Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T13:38:46.044Z Has data issue: false hasContentIssue false

4 - Has ASAT Been Achieved?

from Core Section

Published online by Cambridge University Press:  03 March 2022

Thomas F. Kelly
Affiliation:
Steam Instruments, Inc.
Brian P. Gorman
Affiliation:
Colorado School of Mines
Simon P. Ringer
Affiliation:
University of Sydney
Get access

Summary

Using our strict definition of Atomic Scale Analytical Tomography (ASAT), we explore the current landscape of materials characterization tools and discuss how electron microscopy, field ion microscopy, and atom probe tomography are each approaching ASAT. State-of-the-art electron microscopy can achieve sub-angstrom spatial resolution imaging in 2-D and small volumes in 3-D but lacks single-atom chemical sensitivity, especially in 3-D. Field Ion Microscopy can achieve 3-D imaging on small volumes but not for all materials. Atom probe tomography can achieve single-atom elemental quantification in 3-D but lacks the spatial resolution necessary for ASAT. The chapter concludes with a comparison of the different techniques and discusses how different techniques may be complementary.

Type
Chapter
Information
Atomic-Scale Analytical Tomography
Concepts and Implications
, pp. 55 - 76
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Microsc. Microanal., vol. 19, no. 3, pp. 652664, 2013.Google Scholar
Krivanek, O. L. et al., “Atom-by-Atom Structural and Chemical Analysis by Annular Dark-Field Electron Microscopy,” Nature, vol. 464, pp. 571–574, Mar. 2010, doi: https://doi.org/10.1038/nature08879.CrossRefGoogle ScholarPubMed
Muller, D. A. et al., “Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy,” Science, vol. 319, no. 5866, pp. 10731076, Feb. 2008, doi: https://doi.org/10.1126/science.1148820.CrossRefGoogle ScholarPubMed
Saghi, Z. and Midgley, P. A., “Electron Tomography in the (S)TEM: From Nanoscale Morphological Analysis to 3D Atomic Imaging,” Annu. Rev. Mater. Res., vol. 42, no. 1, pp. 5979, 2012, doi: https://doi.org/10.1146/annurev-matsci-070511-155019.Google Scholar
Midgley, P. A. and Saghi, Z., “Electron Tomography in Solid State and Materials Science – An Introduction,” Curr. Opin. Solid State Mater. Sci., vol. 17, no. 3, pp. 8992, Jun. 2013, doi: https://doi.org/10.1016/j.cossms.2013.07.006.Google Scholar
Bals, S., Aert, S. V., and Tendeloo, G. V., “High Resolution Electron Tomography,” Curr. Opin. Solid State Mater. Sci., vol. 17, no. 3, pp. 107114, 2013, doi: https://doi.org/10.1016/j.cossms.2013.03.001.Google Scholar
Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R., and Van Tendeloo, G., “Three-Dimensional Atomic Imaging of Crystalline Nanoparticles,” Nature, vol. 470, no. 7334, pp. 374377, Feb. 2011, doi: https://doi.org/10.1038/nature09741.CrossRefGoogle ScholarPubMed
den Dekker, A. J., Van Aert, S., van den Bos, A., and Van Dyck, D., “Maximum Likelihood Estimation of Structure Parameters from High Resolution Electron Microscopy Images. Part I: A Theoretical Framework,” Ultramicroscopy, vol. 104, no. 2, pp. 83106, Sep. 2005, doi: https://doi.org/10.1016/j.ultramic.2005.03.001.CrossRefGoogle ScholarPubMed
Van Aert, S. et al., “Quantitative Atomic Resolution Mapping Using High-Angle Annular Dark Field Scanning Transmission Electron Microscopy,” Ultramicroscopy, vol. 109, no. 10, pp. 12361244, Sep. 2009, doi: https://doi.org/10.1016/j.ultramic.2009.05.010.Google Scholar
Batenburg, K. J., “A Network Flow Algorithm for Reconstructing Binary Images from Discrete X-rays,” J. Math. Imaging Vis., vol. 27, no. 2, pp. 175191, Feb. 2007, doi: https://doi.org/10.1007/s10851-006-9798-2.Google Scholar
Jinschek, J. R., Batenburg, K. J., Calderon, H. A. et al., “3-D Reconstruction of the Atomic Positions in a Simulated Gold Nanocrystal Based on Discrete Tomography: Prospects of Atomic Resolution Electron Tomography,” Ultramicroscopy, vol. 108, no. 6, pp. 589604, May 2008, doi: https://doi.org/10.1016/j.ultramic.2007.10.002.Google Scholar
Kim, H., Zhang, J. Y., Raghavan, S., and Stemmer, S., “Direct Observation of Sr Vacancies in SrTiO3 by Quantitative Scanning Transmission Electron Microscopy,” Phys. Rev. X, vol. 6, no. 4, p. 041063, Dec. 2016, doi: https://doi.org/10.1103/PhysRevX.6.041063.Google Scholar
Lee, E. et al., “Radiation Dose Reduction and Image Enhancement in Biological Imaging through Equally-Sloped Tomography,” J. Struct. Biol., vol. 164, no. 2, pp. 221227, Nov. 2008, doi: https://doi.org/10.1016/j.jsb.2008.07.011.Google Scholar
Scott, M. C. et al., “Electron Tomography at 2.4-Angstrom Resolution,” Nature, vol. 483, pp. 444447, 2012.Google Scholar
Xu, R. et al., “Three-Dimensional Coordinates of Individual Atoms in Materials Revealed by Electron Tomography,” Nat. Mater., vol. 14, 10991103, Sep. 2015, doi: https://doi.org/10.1038/nmat4426.Google Scholar
Yang, Y. et al., “Deciphering Chemical Order/Disorder and Material Properties at the Single-Atom Level,” Nature, vol. 542, no. 7639, pp. 7579, Feb. 2017, doi: https://doi.org/10.1038/nature21042.Google Scholar
Goris, B. et al., “Atomic-Scale Determination of Surface Facets in Gold Nanorods,” Nat. Mater., vol. 11, no. 11, pp. 930935, Nov. 2012, doi: https://doi.org/10.1038/nmat3462.CrossRefGoogle ScholarPubMed
Lepinay, K., Lorut, F., Pantel, R., and Epicier, T., “Chemical 3D Tomography of 28nm High K Metal Gate Transistor: STEM XEDS Experimental Method and Results,” Micron, vol. 47, pp. 4349, Apr. 2013, doi: https://doi.org/10.1016/j.micron.2013.01.004.Google Scholar
Slater, T. J. A., Janssen, A., Camargo, P. H. C. et al., “STEM-EDX Tomography of Bimetallic Nanoparticles: A Methodological Investigation,” Ultramicroscopy, vol. 162, pp. 6173, Mar. 2016, doi: https://doi.org/10.1016/j.ultramic.2015.10.007.CrossRefGoogle ScholarPubMed
Jarausch, K., Thomas, P., Leonard, D. N., Twesten, R., and Booth, C. R., “Four-Dimensional STEM-EELS: Enabling Nano-scale Chemical Tomography,” Ultramicroscopy, vol. 109, no. 4, pp. 326337, Mar. 2009, doi: https://doi.org/10.1016/j.ultramic.2008.12.012.CrossRefGoogle ScholarPubMed
Voyles, P., Muller, D. A., and Kirkland, F. I., “Depth-Dependent Imaging of Individual Dopant Atoms in Silicon,” Microsc. Microanal., vol. 10, no. 2, pp. 291300, 2004.Google Scholar
Borisevich, A. Y., Lupini, A. R., and Pennycook, S. J., “Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope,” Proc. Natl. Acad. Sci., vol. 103, no. 9, pp. 30443048, Feb. 2006, doi: https://doi.org/10.1073/pnas.0507105103.CrossRefGoogle ScholarPubMed
Xin, H. L., Intaraprasonk, V., and Muller, D. A., “Depth Sectioning of Individual Dopant Atoms with Aberration-Corrected Scanning Transmission Electron Microscopy,” Appl. Phys. Lett., vol. 92, no. 1, p. 013125, Jan. 2008, doi: 10.1063/1.2828990.Google Scholar
Wang, P., Behan, G., Kirkland, A. I., and Nellist, P. D., “Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope,” Phys. Rev. Lett., vol. 104, no. 20, p. 200801, 2010, doi: https://doi.org/10.1103/PHYSREVLETT.104.200801.Google Scholar
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston: Springer US, 2011.Google Scholar
Ophus, C., Ercius, P., Sarahan, M., Czarnik, C., and Ciston, J., “Recording and Using 4D-STEM Datasets in Materials Science,” Microsc. Microanal., vol. 20, no. S3, pp. 6263, Aug. 2014, doi: https://doi.org/10.1017/S1431927614002037.Google Scholar
Ophus, C., “Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond,” Microsc. Microanal., vol. 25, no. 3, pp. 563582, Jun. 2019, doi: https://doi.org/10.1017/S1431927619000497.Google Scholar
Savitzky, B. H. et al., “py4DSTEM: A Software Package for Multimodal Analysis of Four-Dimensional Scanning Transmission Electron Microscopy Datasets,” ArXiv200309523 Cond-Mat, Mar. 2020, Accessed: May 19, 2020. [Online]. Available: http://arxiv.org/abs/2003.09523.Google Scholar
A. Clausen et al., LiberTEM/LiberTEM: 0.5.1. Zenodo, 2020.Google Scholar
Johnstone, D. N., Martineau, B. H., Crout, P., Midgley, P. A., and Eggeman, A. S., “Density-Based Clustering of Crystal Orientations and Misorientations and the orix Python Library,” ArXiv200102716 Cond-Mat, Jan. 2020, Accessed: Oct. 19, 2020. [Online]. Available: http://arxiv.org/abs/2001.02716.Google Scholar
Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M., and Rodenburg, J. M., “Ptychographic Electron Microscopy using High-Angle Dark-Field Scattering for Sub-nanometre Resolution Imaging,” Nat. Commun., vol. 3, no. 1, Art. no. 1, Mar. 2012, doi: https://doi.org/10.1038/ncomms1733.Google Scholar
Nellist, P. D. and Rodenburg, J. M., “Electron Ptychography. I. Experimental Demonstration beyond the Conventional Resolution Limits,” Acta Crystallogr. A, vol. 54, no. 1, Art. no. 1, Jan. 1998, doi: https://doi.org/10.1107/S0108767397010490.Google Scholar
Jiang, Y. et al., “Electron Ptychography of 2D Materials to Deep Sub-ångström Resolution,” Nature, vol. 559, no. 7714, pp. 343349, Jul. 2018, doi: https://doi.org/10.1038/s41586-018-0298-5.Google Scholar
Müller, E. W., “Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope,” J. Appl. Phys., vol. 27, pp. 474476, 1956.Google Scholar
Beavan, L. A., Scanlan, R. M., and Seidman, D. N., “The Defect Structure of Depleted Zones in Irradiated Tungsten,” ACTA Metall., vol. 19, pp. 13391350, 1971.Google Scholar
Seidman, D. N., “The Direct Observation of Point Defects in Irradiated or Quenched Metals by Quantitative Field Ion Microscopy,” J. Phys. F. Met. Phys., vol. 3, pp. 393421, 1973.Google Scholar
Vurpillot, F., Gilbert, M., and Deconihout, B., “Towards the Three-Dimensional Field Ion Microscope,” Surf. Interface Anal., vol. 39, no. 2–3, pp. 273277, 2007, doi: https://doi.org/10.1002/sia.2490.Google Scholar
Katnagallu, S. et al., “Imaging Individual Solute Atoms at Crystalline Imperfections in Metals,” New J. Phys., vol. 21, no. 12, p. 123020, Dec. 2019, doi: https://doi.org/10.1088/1367-2630/ab5cc4.Google Scholar
Kim, Y. and Owari, M., “Study of the Ionization in a Field Ion Microscope Using Pulsed-Laser,” E-J. Surf. Sci. Nanotechnol., vol. 16, pp. 190192, 2018, doi: https://doi.org/10.1380/ejssnt.2018.190.Google Scholar
Liddicoat, P. V., “Systems and Methods for Using Multimodal Imaging to Determine Structure and Atomic Composition of Specimens,” US Patent: US10121636B2, Nov. 06, 2018.Google Scholar
Kelly, T. F., “Kinetic-Energy Discrimination for Atom Probe Tomography,” Micros. Microanal., vol. 17, no. 1, pp. 114, 2011.Google Scholar
Giddings, A. D., Prosa, T. J., Olson, D., Clifton, P. H., and Larson, D. J., “Reverse Engineering at the Atomic Scale: Competitive Analysis of a Gallium-Nitride-Based Commercial Light-Emitting Diode,” Microsc. Today, vol. 2014, no. September, pp. 1217, Sep. 2014, doi: https://doi.org/10.1017/2 S1551929514000819.CrossRefGoogle Scholar
Suttle, J. R., Kelly, T. F., and McDermott, R. F., “A Superconducting Ion Detection Scheme for Atom Probe Tomography,” presented at the Atom Probe Tomography and Microscopy 2016: from Science to Industry, Gyeongju, Korea, Jun. 2016.Google Scholar
Norden, H. and Bowkett, K. M., “Electron Microscope Holders for Viewing Thin Wire Specimens and Field-Ion Microscope Tips,” J. Sci. Instrum., vol. 44, pp. 238240, 1967.CrossRefGoogle Scholar
Walck, S. D. and Hren, J. J., “Fim/Iap/Tem Studies of Ion Implanted Nickel Emitters,” MRS Online Proc. Libr. Arch., vol. 41, ed 1984, doi: https://doi.org/10.1557/PROC-41-325.Google Scholar
Gorman, B., Diercks, D., Salmon, N. et al., “Hardware and Techniques for Cross-correlative TEM and Atom Probe Analysis,” Microsc. Today, vol. 16, no. 4, pp. 4247, 2008.Google Scholar
Kelly, T. F., “Atomic-Scale Analytical Tomography,” Microsc. Microanal., vol. 23, no. 1, pp. 3445, 2017, doi: https://doi.org/10.1017/S1431927617000125.Google Scholar
Ceguerra, A., Breen, A., Cairney, J., Ringer, S., and Gorman, B., “Integrative Atom Probe Tomography Using Scanning Transmission Electron Microscopy-Centric Atom Placement as a Step Toward Atomic-Scale Tomography,” Microsc. Microanal., vol. 27, no. 1, pp. 140148, 2020, doi: https://doi.org/10.1017/S1431927620024873Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography,” US Patent: US20190318907A1, Oct. 17, 2019.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×