Published online by Cambridge University Press: 15 December 2009
Abstract. This paper is concerned with the axisymmetric characteristic initial value problem (CIVP). Tests on the accuracy and evolution stability of the code are described. The results compare reasonably well with expectations from numerical analysis. It is shown explicitly how to compactify CIVP coordinates so that a finite grid extends to future null infinity. We also investigate the feasibility of interfacing Cauchy algorithms in a central region with CIVP algorithms in the external vacuum.
INTRODUCTION
The construction of a new generation of gravitational wave detectors has important implications for numerical relativity. LIGO (Laser Interferometry Gravitational Observatory) is likely to detect gravitational waves from various astrophysical events within the next few years. Numerical relativity will be the main tool for interpreting such data, and will need to be able to calculate waveforms at infinity as accurately as possible. Much work on numerical relativity has been based on the standard 3 + 1 Cauchy problem, where data is specified on a spacelike hypersurface and then evolved to the future. An alternative approach is the characteristic initial value problem (CIVP) based on a 2 + 2 decomposition of space-time. It would seem that the CIVP is more appropriate in vacuum, but that it loses this advantage in the presence of matter, whose characteristics do not coincide with those of the gravitational field. Another consideration is the present state of development of numerical codes.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.