Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T13:44:01.144Z Has data issue: false hasContentIssue false

10 - The Nexus between ASAT and Density Functional Theory

from Implications Section

Published online by Cambridge University Press:  03 March 2022

Thomas F. Kelly
Affiliation:
Steam Instruments, Inc.
Brian P. Gorman
Affiliation:
Colorado School of Mines
Simon P. Ringer
Affiliation:
University of Sydney
Get access

Summary

A burgeoning number of research studies are emerging where scientific questions are being successfully addressed because of the combination of information revealed from atom probe microscopy and density functional theory (DFT). Situations where high-quality experimental data alone would not wholly answer the question at hand and, equally, situations where atomistic simulations would have no obvious starting place were it not for the atom probe. Atomic-scale analytical tomography holds great potential to expand the realm of mediation between experimentation and computer simulation of materials properties. Any model framework is applicable, but we have delved into detail for the case of DFT because it is a self-consistent theory that has arguably the most immediate and exciting intersection with ASAT data.

Type
Chapter
Information
Atomic-Scale Analytical Tomography
Concepts and Implications
, pp. 201 - 221
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cui, X.-Y. and Ringer, S. P., “On the Nexus between Atom Probe Microscopy and Density Functional Theory Simulations,” Mater. Charact., vol. 146, pp. 347358, Dec. 2018, doi: https://doi.org/10.1016/j.matchar.2018.05.015.Google Scholar
Jóhannesson, G. H., Bligaard, T., Ruban, A. V. et al., “Combined Electronic Structure and Evolutionary Search Approach to Materials Design,” Phys. Rev. Lett., vol. 88, no. 25, p. 255506, Jun. 2002, doi: https://doi.org/10.1103/PhysRevLett.88.255506.Google Scholar
Balachandran, P. V., Young, J., Lookman, T., and Rondinelli, J. M., “Learning from Data to Design Functional Materials without Inversion Symmetry,” Nat. Commun., vol. 8, no. 1, Art. no. 1, Feb. 2017, doi: https://doi.org/10.1038/ncomms14282.CrossRefGoogle ScholarPubMed
Pulido, A. et al., “Functional Materials Discovery Using Energy–Structure–Function Maps,” Nature, vol. 543, no. 7647, Art. no. 7647, Mar. 2017, doi: https://doi.org/10.1038/nature21419.CrossRefGoogle ScholarPubMed
Voorhees, P. and Spanos, G., “Modeling across Scales: A Roadmapping Study for Connecting Materials Models and Simulations across Length and Time Scales,” TMS, Warrendale, PA, vol. 14, 2015.Google Scholar
Lee, J. G., Computational Materials Science: An Introduction. CRC Press, 2016.Google Scholar
Liddicoat, P. V. et al., “Nanostructural Hierarchy Increases the Strength of Aluminium Alloys,” Nat. Commun., vol. 1, no. 1, Art. no. 1, Sep. 2010, doi: https://doi.org/10.1038/ncomms1062.Google Scholar
Sha, G., Marceau, R. K. W., Gao, X., Muddle, B. C., and Ringer, S. P., “Nanostructure of Aluminium Alloy 2024: Segregation, Clustering and Precipitation Processes,” Acta Mater., vol. 59, no. 4, pp. 16591670, Feb. 2011, doi: https://doi.org/10.1016/j.actamat.2010.11.033.Google Scholar
Peng, Z. and Yang, H., “Designer Platinum Nanoparticles: Control of Shape, Composition in Alloy, Nanostructure and Electrocatalytic Property,” Nano Today, vol. 4, no. 2, pp. 143164, Apr. 2009, doi: https://doi.org/10.1016/j.nantod.2008.10.010.CrossRefGoogle Scholar
Jiang, S. et al., “Ultrastrong Steel via Minimal Lattice Misfit and High-Density Nanoprecipitation,” Nature, vol. 544, no. 7651, Art. no. 7651, Apr. 2017, doi: https://doi.org/10.1038/nature22032.Google Scholar
Nørskov, J. K., Bligaard, T., Rossmeisl, J., and Christensen, C. H., “Towards the Computational Design of Solid Catalysts,” Nat. Chem., vol. 1, no. 1, Art. no. 1, Apr. 2009, doi: https://doi.org/10.1038/nchem.121.CrossRefGoogle ScholarPubMed
Perea, D. E. et al., “Determining the Location and Nearest Neighbours of Aluminium in Zeolites with Atom Probe Tomography,” Nat. Commun., vol. 6, no. 1, Art. no. 1, Jul. 2015, doi: https://doi.org/10.1038/ncomms8589.CrossRefGoogle ScholarPubMed
Curtarolo, S., Hart, G. L. W., Nardelli, M. B. et al., “The High-Throughput Highway to Computational Materials Design,” Nat. Mater., vol. 12, no. 3, Art. no. 3, Mar. 2013, doi: https://doi.org/10.1038/nmat3568.Google Scholar
Jain, A., Shin, Y., and Persson, K. A., “Computational Predictions of Energy Materials using Density Functional Theory,” Nat. Rev. Mater., vol. 1, no. 1, Art. no. 1, Jan. 2016, doi: https://doi.org/10.1038/natrevmats.2015.4.CrossRefGoogle Scholar
Ringer, S. P., “Activity at the Surface,” Nat. Mater., vol. 17, no. 1, Art. no. 1, Jan. 2018, doi: https://doi.org/10.1038/nmat5058.CrossRefGoogle Scholar
Mao, Z., Sudbrack, C. K., Yoon, K. E., Martin, G., and Seidman, D. N., “The Mechanism of Morphogenesis in a Phase-Separating Concentrated Multicomponent Alloy,” Nat. Mater., vol. 6, no. 3, Art. no. 3, Mar. 2007, doi: https://doi.org/10.1038/nmat1845.CrossRefGoogle Scholar
Marquis, E. A. and Hyde, J. M., “Applications of Atom-Probe Tomography to the Characterisation of Solute Behaviours,” Mater. Sci. Eng: R: Reports, vol. 69, no. 4, pp. 3762, Jul. 2010, doi: https://doi.org/10.1016/j.mser.2010.05.001.Google Scholar
Sha, G. and Cerezo, A., “Kinetic Monte Carlo Simulation of Clustering in an Al–Zn–Mg–Cu Alloy (7050),” Acta Mater., vol. 53, no. 4, pp. 907917, Feb. 2005, doi: https://doi.org/10.1016/j.actamat.2004.10.048.Google Scholar
Marceau, R. K. W., Stephenson, L. T., Hutchinson, C. R., and Ringer, S. P., “Quantitative Atom Probe Analysis of Nanostructure Containing Clusters and Precipitates with Multiple Length Scales,” Ultramicroscopy, vol. 111, no. 6, pp. 738742, May 2011, doi: https://doi.org/10.1016/j.ultramic.2010.12.029.CrossRefGoogle ScholarPubMed
Chen, S. J., Yao, X., Zheng, C., and Duan, W. H., “Quantification of Evaporation Induced Error in Atom Probe Tomography Using Molecular Dynamics Simulation,” Ultramicroscopy, vol. 182, pp. 2835, Nov. 2017, doi: https://doi.org/10.1016/j.ultramic.2017.06.006.CrossRefGoogle ScholarPubMed
Pareige, C., Soisson, F., Martin, G., and Blavette, D., “Ordering and Phase Separation in Ni–Cr–Al: Monte Carlo Simulations vs Three-Dimensional Atom Probe,” Acta Mater., vol. 47, no. 6, pp. 18891899, Apr. 1999, doi: https://doi.org/10.1016/S1359-6454(99)00054-3.Google Scholar
The Minerals, Metals, and Materials Society, Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales. Warrendale, PA: The Minerals, Metals & Materials Society, 2015.Google Scholar
Nomoto, K., Sugimoto, H., Cui, X.-Y. et al., “Distribution of Boron and Phosphorus and Roles of Co-doping in Colloidal Silicon Nanocrystals,” Acta Mater., vol. 178, pp. 186193, Oct. 2019, doi: https://doi.org/10.1016/j.actamat.2019.08.013.Google Scholar
Hohenberg, P. and Kohn, W., “Physical review 136,” B864, 1964.Google Scholar
Kohn, W. and Sham, L. J., “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, no. 4A, pp.A1133A1138, Nov. 1965, doi: https://doi.org/10.1103/PhysRev.140.A1133.CrossRefGoogle Scholar
Jones, R. O., “Density Functional Theory: Its Origins, Rise to Prominence, and Future,” Rev. Mod. Phys., vol. 87, no. 3, pp. 897923, Aug. 2015, doi: https://doi.org/10.1103/RevModPhys.87.897.Google Scholar
Cohen, A. J., Mori-Sánchez, P., and Yang, W., “Insights into Current Limitations of Density Functional Theory,” Science, vol. 321, no. 5890, pp. 792794, Aug. 2008, doi: https://doi.org/10.1126/science.1158722.Google Scholar
Perdew, J. P. and Zunger, A., “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems,” Phys. Rev. B, vol. 23, no. 10, pp. 50485079, May 1981, doi: https://doi.org/10.1103/PhysRevB.23.5048.CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 38653868, Oct. 1996, doi: https://doi.org/10.1103/PhysRevLett.77.3865.CrossRefGoogle ScholarPubMed
Zhao, Y. and Truhlar, D. G., “A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions,” J. Chem. Phys., vol. 125, no. 19, p. 194101, Nov. 2006, doi: https://doi.org/10.1063/1.2370993.Google Scholar
Heyd, J., Scuseria, G. E., and Ernzerhof, M., “Hybrid Functionals Based on a Screened Coulomb Potential,” J. Chem. Phys., vol. 118, no. 18, pp. 82078215, Apr. 2003, doi: https://doi.org/10.1063/1.1564060.CrossRefGoogle Scholar
Cui, X. Y., Medvedeva, J. E., Delley, B. et al., “Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN,” Phys. Rev. Lett., vol. 95, no. 25, p. 256404, Dec. 2005, doi: https://doi.org/10.1103/PhysRevLett.95.256404.Google Scholar
Weston, L., Cui, X. Y., Ringer, S. P., and Stampfl, C., “Density-Functional Prediction of a Surface Magnetic Phase in SrTiO3/LaAlO3 Heterostructures Induced by Al Vacancies,” Phys. Rev. Lett., vol. 113, no. 18, p. 186401, Oct. 2014, doi: https://doi.org/10.1103/PhysRevLett.113.186401.Google Scholar
Fulcher, B. D., Cui, X. Y., Delley, B., and Stampfl, C., “Hardness Analysis of Cubic Metal Mononitrides from First Principles,” Phys. Rev. B, vol. 85, no. 18, p. 184106, May 2012, doi: https://doi.org/10.1103/PhysRevB.85.184106.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Phys. Rev. B, vol. 54, no. 16, pp. 1116911186, Oct. 1996, doi: https://doi.org/10.1103/PhysRevB.54.11169.CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D., “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Phys. Rev. B, vol. 59, no. 3, pp. 17581775, Jan. 1999, doi: https://doi.org/10.1103/PhysRevB.59.1758.CrossRefGoogle Scholar
Delley, B., “From Molecules to Solids with the DMol3 Approach,” J. Chem. Phys., vol. 113, no. 18, pp. 77567764, Oct. 2000, doi: https://doi.org/10.1063/1.1316015.Google Scholar
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., “Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients,” Rev. Mod. Phys., vol. 64, no. 4, pp. 10451097, Oct. 1992, doi: https://doi.org/10.1103/RevModPhys.64.1045.Google Scholar
Hautier, G., Fischer, C. C., Jain, A., Mueller, T., and Ceder, G., “Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory,” Chem. Mater., vol. 22, no. 12, pp. 37623767, Jun. 2010, doi: https://doi.org/10.1021/cm100795d.CrossRefGoogle Scholar
Jain, A. et al., “Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation,” APL Mater., vol. 1, no. 1, p. 011002, Jul. 2013, doi: https://doi.org/10.1063/1.4812323.Google Scholar
Li, Y., Hao, J., Liu, H., Li, Y., and Ma, Y., “The Metallization and Superconductivity of Dense Hydrogen Sulfide,” J. Chem. Phys., vol. 140, no. 17, p. 174712, May 2014, doi: https://doi.org/10.1063/1.4874158.Google Scholar
Duan, D. et al., “Pressure-Induced Decomposition of Solid Hydrogen Sulfide,” Phys. Rev. B, vol. 91, no. 18, p. 180502, May 2015, doi: https://doi.org/10.1103/PhysRevB.91.180502.Google Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., and Shylin, S. I., “Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System,” Nature, vol. 525, no. 7567, Art. no. 7567, Sep. 2015, doi: https://doi.org/10.1038/nature14964.CrossRefGoogle ScholarPubMed
Einaga, M. et al., “Crystal Structure of the Superconducting Phase of Sulfur Hydride,” Nat. Phys., vol. 12, no. 9, Art. no. 9, Sep. 2016, doi: https://doi.org/10.1038/nphys3760.Google Scholar
Berland, K. et al., “van der Waals Forces in Density Functional Theory: A Review of the vdW-DF Method,” Rep. Prog. Phys., vol. 78, no. 6, p. 066501, May 2015, doi: https://doi.org/10.1088/0034-4885/78/6/066501.CrossRefGoogle Scholar
Lihe, C., “Recent Progress in Density Functional Theory and Its Numerical Methods,” Prog. Chem., vol. 17, no. 02, p. 192, Mar. 2005.Google Scholar
Cohen, A. J., Mori-Sánchez, P., and Yang, W., “Challenges for Density Functional Theory,” Chem. Rev., vol. 112, no. 1, pp. 289320, Jan. 2012, doi: https://doi.org/10.1021/cr200107z.Google Scholar
Freysoldt, C. et al., “First-Principles Calculations for Point Defects in Solids,” Rev. Mod. Phys., vol. 86, no. 1, pp. 253305, Mar. 2014, doi: https://doi.org/10.1103/RevModPhys.86.253.CrossRefGoogle Scholar
Marsman, M., Paier, J., Stroppa, A., and Kresse, G., “Hybrid Functionals Applied to Extended Systems,” J. Phys.: Condens. Matter, vol. 20, no. 6, p. 064201, Jan. 2008, doi: https://doi.org/10.1088/0953-8984/20/6/064201.Google Scholar
Tran, F., Kalantari, L., Traoré, B., Rocquefelte, X., and Blaha, P., “Nonlocal van der Waals Functionals for Solids: Choosing an Appropriate One,” Phys. Rev. Materials, vol. 3, no. 6, p. 063602, Jun. 2019, doi: https://doi.org/10.1103/PhysRevMaterials.3.063602.Google Scholar
Tran, F., Stelzl, J., and Blaha, P., “Rungs 1 to 4 of DFT Jacob’s Ladder: Extensive Test on the Lattice Constant, Bulk Modulus, and Cohesive Energy of Solids,” J. Chem. Phys., vol. 144, no. 20, p. 204120, May 2016, doi: https://doi.org/10.1063/1.4948636.CrossRefGoogle ScholarPubMed
Slabanja, M., Angenete, J., Stiller, K. et al., “Early Stages of Phase Separation Using Three-Dimensional Atom Probe and Atomistic Modelling,” Surf. Interface Anal., vol. 39, no. 2–3, pp. 178183, 2007, doi: https://doi.org/10.1002/sia.2485.Google Scholar
Hasting, H. S. et al., “Composition of β″ Precipitates in Al–Mg–Si alloys by Atom Probe Tomography and First Principles Calculations,” J. Appl. Phys., vol. 106, no. 12, p. 123527, Dec. 2009, doi: https://doi.org/10.1063/1.3269714.CrossRefGoogle Scholar
Gault, B. et al., “Atom Probe Microscopy Investigation of Mg Site Occupancy within δ′ Precipitates in an Al–Mg–Li Alloy,” Scr. Mater., vol. 66, no. 11, pp. 903906, Jun. 2012, doi: https://doi.org/10.1016/j.scriptamat.2012.02.021.CrossRefGoogle Scholar
Biswas, A., Siegel, D. J., Wolverton, C., and Seidman, D. N., “Precipitates in Al–Cu Alloys Revisited: Atom-Probe Tomographic Experiments and First-Principles Calculations of Compositional Evolution and Interfacial Segregation,” Acta Mater., vol. 59, no. 15, pp. 61876204, Sep. 2011, doi: https://doi.org/10.1016/j.actamat.2011.06.036.CrossRefGoogle Scholar
Yeoh, W. K. et al., “On the Roles of Graphene Oxide Doping for Enhanced Supercurrent in MgB2 Based Superconductors,” Nanoscale, vol. 6, no. 11, pp. 61666172, May 2014, doi: https://doi.org/10.1039/C4NR00415A.Google Scholar
Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C., and Ozoliņš, V., “Mg Segregation at Al/Al_3Sc Heterophase Interfaces on an Atomic Scale: Experiments and Computations,” Phys. Rev. Lett., vol. 91, no. 3, p. 036101, Jul. 2003, doi: https://doi.org/10.1103/PhysRevLett.91.036101.Google Scholar
Pogatscher, S. et al., “Diffusion on Demand to Control Precipitation Aging: Application to Al-Mg-Si Alloys,” Phys. Rev. Lett., vol. 112, no. 22, p. 225701, Jun. 2014, doi: https://doi.org/10.1103/PhysRevLett.112.225701.CrossRefGoogle ScholarPubMed
Devaraj, A. et al., “Three-Dimensional Nanoscale Characterisation of Materials by Atom Probe Tomography,” Int. Mater. Rev., vol. 63, no. 2, pp. 68101, Feb. 2018, doi: https://doi.org/10.1080/09506608.2016.1270728.CrossRefGoogle Scholar
Geng, W. T., Ping, D. H., Gu, Y. F., Cui, C. Y., and Harada, H., “Stability of Nanoscale Co-precipitates in a Superalloy: A Combined First-Principles and Atom Probe Tomography Study,” Phys. Rev. B, vol. 76, no. 22, p. 224102, Dec. 2007, doi: https://doi.org/10.1103/PhysRevB.76.224102.Google Scholar
Liu, L. et al., “Segregation of the Major Alloying Elements to Al3(Sc,Zr) Precipitates in an Al–Zn–Mg–Cu–Sc–Zr Alloy,” Mater. Charact., vol. 157, p. 109898, Nov. 2019, doi: https://doi.org/10.1016/j.matchar.2019.109898.CrossRefGoogle Scholar
Zhu, S. Q., Shih, H. C., Cui, X.-Y., Yu, C. Y., and Ringer, S. P., “Design of Solute Clustering during Thermomechanical Processing of AA6016 Al–Mg–Si Alloy,” Acta Mater., Nov. 2020, doi: https://doi.org/10.1016/j.actamat.2020.10.074.Google Scholar
Nag, S. et al., “Novel Mixed-Mode Phase Transition Involving a Composition-Dependent Displacive Component,” Phys. Rev. Lett., vol. 106, no. 24, p. 245701, Jun. 2011, doi: https://doi.org/10.1103/PhysRevLett.106.245701.CrossRefGoogle ScholarPubMed
Biswas, A., Siegel, D. J., and Seidman, D. N., “Simultaneous Segregation at Coherent and Semicoherent Heterophase Interfaces,” Phys. Rev. Lett., vol. 105, no. 7, p. 076102, Aug. 2010, doi: https://doi.org/10.1103/PhysRevLett.105.076102.Google Scholar
Yeoh, W. K. et al., “Direct Observation of Local Potassium Variation and Its Correlation to Electronic Inhomogeneity in Ba_(1-x)K_xFe_2As_2 Pnictide,” Phys. Rev. Lett., vol. 106, no. 24, p. 247002, Jun. 2011, doi: https://doi.org/10.1103/PhysRevLett.106.247002.Google Scholar
Park, J. T. et al., “Electronic Phase Separation in the Slightly Underdoped Iron Pnictide Superconductor Ba_(1-x)K_xFe_2As_2,” Phys. Rev. Lett., vol. 102, no. 11, p. 117006, Mar. 2009, doi: https://doi.org/10.1103/PhysRevLett.102.117006.Google Scholar
Marsik, P. et al., “Coexistence and Competition of Magnetism and Superconductivity on the Nanometer Scale in Underdoped BaFe1.89Co0.11As2,” Phys. Rev. Lett., vol. 105, no. 5, p. 057001, Jul. 2010, doi: https://doi.org/10.1103/PhysRevLett.105.057001.Google Scholar
Cai, P. et al., “Visualizing the Microscopic Coexistence of Spin Density Wave and Superconductivity in Underdoped NaFe 1−x Co x As,” Nat. Commun., vol. 4, no. 1, Art. no. 1, Mar. 2013, doi: https://doi.org/10.1038/ncomms2592.CrossRefGoogle Scholar
Awschalom, D. D. and Flatté, M. E., “Challenges for Semiconductor Spintronics,” Nat. Phys., vol. 3, no. 3, Art. no. 3, Mar. 2007, doi: https://doi.org/10.1038/nphys551.CrossRefGoogle Scholar
Li, L. et al., “Magnetism of Co-Doped ZnO Epitaxially Grown on a ZnO Substrate,” Phys. Rev. B, vol. 85, no. 17, p. 174430, May 2012, doi: https://doi.org/10.1103/PhysRevB.85.174430.Google Scholar
Kim, S. J. et al., “Direct Observation of Deuterium in Ferromagnetic Zn_0.9Co_0.1O:D,” Phys. Rev. B, vol. 81, no. 21, p. 212408, Jun. 2010, doi: https://doi.org/10.1103/PhysRevB.81.212408.Google Scholar
Cui, X.-Y. et al., “Effect of H on the Crystalline and Magnetic Structures of the YCo_3-H(D) System. I. YCo_3 from Neutron Powder Diffraction and First-Principles Calculations,” Phys. Rev. B, vol. 76, no. 18, p. 184443, Nov. 2007, doi: https://doi.org/10.1103/PhysRevB.76.184443.CrossRefGoogle Scholar
Liu, J. et al., “Effect of H on the Crystalline and Magnetic Structures of the YCo_3-H(D) System. II. YCo_3-H(D)_x from X-Ray and Neutron Powder Diffraction,” Phys. Rev. B, vol. 76, no. 18, p. 184444, Nov. 2007, doi: https://doi.org/10.1103/PhysRevB.76.184444.CrossRefGoogle Scholar
Leitner, K. et al., “How Grain Boundary Chemistry Controls the Fracture Mode of Molybdenum,” Mater. Des., vol. 142, pp. 3643, Mar. 2018, doi: https://doi.org/10.1016/j.matdes.2018.01.012.CrossRefGoogle Scholar
Chen, Y.-S. et al., “Direct Observation of Individual Hydrogen Atoms at Trapping Sites in a Ferritic Steel,” Science, vol. 355, no. 6330, pp. 11961199, Mar. 2017, doi: https://doi.org/10.1126/science.aal2418.CrossRefGoogle Scholar
Pundt, A. and Kirchheim, R., “Hydrogen in Metals: Microstructural Aspects,” Annu. Rev. Mater. Res., vol. 36, no. 1, pp. 555608, 2006, doi: https://doi.org/10.1146/annurev.matsci.36.090804.094451.Google Scholar
Van de Walle, C. G. and Neugebauer, J., “Hydrogen in Semiconductors,” Annu. Rev. Mater. Res., vol. 36, no. 1, pp. 179198, 2006, doi: https://doi.org/10.1146/annurev.matsci.36.010705.155428.Google Scholar
Chen, Y.-S. et al., “Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates,” Science, vol. 367, no. 6474, pp. 171175, Jan. 2020, doi: https://doi.org/10.1126/science.aaz0122.CrossRefGoogle ScholarPubMed
Moody, M. P. et al., “Atomically Resolved Tomography to Directly Inform Simulations for Structure–Property Relationships,” Nat. Commun., vol. 5, no. 1, Art. no. 1, Nov. 2014, doi: https://doi.org/10.1038/ncomms6501.Google Scholar
Mann, A., “Core Concept: Nascent Exascale Supercomputers Offer Promise, Present Challenges,” PNAS, vol. 117, no. 37, pp. 2262322625, Sep. 2020, doi: https://doi.org/10.1073/pnas.2015968117.Google Scholar
“International Roadmap for Devices and Systems (IRDSTM) 2020 Edition – IEEE IRDSTM: More Moore,” 2020. https://irds.ieee.org/editions/2020.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×