, Polvikoski, T, et al. Prediction models for dementia and neuropathology in the oldest old: the Vantaa 85+ cohort study. Alzheimers Res Ther. 2019;11(1):11.10.1186/s13195-018-0450-3CrossRefGoogle ScholarPubMed
Schneider, JA, Arvanitakis, Z, Bang, W, Bennett, DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):21972204.10.1212/01.wnl.0000271090.28148.24CrossRefGoogle ScholarPubMed
Brayne, C, Richardson, K, Matthews, FE, et al. Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge City over-75s Cohort (CC75C) study. J Alzheimers Dis. 2009;18(3):645658.10.3233/JAD-2009-1182CrossRefGoogle ScholarPubMed
Jellinger, KA, Attems, J. Prevalence of dementia disorders in the oldest-old: an autopsy study. Acta Neuropathol. 2010;119(4):421433.10.1007/s00401-010-0654-5CrossRefGoogle ScholarPubMed
Corrada, MM, Berlau, DJ, Kawas, CH. A population-based clinicopathological study in the oldest-old: the 90+ Study. Curr Alzheimer Res. 2012;9(6):709717.10.2174/156720512801322537CrossRefGoogle ScholarPubMed
Prohovnik, I, Perl, DP, Davis, KL, et al. Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease. Neurology. 2006;66(1):4955.10.1212/01.wnl.0000191298.68045.50CrossRefGoogle ScholarPubMed
Robinson, JL, Corrada, MM, Kovacs, GG, et al. Non-Alzheimer’s contributions to dementia and cognitive resilience in the 90+ Study. Acta Neuropathol. 2018;136(3):377388.10.1007/s00401-018-1872-5CrossRefGoogle ScholarPubMed
Mortimer, JA. The Nun Study: risk factors for pathology and clinical-pathologic correlations. Curr Alzheimer Res. 2012;9(6):621627.10.2174/156720512801322546CrossRefGoogle ScholarPubMed
Franzke, B, Neubauer, O, Wagner, KH. Super DNAging – new insights into DNA integrity, genome stability and telomeres in the oldest old. Mutat Res Rev Mutat Res. 2015;766:4857.10.1016/j.mrrev.2015.08.001CrossRefGoogle ScholarPubMed
Andrade-Moraes, CH, Oliveira-Pinto, AV, Castro-Fonseca, E, et al. Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain. 2013;136(Pt 12):37383752.10.1093/brain/awt273CrossRefGoogle Scholar
Elobeid, A, Libard, S, Leino, M, Popova, SN, Alafuzoff, I. Altered proteins in the aging brain. J Neuropathol Exp Neurol. 2016;75(4):316325.10.1093/jnen/nlw002CrossRefGoogle ScholarPubMed
Price, JL, McKeel, DW Jr, Buckles, VD, et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging. 2009;30(7):10261036.10.1016/j.neurobiolaging.2009.04.002CrossRefGoogle ScholarPubMed
Rogalski, E, Gefen, T, Mao, Q, et al. Cognitive trajectories and spectrum of neuropathology in SuperAgers: the first 10 cases. Hippocampus. 2019;29(5):458467.10.1002/hipo.22828CrossRefGoogle ScholarPubMed
Tanprasertsuk, J, Johnson, EJ, Johnson, MA, et al. Clinico-neuropathological findings in the oldest old from the Georgia Centenarian Study. J Alzheimers Dis. 2019;70(1):3549.10.3233/JAD-181110CrossRefGoogle ScholarPubMed
James, BD, Bennett, DA, Boyle, PA, Leurgans, S, Schneider, JA. Dementia from Alzheimer disease and mixed pathologies in the oldest old. JAMA. 2012;307(17):17981800.10.1001/jama.2012.3556CrossRefGoogle ScholarPubMed
Yarchoan, M, Xie, SX, Kling, MA, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain. 2012;135(Pt 12):37493756.10.1093/brain/aws271CrossRefGoogle ScholarPubMed
Snowdon, DA, Greiner, LH, Mortimer, JA, et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997;277(10):813817.10.1001/jama.1997.03540340047031CrossRefGoogle ScholarPubMed
Grinberg, LT, Heinsen, H. Toward a pathological definition of vascular dementia. J Neurol Sci. 2010;299(1–2):136138.10.1016/j.jns.2010.08.055CrossRefGoogle Scholar
Blevins, BL, Vinters, HV, Love, S, et al. Brain arteriolosclerosis. Acta Neuropathol. 2021;141(1):124.10.1007/s00401-020-02235-6CrossRefGoogle ScholarPubMed
Yassi, N, Hilal, S, Xia, Y, et al. Influence of comorbidity of cerebrovascular disease and amyloid-β on Alzheimer’s disease. J Alzheimers Dis. 2020;73(3):897907.10.3233/JAD-191028CrossRefGoogle ScholarPubMed
Schmeidler, J, Mastrogiacomo, CN, Beeri, MS, Rosendorff, C, Silverman, JM. Distinct age-related associations for body mass index and cognition in cognitively healthy very old veterans. Int Psychogeriatr. 2019;31(6):895899.10.1017/S1041610218001412CrossRefGoogle ScholarPubMed
Turana, Y, Tengkawan, J, Chia, YC, et al. High blood pressure in dementia: how low can we go? J Clin Hypertens (Greenwich). 2020;22(3):415422.10.1111/jch.13752CrossRefGoogle Scholar
Lau, WL, Fisher, M, Greenia, D, et al. Cystatin C, cognition, and brain MRI findings in 90+-year-olds. Neurobiol Aging. 2020;93:7884.10.1016/j.neurobiolaging.2020.04.022CrossRefGoogle ScholarPubMed
Amador-Ortiz, C, Lin, WL, Ahmed, Z, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol. 2007;61(5):435445.10.1002/ana.21154CrossRefGoogle ScholarPubMed
Nascimento, C, Di Lorenzo Alho, AT, Bazan Conceicao Amaral, C, et al. Prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults: systematic review and meta-analysis. Neuropathol Appl Neurobiol. 2018;44(3):286297.10.1111/nan.12430CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Weigand, SD, et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 2014;127(6):811824.10.1007/s00401-014-1269-zCrossRefGoogle ScholarPubMed
Brenowitz, WD, Monsell, SE, Schmitt, FA, Kukull, WA, Nelson, PT. Hippocampal sclerosis of aging is a key Alzheimer’s disease mimic: clinical-pathologic correlations and comparisons with both Alzheimer’s disease and non-tauopathic frontotemporal lobar degeneration. J Alzheimers Dis. 2014;39(3):691702.10.3233/JAD-131880CrossRefGoogle ScholarPubMed
Nelson, PT, Dickson, DW, Trojanowski, JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142(6):15031527.10.1093/brain/awz099CrossRefGoogle ScholarPubMed
Flynn, BS, Goldstein, AO, Solomon, LJ, al. Predictors of state legislators’ intentions to vote for cigarette tax increases. Prev Med. 1998;27(2):157165.10.1006/pmed.1998.0308CrossRefGoogle ScholarPubMed
Lopez, OL, Kofler, J, Chang, YF, et al. Hippocampal sclerosis, TDP-43, and the duration of the symptoms of dementia of AD patients. Ann Clin Transl Neurol. 2020;7(9):15461556.10.1002/acn3.51135CrossRefGoogle ScholarPubMed
Nelson, PT, Smith, CD, Abner, EL, et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol. 2013;126(2):161177.10.1007/s00401-013-1154-1CrossRefGoogle ScholarPubMed
Dickson, DW, Davies, P, Bevona, C, et al. Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans. Acta Neuropathol. 1994;88(3):212221.10.1007/BF00293396CrossRefGoogle ScholarPubMed
Robinson, JL, Geser, F, Corrada, MM, et al. Neocortical and hippocampal amyloid-β and tau measures associate with dementia in the oldest-old. Brain. 2011;134(12):37053712.10.1093/brain/awr308CrossRefGoogle ScholarPubMed
Gelber, RP, Launer, LJ, White, LR. The Honolulu-Asia Aging Study: epidemiologic and neuropathologic research on cognitive impairment. Curr Alzheimer Res. 2012;9(6):664672.10.2174/156720512801322618CrossRefGoogle ScholarPubMed
Kero, M, Raunio, A, Polvikoski, T, et al. Hippocampal sclerosis in the oldest old: a Finnish Population-Based Study. J Alzheimers Dis. 2018;63(1):263272.10.3233/JAD-171068CrossRefGoogle ScholarPubMed
Smirnov, DS, Galasko, D, Hansen, LA, et al. Trajectories of cognitive decline differ in hippocampal sclerosis and Alzheimer’s disease. Neurobiol Aging. 2019;75:169177.10.1016/j.neurobiolaging.2018.11.015CrossRefGoogle ScholarPubMed
Trieu, T, Sajjadi, SA, Kawas, CH, Nelson, PT, Corrada, MM. Risk factors of hippocampal sclerosis in the oldest old: the 90+ Study. Neurology. 2018;91(19):e1788e1798.10.1212/WNL.0000000000006455CrossRefGoogle ScholarPubMed
Kovacs, GG, Ferrer, I, Grinberg, LT, et al. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol. 2016;131(1):87102.10.1007/s00401-015-1509-xCrossRefGoogle ScholarPubMed
Kovacs, GG, Robinson, JL, Xie, SX, et al. Evaluating the patterns of aging-related tau astrogliopathy unravels novel insights into brain aging and neurodegenerative diseases. J Neuropathol Exp Neurol. 2017;76(4):270288.10.1093/jnen/nlx007CrossRefGoogle ScholarPubMed
Nolan, A, De Paula Franca Resende, E, Petersen, C, et al. Astrocytic tau deposition is frequent in typical and atypical Alzheimer disease presentations. J Neuropathol Exp Neurol. 2019;78(12):11121123.10.1093/jnen/nlz094CrossRefGoogle ScholarPubMed
Resende, EPF, Nolan, AL, Petersen, C, et al. Language and spatial dysfunction in Alzheimer disease with white matter thorn-shaped astrocytes. Neurology. 2020;94(13):e1353e1364.10.1212/WNL.0000000000008937CrossRefGoogle ScholarPubMed
Chun, H, Marriott, I, Lee, CJ, Cho, H. Elucidating the interactive roles of glia in Alzheimer’s disease using established and newly developed experimental models. Front Neurol. 2018;9:797.10.3389/fneur.2018.00797CrossRefGoogle ScholarPubMed
Montine, TJ, Phelps, CH, Beach, TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathologica. 2012;123(1):111.10.1007/s00401-011-0910-3CrossRefGoogle ScholarPubMed
Crary, JF, Trojanowski, JQ, Schneider, JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755766.10.1007/s00401-014-1349-0CrossRefGoogle Scholar
Wakisaka, Y, Furuta, A, Tanizaki, Y, Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathol. 2003;106(4):374382.10.1007/s00401-003-0750-xCrossRefGoogle Scholar
Rodriguez, RD, Suemoto, CK, Molina, M, et al. Argyrophilic grain disease: demographics, clinical, and neuropathological features from a large autopsy study. J Neuropathol Exp Neurol. 2016;75(7):628635.10.1093/jnen/nlw034CrossRefGoogle ScholarPubMed
Tolnay, M, Schwietert, M, Monsch, AU, et al. Argyrophilic grain disease: distribution of grains in patients with and without dementia. Acta Neuropathol. 1997;94:35335–8.10.1007/s004010050718CrossRefGoogle ScholarPubMed

References

Benson, DF, Davis, RJ, Snyder, BD. Posterior cortical atrophy. Arch Neurol. 1988 Jul;45(7):789793.10.1001/archneur.1988.00520310107024CrossRefGoogle ScholarPubMed
Crutch, SJ, Schott, JM, Rabinovici, GD, et al. Consensus classification of posterior cortical atrophy. Alzheimers Dement. 2017 Aug;13(8):870884.10.1016/j.jalz.2017.01.014CrossRefGoogle ScholarPubMed
Crutch, SJ, Lehmann, M, Schott, JM, et al. Posterior cortical atrophy. Lancet Neurol. 2012 Feb;11(2):170178.10.1016/S1474-4422(11)70289-7CrossRefGoogle ScholarPubMed
Schott, JM, Crutch, SJ, Carrasquillo, MM, et al. Genetic risk factors for the posterior cortical atrophy variant of Alzheimer’s disease. Alzheimers Dement. 2016 Mar 15;12(8):862871.10.1016/j.jalz.2016.01.010CrossRefGoogle ScholarPubMed
Snowden, JS, Stopford, CL, Julien, CL, et al. Cognitive phenotypes in Alzheimer’s disease and genetic risk. Cortex. 2007 Oct;43(7):835845.10.1016/S0010-9452(08)70683-XCrossRefGoogle ScholarPubMed
Koedam, ELGE, Lauffer, V, van der Vlies, AE, et al. Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimers Dis. 2010;19(4):14011408.10.3233/JAD-2010-1337CrossRefGoogle ScholarPubMed
Mendez, MF, Ghajarania, M, Perryman, KM. Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer’s disease. Dement Geriatr Cogn Disord. 2002;14(1):3340.10.1159/000058331CrossRefGoogle ScholarPubMed
McMonagle, P, Deering, F, Berliner, Y, Kertesz, A. The cognitive profile of posterior cortical atrophy. Neurology. 2006 Feb 14;66(3):331338.10.1212/01.wnl.0000196477.78548.dbCrossRefGoogle ScholarPubMed
Renner, JA, Burns, JM, Hou, CE, et al. Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology. 2004 Oct 12;63(7):11751180.10.1212/01.WNL.0000140290.80962.BFCrossRefGoogle ScholarPubMed
Schott, JM, Crutch, SJ. Posterior cortical atrophy. Continuum (Minneap, Minn). 2019 Feb;25(1):5275.10.1212/CON.0000000000000696CrossRefGoogle ScholarPubMed
Yong, KXX, Shakespeare, TJ, Cash, D, et al. Prominent effects and neural correlates of visual crowding in a neurodegenerative disease population. Brain. 2014 Dec;137(Pt 12):32843299.10.1093/brain/awu293CrossRefGoogle Scholar
Crutch, SJ, Warrington, EK. The relationship between visual crowding and letter confusability: towards an understanding of dyslexia in posterior cortical atrophy. Cogn Neuropsychol. 2009 Jul;26(5):471498.10.1080/02643290903465819CrossRefGoogle ScholarPubMed
Yong, KXX, Rajdev, K, Shakespeare, TJ, Leff, AP, Crutch, SJ. Facilitating text reading in posterior cortical atrophy. Neurology. 2015 Jul 28;85(4):339348.10.1212/WNL.0000000000001782CrossRefGoogle ScholarPubMed
Crutch, SJ, Lehmann, M, Gorgoraptis, N, et al. Abnormal visual phenomena in posterior cortical atrophy. Neurocase. 2011;17(2):160177.10.1080/13554794.2010.504729CrossRefGoogle ScholarPubMed
Yong, KXX, Shakespeare, TJ, Cash, D, et al. (Con)text-specific effects of visual dysfunction on reading in posterior cortical atrophy. Cortex. 2014 Aug;57:92106.10.1016/j.cortex.2014.03.010CrossRefGoogle ScholarPubMed
Woolley, JD, Khan, BK, Murthy, NK, Miller, BL, Rankin, KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry. 2011 Feb;72(2):126133.10.4088/JCP.10m06382oliCrossRefGoogle ScholarPubMed
Graff-Radford, J, Yong, KXX, Apostolova, LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222234.10.1016/S1474-4422(20)30440-3CrossRefGoogle ScholarPubMed
Maia da Silva, MN, Millington, RS, Bridge, H, James-Galton, M, Plant, GT. Visual dysfunction in posterior cortical atrophy. Front Neurol. 2017 Aug 16;8:389.10.3389/fneur.2017.00389CrossRefGoogle ScholarPubMed
Olds, JJ, Hills, WL, Warner, J, et al. Posterior cortical atrophy: characteristics from a clinical data registry. Front Neurol. 2020 Jun 3;11:358.10.3389/fneur.2020.00358CrossRefGoogle ScholarPubMed
Tang-Wai, DF, Graff-Radford, NR, Boeve, BF, et al. Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology. 2004 Oct 12;63(7):11681174.10.1212/01.WNL.0000140289.18472.15CrossRefGoogle ScholarPubMed
Groot, C, Yeo, BTT, Vogel, JW, et al. Latent atrophy factors related to phenotypical variants of posterior cortical atrophy. Neurology. 2020 Sep 22;95(12):e1672e1685.10.1212/WNL.0000000000010362CrossRefGoogle ScholarPubMed
Whitwell, JL, Jack, CR, Kantarci, K, et al. Imaging correlates of posterior cortical atrophy. Neurobiol Aging. 2007 Jul;28(7):10511061.10.1016/j.neurobiolaging.2006.05.026CrossRefGoogle ScholarPubMed
Migliaccio, R, Agosta, F, Rascovsky, K, et al. Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum. Neurology. 2009 Nov 10;73(19):15711578.10.1212/WNL.0b013e3181c0d427CrossRefGoogle ScholarPubMed
Nestor, PJ, Caine, D, Fryer, TD, Clarke, J, Hodges, JR. The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. J Neurol Neurosurg Psychiatry. 2003 Nov;74(11):15211529.10.1136/jnnp.74.11.1521CrossRefGoogle ScholarPubMed
Pelak, VS, Smyth, SF, Boyer, PJ, Filley, CM. Computerized visual field defects in posterior cortical atrophy. Neurology. 2011 Dec 13;77(24):21192122.10.1212/WNL.0b013e31823e9f2aCrossRefGoogle ScholarPubMed
Ryan, NS, Shakespeare, TJ, Lehmann, M, et al. Motor features in posterior cortical atrophy and their imaging correlates. Neurobiol Aging. 2014 Dec;35(12):28452857.10.1016/j.neurobiolaging.2014.05.028CrossRefGoogle ScholarPubMed
Kas, A, de Souza, LC, Samri, D, et al. Neural correlates of cognitive impairment in posterior cortical atrophy. Brain. 2011 May;134(Pt 5):14641478.10.1093/brain/awr055CrossRefGoogle ScholarPubMed
Metzler-Baddeley, C, Baddeley, RJ, Lovell, PG, Laffan, A, Jones, RW. Visual impairments in dementia with Lewy bodies and posterior cortical atrophy. Neuropsychology. 2010 Jan;24(1):3548.10.1037/a0016834CrossRefGoogle ScholarPubMed
Lehmann, M, Barnes, J, Ridgway, GR, et al. Basic visual function and cortical thickness patterns in posterior cortical atrophy. Cereb Cortex. 2011 Sep;21(9):21222132.10.1093/cercor/bhq287CrossRefGoogle ScholarPubMed
de Best, PB, Raz, N, Guy, N, et al. Role of population receptive field size in complex visual dysfunctions: a posterior cortical atrophy model. JAMA Neurol. 2019 Nov 1;76(11):13911396.10.1001/jamaneurol.2019.2447CrossRefGoogle ScholarPubMed
Shakespeare, TJ, Kaski, D, Yong, KXX, et al. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain. 2015 Jul;138(Pt 7):19761991.10.1093/brain/awv103CrossRefGoogle ScholarPubMed
Midorikawa, A, Nakamura, K, Nagao, T, Kawamura, M. Residual perception of moving objects: dissociation of moving and static objects in a case of posterior cortical atrophy. Eur Neurol. 2008 Jan 29;59(3-4):152158.10.1159/000114035CrossRefGoogle Scholar
Coslett, HB, Stark, M, Rajaram, S, Saffran, EM. Narrowing the spotlight: a visual attentional disorder in presumed Alzheimer’s disease. Neurocase. 1995 Oct;1(4):305318.10.1080/13554799508402375CrossRefGoogle Scholar
Ahmed, S, Loane, C, Bartels, S, et al. Lateral parietal contributions to memory impairment in posterior cortical atrophy. Neuroimage Clin. 2018 Jul 5;20:252259.10.1016/j.nicl.2018.07.005CrossRefGoogle ScholarPubMed
Putcha, D, McGinnis, SM, Brickhouse, M, et al. Executive dysfunction contributes to verbal encoding and retrieval deficits in posterior cortical atrophy. Cortex. 2018 May 10;106:3646.10.1016/j.cortex.2018.04.010CrossRefGoogle ScholarPubMed
Ramanan, S, Alaeddin, S, Goldberg, Z-L, et al. Exploring the contribution of visual imagery to scene construction – evidence from posterior cortical atrophy. Cortex. 2018 Jul 7;106:261274.10.1016/j.cortex.2018.06.016CrossRefGoogle ScholarPubMed
Lehmann, M, Koedam, ELGE, Barnes, J, et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol Aging. 2012 Mar;33(3):627.e1–627.e12.10.1016/j.neurobiolaging.2011.04.003CrossRefGoogle ScholarPubMed
Lehmann, M, Crutch, SJ, Ridgway, GR, et al. Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer’s disease. Neurobiol Aging. 2011 Aug;32(8):14661476.10.1016/j.neurobiolaging.2009.08.017CrossRefGoogle ScholarPubMed
Ossenkoppele, R, Cohn-Sheehy, BI, La Joie, R, et al. Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease. Hum Brain Mapp. 2015 Nov;36(11):44214437.10.1002/hbm.22927CrossRefGoogle ScholarPubMed
Parker, TD, Slattery, CF, Yong, KXX, et al. Differences in hippocampal subfield volume are seen in phenotypic variants of early onset Alzheimer’s disease. Neuroimage Clin. 2019;21:101632.10.1016/j.nicl.2018.101632CrossRefGoogle ScholarPubMed
Firth, NC, Primativo, S, Marinescu, R-V, et al. Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy. Brain. 2019 Jul 1;142(7):20822095.10.1093/brain/awz136CrossRefGoogle ScholarPubMed
Singh, TD, Josephs, KA, Machulda, MM, et al. Clinical, FDG and amyloid PET imaging in posterior cortical atrophy. J Neurol. 2015 Jun;262(6):14831492.10.1007/s00415-015-7732-5CrossRefGoogle ScholarPubMed
Whitwell, JL, Graff-Radford, J, Singh, TD, et al. 18F-FDG PET in posterior cortical atrophy and dementia with Lewy bodies. J Nucl Med. 2017;58(4):632638.10.2967/jnumed.116.179903CrossRefGoogle ScholarPubMed
de Souza, LC, Corlier, F, Habert, M-O, et al. Similar amyloid-β burden in posterior cortical atrophy and Alzheimer’s disease. Brain. 2011 Jul;134(Pt 7):20362043.10.1093/brain/awr130CrossRefGoogle ScholarPubMed
Beaufils, E, Ribeiro, MJ, Vierron, E, et al. The pattern of brain amyloid load in posterior cortical atrophy using (18)F-AV45: is amyloid the principal actor in the disease? Dement Geriatr Cogn Dis Extra. 2014 Sep;4(3):431441.10.1159/000363761CrossRefGoogle ScholarPubMed
Rosenbloom, MH, Alkalay, A, Agarwal, N, et al. Distinct clinical and metabolic deficits in PCA and AD are not related to amyloid distribution. Neurology. 2011 May 24;76(21):17891796.10.1212/WNL.0b013e31821cccadCrossRefGoogle Scholar
Lehmann, M, Ghosh, PM, Madison, C, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain. 2013 Mar;136(Pt 3):844858.10.1093/brain/aws327CrossRefGoogle ScholarPubMed
Ossenkoppele, R, Schonhaut, DR, Baker, SL, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 2015 Feb;77(2):338342.10.1002/ana.24321CrossRefGoogle Scholar
Dronse, J, Fliessbach, K, Bischof, GN, et al. In vivo patterns of tau pathology, amyloid-β burden, and neuronal dysfunction in clinical variants of Alzheimer’s disease. J Alzheimers Dis. 2017;55(2):465471.10.3233/JAD-160316CrossRefGoogle ScholarPubMed
Whitwell, JL, Graff-Radford, J, Tosakulwong, N, et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer’s disease. Alzheimers Dement. 2018 Mar 30;14(8):10051014.10.1016/j.jalz.2018.02.020CrossRefGoogle ScholarPubMed
Ossenkoppele, R, Schonhaut, DR, Schöll, M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016 Mar 8;139(Pt 5):15511567.10.1093/brain/aww027CrossRefGoogle ScholarPubMed
Tetzloff, KA, Graff-Radford, J, Martin, PR, et al. Regional distribution, asymmetry, and clinical correlates of tau uptake on [18 F]AV-1451 PET in atypical Alzheimer’s disease. J Alzheimers Dis. 2018;62(4):17131724.10.3233/JAD-170740CrossRefGoogle ScholarPubMed
Nasrallah, IM, Chen, YJ, Hsieh, M-K, et al. 18F-Flortaucipir PET/MRI correlations in nonamnestic and amnestic variants of Alzheimer disease. J Nucl Med. 2018;59(2):299306.10.2967/jnumed.117.194282CrossRefGoogle ScholarPubMed
Putcha, D, Brickhouse, M, Touroutoglou, A, et al. Visual cognition in non-amnestic Alzheimer’s disease: relations to tau, amyloid, and cortical atrophy. Neuroimage Clin. 2019 Jun 4;23:101889.10.1016/j.nicl.2019.101889CrossRefGoogle ScholarPubMed
Sintini, I, Graff-Radford, J, Senjem, ML, et al. Longitudinal neuroimaging biomarkers differ across Alzheimer’s disease phenotypes. Brain. 2020 Jul 1;143(7):22812294.10.1093/brain/awaa155CrossRefGoogle ScholarPubMed
Sitek, EJ, Narożańska, E, Pepłońska, B, et al. A patient with posterior cortical atrophy possesses a novel mutation in the presenilin 1 gene. PLoS One. 2013 Apr 12;8(4):e61074.10.1371/journal.pone.0061074CrossRefGoogle ScholarPubMed
Caroppo, P, Belin, C, Grabli, D, et al. Posterior cortical atrophy as an extreme phenotype of GRN mutations. JAMA Neurol. 2015 Feb;72(2):224228.10.1001/jamaneurol.2014.3308CrossRefGoogle Scholar
Peng, G, Liu, P, He, F, Luo, B. Posterior cortical atrophy as a primary clinical phenotype of corticobasal syndrome with a progranulin gene rs5848 TT genotype. Orphanet J Rare Dis. 2016 Feb 6;11:13.10.1186/s13023-016-0396-0CrossRefGoogle ScholarPubMed
Schott, JM, Ridha, BH, Crutch, SJ, et al. Apolipoprotein E genotype modifies the phenotype of Alzheimer disease. Arch Neurol. 2006 Jan 1;63(1):155.10.1001/archneur.63.1.155CrossRefGoogle ScholarPubMed
Magnin, E, Sylvestre, G, Lenoir, F, et al. Logopenic syndrome in posterior cortical atrophy. J Neurol. 2013 Feb;260(2):528533.10.1007/s00415-012-6671-7CrossRefGoogle ScholarPubMed
Wallin, AK, Blennow, K, Zetterberg, H, CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology. 2010 May 11;74(19):15311537.10.1212/WNL.0b013e3181dd4dd8CrossRefGoogle ScholarPubMed
van der Vlies, AE, Verwey, NA, Bouwman, FH, et al. CSF biomarkers in relationship to cognitive profiles in Alzheimer disease. Neurology. 2009 Mar 24;72(12):10561061.10.1212/01.wnl.0000345014.48839.71CrossRefGoogle ScholarPubMed
Iqbal, K, Flory, M, Khatoon, S, et al. Subgroups of Alzheimer’s disease based on cerebrospinal fluid molecular markers. Ann Neurol. 2005 Nov;58(5):748757.10.1002/ana.20639CrossRefGoogle ScholarPubMed
Duits, FH, Wesenhagen, KEJ, Ekblad, L, et al. Four subgroups based on tau levels in Alzheimer’s disease observed in two independent cohorts. Alzheimers Res Ther. 2021 Jan 4;13(1):2.10.1186/s13195-020-00713-3CrossRefGoogle ScholarPubMed
Tijms, BM, Gobom, J, Reus, L, et al. Pathophysiological subtypes of Alzheimer’s disease based on cerebrospinal fluid proteomics. Brain. 2020 Dec 1;143(12):37763792.10.1093/brain/awaa325CrossRefGoogle ScholarPubMed
Qiang, W, Yau, W-M, Lu, J-X, Collinge, J, Tycko, R. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature. 2017 Jan 12;541(7636):217221.10.1038/nature20814CrossRefGoogle ScholarPubMed
Heneka, MT, Carson, MJ, El Khoury, J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015 Apr;14(4):388405.10.1016/S1474-4422(15)70016-5CrossRefGoogle ScholarPubMed
Kinney, JW, Bemiller, SM, Murtishaw, AS, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018 Sep 6;4:575590.10.1016/j.trci.2018.06.014CrossRefGoogle ScholarPubMed
Gomez-Nicola, D, Boche, D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease. Alzheimers Res Ther. 2015 Apr 22;7(1):42.10.1186/s13195-015-0126-1CrossRefGoogle ScholarPubMed
Zimmer, ER, Leuzy, A, Benedet, AL, et al. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014 Jul 8;11:120.10.1186/1742-2094-11-120CrossRefGoogle ScholarPubMed
Lagarde, J, Sarazin, M, Bottlaender, M. In vivo PET imaging of neuroinflammation in Alzheimer’s disease. J Neural Transm. 2018;125(5):847867.10.1007/s00702-017-1731-xCrossRefGoogle ScholarPubMed
Lautner, R, Mattsson, N, Schöll, M, et al. Biomarkers for microglial activation in Alzheimer’s disease. Int J Alzheimers Dis. 2011 Nov 1;2011:939426.10.4061/2011/939426CrossRefGoogle ScholarPubMed
Rosén, C, Zetterberg, H. Cerebrospinal fluid biomarkers for pathological processes in Alzheimer’s disease. Curr Opin Psychiatry. 2013 May;26(3):276282.10.1097/YCO.0b013e32835f6747CrossRefGoogle ScholarPubMed
Bettcher, BM, Johnson, SC, Fitch, R, et al. Cerebrospinal fluid and plasma levels of inflammation differentially relate to CNS markers of Alzheimer’s disease pathology and neuronal damage. J Alzheimers Dis. 2018;62(1):385397.10.3233/JAD-170602CrossRefGoogle Scholar
Varnum, MM, Ikezu, T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz). 2012 Aug;60(4):251266.10.1007/s00005-012-0181-2CrossRefGoogle ScholarPubMed
Zotova, E, Nicoll, JA, Kalaria, R, Holmes, C, Boche, D. Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther. 2010 Jan 22;2(1):1.10.1186/alzrt24CrossRefGoogle ScholarPubMed
Baik, SH, Kang, S, Son, SM, Mook-Jung, I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia. 2016 Sep 23;64(12):22742290.10.1002/glia.23074CrossRefGoogle ScholarPubMed
Hickman, SE, Allison, EK, El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008 Aug 13;28(33):83548360.10.1523/JNEUROSCI.0616-08.2008CrossRefGoogle ScholarPubMed
Boon, BDC, Hoozemans, JJM, Lopuhaä, B, et al. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease. J Neuroinflammation. 2018 May 29;15(1):170.10.1186/s12974-018-1180-yCrossRefGoogle ScholarPubMed
Kreisl, WC, Lyoo, CH, Liow, J-S, et al. Distinct patterns of increased translocator protein in posterior cortical atrophy and amnestic Alzheimer’s disease. Neurobiol Aging. 2017;51:132140.10.1016/j.neurobiolaging.2016.12.006CrossRefGoogle ScholarPubMed
Galton, CJ, Patterson, K, Xuereb, JH, Hodges, JR. Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain. 2000 Mar;123(Pt 3):484498.10.1093/brain/123.3.484CrossRefGoogle ScholarPubMed
Levine, DN, Lee, JM, Fisher, CM. The visual variant of Alzheimer’s disease: a clinicopathologic case study. Neurology. 1993 Feb;43(2):305313.10.1212/WNL.43.2.305CrossRefGoogle ScholarPubMed
Hof, PR, Vogt, BA, Bouras, C, Morrison, JH. Atypical form of Alzheimer’s disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways. Vision Res. 1997 Dec;37(24):36093625.10.1016/S0042-6989(96)00240-4CrossRefGoogle ScholarPubMed
Jellinger, KA, Grazer, A, Petrovic, K, et al. Four-repeat tauopathy clinically presenting as posterior cortical atrophy: atypical corticobasal degeneration? Acta Neuropathol. 2011 Feb;121(2):267277.10.1007/s00401-010-0712-zCrossRefGoogle ScholarPubMed
Victoroff, J, Ross, GW, Benson, DF, Verity, MA, Vinters, HV. Posterior cortical atrophy. Neuropathologic correlations. Arch Neurol. 1994 Mar;51(3):269274.10.1001/archneur.1994.00540150063018CrossRefGoogle ScholarPubMed
Balasa, M, Gelpi, E, Antonell, A, et al. Clinical features and APOE genotype of pathologically proven early-onset Alzheimer disease. Neurology. 2011 May 17;76(20):17201725.10.1212/WNL.0b013e31821a44ddCrossRefGoogle ScholarPubMed
Hof, PR, Bouras, C, Constantinidis, J, Morrison, JH. Selective disconnection of specific visual association pathways in cases of Alzheimer’s disease presenting with Balint’s syndrome. J Neuropathol Exp Neurol. 1990 Mar;49(2):168184.10.1097/00005072-199003000-00008CrossRefGoogle ScholarPubMed
James, BD, Wilson, RS, Boyle, PA, TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain. 2016 Nov 1;139(11):29832993.10.1093/brain/aww224CrossRefGoogle ScholarPubMed
Clinton, LK, Blurton-Jones, M, Myczek, K, Trojanowski, JQ, LaFerla, FM. Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci. 2010 May 26;30(21):72817289.10.1523/JNEUROSCI.0490-10.2010CrossRefGoogle ScholarPubMed
Zeki, S. Area V5-a microcosm of the visual brain. Front Integr Neurosci. 2015 Apr 1;9:21.10.3389/fnint.2015.00021CrossRefGoogle ScholarPubMed
Zeki, S. The visual association cortex. Curr Opin Neurobiol. 1993 Apr;3(2):155159.10.1016/0959-4388(93)90203-BCrossRefGoogle ScholarPubMed
Mishkin, M, Ungerleider, LG, Macko, KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983 Jan;6:414417.10.1016/0166-2236(83)90190-XCrossRefGoogle Scholar
Haxby, JV, Grady, CL, Horwitz, B, et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):16211625.10.1073/pnas.88.5.1621CrossRefGoogle ScholarPubMed
Ross, SJ, Graham, N, Stuart-Green, L, et al. Progressive biparietal atrophy: an atypical presentation of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1996 Oct;61(4):388395.10.1136/jnnp.61.4.388CrossRefGoogle ScholarPubMed
Grossi, D, Soricelli, A, Ponari, M, et al. Structural connectivity in a single case of progressive prosopagnosia: the role of the right inferior longitudinal fasciculus. Cortex. 2014 Jul;56:111120.10.1016/j.cortex.2012.09.010CrossRefGoogle Scholar
Dubois, B, Feldman, HH, Jacova, C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014 Jun;13(6):614629.10.1016/S1474-4422(14)70090-0CrossRefGoogle ScholarPubMed
Alladi, S, Xuereb, J, Bak, T, et al. Focal cortical presentations of Alzheimer’s disease. Brain. 2007 Oct;130(Pt 10):26362645.10.1093/brain/awm213CrossRefGoogle ScholarPubMed
Chan, D, Crutch, SJ, Warrington, EK. A disorder of colour perception associated with abnormal colour after-images: a defect of the primary visual cortex. J Neurol Neurosurg Psychiatry. 2001 Oct;71(4):515517.10.1136/jnnp.71.4.515CrossRefGoogle ScholarPubMed
De Renzi, E. Slowly progressive visual agnosia or apraxia without dementia. Cortex. 1986 Mar;22(1):171180.10.1016/S0010-9452(86)80041-7CrossRefGoogle ScholarPubMed
Green, RC, Goldstein, FC, Mirra, SS, et al. Slowly progressive apraxia in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1995 Sep;59(3):312315.10.1136/jnnp.59.3.312CrossRefGoogle ScholarPubMed
Aharon-Peretz, J, Israel, O, Goldsher, D, Peretz, A. Posterior cortical atrophy variants of Alzheimer’s disease. Dement Geriatr Cogn Disord. 1999 Dec;10(6):483487.10.1159/000017194CrossRefGoogle ScholarPubMed
Kennedy, J, Lehmann, M, Sokolska, MJ, et al. Visualizing the emergence of posterior cortical atrophy. Neurocase. 2012 Jun;18(3):248257.10.1080/13554794.2011.588180CrossRefGoogle ScholarPubMed
Seeley, WW, Crawford, RK, Zhou, J, Miller, BL, Greicius, MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009 Apr 16;62(1):4252.10.1016/j.neuron.2009.03.024CrossRefGoogle ScholarPubMed
Mendez, MF, Monserratt, LH, Liang, L-J, et al. Neuropsychological similarities and differences between amnestic Alzheimer’s disease and its non-amnestic variants. J Alzheimers Dis. 2019;69(3):849855.10.3233/JAD-190124CrossRefGoogle ScholarPubMed
Tang-Wai, D, Mapstone, M. What are we seeing? Is posterior cortical atrophy just Alzheimer disease? Neurology. 2006 Feb 14;66(3):300301.10.1212/01.wnl.0000202093.81603.d8CrossRefGoogle ScholarPubMed
Ferreira, D, Pereira, JB, Volpe, G, Westman, E. Subtypes of Alzheimer’s disease display distinct network abnormalities extending beyond their pattern of brain atrophy. Front Neurol. 2019 May 28;10:524.10.3389/fneur.2019.00524CrossRefGoogle ScholarPubMed
Lam, B, Masellis, M, Freedman, M, Stuss, DT, Black, SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther. 2013 Jan 9;5(1):1.10.1186/alzrt155CrossRefGoogle ScholarPubMed
Quental, NBM, Brucki, SMD, Bueno, OFA. Visuospatial function in early Alzheimer’s disease – the use of the Visual Object and Space Perception (VOSP) battery. PLoS One. 2013 Jul 16;8(7):e68398.10.1371/journal.pone.0068398CrossRefGoogle ScholarPubMed
Mendez, MF, Mendez, MA, Martin, R, Smyth, KA, Whitehouse, PJ. Complex visual disturbances in Alzheimer’s disease. Neurology. 1990 Mar;40(3 Pt 1):439443.10.1212/WNL.40.3_Part_1.439CrossRefGoogle ScholarPubMed
Mendola, JD, Cronin-Golomb, A, Corkin, S, Growdon, JH. Prevalence of visual deficits in Alzheimer’s disease. Optom Vis Sci. 1995 Mar;72(3):155167.10.1097/00006324-199503000-00003CrossRefGoogle ScholarPubMed
Butts, AM, Machulda, MM, Duffy, JR, et al. Neuropsychological profiles differ among the three variants of primary progressive aphasia. J Int Neuropsychol Soc. 2015 Jul;21(6):429435.10.1017/S1355617715000399CrossRefGoogle ScholarPubMed
Whitwell, JL, Duffy, JR, Strand, EA, et al. Clinical and neuroimaging biomarkers of amyloid-negative logopenic primary progressive aphasia. Brain Lang. 2015 Mar;142:4553.10.1016/j.bandl.2015.01.009CrossRefGoogle ScholarPubMed
Sakae, N, Josephs, KA, Litvan, I, et al. Clinicopathologic subtype of Alzheimer’s disease presenting as corticobasal syndrome. Alzheimers Dement. 2019 Aug 6;15(9):12181228.10.1016/j.jalz.2019.04.011CrossRefGoogle ScholarPubMed
Phillips, JS, Da Re, F, Dratch, L, et al. Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer’s disease. Neurobiol Aging. 2018;63:7587.10.1016/j.neurobiolaging.2017.11.008CrossRefGoogle ScholarPubMed
Suárez-González, A, Crutch, SJ, Franco-Macías, E, Gil-Néciga, E. Neuropsychiatric symptoms in posterior cortical atrophy and Alzheimer disease. J Geriatr Psychiatry Neurol. 2016 Mar;29(2):6571.10.1177/0891988715606229CrossRefGoogle ScholarPubMed
Murray, ME, Graff-Radford, NR, Ross, OA, et al. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011 Sep;10(9):785796.10.1016/S1474-4422(11)70156-9CrossRefGoogle ScholarPubMed
Hanna Al-Shaikh, FS, Duara, R, Crook, JE, et al. Selective vulnerability of the nucleus basalis of Meynert among neuropathologic subtypes of Alzheimer disease. JAMA Neurol. 2020 Feb 1;77(2):225233.10.1001/jamaneurol.2019.3606CrossRefGoogle ScholarPubMed
Braak, H, Thal, DR, Ghebremedhin, E, Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011 Nov;70(11):960969.10.1097/NEN.0b013e318232a379CrossRefGoogle ScholarPubMed
Hof, PR, Bouras, C, Constantinidis, J, Morrison, JH. Balint’s syndrome in Alzheimer’s disease: specific disruption of the occipito-parietal visual pathway. Brain Res. 1989 Jul 31;493(2):368375.10.1016/0006-8993(89)91173-6CrossRefGoogle ScholarPubMed
Mesulam, M, Wicklund, A, Johnson, N, et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol. 2008 Jun;63(6):709719.10.1002/ana.21388CrossRefGoogle ScholarPubMed
Vogel, JW, Young, AL, Oxtoby, NP, et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med. 2021 May;27(5):871881.10.1038/s41591-021-01309-6CrossRefGoogle ScholarPubMed
Braak, H, Alafuzoff, I, Arzberger, T, Kretzschmar, H, Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006 Oct;112(4):389404.10.1007/s00401-006-0127-zCrossRefGoogle ScholarPubMed
Shakespeare, TJ, Yong, KXX, Foxe, D, Hodges, J, Crutch, SJ. Pronounced impairment of everyday skills and self-care in posterior cortical atrophy. J Alzheimers Dis. 2015;43(2):381384.10.3233/JAD-141071CrossRefGoogle ScholarPubMed
Ahmed, S, Culley, S, Blanco-Duque, C, et al. Pronounced impairment of activities of daily living in posterior cortical atrophy. Dement Geriatr Cogn Disord. 2020 Apr 22;49(1):4855.10.1159/000506125CrossRefGoogle ScholarPubMed
Isella, V, Villa, G, Mapelli, C, et al. The neuropsychiatric profile of posterior cortical atrophy. J Geriatr Psychiatry Neurol. 2015 Jun;28(2):136144.10.1177/0891988714554713CrossRefGoogle ScholarPubMed
Judge, KS, Menne, HL, Whitlatch, CJ. Stress Process Model for individuals with dementia. Gerontologist. 2010 Jun;50(3):294302.10.1093/geront/gnp162CrossRefGoogle ScholarPubMed
Harding, E, Sullivan, MP, Woodbridge, R, et al. “Because my brain isn’t as active as it should be, my eyes don’t always see”: a qualitative exploration of the stress process for those living with posterior cortical atrophy. BMJ Open. 2018 Feb 8;8(2):e018663.10.1136/bmjopen-2017-018663CrossRefGoogle Scholar
Kontos, P, Miller, K-L, Kontos, AP. Relational citizenship: supporting embodied selfhood and relationality in dementia care. Sociol Health Illn. 2017;39(2):182198.10.1111/1467-9566.12453CrossRefGoogle ScholarPubMed
Yin, RK. Case Study Research and Applications: Design and Methods, 6th ed. Los Angeles: SAGE, 2017.Google Scholar
Harding, E. I’m still that person in there but I can’t make it work: capturing the day-to-day impacts of a diagnosis of posterior cortical atrophy [Doctoral dissertation]. University College London; 2020.Google Scholar
Kim, E, Lee, Y, Lee, J, Han, S-H. A case with cholinesterase inhibitor responsive asymmetric posterior cortical atrophy. Clin Neurol Neurosurg. 2005 Dec;108(1):97101.10.1016/j.clineuro.2004.11.022CrossRefGoogle ScholarPubMed
Ridha, BH, Crutch, S, Cutler, D, et al. A double-blind placebo-controlled cross-over clinical trial of DONepezil In Posterior cortical atrophy due to underlying Alzheimer’s Disease: DONIPAD study. Alzheimers Res Ther. 2018 May 1;10(1):44.10.1186/s13195-018-0363-1CrossRefGoogle ScholarPubMed
Kompoliti, K, Goetz, CG, Boeve, BF, et al. Clinical presentation and pharmacological therapy in corticobasal degeneration. Arch Neurol. 1998 Jul;55(7):957961.10.1001/archneur.55.7.957CrossRefGoogle ScholarPubMed
Lamb, R, Rohrer, JD, Lees, AJ, Morris, HR. Progressive supranuclear palsy and corticobasal degeneration: pathophysiology and treatment options. Curr Treat Options Neurol. 2016 Sep;18(9):42.10.1007/s11940-016-0422-5CrossRefGoogle ScholarPubMed
Crutch, SJ, Walton, J, Carton, AM, Shakespeare, TJ. The stages of posterior cortical atrophy (PCA) [Internet]. 2014 [cited 2021 Apr 28]. Available from: www.raredementiasupport.org/wp-content/uploads/2020/03/The-Stages-of-Posterior-Cortical-Atrophy.pdfGoogle Scholar
Carton, AM, Walton, J, Henley, SMD, Sullivan, MP, Crutch, SJ. Posterior cortical atrophy. J Dementi Care. 2015;23(6):2224.Google Scholar
Liu, Y, Pelak, VS, van Stavern, G, Moss, HE. Higher cortical dysfunction presenting as visual symptoms in neurodegenerative diseases. Front Neurol. 2020 Jul 31;11:679.10.3389/fneur.2020.00679CrossRefGoogle ScholarPubMed
Bowen, M, Zutshi, H, Cordiner, M, Crutch, S, Shakespeare, T. Qualitative, exploratory pilot study to investigate how people living with posterior cortical atrophy, their carers and clinicians experience tests used to assess vision. BMJ Open. 2019 Mar 20;9(3):e020905.10.1136/bmjopen-2017-020905CrossRefGoogle ScholarPubMed
McIntyre, A, Harding, E, Yong, KXX, et al. Health and social care practitioners’ understanding of the problems of people with dementia-related visual processing impairment. Health Soc Care Community. 2019 Feb 9;27(4):982990.10.1111/hsc.12715CrossRefGoogle ScholarPubMed
Wobma, R, Nijland, RHM, Ket, JCF, Kwakkel, G. Evidence for peer support in rehabilitation for individuals with acquired brain injury: a systematic review. J Rehabil Med. 2016 Nov 11;48(10):837840.10.2340/16501977-2160CrossRefGoogle ScholarPubMed
Suárez-González, A, Henley, SM, Walton, J, Crutch, SJ. Posterior cortical atrophy: an atypical variant of Alzheimer disease. Psychiatr Clin North Am. 2015 Jun;38 (2):211220.10.1016/j.psc.2015.01.009CrossRefGoogle ScholarPubMed
Rare Dementia Support [Internet]. [cited 2021 Apr 28]. Available from: www.raredementiasupport.orgGoogle Scholar
Colorado PCA Support [Internet]. [cited 2021 Mar 28]. Available from: www.coloradopcasupport.orgGoogle Scholar
Posterior Cortical Atrophy Awareness [Internet]. [cited 2021 Apr 28]. Available from: www.facebook.com/groups/147542335356010Google Scholar
Lake, A, Martinez, M, Tang-Wai, DF. Visual dysfunction in dementia: home safety tips & recommendations. [Internet]. 2012 [cited 2021 Apr 28]. Available from: https://wiki.library.ucsf.edu/download/attachments/320407539/PCA%20Tip%20Sheet%20for%20Patients.pdf?version=1&modificationDate=1386708011000&api=v2Google Scholar
Suarez-Gonzalez, A, Ocal, D, Pavisic, I, et al. ReadClear: an assistive reading tool for people living with posterior cortical atrophy. J Alzheimers Dis. 2019;71(4):12851295.10.3233/JAD-190335CrossRefGoogle ScholarPubMed
Yong, KXX, McCarthy, ID, Poole, T, et al. Navigational cue effects in Alzheimer’s disease and posterior cortical atrophy. Ann Clin Transl Neurol. 2018 Jun;5(6):697709.10.1002/acn3.566CrossRefGoogle ScholarPubMed
Yong, KXX, McCarthy, ID, Poole, T, et al. Effects of lighting variability on locomotion in posterior cortical atrophy. Alzheimers Dement (N Y). 2020 Oct 7;6(1):e12077.10.1002/trc2.12077CrossRefGoogle ScholarPubMed
Volkmer, A, Rogalski, E, Henry, M, et al. Speech and language therapy approaches to managing primary progressive aphasia. Pract Neurol. 2020 Apr;20(2):154161.10.1136/practneurol-2018-001921CrossRefGoogle ScholarPubMed
Suárez-González, A, Zimmermann, N, Waddington, C, et al. Non-memory led dementias: care in the time of covid-19. BMJ. 2020 Jun 30;369:m2489.10.1136/bmj.m2489CrossRefGoogle Scholar

References

Pasquier, F, Leys, D (1997). Why are stroke patients prone to develop dementia? J Neurol 244(3):135142.10.1007/s004150050064CrossRefGoogle ScholarPubMed
Bowler, JV, Hachinski, V (1995). Vascular cognitive impairment: a new approach to vascular dementia. Baillires Clin Neurol 4(2):357376.Google ScholarPubMed
Lee, DY, Lee, JH, Ju, YS et al. (2002). The prevalence of dementia in older people in an urban population of Korea: the Seoul study. J Am Geriatr Soc 50 (7):12331239.10.1046/j.1532-5415.2002.50310.xCrossRefGoogle Scholar
Zhang, ZX, Zahner, GE, Roman, GC et al. (2005). Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol 62 (3):447453.10.1001/archneur.62.3.447CrossRefGoogle Scholar
Dong, MJ, Peng, B, Lin, XT et al. (2007). The prevalence of dementia in the People’s Republic of China: a systematic analysis of 1980–2004 studies. Age Ageing 36(6):619624.10.1093/ageing/afm128CrossRefGoogle ScholarPubMed
Yanagihara, T (2002). Vascular dementia in Japan. Ann N Y Acad Sci 977:2428.10.1111/j.1749-6632.2002.tb04795.xCrossRefGoogle ScholarPubMed
Kokmen, E, Whisnant, JP, O’Fallon, WN, Chu, CP, Beard, CM (1996). Dementia after ischemic stroke: a populationbased study in Rochester, Minnesota (1960–1984). Neurology 46:154159.10.1212/WNL.46.1.154CrossRefGoogle ScholarPubMed
Andersen, G, Vestergaard, K, Riis, JY, Ingeman-Nielsen, M (1996). Intellectual impairment in the first year following stroke, compared to an age-matched population sample. Cerebrovasc Dis 6:363369.10.1159/000108054CrossRefGoogle Scholar
Tatemichi, TK, Paik, M, Bagiella, E et al. (1994). Risk of dementia after stroke in a hospitalized cohort: results of a longitudinal study. Neurology 44:18851891.10.1212/WNL.44.10.1885CrossRefGoogle Scholar
Gorelick, PB, Scuteri, A, Black, SE et al. (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. AHA/ASA Scientific Statement. Stroke. 42 (9):26722713.10.1161/STR.0b013e3182299496CrossRefGoogle Scholar
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington, DC: American Psychiatric Publishing.Google Scholar
World Health Organization (1993). International Classification of Disease (ICD-1 0): Classification of Mental and Behavioral Disorders. Diagnostic Criteria for Research. Geneva: World Health Organization.Google Scholar
Chui, HC, Victoroff, JI, Margolin, D et al. (1992). Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology 42:473480.10.1212/WNL.42.3.473CrossRefGoogle ScholarPubMed
Roman, GC, Tatemichi, TK, Erkinjuntti, T et al. (1993a). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 31:269282.Google Scholar
Roman, GC, Tatemichi, TK, Erkinjuntti, T et al. (1993b). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250260.10.1212/WNL.43.2.250CrossRefGoogle ScholarPubMed
Roman, GC, Tatemichi, TK, Erkinjuntti, T et al. (1993c). Vascular dementia: diagnostic criteria for research studies – Report of the NINDS-AIREN International Workshop. Neurology 43:16091611.Google ScholarPubMed
Hachinski, VC, Iliff, LD, Zilhka, E et al. (1975). Cerebral blood flow in dementia. Arch Neurol 32(9):632637.10.1001/archneur.1975.00490510088009CrossRefGoogle ScholarPubMed
Moroney, JT, Bagiella, E, Desmond, DW et al. (1997). Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias. Neurology 49:10961105.10.1212/WNL.49.4.1096CrossRefGoogle ScholarPubMed
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington, VA: American Psychiatric Publishing.Google Scholar
Erkinjuntti, T (1999). Cerebrovascular dementia. CNS Drugs 12(1):3548.10.2165/00023210-199912010-00004CrossRefGoogle Scholar
De Reuck, J, Sieben, G, De Coster, W, van der Eecken, H (1981). Stroke pattern and topography of cerebral infarcts. A clinicopathological study. Eur Neural 20(5):411415.10.1159/000115269CrossRefGoogle ScholarPubMed
Erkinjuntti, T (1987). Types of multi-infarct dementia. Acta Neurol Scand 75(6):391939.10.1111/j.1600-0404.1987.tb05467.xCrossRefGoogle ScholarPubMed
Erkinjuntti, T, Sawada, T, Whitehouse, PJ (1999). The Osaka Conference on Vascular Dementia 1998. Alzheimer Dis Assoc Disord 13(Suppl 3):S1S3.Google ScholarPubMed
Benson, DF, Cummings, JL (1982). Angular gyrus syndrome simulating Alzheimer’s disease. Arch Neurol 39(10):616620.10.1001/archneur.1982.00510220014003CrossRefGoogle ScholarPubMed
Tatemichi, TK, Foulkes, MA, Mohr, JP et al. (1990). Dementia in stroke survivors in the Stroke Data Bank cohort. Prevalence, incidence, risk factors, and computed tomographic findings. Stroke 21(6):858866.10.1161/01.STR.21.6.858CrossRefGoogle ScholarPubMed
Brust, J, Sawada, T, Kazui, S (2001). Anterior cerebral artery. In Bogousslavsky, J, Caplan, L, eds. Stroke Syndrome, 2nd ed. Cambridge: Cambridge University Press; pp. 439460.10.1017/CBO9780511586521.033CrossRefGoogle Scholar
Absher, JR, Cummings, JL (1995). Neurobehavioral examination of frontal lobe functions. Aphasiology 9:181192.10.1080/02687039508248705CrossRefGoogle Scholar
Cummings, JL (1993). Frontal- subcortical circuits and human behavior. Arch Neurol 50(8):873880.10.1001/archneur.1993.00540080076020CrossRefGoogle ScholarPubMed
Hahm, DS, Kang, Y, Cheong, SS, Na, DL (2001). A compulsive collecting behavior following an A-com aneurysmal rupture. Neurology 56(3):398400.10.1212/WNL.56.3.398CrossRefGoogle ScholarPubMed
Lhermitte, F, Pillon, B, Serdaru, M (1986). Human autonomy and the frontal lobes. Part I: imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol 19(4):326334.10.1002/ana.410190404CrossRefGoogle ScholarPubMed
Lhermitte, F (1983). “Utilization behaviour” and its relation to lesions of the frontal lobes. Brain 106(Pt 2):237255.10.1093/brain/106.2.237CrossRefGoogle ScholarPubMed
Tranel, D (1994). “Acquired sociopathy”: the development of sociopathic behavior following focal brain damage. Prog Exp Pers Psychopathol Res:285311.Google Scholar
Gazzaniga, MS, lvry, RB, Mangun, GR (2002). Emotion. In Gazzaniga, MS, Ivry, RB, Mangun, GR., eds. Cognitive Neuroscience: The Biology of the Mind, 2nd ed. New York: WW Norton; pp. 537576.Google Scholar
Heilman, KM, Watson, RT (1991). Intentional motor disorders. In Levin, HS, Eisenberg, HM, Benton, AL, eds. Frontal Lobe Function and Dysfunction. New York: Oxford University Press; pp. 199213.10.1093/oso/9780195062847.003.0010CrossRefGoogle Scholar
Wernicke, E (1874). Der Aphasische Symptomenkomplex. Breslau: Cohn and Weigart.Google Scholar
Geschwind, N (1965). Disconnexion syndromes in animals and man. I. Brain 88(2):237294.10.1093/brain/88.2.237CrossRefGoogle Scholar
Geschwind, N (1965). Disconnexion syndromes in animals and man. II. Brain 88(3):585644.10.1093/brain/88.3.585CrossRefGoogle Scholar
Heilman, KM, Rothi, LJ, Valenstein, E (1982). Two forms of ideomotor apraxia. Neurology 32(4):342346.10.1212/WNL.32.4.342CrossRefGoogle ScholarPubMed
Heilman, KM, van den Abell, T (1979). Right hemispheric dominance for mediating cerebral activation. Neuropsychologia 17(3–4):315–213.10.1016/0028-3932(79)90077-0CrossRefGoogle ScholarPubMed
Meador, KJ, Watson, RT, Bowers, D, Heilman, KM (1986). Hypometria with hemispatial and limb motor neglect. Brain 109(Pt 2):293305.10.1093/brain/109.2.293CrossRefGoogle ScholarPubMed
Heilman, KM, Bowers, D, Coslett, HB, Whelan, H, Watson, RT (1985). Directional hypokinesia: prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology 35(6):855859.10.1212/WNL.35.6.855CrossRefGoogle ScholarPubMed
Kertesz, A, Nicholson, I, Cancelliere, A, Kassa, K, Black, SE (1985). Motor impersistence: a right hemisphere syndrome. Neurology 35(5):662666.10.1212/WNL.35.5.662CrossRefGoogle ScholarPubMed
Sandson, J, Albert, ML (1987). Perseveration in behavioral neurology. Neurology 37(11):17361741.10.1212/WNL.37.11.1736CrossRefGoogle ScholarPubMed
Kolb, B, Whishaw, IQ (2003). Disconnection syndromes. In Kolb, B, Whishaw, IQ, eds. Fundamentals of Human Neuropsychology, 5th ed. New York: Worth; pp. 426446.Google Scholar
Seo, SW, Jung, K, You, H et al. (2007). Dominant limb motor impersistence associated with callosal disconnection. Neurology 68(11):862864.10.1212/01.wnl.0000256821.35288.b0CrossRefGoogle ScholarPubMed
Starkstein, SE, Robinson, RG (1991). The role of the frontal lobes in affective disorder following stroke. In Levin, HS, Eisenberg, HM, Benton, AL, eds. Frontal Lobe Function and Dysfunction. New York: Oxford University Press, pp. 288303.10.1093/oso/9780195062847.003.0015CrossRefGoogle Scholar
Damasio, AR, Anderson, SW (2003). The frontal lobes. In Heilman, KM, V alenstein, E, eds. Clinical Neuropsychology, 4th ed. New York: Oxford University Press, pp. 404446.10.1093/oso/9780195133677.003.0015CrossRefGoogle Scholar
Andrew, J, Nathan, PW (1964). Lesion on the anterior frontal lobes and disturbances of micturition and defecation. Brain 87:233262.10.1093/brain/87.2.233CrossRefGoogle Scholar
Ropper, AH, Brown, RH, Brown, RJ (2005). Disorders of speech and language. In Adams and Victor’s Principles of Neurology, 8th ed. New York: McGraw-Hill; pp. 413432.Google Scholar
Zangwill, OL (1979). Two cases of crossed aphasia in dextrals. Neuropsychologia 17(2):167.10.1016/0028-3932(79)90007-1CrossRefGoogle ScholarPubMed
Broca, P (1977). Remarks on the seat of the faculty of articulate speech, followed by the report of a case of aphemia (loss of speech). In Rottenberg, DA, Hochberg, FH, eds. Neurologic Classics in Modern Translation. New York: Hafner Press; pp. 136149.Google Scholar
Damasio, H (1981). Cerebral localization of the aphasias. In Sarno, MT, ed. Acquired Aphasia. Orlando, FL: Academic Press; pp. 2755.Google Scholar
Benson, DF (1988). Classical syndromes of aphasia. In Boiler, F, Grafman, J, eds. Handbook of Neuropsychology, vol. l. Amsterdam: Elsevier Science; pp. 267280.Google Scholar
Damasio, H, Damasio, AR (1983). The localization of lesions in conduction aphasia. In Kertesz, A, ed. Localization and Neuroimaging in Neuropsychology. Orlando, FL: Academic Press; pp. 231243.Google Scholar
Devinsky, O (1992). Aphasia. In Behavioral Neurology 100 Maxims. St. Louis, MO: Mosby Year Book; pp. 88130.Google Scholar
Freedman, M, Alexander, MP, Naeser, MA (1984). Anatomic basis of transcortical motor aphasia. Neurology 34(4):409417.10.1212/WNL.34.4.409CrossRefGoogle ScholarPubMed
Alexander, MP, Hiltbrunner, B, Fischer, RS (1989). Distributed anatomy of transcortical sensory aphasia. Arch Neurol 46(8):885892.10.1001/archneur.1989.00520440075023CrossRefGoogle ScholarPubMed
Mesulam, MM, van Hoesen, GW, Pandya, DN, Geschwind, N (1977). Limbic and sensory connections of the inferior parietal lobule (area PG) in the Rhesus monkey: a study with a new method for horseradish per oxidase histochemistry. Brain Res 136(3):393414.10.1016/0006-8993(77)90066-XCrossRefGoogle Scholar
Gerstmann, J (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia. Arch Neurol Psychiatry 44:398408.10.1001/archneurpsyc.1940.02280080158009CrossRefGoogle Scholar
Benton, AL, Varney, NR, Hamsher, KD (1978). Visuospatial judgment. A clinical test. Arch Neurol 35(6):364367.10.1001/archneur.1978.00500300038006CrossRefGoogle ScholarPubMed
Heilman, KM, van den Abell, T (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30(3):327330.10.1212/WNL.30.3.327CrossRefGoogle ScholarPubMed
Benton, AL, Tranel, D (1993). Visuoperceptual, visuospatial, and visuoconstructive disorders. In Heilman, KM, Valenstein, E, eds. Clinical Neuropsychology, 3rd ed. New York: Academic Press; pp. 165213.Google Scholar
Farah, MJ (2003). Disoders of visual-spatial perception and cognition. In Heilman, KM, Valenstein, E, eds. Clinical Neuropsychology, 4th ed. New York: Oxford University Press; pp. 146160.10.1093/oso/9780195133677.003.0008CrossRefGoogle Scholar
Heilman, KM, Rothi, LJG (2003). Apraxia. In Heilman, KM, Valenstein, E, eds. Clinical Neuropsychology, 4th ed. New York: Oxford University Press; pp. 215235.10.1093/oso/9780195133677.003.0011CrossRefGoogle Scholar
Heilman, KM, Rothi, LJG (2003). Neglect and related disorders. In Heilman, KM, Valenstein, E, eds. Clinical Neuropsychology, 4th ed. New York: Oxford University Press; pp. 296346.10.1093/oso/9780195133677.003.0013CrossRefGoogle Scholar
Mort, DJ, Malhotra, P, Mannan, SK et al. (2003). The anatomy of visual neglect. Brain 126:19861997.10.1093/brain/awg200CrossRefGoogle ScholarPubMed
Vallar, G, Bottini, G, Paulesu, E (2003). Neglect syndromes: the role of the parietal cortex. Adv Neurol 93:293319.Google ScholarPubMed
Karnath, HO, Fruhmann Berger, M, Kuker, W, Rorden, C (2004). The anatomy of spatial neglect based on voxel-wise statistical analysis: a study of 140 patients. Cereb Cortex 14:11641172.10.1093/cercor/bhh076CrossRefGoogle Scholar
Karnath, HO, Zopf, R, Johannsen, L et al. (2005). Normalized perfusion MRI to identify common areas of dysfunction: patients with basal ganglia neglect. Brain 128:24622469.10.1093/brain/awh629CrossRefGoogle ScholarPubMed
Hillis, AE, Newhart, M, Heidler, J et al. (2005). Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J Neurosci 25:31613167.10.1523/JNEUROSCI.4468-04.2005CrossRefGoogle ScholarPubMed
Na, DL, Adair, JC, Williamson, DJ et al. (1998). Dissociation of sensory-attentional from motor-intentional neglect. J Neurol Neurosurg Psychiatry 64 (3):331338.10.1136/jnnp.64.3.331CrossRefGoogle ScholarPubMed
Babinski, J (1914). Contribusion a l’etude des troubles mentaux clans l’hemiplegie organique cerebrate (anosognosie). Rev Neural 27:845847.Google Scholar
Beschin, N, Robertson, IH (1997). Personal versus extrapersonal neglect: a group study of their dissociation using a reliable clinical test. Cortex 33(2):379384.10.1016/S0010-9452(08)70013-3CrossRefGoogle Scholar
Ogden, JA (1985). Anterior-posterior interhemispheric differences in the loci of lesions producing visual hemineglect. Brain Cogn 4:5975.10.1016/0278-2626(85)90054-5CrossRefGoogle ScholarPubMed
Tucker, DM, Watson, RT, Heilman, KM (1977). Discrimination and evocation of affectively intoned speech in patients with right parietal disease. Neurology 27(10):947950.10.1212/WNL.27.10.947CrossRefGoogle ScholarPubMed
Ross, ED (1981). The aprosodias. Functional–anatomic organization of the affective components of language in the right hemisphere. Arch Neurol 38 (9):561569.10.1001/archneur.1981.00510090055006CrossRefGoogle ScholarPubMed
Mesulam, MM, Waxman, SG, Geschwind, N, Sabin, TD (1976). Acute confusional states with right middle cerebral artery infarctions. J Neurol Neurosurg Psychiatry 39(1):8489.10.1136/jnnp.39.1.84CrossRefGoogle ScholarPubMed
Mori, E, Yamadori, A (1987). Acute confusional state and acute agitated delirium. Occurrence after infarction in the right middle cerebral artery territory. Arch Neurol 44(11):11391143.10.1001/archneur.1987.00520230029009CrossRefGoogle ScholarPubMed
Starkstein, SE, Robinson, RG, Price, TR (1987). Comparison of cortical and subcortical lesions in the production of poststroke mood disorders. Brain 110(Pt 4):10451059.10.1093/brain/110.4.1045CrossRefGoogle ScholarPubMed
Kim, JS, Choi-Kwon, S (2000). Poststroke depression and emotional incontinence: correlation with lesion location. Neurology 54(9):18051810.10.1212/WNL.54.9.1805CrossRefGoogle ScholarPubMed
Fisher, CM (1986). The posterior cerebral artery syndrome. Can J Neurol Sci 13(3):232239.10.1017/S0317167100036337CrossRefGoogle ScholarPubMed
Critchley, M (1951). Types of visual perseveration: “paliopsia” and “illusory visual spread.Brain 74(3):267299.10.1093/brain/74.3.267CrossRefGoogle ScholarPubMed
Lance, JW (1976). Simple formed hallucinations confined to the area of a specific visual field defect. Brain 99(4):719734.10.1093/brain/99.4.719CrossRefGoogle Scholar
Brust, JC, Behrens, MM (1977). “Release hallucinations” as the major symptom of posterior cerebral artery occlusion: a report of 2 cases. Ann Neurol 2(5):432436.10.1002/ana.410020516CrossRefGoogle Scholar
De Renzi, E, Zambolin, A, Crisi, G (1987). The pattern of neuropsychological impairment associated with left posterior cerebral artery infarcts. Brain 110(Pt 5):10991116.10.1093/brain/110.5.1099CrossRefGoogle ScholarPubMed
Geschwind, N, Fusillo, M (1966). Color-naming defects in association with alexia. Arch Neurol 115(2):137146.10.1001/archneur.1966.00470140027004CrossRefGoogle Scholar
Kertesz, A, Sheppard, A, MacKenzie, R (1982). Localization in transcortical sensory aphasia. Arch Neurol 39(8):475478.10.1001/archneur.1982.00510200017002CrossRefGoogle ScholarPubMed
Luders, H, Lesser, RP, Hahn, J et al. (1991). Basal temporal language area Brain 114(Pt 2):743754.10.1093/brain/114.2.743CrossRefGoogle ScholarPubMed
Kwon, JC, Lee, HJ, Chin, J et al. (2002). Hanja alexia with agraphia after left posterior inferior temporal lobe infarction: a case study. J Korean Med Sci 17(1):9195.10.3346/jkms.2002.17.1.91CrossRefGoogle ScholarPubMed
Kawamura, M, Hirayama, K, Hasegawa, K, Takahashi, N, Yamaura, A (1987). Alexia with agraphia of Kanji (Japanese morphograms). J Neurol Neurosurg Psychiatry 50(9):11251129.10.1136/jnnp.50.9.1125CrossRefGoogle ScholarPubMed
Soma, Y, Sugishita, M, Kitamura, K, Maruyama, S, Imanaga, H (1989). Lexical agraphia in the Japanese language. Pure agraphia for Kanji due to left posteroinferior temporal lesions. Brain 112(Pt 6):15491561.10.1093/brain/112.6.1549CrossRefGoogle ScholarPubMed
Benson, DF, Marsden, CD, Meadows, JC (1974). The amnesic syndrome of posterior cerebral artery occlusion. Acta Neurol Scand 50(2):133145.10.1111/j.1600-0404.1974.tb02767.xCrossRefGoogle ScholarPubMed
Kanwisher, N, McDermott, J, Chun, MM (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):43024311.10.1523/JNEUROSCI.17-11-04302.1997CrossRefGoogle Scholar
Piercy, MF, Hecaen, H, de Ajuriaguerra, J (1960). Constructional apraxia associated with unilateral cerebral lesions. Brain 83:225242.10.1093/brain/83.2.225CrossRefGoogle ScholarPubMed
Fisher, CM (1982). Disorientation for place. Arch Neurol 39(1):3336.10.1001/archneur.1982.00510130035008CrossRefGoogle ScholarPubMed
Park, KC, Jeong, Y, Hwa Lee, B et al. (2005). Left hemispatial visual neglect associated with a combined right occipital and splenial lesion: another disconnection syndrome, Neurocase 11(5):310318.10.1080/13554790591006177CrossRefGoogle ScholarPubMed
Park, KC, Lee, BH, Kim, EJ et al. (2006). Deafferentation disconnection neglect induced by posterior cerebral artery infarction. Neurology 66(1): 5661.10.1212/01.wnl.0000191306.67582.7aCrossRefGoogle ScholarPubMed
Poppel, E, Held, R, Frost, D (1973). Residual visual function after brain wounds involving the central visual pathways in man. Nature 243(5405):295296.10.1038/243295a0CrossRefGoogle ScholarPubMed
Aldrich, MS, Alessi, AG, Beck, RW, Gilman, S (1987). Cortical blindness: etiology, diagnosis, and prognosis. Ann Neurol 21(2):149158.10.1002/ana.410210207CrossRefGoogle ScholarPubMed
Ungerleider, LG, Mishkin, M (1982). Two cortical visual systems. In Ingle, DJ, Goodale, MA, Mansfield, RJW, eds. Analysis of Visual Behavior. Cambridge, MA: MIT Press; pp. 549586.Google Scholar
Hecaen, H, de Ajuriaguerra, J (1954). Balint’s syndrome (psychic paralysis of visual fixation) and its minor forms. Brain 77(3):373400.10.1093/brain/77.3.373CrossRefGoogle ScholarPubMed
Albert, ML, Soffer, D, Silverberg, R, Reches, A (1979). The anatomic basis of visual agnosia. Neurology 29(6):876879.10.1212/WNL.29.6.876CrossRefGoogle ScholarPubMed
Damasio, A, Yamada, T, Damasio, H, Corbett, J, McKee, J (1980). Central achromatopsia: behavioral, anatomic, and physiologic aspects. Neurology 30(10):10641071.10.1212/WNL.30.10.1064CrossRefGoogle ScholarPubMed
Damasio, AR, Damasio, H, van Hoesen, GW (1982). Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32(4):331341.10.1212/WNL.32.4.331CrossRefGoogle ScholarPubMed
Ringelstein, EB, Zeumer, H, Angelou, D (1983). The pathogenesis of strokes from internal carotid artery occlusion. Diagnostic and therapeutical implications. Stroke 14(6):867875.10.1161/01.STR.14.6.867CrossRefGoogle ScholarPubMed
Ringelstein, EB, Berg-Dammer, E, Zeumer, H (1983). The so-called atheromatous pseudo-occlusion of the internal carotid artery. A diagnostic and therapeutical challenge. Neuroradiology 25(3):147155.10.1007/BF00455734CrossRefGoogle Scholar
Bogousslavsky, J, Regli, F (1986). Unilateral watershed cerebral infarcts. Neurology 36(3):373377.10.1212/WNL.36.3.373CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Regli, F (1992). Centrum ovale infarcts: subcortical infarction in the superficial territory of the middle cerebral artery. Neurology 42(10):19921998.Google ScholarPubMed
Hashiguchi, S, Mine, H, Ide, M, Kawachi, Y (2000). Watershed infarction associated with dementia and cerebral atrophy. Psychiatry Clin Neurosci 54(2):163168.10.1046/j.1440-1819.2000.00653.xCrossRefGoogle ScholarPubMed
Antonelli Incalzi, R, Marra, C, Giordano, A et al. (2003). Cognitive impairment in chronic obstructive pulmonary disease: a neuropsychological and spect study. J Neurol 250(3):325332.10.1007/s00415-003-1005-4CrossRefGoogle ScholarPubMed
Lass, P, Buscombe, JR, Harber, M, Davenport, A, Hilson, AJ (1999). Cognitive impairment in patients with renal failure is associated with multiple-infarct dementia. Clin Nucl Med 24:561565.10.1097/00003072-199908000-00003CrossRefGoogle ScholarPubMed
Zuccala, G, Onder, G, Pedone, C (2001). For the GIFAONLUS Study Group. Hypotension and cognitive impairment: selective association in patients with hearing failure. Neurology 57(11):19861992.10.1212/WNL.57.11.1986CrossRefGoogle Scholar
Tsuda, Y, Yamada, K, Hayakawa, T et al. (1994). Cortical blood flow and cognition after extracranial- intracranial bypass in a patient with severe carotid occlusive lesions. Acta Neurochir (Wien) 129(3–4):198204.10.1007/BF01406505CrossRefGoogle Scholar
Roman, GC (2004). Brain hypoperfusion: a critical factor in vascular dementia. Neurol Res 26:454458.10.1179/016164104225017686CrossRefGoogle ScholarPubMed
Pullicino, PM, Caplan, LR, Hommel, M (1993). Advances in Neurology, vol. 62: Cerebral Small Artery Disease. New York: Raven Press.Google Scholar
Crystal, HA, Dickson, DW, Sliwinski, MJ et al. (1993). Pathological markers associated with normal aging and dementia in the elderly. Ann Neurol 34:566573.10.1002/ana.410340410CrossRefGoogle ScholarPubMed
Kumral, E, Evyapan, D, Balkir, K (1999). Acute caudate vascular lesions. Stroke 30(1):100108.10.1161/01.STR.30.1.100CrossRefGoogle ScholarPubMed
Mendez, MF, Adams, NL, Lewandowsky, K (1989). Neurobehavioral changes associated with caudate lesions. Neurology 39:349354.10.1212/WNL.39.3.349CrossRefGoogle ScholarPubMed
Caplan, LR, Schmahmann, JD, Kase, CS et al. (1990). Caudate infarcts. Arch Neurol 47:133143.10.1001/archneur.1990.00530020029011CrossRefGoogle ScholarPubMed
Kawamura, M, Takahashi, N, Hirayama, K (1988). Hemichorea and its denial in a case of caudate infarction diagnosed by magnetic resonance imaging. J Neurol Neurosurg Psychiatry 51:590591.10.1136/jnnp.51.4.590CrossRefGoogle Scholar
Richfield, EK, Twyman, R, Berent, S (1987). Neurological syndrome following bilateral damage to the head of the caudate nuclei. Ann Neurol 22:768771.10.1002/ana.410220615CrossRefGoogle Scholar
Meguro, K, Meguro, M, Akanuma, K (2012). Recurrent delusional ideas due to left caudate head infarction, without dementia. Psychogeriatrics 12:5861.10.1111/j.1479-8301.2011.00385.xCrossRefGoogle ScholarPubMed
Pozzilli, C, Passafiume, D, Bastianello, S, D’Antona, R, Lenzi, GL (1987). Remote effects of caudate hemorrhage: a clinical and functional study. Cortex 23:341349.10.1016/S0010-9452(87)80046-1CrossRefGoogle ScholarPubMed
McMurtray, AM, Sultzer, DL, Monserratt, L, Yeo, T, Mendez, MF (2008). Content-specific delusions from right caudate lacunar stroke: association with prefrontal hypometabolism. J Neuropsychiatry Clin Neurosci 20:6267.10.1176/jnp.2008.20.1.62CrossRefGoogle ScholarPubMed
Alexander, MP, Naeser, MA, Palumbo, CL (1987). Correlation of subcortical CT lesion sites and aphasia profiles. Brain 110:961991.10.1093/brain/110.4.961CrossRefGoogle ScholarPubMed
Bhatia, KP, Marsden, CD (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117(Pt 4):859876.10.1093/brain/117.4.859CrossRefGoogle ScholarPubMed
Maraganore, DM, Harding, AE, Marsden, CD (1991). A clinical and genetic study of familial Parkinson’s disease. Mov Disord 6(3):205211.10.1002/mds.870060303CrossRefGoogle ScholarPubMed
Laplane, D, Attal, N, Sauron, B, de Billy, A, Dubois, B (1992). Lesions of basal ganglia due to disulfiram neurotoxicity. J Neurol Neurosurg Psychiatry 55(10):925929.10.1136/jnnp.55.10.925CrossRefGoogle ScholarPubMed
Kim, SH, Park, KH, Sung, YH, et al. (2008). Dementia mimicking a sudden cognitive and behavioral change induced by left globus pallidus infarction: review of two cases. J Neurol Sci 272:178182.10.1016/j.jns.2008.04.031CrossRefGoogle ScholarPubMed
Tatemichi, TK, Desmond, DW, Prohovnik, I et al. (1992). Confusion and memory loss from capsular genu infarction: a thalamocortical disconnection syndrome? Neurology 42:19661979.10.1212/WNL.42.10.1966CrossRefGoogle ScholarPubMed
Kooistra, CA, Heilman, KM (1988). Memory loss from a subcortical white matter infarct. J Neural Neurosurg Psychiatry 51:866869.10.1136/jnnp.51.6.866CrossRefGoogle ScholarPubMed
Lai, C, Okada, Y, Sadoshima, S et al. (1990). A case of left internal capsular infarction with auditory hallucination and peculiar amnesia and dysgraphia. No To Shinkei 42:873877.Google ScholarPubMed
Terao, Y, Bandou, M, Nagura, H et al. (1991). Persistent amnestic syndrome due to infarction of the genu of the left internal capsule. Rinsho Shinkeigaku 31:10021006.Google ScholarPubMed
Chukwudelunzu, FE, Meschia, JF, Graff-Radford, NR, Lucas, JA (2001). Extensive metabolic and neuropsychological abnormalities associated with discrete infarction of the genu of the internal capsule. J Neurol Neurosurg Psychiatry 71(5):658662.10.1136/jnnp.71.5.658CrossRefGoogle ScholarPubMed
Yamanaka, K, Fukuyama, H, Kimura, J (1996). Abulia from unilateral capsular genu infarction: report of two cases. J Neurol Sci 143:181184.10.1016/S0022-510X(96)00201-8CrossRefGoogle ScholarPubMed
Guberman, A, Stuss, D (1983). The syndrome of bilateral paramedian thalamic infarction. Neurology 33(5):540546.10.1212/WNL.33.5.540CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Regli, F, Assal, G (1986). The syndrome of unilateral tuberothalamic artery territory infarction. Stroke 17:434441.10.1161/01.STR.17.3.434CrossRefGoogle ScholarPubMed
Oh, JH, Ahn, BY, Jo, MK et al. (2011). Obsessive-compulsive behavior disappearing after left capsular genu infarction. Case Rep Neurol 3:1820.10.1159/000323667CrossRefGoogle ScholarPubMed
Tatemichi, TK, Steinke, W, Duncan, C et al. (1992). Paramedian thalamopeduncular infarction: clinical syndromes and magnetic resonance imaging. Ann Neurol 32(2):162171.10.1002/ana.410320207CrossRefGoogle ScholarPubMed
Klingler, J, Gloor, P (1960). The connections of the amygdala and of the anterior temporal cortex in the human brain. J Camp Neural 115:333369.10.1002/cne.901150305CrossRefGoogle ScholarPubMed
Krettek, JE, Price, JL (1977). The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Camp Neural 171:157191.10.1002/cne.901710204CrossRefGoogle ScholarPubMed
Nieuwenhuys, R, Voogd, J, van Huijzen, C (1988). The Human Central Nervous System: A Synopsis and Atlas. New York: Springer-Verlag.10.1007/978-3-662-10343-2CrossRefGoogle Scholar
Hwang, W, Oh, YA, Jang, SM et al. (2010). A case report of three-dimensional fiber tractography of anterior thalamic radiation in a capsular genu infarction. Demen Neurocog Disord 9:3639.Google Scholar
von Cramon, DY, Hebel, N, Schuri, U (1985). A contribution to the anatomical basis of thalamic amnesia. Brain 108(Pt 4):9931008.10.1093/brain/108.4.993CrossRefGoogle Scholar
Graff-Radford, NR, Tranel, D, van Hoesen, GW, Brandt, JP (1990). Diencephalic amnesia. Brain 113(Pt 1):125.10.1093/brain/113.1.1CrossRefGoogle ScholarPubMed
Aggleton, JP, Saunders, RC (1997). The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory 5:4971.10.1080/741941143CrossRefGoogle ScholarPubMed
Ghika-Schmid, F, Bogousslavsky, J (2000). The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann Neurol 48(2):220227.10.1002/1531-8249(200008)48:2<220::AID-ANA12>3.0.CO;2-M3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Carrera, E, Michel, P, Bogousslavsky, J (2004). Anteromedian, central, and posterolateral infarcts of the thalamus: three variant types. Stroke 35:28262831.10.1161/01.STR.0000147039.49252.2fCrossRefGoogle ScholarPubMed
Benson, DF, Djenderedjian, A, Miller, EL et al. (1996). Neural basis of confabulation. Neurology 46:12391243.10.1212/WNL.46.5.1239CrossRefGoogle ScholarPubMed
Nishio, Y, Hashimoto, M, Ishii, K, Mori, E (2011). Neuroanatomy of a neurobehavioral disturbance in the left anterior thalamic infarction. J Neurol Neurosurg Psychiatry 82:11951200.10.1136/jnnp.2010.236463CrossRefGoogle ScholarPubMed
Muneoka, K, Igawa, M. Kida, J et al (2008). In a case of Alzheimer’s disease, aggressiveness disappeared after an infarction in the anterior thalamic nucleus. Cerebrovasc Dis 26:664–65.10.1159/000172973CrossRefGoogle Scholar
van der Werf, YD, Witter, MP, Uylings, HB, Jolles, J (2000). Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38(5):613627.10.1016/S0028-3932(99)00104-9CrossRefGoogle ScholarPubMed
Daum, I, Ackermann, H (1994). Frontal-type memory impairment associated with thalamic damage. Int J Neurosci 77(3–4):187198.10.3109/00207459408986030CrossRefGoogle ScholarPubMed
Linek, V, Sonka, K, Bauer, J (2005). Dysexecutive syndrome following anterior thalamic ischemia in the dominant hemisphere. J Neurol Sci 229230:117120.10.1016/j.jns.2004.11.010CrossRefGoogle ScholarPubMed
Carrera, E, Bogousslavsky, J (2006). The thalamus and behavior: effects of anatomically distinct strokes. Neurology 66:18171823.10.1212/01.wnl.0000219679.95223.4cCrossRefGoogle ScholarPubMed
Kim, EJ, Lee, DK, Kang, DH et al. (2005). Ipsilateral ptosis associated with anterior thalamic infarction. Cerebrovasc Dis 20:410411.10.1159/000088664CrossRefGoogle ScholarPubMed
Castaigne, P, Lhermitte, F, Buge, A et al. (1981). Paramedian thalamic and midbrain infarct: clinical and neuropathological study. Ann Neurol 10:127148.10.1002/ana.410100204CrossRefGoogle ScholarPubMed
Graff-Radford, NR, Damasio, H, Yamada, T, Eslinger, PJ, Damasio, AR (1985). Nonhaemorrhagic thalamic infarction. Clinical, neuropsychological and electrophysiological findings in four anatomical groups defined by computerized tomography. Brain 108(Pt 2):485516.10.1093/brain/108.2.485CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Regli, F, Uske, A (1988). Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology 38(6):837848.10.1212/WNL.38.6.837CrossRefGoogle ScholarPubMed
Chung, CS, Caplan, LR, Han, W et al. (1996). Thalamic haemorrhage. Brain 119(Pt 6):18731886.10.1093/brain/119.6.1873CrossRefGoogle ScholarPubMed
Schmahmann, JD (2003). Vascular syndromes of the thalamus. Stroke 34:22642278.10.1161/01.STR.0000087786.38997.9ECrossRefGoogle ScholarPubMed
Hermann, DM, Siccoli, M, Brugger, P et al. (2008). Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke 39:6268.10.1161/STROKEAHA.107.494955CrossRefGoogle ScholarPubMed
Weidauer, S, Nichtweiss, M, Zanella, FE, Lanfermann, H (2004). Assessment of paramedian thalamic infarcts: MR imaging, clinical features and prognosis. Eur Radiol 14(9):16151626.10.1007/s00330-004-2303-7CrossRefGoogle ScholarPubMed
Mennemeier, M, Fennell, E, Valenstein, E, Heilman, KM (1992). Contributions of the left intralaminar and medial thalamic nuclei to memory. Comparisons and report of a case. Arch Neurol 49(10):10501058.10.1001/archneur.1992.00530340070020CrossRefGoogle ScholarPubMed
Perren, F, Clarke, S, Bogousslavsky, J (2005). The syndrome of combined polar and paramedian thalamic infarction. Arch Neurol 62:12121216.10.1001/archneur.62.8.1212CrossRefGoogle ScholarPubMed
Eslinger, PJ, Warner, GC, Grattan, LM, Easton, JD (1991). “Frontal lobe” utilization behavior associated with paramedian thalamic infarction. Neurology 41(3):450452.10.1212/WNL.41.3.450CrossRefGoogle ScholarPubMed
Muller, A, Baumgartner, RW, Rohrenbach, C, Regard, M (1999). Persistent Kluver-Bucy syndrome after bilateral thalamic infarction. Neuropsychiatry Neuropsychol Behav Neurol 12(2):136139.Google ScholarPubMed
Crail-Melendez, D, Atriano-Mendieta, C, Carrillo-Meza, R, Ramirez-Bermudez, J (2013). Schizophrenia-like psychosis associated with right lacunar thalamic infarct. Neurocase 19:2226.10.1080/13554794.2011.654211CrossRefGoogle ScholarPubMed
Ioannidis, AE, Kimiskidis, VK, Loukopoulou, E et al. (2013). Apathy, cognitive dysfunction and impaired social cognition in a patient with bilateral thalamic infarction. Neurocase 19:513520.10.1080/13554794.2012.701645CrossRefGoogle Scholar
van der Werf, YD, Scheltens, P, Lindeboom, J et al. (2003). Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 41:13301344.10.1016/S0028-3932(03)00059-9CrossRefGoogle ScholarPubMed
Botez, MI, Barbeau, A (1971). Role of subcortical structures, and particularly of the thalamus, in the mechanisms of speech and language. A review. Int J Neurol 8:300320.Google ScholarPubMed
Fisher, CM (1965). Lacunes: small deep cerebral infarcts. Neurology 15:774784.10.1212/WNL.15.8.774CrossRefGoogle ScholarPubMed
Pantoni, L, Garcia, JH (1997). Pathogenesis of leukoaraiosis: a review. Stroke. 28:652659.10.1161/01.STR.28.3.652CrossRefGoogle ScholarPubMed
Thore, CR, Anstrom, JA, Moody, DM et al. (2007). Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol 66:337345.10.1097/nen.0b013e3180537147CrossRefGoogle Scholar
Scheltens, P, Barkhof, F, Leys, D et al. (1995) Histopathologic correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 45:883888.10.1212/WNL.45.5.883CrossRefGoogle ScholarPubMed
Moody, DM, Brown, WR, Challa, VR, Ghazi-Birry, HS, Reboussin, DM (1997). Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann N Y Acad Sci 826:103116.10.1111/j.1749-6632.1997.tb48464.xCrossRefGoogle ScholarPubMed
Erkinjuntti, T, Inzitari, D, Pantoni, L et al. (2000). Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm (Suppl 59):2330.Google ScholarPubMed
Hijdra, A, Verbeeten, B Jr, Verhulst, JAPM (1990). Relation of leukoaraiosis to lesion type in stroke patients. Stroke 21:890894.10.1161/01.STR.21.6.890CrossRefGoogle ScholarPubMed
Tatemichi, TK, Desmond, DW, Paik, M et al. (1993). Clinical determinants of dementia related to stroke. Ann Neurol 33(6):568575.10.1002/ana.410330603CrossRefGoogle ScholarPubMed
Lee, JH, Kim, SH, Kim, GH et al. (2011) Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology 77(1):1825.10.1212/WNL.0b013e318221aceeCrossRefGoogle ScholarPubMed
Kim, CH, Seo, SW, Kim, GH et al. (2012). Cortical thinning in subcortical vascular dementia with negative 11C-PiB PET. J Alzheimers Dis 31(2):315323.10.3233/JAD-2012-111832CrossRefGoogle ScholarPubMed
Kim, HJ, Kang, SJ, Kim, C et al. (2013). The effects of small vessel disease and amyloid burden on neuropsychiatric symptoms: a study among patients with subcortical vascular cognitive impairments. Neurobiol Aging 34(7):19131920.10.1016/j.neurobiolaging.2013.01.002CrossRefGoogle ScholarPubMed
Dubois, B, Slachevsky, A, Litvan, I, Pillon, B (2000). The FAB: a frontal assessment battery at bedside. Neurology 55(11):16211626.10.1212/WNL.55.11.1621CrossRefGoogle ScholarPubMed
Desmond, DW, Erkinjuntti, T, Sano, M et al. (1999). The cognitive syndrome of vascular dementia: implications for clinical trials. Alzheimer Dis Assoc Disord 13(Suppl 3):S21–9S2.Google ScholarPubMed
Yoon, CW, Shin, JS, Kim, HJ et al. (2013). Cognitive deficits of pure subcortical vascular dementia vs. Alzheimer disease: PiB-PET-based study. Neurology 80(6):569573.10.1212/WNL.0b013e3182815485CrossRefGoogle ScholarPubMed
Stuss, DT, Cummings, JL (1990). Subcortical vascular dementias. In Cummings, JL, ed. Subcortical Dementia. New York: Oxford University Press; pp. 145163.Google Scholar
Pantoni, L, Garcia, JH, Brown, GG (1996). Vascular pathology in three cases of progressive cognitive deterioration. J Neurol Sci 135:131139.10.1016/0022-510X(95)00273-5CrossRefGoogle ScholarPubMed
Roman, GC (1987). Senile dementia of the Bingswanger type: a vascular form of dementia in the elderly. JAMA 258:17821788.10.1001/jama.1987.03400130096040CrossRefGoogle Scholar
Kim, SH, Seo, SW, Go, SM et al. (2011) Pyramidal and extrapyramidal scale (PEPS): a new scale for the assessment of motor impairment in vascular cognitive impairment associated with small vessel disease. Clin Neurol Neurosurg 113(3):181187.10.1016/j.clineuro.2010.11.001CrossRefGoogle ScholarPubMed
Cummings, JL, Benson, DF (1983). Dementia: A Clinical Approach. Boston, MA: Butterworth.Google Scholar
Baddeley, A (1986). Working Memory. New York: Oxford University Press.Google ScholarPubMed
Mega, MS, Cummings, JL (1994). Frontal subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6:358370.Google ScholarPubMed
Damasio, AR (1998). The somatic marker hypothesis and the possible functions of the prefrontal cortex. In Roberts, AC, Robbins, TW, Weiskrantz, L, eds. The Prefrontal Cortex. Executive and Cognitive Functions. New York: Oxford University Press; pp. 3650.10.1093/acprof:oso/9780198524410.003.0004CrossRefGoogle Scholar
Lamar, M, Podell, K, Carew, TG et al. (1997). Perseverative behavior in Alzheimer’s disease and subcortical ischemic vascular dementia. Neuropsychology 11(4):523534.10.1037/0894-4105.11.4.523CrossRefGoogle ScholarPubMed
Eslinger, PJ, Grattan, LM (1993). Frontal lobe and frontal striatal substrates for different forms of human cognitive flexibility. Neuropsychologia 31(1):1728.10.1016/0028-3932(93)90077-DCrossRefGoogle ScholarPubMed
Boone, KB, Miller, BL, Lesser, IM et al. (1992). Neuropsychological correlates of white-matter lesions in healthy elderly subjects: a threshold effect. Arch Neurol 49:549554.10.1001/archneur.1992.00530290141024CrossRefGoogle ScholarPubMed
Looi, JC, Sachdev, PS (1999). Differentiation of vascular dementia from AD on neuropsychological tests. Neurology 53(4):670678.10.1212/WNL.53.4.670CrossRefGoogle ScholarPubMed
Tierney, MC, Black, SE, Szalai, JP et al. (2001). Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Arch Neurol 58(10):16541659.10.1001/archneur.58.10.1654CrossRefGoogle ScholarPubMed
Lafosse, JM, Reed, BR, Mungas, D et al. (1997). Fluency and memory differences between ischemic vascular dementia and Alzheimer’s disease. Neuropsychology 11(4):514522.10.1037/0894-4105.11.4.514CrossRefGoogle ScholarPubMed
Schmidtke, K. Hi.ill, M (2002). Neuropsychological differentiation of small vessel disease, Alzheimer’s disease and mixed dementia. J Neurol Sci 17(22):203204.Google Scholar
Vuorinen, E, Laine, M, Rinne, J (2000). Common pattern of language impairment in vascular dementia and in Alzheimer disease. Alzheimer Dis Assoc Disord 14(2):8186.10.1097/00002093-200004000-00005CrossRefGoogle ScholarPubMed
Baillon, S, Muhommad, S, Marudkar, M et al. (2003). Neuropsychological performance in Alzheimer’s disease and vascular dementia: comparisons in a memory clinic population. Int J Geriatr Psychiatry 18:602608.10.1002/gps.887CrossRefGoogle Scholar
Cannata, AP, Alberoni, M, Franceschi, M, Mariani, C (2002). Frontal impairment in subcortical ischemic vascular dementia in comparison to Alzheimer’s disease. Dement Geriatr Cogn Disord 13:101111.10.1159/000048641CrossRefGoogle ScholarPubMed
Aharon-Peretz, J, Kliot, D, Tamer, R (2000). Behavioral differences between white matter lacunar dementia and Alzheimer’s disease: a comparison on the neuropsychiatric inventory. Dement Geriatr Cogn Disord 11(5):294298.10.1159/000017252CrossRefGoogle ScholarPubMed
Fuh, JL, Wang, SJ, Cummings, JL (2005). Neuropsychiatric profiles in patients with Alzheimer’s disease and vascular dementia. J Neurol Neurosurg Psychiatry 76(10):13371341.10.1136/jnnp.2004.056408CrossRefGoogle ScholarPubMed
Padovani, A, Di Piero, V, Bragoni, M et al. (1995). Patterns of neuropsychological impairment in mild dementia: a comparison between Alzheimer’s disease and multi-infarct dementia. Acta Neurol Scand 92(6):433442.10.1111/j.1600-0404.1995.tb00477.xCrossRefGoogle ScholarPubMed
Shimokawa, A, Yatomi, N, Anamizu, S et al. (2000). Comprehension of emotions: comparison between Alzheimer type and vascular type dementias. Dement Geriatr Cogn Disord 11(5):268274.10.1159/000017249CrossRefGoogle ScholarPubMed
Rockwood, K, Bowler, J, Erkinjuntti, T, Hachinski, V, Wallin, A (1999). Subtypes of vascular dementia. Alzheimer Dis Assoc Disord 13(Suppl 3):S59S65.Google ScholarPubMed
Seo, SW, Ahn, J, Yoon, U et al. (2010). Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neuroimaging 20(1):3745.10.1111/j.1552-6569.2008.00293.xCrossRefGoogle ScholarPubMed
Seo, SW, Cho, SS, Park, A, Chin, J, Na, DL (2009). Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism. J Neuroimaging 19(3):213219.10.1111/j.1552-6569.2008.00292.xCrossRefGoogle ScholarPubMed
Galluzzi, S, Sheu, CF, Zanetti, O, Frisoni, GB, (2005). Distinctive clinical features of mild cognitive impairment with subcortical cerebrovascular disease. Dement Geriatr Cogn Disord 19(4):196203.10.1159/000083499CrossRefGoogle ScholarPubMed
Park, JH, Seo, SW, Kim, C et al. (2014). Effects of cerebrovascular disease and amyloid beta burden on cognition in subjects with subcortical vascular cognitive impairment. Neurobiol Aging 35(1):254260.10.1016/j.neurobiolaging.2013.06.026CrossRefGoogle ScholarPubMed
Kim, SH, Kang, HS, Kim, HJ et al. (2013) Neuropsychiatric predictors of conversion to dementia both in patients with amnestic mild cognitive impairment and those with subcortical vascular MCI. Clin Neurol Neurosurg 115(8):12641270.10.1016/j.clineuro.2012.11.029CrossRefGoogle ScholarPubMed
Kang, SH, Kim, ME, Jang, H et al. (2021). Amyloid positivity in Alzheimer/subcortical-vascular spectrum. Neurology 96(17):e2201e2211.10.1212/WNL.0000000000011833CrossRefGoogle ScholarPubMed
Kim, HJ, Yang, JJ, Kwon, H et al. (2016). Relative impact of amyloid-beta, lacunes, and downstream imaging markers on cognitive trajectories. Brain 139(Pt 9):25162527.10.1093/brain/aww148CrossRefGoogle ScholarPubMed
Ye, BS, Seo, SW, Kim, JH et al. (2015). Effects of amyloid and vascular markers on cognitive decline in subcortical vascular dementia. Neurology 85(19):16871693.10.1212/WNL.0000000000002097CrossRefGoogle ScholarPubMed
Kim, HJ, Park, S, Cho, H et al. (2018). Assessment of extent and role of tau in subcortical vascular cognitive impairment using 18F-AV1451 positron emission tomography imaging. JAMA Neurol 75(8):9991007.10.1001/jamaneurol.2018.0975CrossRefGoogle ScholarPubMed
Jang, H, Kim, HJ, Park, S et al. (2019). Application of an amyloid and tau classification system in subcortical vascular cognitive impairment patients. Eur J Nucl Med Mol Imaging 47(2):202303.Google ScholarPubMed
Jang, H, Kim, HJ, Choe, YS et al. (2020). The impact of amyloid-β or tau on cognitive change in the presence of severe cerebrovascular disease. J Alzheimers Dis 78(2):573585.10.3233/JAD-200680CrossRefGoogle ScholarPubMed

References

Prusiner, SB. Prions. Proc Natl Acad Sci U S A. 1998;95(23):1336313383.10.1073/pnas.95.23.13363CrossRefGoogle ScholarPubMed
Wall, CA, Rummans, TA, Aksamit, AJ, Krahn, LE, Pankratz, VS. Psychiatric manifestations of Creutzfeldt-Jakob disease: a 25-year analysis. J Neuropsychiatry Clin Neurosci. 2005;17(4):489495.10.1176/jnp.17.4.489CrossRefGoogle ScholarPubMed
Geschwind, MD, Shu, H, Haman, A, Sejvar, JJ, Miller, BL. Rapidly progressive dementia. Ann Neurol. 2008;64(1):97108.10.1002/ana.21430CrossRefGoogle ScholarPubMed
Ladogana, A, Puopolo, M, Croes, EA, et al. Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology. 2005;64(9):15861591.10.1212/01.WNL.0000160117.56690.B2CrossRefGoogle ScholarPubMed
Will, RG, Alperovitch, A, Poser, S, et al. Descriptive epidemiology of Creutzfeldt-Jakob disease in six European countries, 1993-1995. EU Collaborative Study Group for CJD. Ann Neurol. 1998;43(6):763767.10.1002/ana.410430611CrossRefGoogle Scholar
Uttley, L, Carroll, C, Wong, R, Hilton, DA, Stevenson, M. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect Dis. 2020;20(1):e2e10.10.1016/S1473-3099(19)30615-2CrossRefGoogle ScholarPubMed
Holman, RC, Belay, ED, Christensen, KY, et al. Human prion diseases in the United States. PLoS One. 2010;5(1):e8521.10.1371/journal.pone.0008521CrossRefGoogle ScholarPubMed
Maddox, RA, Person, MK, Blevins, JE, et al. Prion disease incidence in the United States: 2003-2015. Neurology. 2020;94(2):e153e157.10.1212/WNL.0000000000008680CrossRefGoogle ScholarPubMed
Cockcroft, PD, Clark, AM. The Shetland Islands scrapie monitoring and control programme: analysis of the clinical data collected from 772 scrapie suspects 1985-1997. Res Vet Sci. 2006;80(1):3344.10.1016/j.rvsc.2005.04.010CrossRefGoogle Scholar
Liberski, PP. Kuru and D. Carleton Gajdusek: a close encounter. Folia Neuropathol. 2009;47(2):114137.Google Scholar
Gajdusek, DC. Unconventional viruses and the origin and disappearance of kuru. Science. 1977;197(4307):943960.10.1126/science.142303CrossRefGoogle ScholarPubMed
Poser, CM. Notes on the history of the prion diseases. Part II. Clin Neurol Neurosurg. 2002;104(2):7786.10.1016/S0303-8467(01)00200-1CrossRefGoogle ScholarPubMed
Hadlow, WJ. Scrapie and kuru. Lancet 1959;2:289290.10.1016/S0140-6736(59)92081-1CrossRefGoogle Scholar
Pattison, IH. Resistance of the scrapie agent to formalin. J Comp Pathol. 1965;75:159164.10.1016/0021-9975(65)90006-XCrossRefGoogle ScholarPubMed
Mould, DL, Dawson, AM, Smith, W. Scrapie in mice. The stability of the agent to various suspending media, Ph and solvent extraction. Res Vet Sci. 1965;6:151154.10.1016/S0034-5288(18)34749-0CrossRefGoogle ScholarPubMed
Hunter, GD, Millson, GC. Studies on the heat stability and chromatographic behaviour of the scrapie agent. J Gen Microbiol. 1964;37:251258.10.1099/00221287-37-2-251CrossRefGoogle ScholarPubMed
Alper, T, Haig, DA, Clarke, MC. The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun. 1966;22(3):278284.10.1016/0006-291X(66)90478-5CrossRefGoogle ScholarPubMed
Gibbs, CJ Jr, Gajdusek, DC, Latarjet, R. Unusual resistance to ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie. Proc Natl Acad Sci U S A. 1978;75(12):62686270.10.1073/pnas.75.12.6268CrossRefGoogle ScholarPubMed
Diener, TO, McKinley, MP, Prusiner, SB. Viroids and prions. Proc Natl Acad Sci U S A. 1982;79(17):52205224.10.1073/pnas.79.17.5220CrossRefGoogle Scholar
Prusiner, SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136144.10.1126/science.6801762CrossRefGoogle ScholarPubMed
Carp, RI, Merz, PA, Kascsak, RJ, Merz, GS, Wisniewski, HM. Nature of the scrapie agent: current status of facts and hypotheses. J Gen Virol. 1985;66(Pt 7):13571368.10.1099/0022-1317-66-7-1357CrossRefGoogle Scholar
Basler, K, Oesch, B, Scott, M, et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell. 1986;46(3):417428.10.1016/0092-8674(86)90662-8CrossRefGoogle ScholarPubMed
Robakis, NK, Devine-Gage, EA, Jenkins, EC, et al. Localization of a human gene homologous to the PrP gene on the p arm of chromosome 20 and detection of PrP-related antigens in normal human brain. Biochem Biophys Res Commun. 1986;140(2):758765.10.1016/0006-291X(86)90796-5CrossRefGoogle Scholar
Wopfner, F, Weidenhofer, G, Schneider, R, et al. Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol. 1999;289(5):11631178.10.1006/jmbi.1999.2831CrossRefGoogle ScholarPubMed
Stahl, N, Baldwin, MA, Teplow, DB, et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry. 1993;32(8):19912002.10.1021/bi00059a016CrossRefGoogle ScholarPubMed
Hsiao, K, Baker, HF, Crow, TJ, et al. Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature. 1989;338(6213):342345.10.1038/338342a0CrossRefGoogle ScholarPubMed
Colby, DW, Prusiner, SB. Prions. Cold Spring Harb Perspect Biol. 2011;3(1):a006833.10.1101/cshperspect.a006833CrossRefGoogle ScholarPubMed
Lloyd, S, Mead, S, Collinge, J. Genetics of prion disease. Top Curr Chem. 2011; 305:122.10.1007/128_2011_157CrossRefGoogle ScholarPubMed
Ayers, JI, Paras, NA, Prusiner, SB. Expanding spectrum of prion diseases. Emerg Top Life Sci. 2020;4(2):155167.Google ScholarPubMed
Ayers, JI, Prusiner, SB. Prion protein – mediator of toxicity in multiple proteinopathies. Nat Rev Neurol. 2020;16(4):187188.10.1038/s41582-020-0332-8CrossRefGoogle ScholarPubMed
Liberski, PP, Ironside, JW. An outline of the neuropathology of transmissible spongiform encephalopathies (prion diseases). Folia Neuropathol. 2004;42(Suppl B):39–58.Google ScholarPubMed
Kretzschmar, HA, Ironside, JW, DeArmond, SJ, Tateishi, J. Diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Arch Neurol. 1996;53(9):913920.10.1001/archneur.1996.00550090125018CrossRefGoogle ScholarPubMed
Budka, H, Aguzzi, A, Brown, P, et al. Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol. 1995;5(4):459466.10.1111/j.1750-3639.1995.tb00625.xCrossRefGoogle ScholarPubMed
Geschwind, MD. Prion diseases. Continuum (Minneap Minn). 2015;21(6 Neuroinfectious Disease):16121638.10.1212/CON.0000000000000251CrossRefGoogle ScholarPubMed
Brown, K, Mastrianni, JA. The prion diseases. J Geriatr Psychiatry Neurol. 2010;23(4):277298.10.1177/0891988710383576CrossRefGoogle ScholarPubMed
Budka, H. Neuropathology of prion diseases. Br Med Bull. 2003;66:121130.10.1093/bmb/66.1.121CrossRefGoogle ScholarPubMed
Sacco, S, Paoletti, M, Staffaroni, AM, et al. Multimodal MRI staging for tracking progression and clinical-imaging correlation in sporadic Creutzfeldt-Jakob disease. NeuroImage Clin. 2021;30:102523.10.1016/j.nicl.2020.102523CrossRefGoogle ScholarPubMed
Younes, K, Rojas, JC, Wolf, A, et al. Selective vulnerability to atrophy in sporadic Creutzfeldt-Jakob disease. Ann Clin Transl Neurol. 2021;8(6):11831199.10.1002/acn3.51290CrossRefGoogle ScholarPubMed
Creutzfeldt, HG. On a particular focal disease of the central nervous system (preliminary communication) 1920. Alzheimer Dis Assoc Disord. 1989;3(1-2):325.10.1097/00002093-198903010-00002CrossRefGoogle ScholarPubMed
Jakob, A. Concerning a disorder of the central nervous system clinically resembling multiple sclerosis with remarkable anatomic findings (spastic pseudosclerosis). Report of a fourth case. Alzheimer Dis Assoc Disord. 1989;3(1-2):2645.10.1097/00002093-198903010-00004CrossRefGoogle ScholarPubMed
Katscher, F. It’s Jakob’s disease, not Creutzfeldt’s. Nature. 1998;393(6680):11.10.1038/29862CrossRefGoogle ScholarPubMed
Masters, CL, Gadjusek, DC. The spectrum of Creutzfeldt-Jakob disease and the virus-induced subacute spongiform encephalopathies. In Smith, WT, Cavanagh, JB, eds. Recent Advances in Neuropathology Number 2. Edinburgh: Churchill Livingstone, 1982; pp. 139163.Google Scholar
Richardson, EP Jr. Introduction to myoclonic dementia. In Rottenber, DA, Hochberg, FH, eds. Neruological Classics in Modern Translation. New York: Haffner Press, 1977; pp. 9596.Google Scholar
Masters, CL. Creutzfeldt-Jakob disease: its origins. Alzheimer Dis Assoc Disord. 1989;3(1-2):4651.10.1097/00002093-198903010-00006CrossRefGoogle ScholarPubMed
Gibbs, CJ Jr, Gajdusek, DC, Asher, DM, et al. Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science. 1968;161(839):388389.10.1126/science.161.3839.388CrossRefGoogle Scholar
Gibbs, CJ Jr. Spongiform encephalopathies – slow, latent, and temperate virus infections – in retrospect. In Prusiner, SB, Collinge, J, Powell, J, Anderton, B, eds. Prion Diseases of Humans and Animals. London: Ellis Horwood, 1992; pp. 5362.Google Scholar
Heidenhain, A. Klinische und anatomische Untersuchungen u¨ber eine eigenartige organische Erkrankung des Zentralnervensystems im Praesenium. Z Gesamte Neurol Psychiat. 1929;118:49114.10.1007/BF02892896CrossRefGoogle Scholar
Puoti, G, Bizzi, A, Forloni, G, et al. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol. 2012;11(7):618628.10.1016/S1474-4422(12)70063-7CrossRefGoogle ScholarPubMed
Parchi, P, Giese, A, Capellari, S, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999;46(2):224233.10.1002/1531-8249(199908)46:2<224::AID-ANA12>3.0.CO;2-W3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Parchi, P, Capellari, S, Chin, S, et al. A subtype of sporadic prion disease mimicking fatal familial insomnia. Neurology. 1999;52(9):17571763.10.1212/WNL.52.9.1757CrossRefGoogle ScholarPubMed
Parchi, P, Saverioni, D. Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 2012;50(1):2045.Google ScholarPubMed
Iwasaki, Y. Creutzfeldt-Jakob disease. Neuropathology. 2017;37(2):174188.10.1111/neup.12355CrossRefGoogle ScholarPubMed
Kobayashi, A, Iwasaki, Y, Otsuka, H, et al. Deciphering the pathogenesis of sporadic Creutzfeldt-Jakob disease with codon 129 M/V and type 2 abnormal prion protein. Acta Neuropathol Commun. 2013;1:74.10.1186/2051-5960-1-74CrossRefGoogle ScholarPubMed
Head, MW, Ironside, JW. Sporadic Creutzfeldt-Jakob disease: discrete subtypes or a spectrum of disease? Brain. 2009;132(Pt 10):26272629.10.1093/brain/awp225CrossRefGoogle ScholarPubMed
Bizzi, A, Pascuzzo, R, Blevins, J, et al. Subtype diagnosis of sporadic Creutzfeldt-Jakob disease with diffusion magnetic resonance imaging. Ann Neurol. 2021;89(3):560572.10.1002/ana.25983CrossRefGoogle ScholarPubMed
Collins, SJ, Sanchez-Juan, P, Masters, CL, et al. Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain. 2006;129(Pt 9):22782287.10.1093/brain/awl159CrossRefGoogle ScholarPubMed
Meissner, B, Kallenberg, K, Sanchez-Juan, P, et al. MRI lesion profiles in sporadic Creutzfeldt-Jakob disease. Neurology. 2009;72(23):19942001.10.1212/WNL.0b013e3181a96e5dCrossRefGoogle ScholarPubMed
Hamaguchi, T, Kitamoto, T, Sato, T, et al. Clinical diagnosis of MM2-type sporadic Creutzfeldt-Jakob disease. Neurology. 2005;64(4):643648.10.1212/01.WNL.0000151847.57956.FACrossRefGoogle ScholarPubMed
Brown, P, Cathala, F, Castaigne, P, Gajdusek, DC. Creutzfeldt-Jakob disease: clinical analysis of a consecutive series of 230 neuropathologically verified cases. Ann Neurol. 1986;20(5):597602.10.1002/ana.410200507CrossRefGoogle ScholarPubMed
Brown, P, Cathala, F, Castaigne, P, Gajdusek, DC. Creutzfeldt-Jakob disease: clinical analysis of a consecutive series of 230 neuropathologically verified cases. Ann Neurol. 1986;20(5):597602.10.1002/ana.410200507CrossRefGoogle ScholarPubMed
Johnson, DY, Dunkelberger, DL, Henry, M, et al. Sporadic Jakob-Creutzfeldt disease presenting as primary progressive aphasia. JAMA Neurol. 2013;70(2):254257.10.1001/2013.jamaneurol.139CrossRefGoogle ScholarPubMed
Fernandez-Fournier, M, Perry, DC, Tartaglia, MC, et al. Precipitous deterioration of motor function, cognition, and behavior. JAMA Neurol. 2017;74(5):591596.10.1001/jamaneurol.2016.6159CrossRefGoogle ScholarPubMed
Pocchiari, M, Puopolo, M, Croes, EA, et al. Predictors of survival in sporadic Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies. Brain. 2004;127(10):23482359.10.1093/brain/awh249CrossRefGoogle ScholarPubMed
Brown, P, Cathala, F, Sadowsky, D, Gajdusek, DC. Creutzfeldt-Jakob disease in France: II. Clinical characteristics of 124 consecutive verified cases during the decade 1968–1977. Ann Neurol. 1979;6(5):430437.10.1002/ana.410060510CrossRefGoogle ScholarPubMed
Rabinovici, GD, Wang, PN, Levin, J, et al. First symptom in sporadic Creutzfeldt-Jakob disease. Neurology. 2006;66(2):286287.10.1212/01.wnl.0000196440.00297.67CrossRefGoogle ScholarPubMed
Will, RG, Matthews, WB. A retrospective study of Creutzfeldt-Jakob disease in England and Wales 1970-79. I: clinical features. J Neurol Neurosurg Psychiatry. 1984;47(2):134140.10.1136/jnnp.47.2.134CrossRefGoogle ScholarPubMed
Martory, MD, Roth, S, Lovblad, KO, et al. Creutzfeldt-Jakob disease revealed by a logopenic variant of primary progressive aphasia. Eur Neurol. 2012;67(6):360–262.10.1159/000336796CrossRefGoogle ScholarPubMed
Kobylecki, C, Thompson, JC, Jones, M, et al. Sporadic Creutzfeldt-Jakob disease presenting as progressive nonfluent aphasia with speech apraxia. Alzheimer Dis Assoc Disord. 2013;27(4):384–286.10.1097/WAD.0b013e318260ab27CrossRefGoogle ScholarPubMed
Depaz, R, Haik, S, Peoc’h, K, et al. Long-standing prion dementia manifesting as posterior cortical atrophy. Alzheimer Dis Assoc Disord. 2012;26(3):289292.10.1097/WAD.0b013e318231e449CrossRefGoogle ScholarPubMed
Lee, W, Simpson, M, Ling, H, et al. Characterising the uncommon corticobasal syndrome presentation of sporadic Creutzfeldt-Jakob disease. Parkinsonism Relat Disord. 2013;19(1):8185.10.1016/j.parkreldis.2012.07.010CrossRefGoogle ScholarPubMed
Shimamura, M, Uyama, E, Hirano, T, et al. A unique case of sporadic Creutzfeldt-Jacob disease presenting as progressive supranuclear palsy. Intern Med. 2003;42(2):195198.10.2169/internalmedicine.42.195CrossRefGoogle ScholarPubMed
Matej, R, Kovacs, GG, Johanidesova, S, et al. Genetic Creutzfeldt-Jakob disease with R208H mutation presenting as progressive supranuclear palsy. Mov Disord. 2012;27(4):476479.10.1002/mds.24002CrossRefGoogle ScholarPubMed
Josephs, KA, Tsuboi, Y, Dickson, DW. Creutzfeldt-Jakob disease presenting as progressive supranuclear palsy. Eur J Neurol. 2004;11(5):343346.10.1111/j.1468-1331.2004.00780.xCrossRefGoogle ScholarPubMed
Plate, A, Benninghoff, J, Jansen, GH, et al. Atypical parkinsonism due to a D202 N Gerstmann-Straussler-Scheinker prion protein mutation: first in vivo diagnosed case. Mov Disord. 2013;28(2):241244.10.1002/mds.25188CrossRefGoogle Scholar
Nitrini, R, Teixeira da Silva, LS, Rosemberg, S, et al. Prion disease resembling frontotemporal dementia and parkinsonism linked to chromosome 17. Arq Neuropsiquiatr. 2001;59(2-A):161164.10.1590/S0004-282X2001000200001CrossRefGoogle ScholarPubMed
Mittal, M, Hammond, N, Husmann, K, Lele, A, Pasnoor, M. Creutzfeldt-Jakob disease presenting as bulbar palsy. Muscle Nerve. 2010;42(5):833835.10.1002/mus.21849CrossRefGoogle ScholarPubMed
Marek, M, Klockgether, T, Urbach, H, et al. Isolated spasticity in sporadic Creutzfeldt-Jakob disease. J Neurol. 2013;260(2):654655.10.1007/s00415-012-6746-5CrossRefGoogle ScholarPubMed
Geevasinga, N, Simon, NG, Collins, S, Buckland, ME, Ng, K. Sporadic Creutzfeldt-Jakob disease presenting as spastic paraparesis. Eur J Neurol. 2013;20(5):e73e74.10.1111/ene.12116CrossRefGoogle ScholarPubMed
Thompson, A, MacKay, A, Rudge, P, et al. Behavioral and psychiatric symptoms in prion disease. Am J Psychiatry. 2014;171(3):2652674.10.1176/appi.ajp.2013.12111460CrossRefGoogle ScholarPubMed
Appleby, BS, Appleby, KK, Crain, BJ, et al. Characteristics of established and proposed sporadic Creutzfeldt-Jakob disease variants. Arch Neurol. 2009;66(2):208215.Google ScholarPubMed
Paterson, RW, Torres-Chae, CC, Kuo, AL, et al. Differential diagnosis of Jakob-Creutzfeldt disease. Arch Neurol. 2012;69(12):15781582.10.1001/2013.jamaneurol.79CrossRefGoogle ScholarPubMed
Chitravas, N, Jung, RS, Kofskey, DM, et al. Treatable neurological disorders misdiagnosed as Creutzfeldt-Jakob disease. Ann Neurol. 2011;70(3):437444.10.1002/ana.22454CrossRefGoogle ScholarPubMed
Vitali, P, Maccagnano, E, Caverzasi, E, et al. Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias. Neurology. 2011;76(20):17111719.10.1212/WNL.0b013e31821a4439CrossRefGoogle ScholarPubMed
Shiga, Y, Miyazawa, K, Sato, S, et al. Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt-Jakob disease. Neurology. 2004;I63:443449.10.1212/01.WNL.0000134555.59460.5DCrossRefGoogle Scholar
Bizzi, A, Pascuzzo, R, Blevins, J, et al. Evaluation of a New criterion for detecting prion disease with diffusion magnetic resonance imaging. JAMA Neurol. 2020;77(9):11411149.10.1001/jamaneurol.2020.1319CrossRefGoogle ScholarPubMed
Burdette, JH, Elster, AD, Ricci, PE. Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology. 1999;212(2):333339.10.1148/radiology.212.2.r99au36333CrossRefGoogle ScholarPubMed
Staffaroni, AM, Elahi, FM, McDermott, D, et al. Neuroimaging in dementia. Semin Neurol. 2017;37(5):510537.10.1055/s-0037-1608808CrossRefGoogle ScholarPubMed
Caverzasi, E, Henry, RG, Vitali, P, et al. Application of quantitative DTI metrics in sporadic CJD. NeuroImage Clin. 2014;4:426435.10.1016/j.nicl.2014.01.011CrossRefGoogle ScholarPubMed
Zerr, I, Kallenberg, K, Summers, DM, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain. 2009;132(Pt 10):26592668.10.1093/brain/awp191CrossRefGoogle ScholarPubMed
UK National CJD Research & Surveillance Unit (NCJDRSU). Surveillance of CJD in the UK protocol (April 2017, Rev 2) Edinburgh: University of Edinburgh; 2017 [updated April 2017]. Available from: www.cjd.ed.ac.uk/sites/default/files/NCJDRSU%20surveillance%20protocol-april%202017%20rev2.pdf.Google Scholar
Centers for Disease Control and Prevention. CDC’s Diagnostic Criteria for Creutzfeldt-Jakob Disease (CJD), 2018 [Website]. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of High-Consequence Pathogens and Pathology (DHCPP); 2018 [updated October 18, 2021]. Available from: www.cdc.gov/prions/cjd/diagnostic-criteria.html.Google Scholar
Vernino, S, Tuite, P, Adler, CH, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol. 2002;51(5):6256230.10.1002/ana.10178CrossRefGoogle ScholarPubMed
Zuhorn, F, Hubenthal, A, Rogalewski, A, et al. Creutzfeldt-Jakob disease mimicking autoimmune encephalitis with CASPR2 antibodies. BMC Neurol. 2014;14:227.10.1186/s12883-014-0227-7CrossRefGoogle ScholarPubMed
Geschwind, MD, Kuryan, C, Cattaruzza, T, et al. Brain MRI in sporadic Jakob-Creutzfeldt disease is often misread. Neurology. 2010;74(Suppl. 2):A213.Google Scholar
Carswell, C, Thompson, A, Lukic, A, et al. MRI findings are often missed in the diagnosis of Creutzfeldt-Jakob disease. BMC Neurol. 2012;12(1):153.10.1186/1471-2377-12-153CrossRefGoogle ScholarPubMed
World Health Organization. Global surveillance, diagnosis and therapy of human transmissible spongiform encephalopathies: Report of a WHO consultation Geneva, Switzerland 9–11 February 1998. Geneva: World Health Organization; 1998 9–11 February. Report No.: WHO/EMC/.ZDI/98.9.Google Scholar
Geschwind, MD, Josephs, KA, Parisi, JE, Keegan, BM. A 54-year-old man with slowness of movement and confusion. Neurology. 2007;69(19):18811887.10.1212/01.wnl.0000290370.14036.69CrossRefGoogle ScholarPubMed
Sawlani, V. Diffusion-weighted imaging and apparent diffusion coefficient evaluation of herpes simplex encephalitis and Japanese encephalitis. J Neurol Sci. 2009;287(1-2):221226.10.1016/j.jns.2009.07.010CrossRefGoogle ScholarPubMed
Kuker, W, Nagele, T, Schmidt, F, Heckl, S, Herrlinger, U. Diffusion-weighted MRI in herpes simplex encephalitis: a report of three cases. Neuroradiology. 2004;46(2):122125.10.1007/s00234-003-1145-3CrossRefGoogle ScholarPubMed
Milligan, TA, Zamani, A, Bromfield, E. Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure. 2009;18(2):104108.10.1016/j.seizure.2008.07.004CrossRefGoogle ScholarPubMed
Young, GS, Geschwind, MD, Fischbein, NJ, et al. Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR. 2005;26(6):15511562.Google ScholarPubMed
Zanusso, G, Camporese, G, Ferrari, S, et al. Long-term preclinical magnetic resonance imaging alterations in sporadic Creutzfeldt-Jakob disease. Ann Neurol. 2016;80(4):629632.10.1002/ana.24757CrossRefGoogle ScholarPubMed
Letourneau-Guillon, L, Wada, R, Kucharczyk, W. Imaging of prion diseases. J Magn Reson Imaging. 2012;35(5):9981012.10.1002/jmri.23504CrossRefGoogle ScholarPubMed
Rosenbloom, M, Tartaglia, MC, Forner, SA, et al. Metabolic disorders with clinical and radiological features of sporadic Jakob-Creutzfeldt Disease. Neurol Clin Pract. 2015;5(2):108115.10.1212/CPJ.0000000000000114CrossRefGoogle Scholar
Stone, R, Archer, JS, Kiernan, M. Wernicke’s encephalopathy mimicking variant Creutzfeldt-Jakob disease. J Clin Neurosci. 2008;15(11):13081310.10.1016/j.jocn.2007.05.022CrossRefGoogle ScholarPubMed
Mead, S, Rudge, P. CJD mimics and chameleons. Pract Neurol. 2017;17(2):113121.10.1136/practneurol-2016-001571CrossRefGoogle ScholarPubMed
Gaudino, S, Gangemi, E, Colantonio, R, et al. Neuroradiology of human prion diseases, diagnosis and differential diagnosis. Radiol Med. 2017;122(5):369385.10.1007/s11547-017-0725-yCrossRefGoogle ScholarPubMed
Abu-Rumeileh, S, Redaelli, V, Baiardi, S, et al. Sporadic fatal insomnia in Europe: phenotypic features and diagnostic challenges. Ann Neurol. 2018;84(3):347360.10.1002/ana.25300CrossRefGoogle ScholarPubMed
Cortelli, P, Perani, D, Montagna, P, et al. Pre-symptomatic diagnosis in fatal familial insomnia: serial neurophysiological and 18FDG-PET studies. Brain. 2006;129(Pt 3):668675.10.1093/brain/awl003CrossRefGoogle ScholarPubMed
Steinhoff, BJ, Zerr, I, Glatting, M, et al. Diagnostic value of periodic complexes in Creutzfeldt-Jakob disease. Ann Neurol. 2004;56(5):702708.10.1002/ana.20261CrossRefGoogle ScholarPubMed
Seipelt, M, Zerr, I, Nau, R, et al. Hashimoto’s encephalitis as a differential diagnosis of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry. 1999;66(2):172176.10.1136/jnnp.66.2.172CrossRefGoogle ScholarPubMed
Tschampa, HJ, Neumann, M, Zerr, I, et al. Patients with Alzheimer’s disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry. 2001;71(1):3339.10.1136/jnnp.71.1.33CrossRefGoogle ScholarPubMed
Savard, M, Irani, SR, Guillemette, A, et al. Creutzfeldt-Jakob disease-like periodic sharp wave complexes in voltage-gated potassium channel-complex antibodies encephalitis: a case report. J Clin Neurophysiol. 2016;33(1):e1e4.10.1097/WNP.0000000000000171CrossRefGoogle ScholarPubMed
Green, A, Sanchez-Juan, P, Ladogana, A, et al. CSF analysis in patients with sporadic CJD and other transmissible spongiform encephalopathies. Eur J Neurol. 2007;14(2):121124.10.1111/j.1468-1331.2006.01630.xCrossRefGoogle ScholarPubMed
Paterson, RW, Takada, LT, Geschwind, MD. Diagnosis and treatment of rapidly progressive dementias. Neurol Clin Pract. 2012;2(3):187200.10.1212/CPJ.0b013e31826b2ae8CrossRefGoogle ScholarPubMed
Hsich, G, Kenney, K, Gibbs, CJ, Lee, KH, Harrington, MG. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med. 1996;335(13):924930.10.1056/NEJM199609263351303CrossRefGoogle ScholarPubMed
Chapman, T, McKeel, DW Jr, Morris, JC. Misleading results with the 14-3-3 assay for the diagnosis of Creutzfeldt-Jakob disease. Neurology. 2000;55(9):13961397.10.1212/WNL.55.9.1396CrossRefGoogle ScholarPubMed
Sanchez-Juan, P, Green, A, Ladogana, A, et al. CSF tests in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology. 2006;67(4):637643.10.1212/01.wnl.0000230159.67128.00CrossRefGoogle ScholarPubMed
Chohan, G, Pennington, C, Mackenzie, JM, et al. The role of cerebrospinal fluid 14-3-3 and other proteins in the diagnosis of sporadic Creutzfeldt-Jakob disease in the UK: a 10-year review. J Neurol Neurosurg Psychiatry. 2010;81(11):12431248.10.1136/jnnp.2009.197962CrossRefGoogle Scholar
Hamlin, C, Puoti, G, Berri, S, et al. A comparison of tau and 14-3-3 protein in the diagnosis of Creutzfeldt-Jakob disease. Neurology. 2012;79(6):547552.10.1212/WNL.0b013e318263565fCrossRefGoogle ScholarPubMed
Muayqil, T, Gronseth, G, Camicioli, R. Evidence-based guideline: diagnostic accuracy of CSF 14-3-3 protein in sporadic Creutzfeldt-Jakob disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2012;79(14):14991506.10.1212/WNL.0b013e31826d5fc3CrossRefGoogle Scholar
Hermann, P, Appleby, B, Brandel, JP, et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021;20(3):235246.10.1016/S1474-4422(20)30477-4CrossRefGoogle ScholarPubMed
Coulthart, MB, Jansen, GH, Olsen, E, et al. Diagnostic accuracy of cerebrospinal fluid protein markers for sporadic Creutzfeldt-Jakob disease in Canada: a 6-year prospective study. BMC Neurol. 2011;11:133.10.1186/1471-2377-11-133CrossRefGoogle Scholar
van Harten, AC, Kester, MI, Visser, PJ, et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med. 2011;49(3):353366.10.1515/CCLM.2011.086CrossRefGoogle ScholarPubMed
Lattanzio, F, Abu-Rumeileh, S, Franceschini, A, et al. Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Abeta42 levels. Acta Neuropathol. 2017;133(4):559578.10.1007/s00401-017-1683-0CrossRefGoogle ScholarPubMed
Abu-Rumeileh, S, Baiardi, S, Polischi, B, et al. Diagnostic value of surrogate CSF biomarkers for Creutzfeldt-Jakob disease in the era of RT-QuIC. J Neurol. 2019;266(12):31363143.10.1007/s00415-019-09537-0CrossRefGoogle ScholarPubMed
Skillback, T, Rosen, C, Asztely, F, et al. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol. 2014;71(4):476483.10.1001/jamaneurol.2013.6455CrossRefGoogle ScholarPubMed
Satoh, J, Kurohara, K, Yukitake, M, Kuroda, Y. The 14-3-3 protein detectable in the cerebrospinal fluid of patients with prion-unrelated neurological diseases is expressed constitutively in neurons and glial cells in culture. Eur Neurol. 1999;41(4):216225.10.1159/000008054CrossRefGoogle ScholarPubMed
Shimada, T, Fournier, AE, Yamagata, K. Neuroprotective function of 14-3-3 proteins in neurodegeneration. BioMed Res Int. 2013;2013:564534.10.1155/2013/564534CrossRefGoogle ScholarPubMed
Geschwind, MD, Martindale, J, Miller, D, et al. Challenging the clinical utility of the 14-3-3 protein for the diagnosis of sporadic Creutzfeldt-Jakob disease. Arch Neurol. 2003;60(6):813816.10.1001/archneur.60.6.813CrossRefGoogle ScholarPubMed
Pruss, H, Dalmau, J, Harms, L, et al. Retrospective analysis of NMDA receptor antibodies in encephalitis of unknown origin. Neurology. 2010;75(19):17351739.10.1212/WNL.0b013e3181fc2a06CrossRefGoogle ScholarPubMed
Atarashi, R, Satoh, K, Sano, K, et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med. 2011;17(2):175178.10.1038/nm.2294CrossRefGoogle ScholarPubMed
Franceschini, A, Baiardi, S, Hughson, AG, et al. High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci Rep. 2017;7(1):10655.10.1038/s41598-017-10922-wCrossRefGoogle ScholarPubMed
Hayashi, Y, Iwasaki, Y, Takekoshi, A, et al. An autopsy-verified case of FTLD-TDP type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease. Prion. 2016;10(6):492501.10.1080/19336896.2016.1243192CrossRefGoogle ScholarPubMed
Raymond, GJ, Race, B, Orru, CD, et al. Transmission of CJD from nasal brushings but not spinal fluid or RT-QuIC product. Ann Clin Transl Neurol. 2020;7(6):932944.10.1002/acn3.51057CrossRefGoogle ScholarPubMed
Foutz, A, Appleby, BS, Hamlin, C, et al. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann Neurol. 2017;81(1):7992.10.1002/ana.24833CrossRefGoogle ScholarPubMed
Watson, N, Hermann, P, Ladogana, A, Denouel, A, Baiardi, S, Colaizzo, E, et al. Validation of revised international Creutzfeldt-Jakob Disease Surveillance Network Diagnostic Criteria for sporadic Creutzfeldt-Jakob disease. JAMA Netw Open. 2022;5(1):e2146319.10.1001/jamanetworkopen.2021.46319CrossRefGoogle Scholar
Hermann, P, Laux, M, Glatzel, M, et al. Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance. Neurology. 2018;91(4):e331e338.10.1212/WNL.0000000000005860CrossRefGoogle ScholarPubMed
Orru, CD, Bongianni, M, Tonoli, G, et al. A test for Creutzfeldt-Jakob disease using nasal brushings. N Engl J Med. 2014;371(6):519529.10.1056/NEJMoa1315200CrossRefGoogle ScholarPubMed
Fiorini, M, Iselle, G, Perra, D, et al. High diagnostic accuracy of RT-QuIC assay in a prospective study of patients with suspected sCJD. Int J Mol Sci. 2020;21(3).10.3390/ijms21030880CrossRefGoogle Scholar
Orru, CD, Groveman, BR, Foutz, A, et al. Ring trial of 2nd generation RT-QuIC diagnostic tests for sporadic CJD. Ann Clin Transl Neurol. 2020;7(11):22622271.10.1002/acn3.51219CrossRefGoogle ScholarPubMed
Bongianni, M, Orru, C, Groveman, BR, et al. Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol. 2017;74(2):155162.10.1001/jamaneurol.2016.4614CrossRefGoogle ScholarPubMed
Gambetti, P, Dong, Z, Yuan, J, et al. A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol. 2008;63(6):697708.10.1002/ana.21420CrossRefGoogle ScholarPubMed
Zou, WQ, Puoti, G, Xiao, X, et al. Variably protease-sensitive prionopathy: a new sporadic disease of the prion protein. Ann Neurol. 2010;68(2):162172.10.1002/ana.22094CrossRefGoogle ScholarPubMed
Diack, AB, Ritchie, DL, Peden, AH, et al. Variably protease-sensitive prionopathy, a unique prion variant with inefficient transmission properties. Emerg Infect Dis. 2014;20(12):19691979.10.3201/eid2012.140214CrossRefGoogle ScholarPubMed
Notari, S, Appleby, BS, Gambetti, P. Variably protease-sensitive prionopathy. In Pocchiari, M, Manson, J, eds. Handbook of Clinical Neurology, vol. 153. Elsevier, 2018; Chapter 10, pp. 175190.Google Scholar
Kim, SH, Yu, MM, Strutt, AM. Variably protease-sensitive prionopathy: A differential diagnostic consideration for dementia. Neurol Clinl Pract. 2019;9(2):145151.10.1212/CPJ.0000000000000612CrossRefGoogle ScholarPubMed
Mastrianni, JA. The genetics of prion diseases. Genet Med. 2010;12(4):187195.10.1097/GIM.0b013e3181cd7374CrossRefGoogle ScholarPubMed
Kim, MO, Takada, LT, Wong, K, Forner, SA, Geschwind, MD. Genetic PrP prion diseases. Cold Spring Harb Perspect Biol. 2018;10(5).10.1101/cshperspect.a033134CrossRefGoogle ScholarPubMed
Lloyd, SE, Mead, S, Collinge, J. Genetics of prion diseases. Curr Opin Genet Dev. 2013;23(3):345351.10.1016/j.gde.2013.02.012CrossRefGoogle ScholarPubMed
Lloyd, S, Mead, S, Collinge, J. Genetics of prion disease. Top Curr Chem. 2011;305:122.10.1007/128_2011_157CrossRefGoogle ScholarPubMed
Minikel, EV, Vallabh, SM, Lek, M, et al. Quantifying Prion disease penetrance using large population control cohorts. Sci Transl Med. 2016;8(322):322ra9.10.1126/scitranslmed.aad5169CrossRefGoogle ScholarPubMed
Kovacs, GG, Puopolo, M, Ladogana, A, et al. Genetic prion disease: the EUROCJD experience. Hum Genet. 2005;118(2):166174.10.1007/s00439-005-0020-1CrossRefGoogle ScholarPubMed
Vitali, P, Migliaccio, R, Agosta, F, Rosen, HJ, Geschwind, MD. Neuroimaging in dementia. Semin Neurol. 2008;28(4):467483.10.1055/s-0028-1083695CrossRefGoogle ScholarPubMed
Schmitz, M, Villar-Pique, A, Hermann, P, et al. Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain. 2022;145(2):700712.10.1093/brain/awab350CrossRefGoogle ScholarPubMed
Laplanche, JL, Hachimi, KH, Durieux, I, et al. et al. Prominent psychiatric features and early onset in an inherited prion disease with a new insertional mutation in the prion protein gene. Brain. 1999;122 (Pt 12):23752386.10.1093/brain/122.12.2375CrossRefGoogle Scholar
Webb, TE, Poulter, M, Beck, J, et al. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. Brain. 2008;131(Pt 10):26322646.10.1093/brain/awn202CrossRefGoogle Scholar
Goldfarb, LG, Petersen, RB, Tabaton, M, et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992;258(5083):806808.10.1126/science.1439789CrossRefGoogle ScholarPubMed
McLean, CA, Storey, E, Gardner, RJ, et al. The D178 N (cis-129 M) “fatal familial insomnia” mutation associated with diverse clinicopathologic phenotypes in an Australian kindred. Neurology. 1997;49(2):552558.10.1212/WNL.49.2.552CrossRefGoogle Scholar
Fong, JC, Rojas, JC, Bang, J, et al. Genetic prion disease caused by PRNP Q160X mutation presenting with an orbitofrontal syndrome, cyclic diarrhea, and peripheral neuropathy. J Alzheimers Dis. 2017;55(1):249258.10.3233/JAD-160300CrossRefGoogle ScholarPubMed
UK National CJD Surveillance Unit. Variant Creutzfeldt-Jakob Disease Worldwide Current Data (June 2014) [electronic]. Edinburgh: Western General Hospital, 2014 [updated June 2014].Google Scholar
Heath, CA, Cooper, SA, Murray, K, et al. Validation of diagnostic criteria for variant Creutzfeldt-Jakob disease. Ann Neurol. 2010;67(6):761770.10.1002/ana.21987CrossRefGoogle ScholarPubMed
Brown, P, Brandel, JP, Preece, M, Sato, T. Iatrogenic Creutzfeldt-Jakob disease: the waning of an era. Neurology. 2006;67(3):389393.10.1212/01.wnl.0000231528.65069.3fCrossRefGoogle ScholarPubMed
Will, RG. Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br Med Bull. 2003;66:255265.10.1093/bmb/66.1.255CrossRefGoogle Scholar
Collinge, J, Whitfield, J, McKintosh, E, Beck, J, Mead, S, Thomas, DJ, et al. Kuru in the 21st century–an acquired human prion disease with very long incubation periods. Lancet. 2006;367(9528):20682074.10.1016/S0140-6736(06)68930-7CrossRefGoogle ScholarPubMed
Will, RG, Ironside, JW, Zeidler, M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet. 1996;347(9006):921925.10.1016/S0140-6736(96)91412-9CrossRefGoogle ScholarPubMed
Norrby, E. Prions and protein-folding diseases. J Intern Med. 2011;270(1):114.10.1111/j.1365-2796.2011.02387.xCrossRefGoogle ScholarPubMed
UK National CJD Research & Surveillance Unit. The National CJD Reserach & Surveillance Unit (NCJDRSU) Data and Reports; Variant CJD Cases Worldwide [electronic]. Edinburgh: Western General Hospital, 2022 [updated May 7, 2022; cited 2020 April 24, 2023]. Available from: www.eurocjd.ed.ac.uk/data_tables.Google Scholar
European Centre for Disease Prevention and Control. Variant CJD Factsheet: European Centre for Disease Prevention and Control; 2015 [updated April 2015; cited 2015 May 29]. Information on variant CJD].Google Scholar
Maheshwari, A, Fischer, M, Gambetti, P, et al. Recent US case of variant Creutzfeldt-Jakob disease – global implications. Emerg Infect Dis. 2015;21(5):750759.10.3201/eid2105.142017CrossRefGoogle ScholarPubMed
Heath, CA, Cooper, SA, Murray, K, et al. Diagnosing variant Creutzfeldt-Jakob disease: a retrospective analysis of the first 150 cases in the UK. J Neurol Neurosurg Psychiatry. 2011;82(6):646651.10.1136/jnnp.2010.232264CrossRefGoogle ScholarPubMed
UK National CJD Surveillance Unit. Variant Creutzfeldt-Jakob Disease Worldwide Current Data (December 2012) [electronic]. Edinburgh: Western General Hospital, 2012 [updated December 2012].Google Scholar
Mok, T, Jaunmuktane, Z, Joiner, S, et al. Variant Creutzfeldt-Jakob disease in a patient with heterozygosity at PRNP codon 129. N Engl J Med. 2017;376(3):292294.10.1056/NEJMc1610003CrossRefGoogle Scholar
Kaski, D, Mead, S, Hyare, H, et al. Variant CJD in an individual heterozygous for PRNP codon 129. Lancet. 2009;374(9707):2128.10.1016/S0140-6736(09)61568-3CrossRefGoogle Scholar
Petzold, GC, Westner, I, Bohner, G, False-positive pulvinar sign on MRI in sporadic Creutzfeldt-Jakob disease. Neurology. 2004;62(7):12351236.10.1212/01.WNL.0000123265.91365.AFCrossRefGoogle ScholarPubMed
Haik, S, Brandel, JP, Oppenheim, C, et al. Sporadic CJD clinically mimicking variant CJD with bilateral increased signal in the pulvinar. Neurology. 2002;58(1):148149.10.1212/WNL.58.1.148-aCrossRefGoogle ScholarPubMed
Will, RG, Zeidler, M, Stewart, GE, et al. Diagnosis of new variant Creutzfeldt-Jakob disease. Ann Neurol. 2000;47(5):575582.10.1002/1531-8249(200005)47:5<575::AID-ANA4>3.0.CO;2-W3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Binelli, S, Agazzi, P, Giaccone, G, et al. Periodic electroencephalogram complexes in a patient with variant Creutzfeldt-Jakob disease. Ann Neurol. 2006;59(2):423427.10.1002/ana.20768CrossRefGoogle Scholar
Hill, AF, Butterworth, RJ, Joiner, S, et al. Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet. 1999;353(9148):183189.10.1016/S0140-6736(98)12075-5CrossRefGoogle ScholarPubMed
Ironside, JW. Variant Creutzfeldt-Jakob disease: an update. Folia Neuropathol. 2012;50(1):5056.Google ScholarPubMed
Knight, R. The risk of transmitting prion disease by blood or plasma products. Transfus Apher Sci. 2010;43(3):387391.10.1016/j.transci.2010.09.003CrossRefGoogle ScholarPubMed
Watson, N, Brandel, JP, Green, A, et al. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat Rev Neurol. 2021;17(6):362379.10.1038/s41582-021-00488-7CrossRefGoogle ScholarPubMed
Brandel, J-P, Vlaicu, MB, Culeux, A, et al. Variant Creutzfeldt–Jakob disease diagnosed 7.5 years after occupational exposure. N Engl J Med. 2020;383(1):8385.10.1056/NEJMc2000687CrossRefGoogle ScholarPubMed
Salmon, R. How widespread is variant Creutzfeldt-Jakob disease? BMJ. 2013;347:f5994.10.1136/bmj.f5994CrossRefGoogle ScholarPubMed
de Marco, MF, Linehan, J, Gill, ON, Clewley, JP, Brandner, S. Large-scale immunohistochemical examination for lymphoreticular prion protein in tonsil specimens collected in Britain. J Pathol. 2010;222(4):380387.10.1002/path.2767CrossRefGoogle ScholarPubMed
Clewley, JP, Kelly, CM, Andrews, N, et al. Prevalence of disease related prion protein in anonymous tonsil specimens in Britain: cross sectional opportunistic survey. BMJ. 2009;338:b1442.10.1136/bmj.b1442CrossRefGoogle ScholarPubMed
Brown, P, Brandel, JP, Sato, T, et al. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg Infect Dis. 2012;18(6):901907.10.3201/eid1806.120116CrossRefGoogle ScholarPubMed
Abrams, JY, Schonberger, LB, Belay, ED, et al. Lower risk of Creutzfeldt-Jakob disease in pituitary growth hormone recipients initiating treatment after 1977. J Clin Endocrinol Metab. 2011;96(10):E1666E1669.10.1210/jc.2011-1357CrossRefGoogle ScholarPubMed
Appleby, BS, Lu, M, Bizzi, A, et al. Iatrogenic Creutzfeldt-Jakob disease from commercial cadaveric human growth hormone. Emerg Infect Dis. 2013;19(4):682–684.10.3201/eid1904.121504CrossRefGoogle ScholarPubMed
UK National CJD Research & Surveillance Unit. The National CJD Research & Surveillance Unit (NCJDRSU) Data and Reports; Creutzfeldt-Jakob disease in the UK (by calendar year) [electronic]. Edinburgh: Western General Hospital, 2023 [updated March 4, 2023; cited 2023 April 24, 2023].Google Scholar
Lewis, AM, Yu, M, DeArmond, SJ, Human growth hormone-related iatrogenic Creutzfeldt-Jakob disease with abnormal imaging. Arch Neurol. 2006;63(2):288290.10.1001/archneur.63.2.288CrossRefGoogle ScholarPubMed
Ae, R, Hamaguchi, T, Nakamura, Y, et al. Update: dura mater graft-associated Creutzfeldt-Jakob Disease – Japan, 1975-2017. MMWR Morb Mortal Wkly Rep. 2018;67(9):274278.10.15585/mmwr.mm6709a3CrossRefGoogle ScholarPubMed
Hamaguchi, T, Sakai, K, Noguchi-Shinohara, M, et al. Insight into the frequent occurrence of dura mater graft-associated Creutzfeldt-Jakob disease in Japan. J Neurol Neurosurg Psychiatry. 2013;84(10):11711175.10.1136/jnnp-2012-304850CrossRefGoogle ScholarPubMed
Otto, M, Cepek, L, Ratzka, P, et al. Efficacy of flupirtine on cognitive function in patients with CJD: A double-blind study. Neurology. 2004;62(5):714718.10.1212/01.WNL.0000113764.35026.EFCrossRefGoogle ScholarPubMed
Geschwind, MD, Kuo, AL, Wong, KS, et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology. 2013;81(23):20152023.10.1212/WNL.0b013e3182a9f3b4CrossRefGoogle ScholarPubMed
Haik, S, Marcon, G, Mallet, A, et al. Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014;13(2):150158.10.1016/S1474-4422(13)70307-7CrossRefGoogle ScholarPubMed
Geschwind, MD. Doxycycline for Creutzfeldt-Jakob disease: a failure, but a step in the right direction. Lancet Neurol. 2014;13(2):130132.10.1016/S1474-4422(14)70001-8CrossRefGoogle ScholarPubMed
Newman, PK, Todd, NV, Scoones, D, et al. Postmortem findings in a case of variant Creutzfeldt-Jakob disease treated with intraventricular pentosan polysulfate. J Neurol Neurosurg Psychiatry. 2014;85(8):921924.10.1136/jnnp-2013-305590CrossRefGoogle Scholar
Terada, T, Tsuboi, Y, Obi, T, et al. Less protease-resistant PrP in a patient with sporadic CJD treated with intraventricular pentosan polysulphate. Acta Neurol Scand. 2010;121(2):127130.10.1111/j.1600-0404.2009.01272.xCrossRefGoogle Scholar
Bone, I, Belton, L, Walker, AS, Darbyshire, J. Intraventricular pentosan polysulphate in human prion diseases: an observational study in the UK. Eur J Neurol. 2008;15(5):458464.10.1111/j.1468-1331.2008.02108.xCrossRefGoogle Scholar
Mead, S, Khalili-Shirazi, A, Potter, C, et al. Prion protein monoclonal antibody (PRN100) therapy for Creutzfeldt-Jakob disease: evaluation of a first-in-human treatment programme. Lancet Neurol. 2022;21(4):342354.10.1016/S1474-4422(22)00082-5CrossRefGoogle ScholarPubMed
Minikel, EV, Zhao, HT, Le, J, et al. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res. 2020;48(19):1061510631.10.1093/nar/gkaa616CrossRefGoogle ScholarPubMed
Raymond, GJ, Zhao, HT, Race, B, et al. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight. 2019;5.Google ScholarPubMed
Scoles, DR, Minikel, EV, Pulst, SM. Antisense oligonucleotides: a primer. Neurol Genet. 2019;5(2):e323.10.1212/NXG.0000000000000323CrossRefGoogle ScholarPubMed

References

LoBue, C, Munro, C, Schaffert, J, et al., Traumatic brain injury and risk of long-term brain changes, accumulation of pathological markers, and developing dementia: a review. J Alzheimers Dis, 2019. 70(3):629654.10.3233/JAD-190028CrossRefGoogle ScholarPubMed
Guo, Z, Cupples, LA, Kurz, A, et al., Head injury and the risk of AD in the MIRAGE study. Neurology, 2000. 54(6):13161323.10.1212/WNL.54.6.1316CrossRefGoogle ScholarPubMed
Fleminger, S, Oliver, DL, Lovestone, S, Rabe-Hesketh, S, Giora, A, Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry, 2003. 74(7):857862.10.1136/jnnp.74.7.857CrossRefGoogle ScholarPubMed
Rosso, SM, Landweer, EJ, Houterman, M, et al., Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case-control study. J Neurol Neurosurg Psychiatry, 2003. 74(11):15741576.10.1136/jnnp.74.11.1574CrossRefGoogle ScholarPubMed
Deutsch, MB, Mendez, MF. Teng, E. Interactions between traumatic brain injury and frontotemporal degeneration. Dement Geriatr Cogn Disord, 2015. 39(3-4):143153.10.1159/000369787CrossRefGoogle ScholarPubMed
Chen, H, Richard, M, Sandler, DP, Umbach, DM, Kamel, F., Head injury and amyotrophic lateral sclerosis. Am J Epidemiol, 2007. 166(7):810816.10.1093/aje/kwm153CrossRefGoogle ScholarPubMed
Schmidt, S, Kwee, LC, Allen, KD, Oddone, EZ, Association of ALS with head injury, cigarette smoking and APOE genotypes. J Neurol Sci, 2010. 291(1-2):2229.10.1016/j.jns.2010.01.011CrossRefGoogle ScholarPubMed
Lehman, .J, Hein, MJ, Baron, SL, Gersic, CM, Neurodegenerative causes of death among retired National Football League players. Neurology, 2012. 79(19):19701974.10.1212/WNL.0b013e31826daf50CrossRefGoogle ScholarPubMed
Goldman, SM, Kamel, F, Ross, GW, et al., Head injury, alpha-synuclein Rep1, and Parkinson’s disease. Ann Neurol, 2012. 71(1):4048.10.1002/ana.22499CrossRefGoogle ScholarPubMed
Gardner, RC, Byers, AL, Barnes, DE, et al., Mild TBI and risk of Parkinson disease: a Chronic Effects of Neurotrauma Consortium Study. Neurology, 2018. 90(20):e1771e1779.10.1212/WNL.0000000000005522CrossRefGoogle ScholarPubMed
Nordström, P, Michaëlsson, K, Gustaafson, Y, Nordström, A, Traumatic brain injury and young onset dementia: a nationwide cohort study. Ann Neurol, 2014. 75(3):374381.10.1002/ana.24101CrossRefGoogle Scholar
Schaffert, J, LoBue, C, White, CL, et al., Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer’s disease. Neuropsychology, 2018. 32(4):410416.10.1037/neu0000423CrossRefGoogle ScholarPubMed
LoBue, C, Denney, D, Hynan, LS, et al., Self-reported traumatic brain injury and mild cognitive impairment: increased risk and earlier age of diagnosis. J Alzheimers Dis, 2016. 51(3):727736.10.3233/JAD-150895CrossRefGoogle ScholarPubMed
Livingston, G, Huntley, J, Sommerlad, A, et al., Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 2020. 396(10248):413446.10.1016/S0140-6736(20)30367-6CrossRefGoogle ScholarPubMed
Omalu, BI, DeKosky, S, Minser, RL, et al., Chronic traumatic encephalopathy in a National Football League player. Neurosurgery, 2005. 57(1):128134; discussion 128–134.10.1227/01.NEU.0000163407.92769.EDCrossRefGoogle Scholar
Omalu, B, DeKosky, ST, Hamilton, RL, et al., Chronic traumatic encephalopathy in a National Football League player: part II. Neurosurgery, 2006. 59(5):10861092; discussion 1092–1093.10.1227/01.NEU.0000245601.69451.27CrossRefGoogle Scholar
Brett, BL, Breedlove, K, McAllister, T, et al., Investigating the range of symptom endorsement at initiation of a graduated return-to-play protocol after concussion and duration of the protocol: a study from the National Collegiate Athletic Association-Department of Defense Concussion, Assessment, Research, and Education (CARE) Consortium. Am J Sports Med, 2020. 48(6):14761484.10.1177/0363546520913252CrossRefGoogle ScholarPubMed
Gardner, RC, River, E, O’Grady, M, et al., Screening for lifetime history of traumatic brain injury among older American and Irish adults at risk for dementia: development and validation of a web-based survey. J Alzheimers Dis, 2020. 74(2):699711.10.3233/JAD-191138CrossRefGoogle ScholarPubMed
Alosco, ML, Jarnagin, J, Tripodis, Y, et al., Utility of providing a concussion definition in the assessment of concussion history in former NFL players. Brain Inj, 2017. 31(8):11161123.10.1080/02699052.2017.1294709CrossRefGoogle ScholarPubMed
Martland, HS, Punch drunk. JAMA, 1928. 91(15):11031107.10.1001/jama.1928.02700150029009CrossRefGoogle Scholar
Cassasa, C, Multiple traumatic cerebral hemorrhages. Proc N Y Path Soc. 1924.Google Scholar
Osnato, M, Giliberti, V, Postconcussion neurosis-traumatic encephalitis: a conception of postconcussion phenomena. Arch Neurol Psychiatry, 1927. 18(2):181214.10.1001/archneurpsyc.1927.02210020025002CrossRefGoogle Scholar
Millspaugh, J, Dementia pugilistica. US Nav Med Bull, 1937. 35:297303.Google Scholar
Bowman, KM, Blau, A, Psychotic states following head and brain injury in adults and children. In Brock, S, ed. Injuries of the Skull, Brain and Spinal cord: Neuro-psychiatric, Surgical and Medico-Legal Aspects. Williams & Wilkins Co., 1940; pp. 309360.10.1037/11479-013CrossRefGoogle Scholar
Brandenburg, W, Hallervorden, J, Dementia pugilistica mit anatomischem Befund. Virchows Archiv Pathol Anat Physiol Klin Med, 1954. 325(6):680709.10.1007/BF00955101CrossRefGoogle Scholar
Corsellis, JA, Bruton, CJ, Freeman-Browne, D, The aftermath of boxing. Psychol Med, 1973. 3(3):270303.10.1017/S0033291700049588CrossRefGoogle ScholarPubMed
Geddes, J, Vowles, GH, Nicoll, JA, Révész, T, Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol, 1999. 98(2):171178.10.1007/s004010051066CrossRefGoogle Scholar
Roberts, GW, Allsop, D, Bruton, C, The occult aftermath of boxing. J Neurol Neurosurg Psychiatry, 1990. 53(5):373378.10.1136/jnnp.53.5.373CrossRefGoogle ScholarPubMed
McKee, AC, Cantu, RC, Nowinski, CJ, et al., Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol, 2009. 68(7):709735.10.1097/NEN.0b013e3181a9d503CrossRefGoogle ScholarPubMed
McKee, AC, Stern, RA, Nowinski, CJ, et al., The spectrum of disease in chronic traumatic encephalopathy. Brain, 2013. 136(Pt 1):4364.10.1093/brain/aws307CrossRefGoogle ScholarPubMed
Roberts, GW, Whitwell, HL, Acland, PR, Bruton, CJ, Dementia in a punch-drunk wife. Lancet, 1990. 335(8694):918919.10.1016/0140-6736(90)90520-FCrossRefGoogle Scholar
Hof, PR, Knabe, R, Bovier, P, Bouras, C. Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol, 1991. 82(4):321326.10.1007/BF00308819CrossRefGoogle Scholar
McKee, AC, Stern, RA, Nowinski, CJ, et al., The spectrum of disease in chronic traumatic encephalopathy. Brain, 2013. 136(1):4364.10.1093/brain/aws307CrossRefGoogle ScholarPubMed
Goldstein, LE, Fisher, AM, Tagge, CA, et al., Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med, 2012. 4(134):134ra60.Google Scholar
Fredericks, CA, Koestler, M, Seeley, W, et al., Primary chronic traumatic encephalopathy in an older patient with late-onset AD phenotype. Neurol Clin Pract, 2015. 5(6):475479.10.1212/CPJ.0000000000000161CrossRefGoogle Scholar
Bieniek, K., Cairns, NJ, Crary, JF, et al., The Second NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol, 2021. 80(3):210219.10.1093/jnen/nlab001CrossRefGoogle ScholarPubMed
Smith, DH, Johnson, VE, Trojanowski, JQ, Stewart, W., Chronic traumatic encephalopathy – confusion and controversies. Nat Rev Neurol, 2019. 15(3):179183.10.1038/s41582-018-0114-8CrossRefGoogle ScholarPubMed
Iverson, GL, Luoto, TM, Castellani, RJ, Authors’ reply: age-related tau aggregates resemble chronic traumatic encephalopathy neuropathologic change. J Neuropathol Exp Neurol, 2020. 79(8):924928.10.1093/jnen/nlaa047.001CrossRefGoogle ScholarPubMed
Schmidt, ML, Zhukareva, V, Newell, KL, Lee, VM, Trojanowski, JQ, Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol, 2001. 101(5):518524.10.1007/s004010000330CrossRefGoogle Scholar
Cherry, JD, Kim, SH, Stein, TD, Evolution of neuronal and glial tau isoforms in chronic traumatic encephalopathy. Brain Pathol, 2020. 30(5):913925.10.1111/bpa.12867CrossRefGoogle ScholarPubMed
Arena, JD, Smith, DH, Lee, EB, et al., Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer’s disease. Brain, 2020. 143(5):15721587.10.1093/brain/awaa071CrossRefGoogle ScholarPubMed
Falcon, B, Zivanov, J, Zhang, W, et al., Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 2019. 568(7752):420423.10.1038/s41586-019-1026-5CrossRefGoogle ScholarPubMed
Iverson, GL, Gardner, AJ, Shultz, SR, et al., Chronic traumatic encephalopathy neuropathology might not be inexorably progressive or unique to repetitive neurotrauma. Brain, 2019. 142(12):36723693.10.1093/brain/awz286CrossRefGoogle ScholarPubMed
Mez, J, Daneshvar, DH, Kiernan, PT, et al., Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA, 2017. 318(4):360370.10.1001/jama.2017.8334CrossRefGoogle ScholarPubMed
Stein, TD, Montenigro, PH, Alvarez, VE, et al., Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol, 2015. 130(1):2134.10.1007/s00401-015-1435-yCrossRefGoogle ScholarPubMed
Standring, OJ, Friedberg, J, Tripodis, Y, et al., Contact sport participation and chronic traumatic encephalopathy are associated with altered severity and distribution of cerebral amyloid angiopathy. Acta Neuropathol. 2019. 138(3):401413.10.1007/s00401-019-02031-xCrossRefGoogle ScholarPubMed
Roberts, GW, Gentleman, SM, Lynch, A, Graham, DI, Beta A4 amyloid protein deposition in brain after head trauma. Lancet, 1991. 338(8780):14221423.10.1016/0140-6736(91)92724-GCrossRefGoogle ScholarPubMed
Gentleman, SM, Nash, MJ, Sweeting, CJ, Graham, DI, Roberts, GW, Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett, 1993. 160(2):139144.10.1016/0304-3940(93)90398-5CrossRefGoogle ScholarPubMed
Roberts, GW, Gentleman, SM, Lynch, A, et al., Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry, 1994. 57(4):419425.10.1136/jnnp.57.4.419CrossRefGoogle ScholarPubMed
Sherriff, FE, Bridges, LR, Sivaloganathan, S, Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathol, 1994. 87(1):5562.10.1007/BF00386254CrossRefGoogle ScholarPubMed
Chen, XH, Johnson, VE, Uryu, K, et al., A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol, 2009. 19(2):214223.10.1111/j.1750-3639.2008.00176.xCrossRefGoogle ScholarPubMed
Nelson, PT, Dickson, DW, Trojanowski, JQ, et al., Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain, 2019. 142(6):15031527.10.1093/brain/awz099CrossRefGoogle ScholarPubMed
Josephs, KA, Murray, ME, Tosakulwong, N, et al., Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathol, 2019. 137(2):227238.10.1007/s00401-018-1951-7CrossRefGoogle ScholarPubMed
Strong, MJ, Abrahams, S, Goldstein, LH, et al., Amyotrophic lateral sclerosis – frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener, 2017. 18(3-4):153174.10.1080/21678421.2016.1267768CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M, Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol, 2017. 134(1):7996.10.1007/s00401-017-1716-8CrossRefGoogle ScholarPubMed
Mez, J, Daneshvar, DH, Kierenan, PT, et al., Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA, 2017. 318(4):360370.10.1001/jama.2017.8334CrossRefGoogle ScholarPubMed
McKee, AC, Gavett, BE, Stern, RA, et al., TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol, 2010. 69(9):918929.10.1097/NEN.0b013e3181ee7d85CrossRefGoogle ScholarPubMed
Omalu, B, Bailes, J, Hamilton, RL, et al., Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery, 2011. 69(1):173183; discussion 183.10.1227/NEU.0b013e318212bc7bCrossRefGoogle ScholarPubMed
Alosco, ML, Stein, TD, Tripodis, Y, et al., Association of white matter rarefaction, arteriolosclerosis, and tau with dementia in chronic traumatic encephalopathy. JAMA Neurol, 2019. 76(11):12981308.10.1001/jamaneurol.2019.2244CrossRefGoogle ScholarPubMed
Boyle, PA, Yu, L, Wilson, RS, et al., Person-specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol, 2018. 83(1):7483.10.1002/ana.25123CrossRefGoogle ScholarPubMed
Alosco, ML, Koerte, IK, Tripodis, Y, et al., White matter signal abnormalities in former National Football League players. Alzheimers Dement (Amst), 2018. 10:5665.10.1016/j.dadm.2017.10.003CrossRefGoogle ScholarPubMed
Cherry, JD, Meng, G, Daley, S, et al., CCL2 is associated with microglia and macrophage recruitment in chronic traumatic encephalopathy. J Neuroinflammation, 2020. 17(1):370.10.1186/s12974-020-02036-4CrossRefGoogle ScholarPubMed
Cherry, JD, Tripodis, Y, Alvarez, VE, et al., Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol Commun, 2016. 4(1):112.10.1186/s40478-016-0382-8CrossRefGoogle ScholarPubMed
Cherry, JD, Mez, J, Crary, JF, et al., Variation in TMEM106B in chronic traumatic encephalopathy. Acta Neuropathol Commun. 2018. 6(1):115.10.1186/s40478-018-0619-9CrossRefGoogle ScholarPubMed
Ling, H, Morris, HR, Neal, JW, et al., Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathol, 2017. 133(3):337352.10.1007/s00401-017-1680-3CrossRefGoogle ScholarPubMed
Ling, H, Holton, JL, Shaw, K, et al., Histological evidence of chronic traumatic encephalopathy in a large series of neurodegenerative diseases. Acta Neuropathol, 2015. 130(6):891893.10.1007/s00401-015-1496-yCrossRefGoogle Scholar
Conejero, I, Navucet, S, Keller, J, et al., A complex relationship between suicide, dementia, and amyloid: a narrative review. Front Neurosci, 2018. 12:371.10.3389/fnins.2018.00371CrossRefGoogle ScholarPubMed
Serafini, G, Calcagno, P, Lester, D, et al., Suicide risk in Alzheimer’s disease: a systematic review. Curr Alzheimer Res, 2016. 13(10):10831099.10.2174/1567205013666160720112608CrossRefGoogle ScholarPubMed
Baron, SL, Hein, MJ, Lehman, E, Gersic, CM, Body mass index, playing position, race, and the cardiovascular mortality of retired professional football players. Am J Cardiol, 2012. 109(6):889896.10.1016/j.amjcard.2011.10.050CrossRefGoogle ScholarPubMed
Lehman, EJ, Hein, MJ, Gersic, CM, Suicide mortality among retired National Football League players who played 5 or more seasons. Am J Sports Med, 2016. 44(10):24862491.10.1177/0363546516645093CrossRefGoogle ScholarPubMed
Mackay, DF, Russell, ER, Stewart, K, et al., Neurodegenerative disease mortality among former professional soccer players. N Engl J Med, 2019. 381:18011808.10.1056/NEJMoa1908483CrossRefGoogle ScholarPubMed
Russell, ER, McCabe, T, Mackay, DF, et al., Mental health and suicide in former professional soccer players. 2020. 91(12):12561260.10.1136/jnnp-2020-323315CrossRefGoogle Scholar
Iverson, GL, Gardner, AJ, Risk for misdiagnosing chronic traumatic encephalopathy in men with anger control problems. Front Neurol, 2020. 11:739.10.3389/fneur.2020.00739CrossRefGoogle ScholarPubMed
Iverson, GL, Gardner, A.J, Risk of misdiagnosing chronic traumatic encephalopathy in men with depression. J Neuropsychiatry Clin Neurosci, 2020. 32(2):139146.10.1176/appi.neuropsych.19010021CrossRefGoogle ScholarPubMed
Webner, D, Iverson, G.L, Suicide in professional American football players in the past 95 years. Brain Inj, 2016. 30(13-14):17181721.10.1080/02699052.2016.1202451CrossRefGoogle ScholarPubMed
Iverson, GL, Retired National Football League players are not at greater risk for suicide. Arch Clin Neuropsychol, 2020. 35(3):332341.10.1093/arclin/acz023CrossRefGoogle Scholar
Wadhawan, A, Stilller, JW, Potocki, E, et al., Traumatic brain injury and suicidal behavior: a review. J Alzheimers Dis, 2019. 68(4):13391370.10.3233/JAD-181055CrossRefGoogle ScholarPubMed
Victoroff, J, Traumatic encephalopathy: review and provisional research diagnostic criteria. NeuroRehabilitation, 2013. 32(2):211224.10.3233/NRE-130839CrossRefGoogle ScholarPubMed
Jordan, BD, The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neurol, 2013. 9(4):222230.10.1038/nrneurol.2013.33CrossRefGoogle ScholarPubMed
Montenigro, PH, Baugh, CM, Daneshvar, DH, et al., Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res Ther, 2014. 6(5):68.10.1186/s13195-014-0068-zCrossRefGoogle ScholarPubMed
Reams, N, Eckner, JT, Almeida, AA, et al., A clinical approach to the diagnosis of traumatic encephalopathy syndrome: a review. JAMA Neurol, 2016. 73(6):743749.10.1001/jamaneurol.2015.5015CrossRefGoogle Scholar
Jack, CR Jr, Bennett, DA, Blennow, K, et al., NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement, 2018. 14(4):535562.10.1016/j.jalz.2018.02.018CrossRefGoogle Scholar
Katz, DI, Bernick, C, Dodick, DW, et al., National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome. Neurology, 2021. 96(18):848863.10.1212/WNL.0000000000011850CrossRefGoogle ScholarPubMed
Iverson, GL, Gardner, AJ, Terry, DP, et al., Predictors of clinical recovery from concussion: a systematic review. Br J Sports Med, 2017. 51(12):941948.10.1136/bjsports-2017-097729CrossRefGoogle ScholarPubMed
Covassin, T, Bretzin, AC, Beidler, E, Wallace, J , Time-to-event analyses: return to unrestricted participation following sport-related concussion in a cohort of high school athletes. J Athl Train, 2020. 56(3):286293.10.4085/1062-6050-0150-20CrossRefGoogle Scholar
Dikmen, S, Machamer, J, Temkin, N. Mild traumatic brain injury: longitudinal study of cognition, functional status, and post-traumatic symptoms. J Neurotrauma, 2017. 34(8):15241530.10.1089/neu.2016.4618CrossRefGoogle ScholarPubMed
Nelson, LD, Temkin, NR, Dikmen, S, et al., Recovery after mild traumatic brain injury in patients presenting to US Level I trauma centers: a Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. JAMA Neurol, 2019. 76(9):10491059.10.1001/jamaneurol.2019.1313CrossRefGoogle Scholar
McKhann, GM, Knopman, DS, Chertkow, H, et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 2011. 7(3):263269.10.1016/j.jalz.2011.03.005CrossRefGoogle ScholarPubMed
Bieniek, KF, Ross, OA, Cormier, KA, et al., Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol, 2015. 130(6):877889.10.1007/s00401-015-1502-4CrossRefGoogle Scholar
Binney, ZO, Bachynski, KE, Estimating the prevalence at death of CTE neuropathology among professional football players. Neurology, 2019. 92(1):4345.10.1212/WNL.0000000000006699CrossRefGoogle ScholarPubMed
Mez, J, Daneshvar, DH, Abdolmohammadi, B, et al., Duration of American football play and chronic traumatic encephalopathy. Ann Neurol, 2019. 87(1):116131.10.1002/ana.25611CrossRefGoogle ScholarPubMed
Savica, R, Parisi, JE, Wold, LE, Josephs, KA, Ahlskog, JE, High school football and risk of neurodegeneration: a community-based study. Mayo Clin Proc, 2012. 87(4):335340.10.1016/j.mayocp.2011.12.016CrossRefGoogle ScholarPubMed
Gardner, RC, Burke, JF, Nettiksimmons, J, et al., Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. JAMA Neurol, 2014. 71(12):14901497.10.1001/jamaneurol.2014.2668CrossRefGoogle ScholarPubMed
Nordström, A, Nordström, P, Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study. PLoS Med, 2018. 15(1).10.1371/journal.pmed.1002496CrossRefGoogle ScholarPubMed
Fann, JR, Riisgaard Ribe, A, Schou Pedersen, H, et al., Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry, 2018. 5(5):424431.10.1016/S2215-0366(18)30065-8CrossRefGoogle Scholar
Perry, DC, Sturm, VE, Peterson, MJ, et al., Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J Neurosurg, 2016. 124(2):511526.10.3171/2015.2.JNS14503CrossRefGoogle ScholarPubMed
Jafari, S, Etminan, M, Aminzadeh, F, et al., Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov Disord, 2013. 28(9):12221229.10.1002/mds.25458CrossRefGoogle ScholarPubMed
Crane, PK, Gibbons, LE, Dams-O’Connor, K, et al., Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings. JAMA Neurol, 2016. 73(9):10621069.10.1001/jamaneurol.2016.1948CrossRefGoogle ScholarPubMed
Kalkonde, YV, Jawaid, A, Qureshi, SU, et al., Medical and environmental risk factors associated with frontotemporal dementia: a case-control study in a veteran population. Alzheimers Dement, 2012. 8(3):204210.10.1016/j.jalz.2011.03.011CrossRefGoogle Scholar
Snowden, TM, Hinde, AK, Reid, HMO, et al., Does mild traumatic brain injury increase the risk for dementia? A systematic review and meta-analysis. J Alzheimers Dis, 2020. 78(2):757775.10.3233/JAD-200662CrossRefGoogle ScholarPubMed
Nordström, P, Michaëlsson, K, Gustafson, Y, Nordström, A, Traumatic brain injury and young onset dementia: a nationwide cohort study. Ann Neurol, 2014. 75(3):374381.10.1002/ana.24101CrossRefGoogle Scholar
Gardner, RC, Yaffe, K, Traumatic brain injury may increase risk of young onset dementia. Ann Neurol, 2014. 75(3):339341.10.1002/ana.24121CrossRefGoogle ScholarPubMed
Taylor, CA, Bell, JA, Breiding, MJ, Xu, L, Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveill Summ, 2017. 66(9):116.10.15585/mmwr.ss6609a1CrossRefGoogle ScholarPubMed
Peterson, AB, Xu, L, Daugherty, J, Breiding, MJ, Surveillance Report of Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths, United States, 2014. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention, U.S. Department of Health and Human Services, 2019.Google Scholar
Koerte, IK, Lin, AP, Willems, A, et al., A review of neuroimaging findings in repetitive brain trauma. Brain Pathol, 2015. 25(3):318349.10.1111/bpa.12249CrossRefGoogle ScholarPubMed
Shetty, T, Raince, A, Manning, E, Tsiouris, AJ, Imaging in chronic traumatic encephalopathy and traumatic brain injury. Sports Health, 2016. 8(1):2636.10.1177/1941738115588745CrossRefGoogle ScholarPubMed
Lee, BG, Leavitt, MJ, Bernick, CB, et al., A systematic review of positron emission tomography of tau, amyloid beta, and neuroinflammation in chronic traumatic encephalopathy: the evidence to date. J Neurotrauma, 2018. 35(17):20152024.10.1089/neu.2017.5558CrossRefGoogle ScholarPubMed
Ayubcha, C, Revheim, M-E, Newberg, A, et al., A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy. Eur J Nucl Med Mol Imaging, 2020. 48(2):623641.10.1007/s00259-020-04926-4CrossRefGoogle ScholarPubMed
Asken, BM, DeKosky, ST, Clugston, JR, et al., Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review. Brain Imaging Behav, 2018. 12(2):585612.10.1007/s11682-017-9708-9CrossRefGoogle Scholar
Sparks, P, Lawrence, T, Hinze, S, Neuroimaging in the diagnosis of chronic traumatic encephalopathy: a systematic review. Clin J Sport Med, 2020. 30(Suppl 1):S1S10.10.1097/JSM.0000000000000541CrossRefGoogle ScholarPubMed
Dallmeier, JD, Meysami, S, Merrill, DA, Raji, CA, Emerging advances of in vivo detection of chronic traumatic encephalopathy and traumatic brain injury. Br J Radiol, 2019. 92(1101):20180925.10.1259/bjr.20180925CrossRefGoogle ScholarPubMed
Lin, A, Charney, M, Shenton, ME, Koerte, IK, Chronic traumatic encephalopathy: neuroimaging biomarkers. Handb Clin Neurol, 2018. 158:309322.Google ScholarPubMed
Shahim, P, Gill, JM, Biennow, K, Zetterberg, H, Fluid biomarkers for chronic traumatic encephalopathy. Semin Neurol, 2020. 40(4):411419.Google ScholarPubMed
Zetterberg, H, Blennow, K, Chronic traumatic encephalopathy: fluid biomarkers. Handb Clin Neurol. 2018. 158:323333.Google ScholarPubMed
Zetterberg, H, Blennow, K, Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol, 2016. 12(10):563574.10.1038/nrneurol.2016.127CrossRefGoogle ScholarPubMed
Smith, DH, Johnson, VE, Stewart, W, Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol, 2013. 9(4):211221.10.1038/nrneurol.2013.29CrossRefGoogle ScholarPubMed
Gardner, RC, Hess, CP, Brus-Ramer, M, et al., Cavum septum pellucidum in retired American pro-football players. J Neurotrauma, 2016. 33(1):157161.10.1089/neu.2014.3805CrossRefGoogle ScholarPubMed
Koerte, IK, Hufschmidt, J, Muehlmann, M, et al., Cavum septi pellucidi in symptomatic former professional football players. J Neurotrauma, 2016. 33(4):346353.10.1089/neu.2015.3880CrossRefGoogle ScholarPubMed
Lee, JK, Wu, J, Prevalence of traumatic findings on routine MRI in a large cohort of professional fighters. AJNR Am J Neuroradiol, 2017. 38(7):13031310.10.3174/ajnr.A5175CrossRefGoogle Scholar
Hwang, J, Kim, JE, Kaufman, MJ, et al., Enlarged cavum septum pellucidum as a neurodevelopmental marker in adolescent-onset opiate dependence. PLoS One, 2013. 8(10):e78590.10.1371/journal.pone.0078590CrossRefGoogle ScholarPubMed
Wang, LX, Li, He H, et al., The prevalence of cavum septum pellucidum in mental disorders revealed by MRI: a meta-analysis. J Neuropsychiatry Clin Neurosci, 2020. 32(2):175184.10.1176/appi.neuropsych.18030060CrossRefGoogle ScholarPubMed
Lepage, C, Muehlmann, M, Tripodis, Y, et al., Limbic system structure volumes and associated neurocognitive functioning in former NFL players. Brain Imaging Behav, 2019. 13(3):725734.10.1007/s11682-018-9895-zCrossRefGoogle ScholarPubMed
Lesman-Segev, OH, La Joie, R, Stephens, ML, et al., Tau PET and multimodal brain imaging in patients at risk for chronic traumatic encephalopathy. Neuroimage Clin, 2019:102025.10.1016/j.nicl.2019.102025CrossRefGoogle Scholar
Misquitta, K, Dadar, M, Tarazi, A, et al., The relationship between brain atrophy and cognitive-behavioural symptoms in retired Canadian football players with multiple concussions. Neuroimage Clin, 2018. 19:551558.10.1016/j.nicl.2018.05.014CrossRefGoogle ScholarPubMed
Wojtowicz, M, Gardner, AJ, Stanwell, P, et al., Cortical thickness and subcortical brain volumes in professional rugby league players. Neuroimage Clin, 2018. 18:377381.10.1016/j.nicl.2018.01.005CrossRefGoogle ScholarPubMed
Strain, JF, Womack, KB, Didehban, N, et al., Imaging correlates of memory and concussion history in retired National Football League athletes. JAMA Neurol, 2015. 72(7):773780.10.1001/jamaneurol.2015.0206CrossRefGoogle ScholarPubMed
Goswami, R, Dufort, P, Tartaglia, MC, et al., Frontotemporal correlates of impulsivity and machine learning in retired professional athletes with a history of multiple concussions. Brain Struct Funct, 2016. 221(4):19111925.10.1007/s00429-015-1012-0CrossRefGoogle ScholarPubMed
Lee, JK, Wu, J, Bullen, J, et al., Association of cavum septum pellucidum and cavum vergae with cognition, mood, and brain volumes in professional fighters. JAMA Neurol, 2020. 77(1):3542.10.1001/jamaneurol.2019.2861CrossRefGoogle ScholarPubMed
Brett, BL, Bobholz, SA, España, LY, et al., cumulative effects of prior concussion and primary sport participation on brain morphometry in collegiate athletes: a study from the NCAA-DoD CARE Consortium. Front Neurol, 2020. 11:673.10.3389/fneur.2020.00673CrossRefGoogle ScholarPubMed
Mills, BD, Goubran, M, Parivash, SN, et al., Longitudinal alteration of cortical thickness and volume in high-impact sports. Neuroimage, 2020. 217:116864.10.1016/j.neuroimage.2020.116864CrossRefGoogle ScholarPubMed
Janssen, PH, Mandrekar, J, Mielke, MM, et al., High school football and late-life risk of neurodegenerative syndromes, 1956-1970. Mayo Clin Proc, 2017. 92(1):6671.10.1016/j.mayocp.2016.09.004CrossRefGoogle ScholarPubMed
Deshpande, SK, Hasegawa, RB, Rabinowitz, AR, et al., Association of playing high school football with cognition and mental health later in life. JAMA Neurol, 2017. 74(8):909918.10.1001/jamaneurol.2017.1317CrossRefGoogle ScholarPubMed
Inglese, M, Grossman, RI, Diller, L, et al., Clinical significance of dilated Virchow-Robin spaces in mild traumatic brain injury. Brain Inj, 2006. 20(1):1521.10.1080/02699050500309593CrossRefGoogle ScholarPubMed
Orrison, WW, Hanson, EH, Alamo, T, et al., Traumatic brain injury: a review and high-field MRI findings in 100 unarmed combatants using a literature-based checklist approach. J Neurotrauma, 2009. 26(5):689701.10.1089/neu.2008.0636CrossRefGoogle ScholarPubMed
Hart, J Jr, Kraut, MA, Womack, KB, et al., Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study. JAMA Neurol, 2013. 70(3):326335.10.1001/2013.jamaneurol.340CrossRefGoogle ScholarPubMed
Amen, DG, Willeumier, K, Omalu, B, et al., Perfusion neuroimaging abnormalities alone distinguish National Football League players from a healthy population. J Alzheimers Dis, 2016. 53(1):237241.10.3233/JAD-160207CrossRefGoogle ScholarPubMed
Roby, PR, Dduquette, P, Kerr, ZY, et al., Repetitive head impact exposure and cerebrovascular function in adolescent athletes. J Neurotrauma, 2020. 38(7):837847.10.1089/neu.2020.7350CrossRefGoogle ScholarPubMed
Bailey, DM, Jones, DW, Sinnott, A, et al., Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clin Sci (Lond), 2013. 124(3):177189.10.1042/CS20120259CrossRefGoogle ScholarPubMed
Veksler, R, Vazana, U, Serlin, Y, et al., Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain, 2020. 143(6):18261842.10.1093/brain/awaa140CrossRefGoogle ScholarPubMed
Doherty, CP, O’Keefe, E, Wallace, E, et al., Blood-brain barrier dysfunction as a hallmark pathology in chronic traumatic encephalopathy. J Neuropathol Exp Neurol, 2016. 75(7):656662.10.1093/jnen/nlw036CrossRefGoogle ScholarPubMed
Shenton, ME, Hamoda, HM, Schneiderman, JS, et al., A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav, 2012. 6(2):137192.10.1007/s11682-012-9156-5CrossRefGoogle ScholarPubMed
McAllister, TW, Ford, JC, Flashman, LA, et al., Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes. Neurology, 2014. 82(1):6369.10.1212/01.wnl.0000438220.16190.42CrossRefGoogle Scholar
Petrie, EC, Cross, DJ, Yarnykh, VL, et al., Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans. J Neurotrauma, 2013. 31(5):425436.10.1089/neu.2013.2952CrossRefGoogle Scholar
Tremblay, S, Henry, LC, Bedetti, C, et al., Diffuse white matter tract abnormalities in clinically normal ageing retired athletes with a history of sports-related concussions. Brain, 2014. 137(Pt 11):29973011.10.1093/brain/awu236CrossRefGoogle ScholarPubMed
Multani, N, Goswami, R, Khodadadi, M, et al., The association between white-matter tract abnormalities, and neuropsychiatric and cognitive symptoms in retired professional football players with multiple concussions. J Neurol, 2016. 263(7):13321341.10.1007/s00415-016-8141-0CrossRefGoogle ScholarPubMed
McClelland, AC, Fleysher, R, Mu, W, et al., White matter microstructural abnormalities in blast-exposed combat veterans: accounting for potential pre-injury factors using consanguineous controls. Neuroradiology, 2018. 60(10):10191033.10.1007/s00234-018-2070-9CrossRefGoogle ScholarPubMed
Taber, KH, Hurley, RA, Haswell, CC, et al., White matter compromise in veterans exposed to primary blast forces. J Head Trauma Rehabil, 2015. 30(1):E15E25.10.1097/HTR.0000000000000030CrossRefGoogle ScholarPubMed
Ivanov, I, Fernandez, C, Mitsis, EM, et al., Blast exposure, white matter integrity, and cognitive function in Iraq and Afghanistan combat veterans. Front Neurol, 2017. 8:127.10.3389/fneur.2017.00127CrossRefGoogle ScholarPubMed
Trotter, BB, Robinson, ME, Milberg, WP, et al., Military blast exposure, ageing and white matter integrity. Brain, 2015. 138(Pt 8):22782292.10.1093/brain/awv139CrossRefGoogle ScholarPubMed
Sullivan, DR, Logue, MW, Wolf, EJ, et al., Close-range blast exposure is associated with altered white matter integrity in apolipoprotein ɛ4 carriers. J Neurotrauma, 2019. 36(23):32643273.10.1089/neu.2019.6489CrossRefGoogle ScholarPubMed
Holleran, L, Kim, JH, Gangolli, M, et al., Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy. Acta Neuropathol, 2017. 133(3):367380.10.1007/s00401-017-1686-xCrossRefGoogle Scholar
Provenzano, FA, Jordan, B, Rikofsky, RS, et al., F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nucl Med Commun, 2010. 31(11):952957.10.1097/MNM.0b013e32833e37c4CrossRefGoogle ScholarPubMed
Bang, SA, Song, YS, Moon, BS, et al., Neuropsychological, metabolic, and GABAA receptor studies in subjects with repetitive traumatic brain injury. J Neurotrauma, 2016. 33(11):10051014.10.1089/neu.2015.4051CrossRefGoogle ScholarPubMed
Mantyh, WG, Spina, S, Lee, A, et al., Tau positron emission tomographic findings in a former US football player with pathologically confirmed chronic traumatic encephalopathy. JAMA Neurol, 2020. 77(4):517521.10.1001/jamaneurol.2019.4509CrossRefGoogle Scholar
Stern, RA, Adler, CH, Chen, K, et al., Tau positron-emission tomography in former National Football League players. N Engl J Med, 2019. 380(18):17161725.10.1056/NEJMoa1900757CrossRefGoogle ScholarPubMed
Hong, YT, Veenith, T, Dewar, D, et al., Amyloid imaging with carbon 11–labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol, 2014. 71(1):2331.10.1001/jamaneurol.2013.4847CrossRefGoogle ScholarPubMed
Weiner, MW, Harvey, D, Hayes, J, et al., Effects of traumatic brain injury and posttraumatic stress disorder on development of Alzheimer’s disease in Vietnam veterans using the Alzheimer’s Disease Neuroimaging Initiative: preliminary report. Alzheimers Dement (N Y), 2017. 3(2):177188.10.1016/j.trci.2017.02.005CrossRefGoogle Scholar
Sugarman, MA, McKee, AC, Stein, TD, et al., Failure to detect an association between self-reported traumatic brain injury and Alzheimer’s disease neuropathology and dementia. Alzheimers Dement, 2019. 15(5):686698.10.1016/j.jalz.2018.12.015CrossRefGoogle ScholarPubMed
Asken, BM, Mantyh, WG, La Joie, R, et al., Association of remote mild traumatic brain injury with cortical amyloid burden in clinically normal older adults. Brain Imaging Behav, 2021. 15(5):24172425.10.1007/s11682-020-00440-1CrossRefGoogle ScholarPubMed
Johnson, VE, Stewart, W, Smith, DH, Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci, 2010. 11(5):361.10.1038/nrn2808CrossRefGoogle Scholar
Johnson, VE, Stewart, W, Smith, DH, Widespread tau and amyloid‐beta pathology many years after a single traumatic brain injury in humans. Brain Pathol, 2012. 22(2):142149.10.1111/j.1750-3639.2011.00513.xCrossRefGoogle ScholarPubMed
Barrio, JR, Small, GW, Wong, K-P, et al., In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A, 2015. 112(16):E2039E2047.10.1073/pnas.1409952112CrossRefGoogle ScholarPubMed
Chen, ST, Siddarth, P, Merrill, DA, et al., FDDNP-PET tau brain protein binding patterns in military personnel with suspected chronic traumatic encephalopathy1. J Alzheimers Dis, 2018. 65(1):7988.10.3233/JAD-171152CrossRefGoogle ScholarPubMed
Omalu, B, Small, GW, Bailes, J, et al., Postmortem autopsy-confirmation of antemortem [F-18] FDDNP-PET scans in a football player with chronic traumatic encephalopathy. Neurosurgery, 2018. 82:237246.10.1093/neuros/nyx536CrossRefGoogle Scholar
Thompson, PW, Ye, L, Morgenstern, JL, et al., Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J Neurochem, 2009. 109(2):623630.10.1111/j.1471-4159.2009.05996.xCrossRefGoogle ScholarPubMed
Leung, K, 2-(4-(2-[(18)F]Fluoroethyl)piperidin-1-yl)benzo[4,5]imidazo[1,2-a]pyrimidine, in Molecular Imaging and Contrast Agent Database (MICAD). Bethesda, MD: National Center for Biotechnology Information (US), 2004.Google Scholar
Dickstein, DL, De Gasperi, R, Gama Sosa, MA, et al., Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure. Mol Psychiatry, 2020. 26(10):59405954.10.1038/s41380-020-0674-zCrossRefGoogle ScholarPubMed
Marquié, M, Agüero, C, Amaral, AC, et al., [18F]-AV-1451 binding profile in chronic traumatic encephalopathy: a postmortem case series. Acta Neuropathol Commun, 2019. 7(1):164.10.1186/s40478-019-0808-1CrossRefGoogle ScholarPubMed
Krishnadas, N, Doré, V, Lamb, F, et al., Case report: (18)F-MK6240 tau positron emission tomography pattern resembling chronic traumatic encephalopathy in a retired Australian Rules football player. Front Neurol, 2020. 11:598980.10.3389/fneur.2020.598980CrossRefGoogle Scholar
Aguero, C, Dhaynaut, M, Normandin, MD, et al., Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun, 2019. 7(1):37.10.1186/s40478-019-0686-6CrossRefGoogle ScholarPubMed
Zetterberg, H, Hietala, MA, Jonsson, M, et al., Neurochemical aftermath of amateur boxing. Arch Neurol, 2006. 63(9):12771280.10.1001/archneur.63.9.1277CrossRefGoogle ScholarPubMed
Neselius, S, Brisby, H, Theodorsson, A, et al., CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS One, 2012. 7(4):e33606.10.1371/journal.pone.0033606CrossRefGoogle ScholarPubMed
Alosco, ML, Tripodis, Y, Fritts, NG, et al., Cerebrospinal fluid tau, Aβ, and sTREM2 in former National Football League players: modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration. Alzheimers Dement, 2018. 14(9):11591170.10.1016/j.jalz.2018.05.004CrossRefGoogle ScholarPubMed
Alosco, ML, Tripodis, Y, Jarnagin, J, et al., Repetitive head impact exposure and later-life plasma total tau in former National Football League players. Alzheimers Dement, 2017. 7:3340.Google ScholarPubMed
Asken, BM, Bauer, RM, DeKosky, ST, et al., Concussion BASICS II: baseline serum biomarkers, head impact exposure, and clinical measures. Neurology, 2018. 91(23):e2123e2132.10.1212/WNL.0000000000006616CrossRefGoogle ScholarPubMed
Guedes, VA, Kenney, K, Shahim, P, et al., Exosomal neurofilament light: a prognostic biomarker for remote symptoms after mild traumatic brain injury? Neurology, 2020. 94(23):e2412e2423.10.1212/WNL.0000000000009577CrossRefGoogle Scholar
Pattinson, CL, Shahim, P, Taylor, P, et al., Elevated tau in military personnel relates to chronic symptoms following traumatic brain injury. J Head Trauma Rehabil, 2020. 35(1):6673.10.1097/HTR.0000000000000485CrossRefGoogle ScholarPubMed
Palmqvist, S, Janelidze, S, Quiro, YT, et al., Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA, 2020. 324(8):772781.10.1001/jama.2020.12134CrossRefGoogle ScholarPubMed
Thijssen, EH, La Joie, R, Wolf, A, et al., Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med, 2020. 26(3):387397.10.1038/s41591-020-0762-2CrossRefGoogle ScholarPubMed
Di Pietro, V, Porto, E, Ragusa, M, et al., Salivary microRNAs: diagnostic markers of mild traumatic brain injury in contact-sport. Front Mol Neurosci, 2018. 11.10.3389/fnmol.2018.00290CrossRefGoogle ScholarPubMed
Devoto, C, Lai, C, Qu, B-X, et al., Exosomal microRNAs in military persons with mild traumatic brain injury: preliminary results from a Chronic Effects of Neurotrauma Consortium (CENC) Biomarker Discovery Project. J Neurotrauma, 2020. 37(23):24822492.10.1089/neu.2019.6933CrossRefGoogle ScholarPubMed
Di Battista, AP, Churchill, N, Rhind, SG, et al., Evidence of a distinct peripheral inflammatory profile in sport-related concussion. J Neuroinflammation, 2019. 16(1):17.10.1186/s12974-019-1402-yCrossRefGoogle ScholarPubMed
Needham, EJ, Helmy, A, Zanier, ER, et al., The immunological response to traumatic brain injury. J Neuroimmunol, 2019. 332:112125.10.1016/j.jneuroim.2019.04.005CrossRefGoogle ScholarPubMed
Broglio, SP, McCrea, M, McAllister, T, et al., A national study on the effects of concussion in collegiate athletes and US Military Service Academy members: the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium Structure and Methods. Sports Med, 2017. 47(7):14371451.10.1007/s40279-017-0707-1CrossRefGoogle Scholar
Bernick, C, Bankns, S, Phillips, M, et al., Professional Fighters Brain Health Study: rationale and methods. Am J Epidemiol, 2013. 178(2):280286.10.1093/aje/kws456CrossRefGoogle Scholar
Zafonte, R, Pascual-Leone, A, Baggish, A, et al., The Football Players’ Health Study at Harvard University: design and objectives. Am J Ind Med, 2019. 62(8):643654.10.1002/ajim.22991CrossRefGoogle ScholarPubMed
Walker, WC, Carne, W, Franke, LM, et al., The Chronic Effects of Neurotrauma Consortium (CENC) multi-centre observational study: description of study and characteristics of early participants. Brain Inj, 2016. 30(12):14691480.10.1080/02699052.2016.1219061CrossRefGoogle ScholarPubMed
Yue, JK, Vassar, MJ, Lingsma, HF, et al., Transforming Research and Clinical Knowledge in Traumatic Brain Injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma, 2013. 30(22):18311844.10.1089/neu.2013.2970CrossRefGoogle ScholarPubMed
Dennis, EL, Baron, D, Bartnik-Olson, B, et al., ENIGMA Brain Injury: framework, challenges, and opportunities. Hum Brain Mapp, 2020.10.1002/hbm.25046CrossRefGoogle Scholar

References

Khan, QU, Wharen, RE, Grewal, SS, et al. Overdrainage shunt complications in idiopathic normal-pressure hydrocephalus and lumbar puncture opening pressure. J Neurosurg. 2013;119(6):14981502.10.3171/2013.7.JNS13484CrossRefGoogle ScholarPubMed
Bo, SH, Lundqvist, C. Cerebrospinal fluid opening pressure in clinical practice – a prospective study. J Neurol. 2020;267(12):36963701.10.1007/s00415-020-10075-3CrossRefGoogle ScholarPubMed
Graff-Radford, NR, Godersky, JC, Jones, MP. Variables predicting surgical outcome in symptomatic hydrocephalus in the elderly. Neurology. 1989;39(12):16011604.10.1212/WNL.39.12.1601CrossRefGoogle ScholarPubMed
Zaccaria, V, Bacigalupo, I, Gervasi, G, et al. A systematic review on the epidemiology of normal pressure hydrocephalus. Acta Neurol Scand. 2020;141(2):101114.10.1111/ane.13182CrossRefGoogle ScholarPubMed
Krefft, TA, Graff-Radford, NR, Lucas, JA, Mortimer, JA. Normal pressure hydrocephalus and large head size. Alzheimer Dis Assoc Disord. 2004;18(1):3537.10.1097/00002093-200401000-00007CrossRefGoogle ScholarPubMed
Wilson, RK, Williams, MA. Evidence that congenital hydrocephalus is a precursor to idiopathic normal pressure hydrocephalus in only a subset of patients. J Neurol Neurosurg Psychiatry. 2007;78(5):508511.10.1136/jnnp.2006.108761CrossRefGoogle Scholar
Oi, S, Shimoda, M, Shibata, M, et al. Pathophysiology of long-standing overt ventriculomegaly in adults. J Neurosurg. 2000;92(6):933940.10.3171/jns.2000.92.6.0933CrossRefGoogle ScholarPubMed
Ved, R, Leach, P, Patel, C. Surgical treatment of long-standing overt ventriculomegaly in adults (LOVA). Acta Neurochir (Wien). 2017;159(1):7179.10.1007/s00701-016-2998-7CrossRefGoogle ScholarPubMed
Huovinen, J, Kastinen, S, Komulainen, S, et al. Familial idiopathic normal pressure hydrocephalus. J Neurol Sci. 2016;368:1118.10.1016/j.jns.2016.06.052CrossRefGoogle ScholarPubMed
Yang, Y, Tullberg, M, Mehlig, K, et al. The APOE genotype in idiopathic normal pressure hydrocephalus. PLoS One. 2016;11(7):e0158985.Google ScholarPubMed
Morimoto, Y, Yoshida, S, Kinoshita, A, et al. Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology. 2019;92(20):e2364–e74.10.1212/WNL.0000000000007505CrossRefGoogle ScholarPubMed
Sato, H, Takahashi, Y, Kimihira, L, et al. A segmental copy number loss of the SFMBT1 gene is a genetic risk for shunt-responsive, idiopathic normal pressure hydrocephalus (iNPH): a case-control study. PLoS One. 2016;11(11):e0166615.10.1371/journal.pone.0166615CrossRefGoogle ScholarPubMed
Korhonen, VE, Helisalmi, S, Jokinen, A, et al. Copy number loss in SFMBT1 is common among Finnish and Norwegian patients with iNPH. Neurol Genet. 2018;4(6):e291.10.1212/NXG.0000000000000291CrossRefGoogle ScholarPubMed
Israelsson, H, Carlberg, B, Wikkelso, C, et al. Vascular risk factors in INPH: a prospective case-control study (the INPH-CRasH study). Neurology. 2017;88(6):577585.10.1212/WNL.0000000000003583CrossRefGoogle ScholarPubMed
Pyykko, OT, Nerg, O, Niskasaari, HM, et al. Incidence, comorbidities, and mortality in idiopathic normal pressure hydrocephalus. World Neurosurg. 2018;112:e624e631.10.1016/j.wneu.2018.01.107CrossRefGoogle ScholarPubMed
Jaraj, D, Agerskov, S, Rabiei, K, et al. Vascular factors in suspected normal pressure hydrocephalus: a population-based study. Neurology. 2016;86(7):592599.10.1212/WNL.0000000000002369CrossRefGoogle ScholarPubMed
Graff-Radford, NR. Is normal pressure hydrocephalus becoming less idiopathic? Neurology. 2016;86(7):588589.10.1212/WNL.0000000000002377CrossRefGoogle ScholarPubMed
Ritter, S, Dinh, TT. Progressive postnatal dilation of brain ventricles in spontaneously hypertensive rats. Brain Res. 1986;370(2):327332.10.1016/0006-8993(86)90488-9CrossRefGoogle ScholarPubMed
Di Rocco, C, Pettorossi, VE, Caldarelli, M, Mancinelli, R, Velardi, F. Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure. Experientia. 1977;33(11):14701472.10.1007/BF01918814CrossRefGoogle ScholarPubMed
Bering, EA Jr. Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg. 1962;19:405413.10.3171/jns.1962.19.5.0405CrossRefGoogle Scholar
Graff-Radford, NR, Torner, J, Adams, HP Jr, Kassell, NF. Factors associated with hydrocephalus after subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. Arch Neurol. 1989;46(7):744752.10.1001/archneur.1989.00520430038014CrossRefGoogle ScholarPubMed
Graff-Radford, NR, Knopman, DS, Penman, AD, Coker, LH, Mosley, TH. Do systolic BP and pulse pressure relate to ventricular enlargement? Eur J Neurol. 2013;20(4):720724.10.1111/ene.12067CrossRefGoogle ScholarPubMed
Tisell, M, Tullberg, M, Hellstrom, P, et al. Shunt surgery in patients with hydrocephalus and white matter changes. J Neurosurg. 2011;114(5):14321438.10.3171/2010.11.JNS10967CrossRefGoogle ScholarPubMed
Borgesen, SE, Gjerris, F. The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain. 1982;105(Pt 1):6586.10.1093/brain/105.1.65CrossRefGoogle ScholarPubMed
Bech, RA, Juhler, M, Waldemar, G, Klinken, L, Gjerris, F. Frontal brain and leptomeningeal biopsy specimens correlated with cerebrospinal fluid outflow resistance and B-wave activity in patients suspected of normal-pressure hydrocephalus. Neurosurgery. 1997;40(3):497502.Google ScholarPubMed
Crook, JE, Gunter, JL, Ball, CT, et al. Linear vs volume measures of ventricle size: relation to present and future gait and cognition. Neurology. 2020;94(5):e549e556.10.1212/WNL.0000000000008673CrossRefGoogle ScholarPubMed
Marmarou, A, Young, HF, Aygok, GA, et al. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102(6):987997.10.3171/jns.2005.102.6.0987CrossRefGoogle ScholarPubMed
Kazui, H, Miyajima, M, Mori, E, Ishikawa, M. Lumboperitoneal shunt surgery for idiopathic normal pressure hydrocephalus (SINPHONI-2): an open-label randomised trial. Lancet Neurol. 2015;14(6):585594.10.1016/S1474-4422(15)00046-0CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18(4):351357.10.1016/S0197-4580(97)00056-0CrossRefGoogle ScholarPubMed
Leinonen, V, Koivisto, AM, Alafuzoff, I, et al. Cortical brain biopsy in long-term prognostication of 468 patients with possible normal pressure hydrocephalus. Neurodegener Dis. 2012;10(1–4):166169.10.1159/000335155CrossRefGoogle ScholarPubMed
Yasar, S, Jusue-Torres, I, Lu, J, Robison, J, Patel, MA, Crain, B, et al. Alzheimer’s disease pathology and shunt surgery outcome in normal pressure hydrocephalus. PLoS One. 2017;12(8):e0182288.10.1371/journal.pone.0182288CrossRefGoogle ScholarPubMed
Hamilton, R, Patel, S, Lee, EB, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol. 2010;68(4):535540.10.1002/ana.22015CrossRefGoogle ScholarPubMed
Naylor, RM, Lenartowicz, KA, Graff-Radford, J, et al. High prevalence of cervical myelopathy in patients with idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2020;197:106099.10.1016/j.clineuro.2020.106099CrossRefGoogle ScholarPubMed
Espay, AJ, Da Prat, GA, Dwivedi, AK, et al. Deconstructing normal pressure hydrocephalus: ventriculomegaly as early sign of neurodegeneration. Ann Neurol. 2017;82(4):503513.10.1002/ana.25046CrossRefGoogle Scholar
Fisher, CM. Communicating hydrocephalus. Lancet. 1978;1(8054):37.10.1016/S0140-6736(78)90378-1CrossRefGoogle ScholarPubMed
Graff-Radford, NR, Godersky, JC. Normal-pressure hydrocephalus. Onset of gait abnormality before dementia predicts good surgical outcome. Arch Neurol. 1986;43(9):940942.10.1001/archneur.1986.00520090068020CrossRefGoogle ScholarPubMed
American Psychiatic Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington, DC: American Psychiatric Publishing, 1994.Google Scholar
Petersen, RC, Mokri, B, Laws, ER Jr. Surgical treatment of idiopathic hydrocephalus in elderly patients. Neurology. 1985;35(3):307311.10.1212/WNL.35.3.307CrossRefGoogle ScholarPubMed
De Mol, J. [Prognostic factors for therapeutic outcome in normal-pressure hydrocephalus. Review of the literature and personal study]. Acta Neurol Belg. 1985;85(1):1329.Google ScholarPubMed
Vanneste, J, Augustijn, P, Dirven, C, Tan, WF, Goedhart, ZD. Shunting normal-pressure hydrocephalus: do the benefits outweigh the risks? A multicenter study and literature review. Neurology. 1992;42(1):5459.10.1212/WNL.42.1.54CrossRefGoogle Scholar
Dixon, GR, Friedman, JA, Luetmer, PH, et al. Use of cerebrospinal fluid flow rates measured by phase-contrast MR to predict outcome of ventriculoperitoneal shunting for idiopathic normal-pressure hydrocephalus. Mayo Clin Proc. 2002;77(6):509514.10.4065/77.6.509CrossRefGoogle ScholarPubMed
Boon, AJ, Tans, JT, Delwel, EJ, et al. Dutch Normal-Pressure Hydrocephalus Study: the role of cerebrovascular disease. J Neurosurg. 1999;90(2):221226.10.3171/jns.1999.90.2.0221CrossRefGoogle Scholar
Nunn, AC, Jones, HE, Morosanu, CO, et al. Extended lumbar drainage in idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis of diagnostic test accuracy. Br J Neurosurg. 2020:17.Google Scholar
Mihalj, M, Dolic, K, Kolic, K, Ledenko, V. CSF tap test – obsolete or appropriate test for predicting shunt responsiveness? A systemic review. J Neurol Sci. 2016;362:7884.10.1016/j.jns.2016.01.028CrossRefGoogle ScholarPubMed
Walchenbach, R, Geiger, E, Thomeer, RT, Vanneste, JA. The value of temporary external lumbar CSF drainage in predicting the outcome of shunting on normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2002;72(4):503506.Google ScholarPubMed
Hashimoto, M, Ishikawa, M, Mori, E, Kuwana, N. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010;7:18.10.1186/1743-8454-7-18CrossRefGoogle ScholarPubMed
Narita, W, Nishio, Y, Baba, T, et al. High-convexity tightness predicts the shunt response in idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2016;37(10):18311837.10.3174/ajnr.A4838CrossRefGoogle ScholarPubMed
Gunter, NB, Schwarz, CG, Graff-Radford, J, et al. Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods. Neuroimage Clin. 2019;21:101605.10.1016/j.nicl.2018.11.015CrossRefGoogle ScholarPubMed
Graff-Radford, J, Gunter, JL, Jones, DT, et al. Cerebrospinal fluid dynamics disorders: relationship to Alzheimer biomarkers and cognition. Neurology. 2019;93(24):e2237e2246.10.1212/WNL.0000000000008616CrossRefGoogle ScholarPubMed
Cogswell, PM, Graff-Radford, J, Wurtz, LI, et al. CSF dynamics disorders: association of brain MRI and nuclear medicine cisternogram findings. Neuroimage Clin. 2020;28:102481.10.1016/j.nicl.2020.102481CrossRefGoogle ScholarPubMed
Kapaki, EN, Paraskevas, GP, Tzerakis, NG, et al. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. Eur J Neurol. 2007;14(2):168173.10.1111/j.1468-1331.2006.01593.xCrossRefGoogle ScholarPubMed
Agren-Wilsson, A, Lekman, A, Sjoberg, W, et al. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2007;116(5):333339.10.1111/j.1600-0404.2007.00890.xCrossRefGoogle ScholarPubMed
Graff-Radford, NR. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology. 2014;83(17):15731575.10.1212/WNL.0000000000000916CrossRefGoogle ScholarPubMed
Jeppsson, A, Zetterberg, H, Blennow, K, Wikkelso, C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80(15):13851392.10.1212/WNL.0b013e31828c2fdaCrossRefGoogle ScholarPubMed
Xie, L, Kang, H, Xu, Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373377.10.1126/science.1241224CrossRefGoogle ScholarPubMed
Jeppsson, A, Wikkelso, C, Blennow, K, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg Psychiatry. 2019;90(10):11171123.10.1136/jnnp-2019-320826CrossRefGoogle ScholarPubMed
Giordan, E, Palandri, G, Lanzino, G, Murad, MH, Elder, BD. Outcomes and complications of different surgical treatments for idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurosurg. 2018:113.Google Scholar
Sundstrom, N, Lagebrant, M, Eklund, A, Koskinen, LD, Malm, J. Subdural hematomas in 1846 patients with shunted idiopathic normal pressure hydrocephalus: treatment and long-term survival. J Neurosurg. 2017:18.10.3171/2017.5.JNS17481CrossRefGoogle Scholar
Vivas-Buitrago, T, Domingo, R, Tripathi, S, et al. In NPH, setting valve opening pressure close to lumbar puncture opening pressure decreases overdrainage. Neurol Neurochir Pol. 2020;54(6):531537.10.5603/PJNNS.a2020.0077CrossRefGoogle ScholarPubMed
Schucht, P, Banz, V, Trochsler, M, et al. Laparoscopically assisted ventriculoperitoneal shunt placement: a prospective randomized controlled trial. J Neurosurg. 2015;122(5):10581067.10.3171/2014.9.JNS132791CrossRefGoogle ScholarPubMed
Thomale, UW, Schaumann, A, Stockhammer, F, et al. GAVCA study: randomized, multicenter trial to evaluate the quality of ventricular catheter placement with a mobile health assisted guidance technique. Neurosurgery. 2018;83(2):252262.10.1093/neuros/nyx420CrossRefGoogle ScholarPubMed
Yamada, S, Ishikawa, M, Yamamoto, K. Utility of preoperative simulation for ventricular catheter placement via a parieto-occipital approach in normal-pressure hydrocephalus. Oper Neurosurg (Hagerstown). 2019;16(6):647657.10.1093/ons/opy193CrossRefGoogle Scholar
Mallucci, CL, Jenkinson, MD, Conroy, EJ, et al. Antibiotic or silver versus standard ventriculoperitoneal shunts (BASICS): a multicentre, single-blinded, randomised trial and economic evaluation. Lancet. 2019;394(10208):15301539.10.1016/S0140-6736(19)31603-4CrossRefGoogle ScholarPubMed
Zhou, WX, Hou, WB, Zhou, C, et al. Systematic review and meta-analysis of antibiotic-impregnated shunt catheters on anti-infective effect of hydrocephalus shunt. J Korean Neurosurg Soc. 2021;64(2):297308.10.3340/jkns.2019.0219CrossRefGoogle ScholarPubMed
Lemcke, J, Meier, U, Muller, C, et al. Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomised, open label, multicentre trial (SVASONA). J Neurol Neurosurg Psychiatry. 2013;84(8):850857.10.1136/jnnp-2012-303936CrossRefGoogle ScholarPubMed
Toma, AK, Papadopoulos, MC, Stapleton, S, Kitchen, ND, Watkins, LD. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir. 2013;155(10):19771980.10.1007/s00701-013-1835-5CrossRefGoogle ScholarPubMed
Boon, AJ, Tans, JT, Delwel, EJ, et al. Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg. 1997;87(5):687693.10.3171/jns.1997.87.5.0687CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.1 AA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and achieves the intermediate (AA) level of WCAG compliance, covering a wider range of accessibility requirements.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×