Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:52:57.094Z Has data issue: false hasContentIssue false

Part I - Basics

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Chichibu, S., Mizutani, T., Shioda, T., et al. (1997). Urbach−Martienssen tails in a wurtzite GaN epilayer. Appl Phys Lett, 70(25), 34403442.Google Scholar
Harrison, W. A. (2000). Applied Quantum Mechanics. World Scientific.Google Scholar
Klingshirn, C. F. (2012). Semiconductor Optics. Springer Science & Business Media.Google Scholar
Klingshirn, C. F., Waag, A., Hoffmann, A., and Geurts, J. (2010). Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Science & Business Media.Google Scholar
Levinshtein, M. E., Rumyantsev, S. L., and Shur, M. S. (2001). Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. John Wiley & Sons.Google Scholar
Miller, D. A. B. (2008). Quantum Mechanics for Scientists and Engineers. Cambridge University Press.Google Scholar
Peyghambarian, N., Koch, S. W., and Mysyrowicz, A. (1994). Introduction to Semiconductor Optics. Prentice-Hall, Inc.Google Scholar
Schmitt-Rink, S., Haug, H., and Mohler, E. (1981). Derivation of Urbach’s rule in terms of exciton interband scattering by optical phonons. Phys Rev B, 24(10), 6043.Google Scholar
Yariv, A. (2013). An Introduction to Theory and Applications of Quantum Mechanics. Courier Corporation.Google Scholar
Yu, P. Y., and Cardona, M. (1996). Fundamentals of Semiconductor Optics. Springer.Google Scholar

References

Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Klingshirn, C. F. (2004). Semiconductor Quantum Structures. Part 2: Optical Properties. Springer Science & Business Media.Google Scholar
Madelung, O. (2004). Semiconductors: Data Handbook. 3rd edition. Springer.Google Scholar
Muth, J. F., Lee, J. H., Shmagin, I. K., et al. (1997). Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl Phys Lett, 71(18), 25722574.Google Scholar
Pelá, R. R., Caetano, C., Marques, M., et al. (2011). Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach. Appl Phys Lett, 98(15), 151907.Google Scholar

Further reading

Alferov, Z. I. (1998). The history and future of semiconductor heterostructures. Semiconductors, 32 (1), 114.CrossRefGoogle Scholar
Bányai, L., and Koch, S. W. (1993). Semiconductor Quantum Dots. World Scientific.Google Scholar
Bastard, G. (1988). Wave Mechanics Applied to Semiconductor Heterostructures. Les Editions de Physique.Google Scholar
Bimberg, D., Grundmann, M., and Ledentsov, N. N. (1999). Quantum Dot Heterostructures. John Wiley & Sons.Google Scholar
Carlsson, N., Georgsson, K., Montelius, L., et al. (1995). Improved size homogeneity of InP-on GaInP Stranski–Krastanow islands by growth on a thin GaP interface layer. J Cryst Growth, 156, 2329.Google Scholar
Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., et al. (1997). (CdSe) ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B, 101(46), 94639475.Google Scholar
Elliott, R. J. (1957). Intensity of optical absorption by excitons. Phys Rev, 108, 13841389.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Gaponik, N., Hickey, S. G., Dorfs, D., Rogach, A. L., and Eychmüller, A. (2010). Progress in the light emission of colloidal semiconductor nanocrystals. Small, 6, 13641378.Google Scholar
Guzelturk, B., Martinez, P. L. H., Zhang, Q., et al. (2014). Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser Photonics Rev, 8, 7393.Google Scholar
Harrison, P. (2009). Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. John Wiley & Sons.Google Scholar
Kalt, H., and Hetterich, M. (eds.) (2013). Optics of Semiconductors and Their Nanostructures. Springer Science & Business Media.Google Scholar
Klimov, V. (ed.) (2010). Nanocrystal Quantum Dots. CRC Press.Google Scholar
Klingshirn, C. (ed.) (2001). Semiconductor Quantum Structures: Optical Properties. Part 1. Springer.Google Scholar
Klingshirn, C. (ed.) (2004). Semiconductor Quantum Structures: Optical Properties. Part 2. Springer.Google Scholar
Markov, I. V. (1995). Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy. World Scientific.Google Scholar
Pelá, R. R., Caetano, C., Marques, M., et al. (2011). Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach. Appl Phys Lett, 98, 151907.Google Scholar
Rogach, A. (ed.) (2008). Semiconductor Nanocrystal Quantum Dots. Springer.CrossRefGoogle Scholar
Ustinov, V. M. (2003). Quantum Dot Lasers. Oxford University Press.Google Scholar
Woggon, U. (1997). Optical Properties of Semiconductor Quantum Dots. Springer.Google Scholar

References

Achtstein, A. W., Schliwa, A., Prudnikau, A., et al. (2012). Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett, 12, 31513157.Google Scholar
Akiyama, H., Yoshita, M., Pfeiffer, L. N., West, K. W., and Pinczuk, A. (2003). One-dimensional continuum and exciton states in quantum wires. Appl Phys Lett, 82, 379381.Google Scholar
Artemyev, M. V., Bibik, A. I., Gurinovich, L. I., Gaponenko, S. V., and Woggon, U. (1999). Evolution from individual to collective electron states in a dense quantum dot ensemble. Phys Rev B, 60, 15041507.Google Scholar
Artemyev, M. V., Bibik, A. I., Gurinovich, L. I., et al. (2001). Optical properties of dense and diluted ensembles of semiconductor quantum dots. Physica Status Solidi (b), 224, 393396.Google Scholar
Bayer, M., Walck, S. N., Reinecke, T. L., and Forchel, A. (1998). Exciton binding energies and diamagnetic shifts in semiconductor quantum wires and quantum dots. Phys Rev B, 57, 65846591.Google Scholar
Brus, L. E. (1984). Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys, 80, 44034409.CrossRefGoogle Scholar
Chemla, D. S., and Miller, D. A. (1985). Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures. J Opt Soc, Amer B, 2, 11551173.Google Scholar
Efros, A.L., and Efros, A.L. (1982). Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors-USSR, 16, 772775.Google Scholar
Empedocles, S. A., Norris, D. J., and Bawendi, M. G. (1996). Photoluminescence spectroscopy of single CdSe quantum dots. Phys Rev Lett, 77, 38733876.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S., Woggon, U., Saleh, M., et al. (1993). Nonlinear-optical properties of semiconductor quantum dots and their correlation with the precipitation stage. J Opt Soc Amer B, 10, 19471955.Google Scholar
Göbel, E. O., and Ploog, K. (1990). Fabrication and optical properties of semiconductor quantum wells and superlattices. Progress in Quantum Electronics, 14, 289356.Google Scholar
He, X. F. (1991). Excitons in anisotropic solids: the model of fractional-dimensional space. Phys Rev B, 43, 20632069.Google Scholar
Kasap, S. O. (2002). Principles of Electronic Materials and Devices, 2nd edn. McGraw-Hill.Google Scholar
Keldysh, L. V. (1979). Coulomb interaction in thin semiconductor and semimetal films. J Exp Theor Phys, 29, 658662.Google Scholar
Kudera, S., Zanella, M., Giannini, C., et al. (2007). Sequential growth of magic size CdSe nanocrystals. Adv Mater, 19, 548552.Google Scholar
Ledentsov, N. N. (2011). Quantum dot laser. Semicond Sci Technol, 26, 014001.Google Scholar
Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S. I. (1995). High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes. Appl Phys Lett, 67, 18681870.Google Scholar
Norris, D. J., and Bawendi, M. G. (1996). Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B, 53, 1633616342.Google Scholar
Ogawa, T., and Takagahara, T. (1991). Optical absorption and Sommerfeld factors of one-dimensional semiconductors: an exact treatment of excitonic effects. Phys Rev B, 44, 81388144.Google Scholar
Ralph, H. I. (1965). The electronic absorption edge in layer type crystals. Solid State Commun, 3, 303306.Google Scholar
Schmidt, H. M., and Weller, H. (1986). Quantum size effects in semiconductor crystallites: calculation of the energy spectrum for the confined excitonChem Phys Lett129(6), 615618.Google Scholar
Sell, D. D., and Casey, Jr., H. C. (1974). Optical absorption and photoluminescence studies of thin GaAs layers in GaAs–AlxGa1–xAs double heterostructures. J Appl Phys, 45(2), 800807.Google Scholar
Straubinger, R., Beyer, A., and Volz, K. (2016). Preparation and loading process of single crystalline samples into a gas environmental cell holder for in situ atomic resolution scanning transmission electron microscopic observation. Microsc Microanalysis, 22, 515519.Google Scholar
Thoai, D. T., Hu, Y. Z., and Koch, S. W. (1990). Influence of the confinement potential on the electron–hole-pair states in semiconductor microcrystallites. Phys Rev B, 42, 1126111270.Google Scholar
Woggon, U., and Gaponenko, S. V. (1995). Excitons in quantum dots. Phys Stat Sol (b), 189, 286343.Google Scholar

Further reading

Barber, E. M. (2008). Aperiodic Structures in Condensed Matter: Fundamentals and Applications. CRC Press.Google Scholar
Bharadwaj, P., Deutsch, B., and Novotny, L. (2009). Optical antennas. Adv Opt Photonics, 1(3), 438483.Google Scholar
Born, M., and Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press.Google Scholar
Dal Negro, L. (ed.) (2013). Optics of Aperiodic Structures: Fundamentals and Device Applications. CRC Press.Google Scholar
Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D. (2011). Photonic Crystals: Molding the Flow of Light. Princeton University Press.Google Scholar
Kavokin, A., Baumberg, J. J., Malpuech, G., and Laussy, F. P. (2007). Microcavities. Oxford University Press.Google Scholar
Krauss, T. F., and De La Rue, R. M. (1999). Photonic crystals in the optical regime: past, present and future. Progr Quant Electron, 23, 5196.Google Scholar
Lagendijk, A., van Tiggelen, B., and Wiersma, D. S. (2009). Fifty years of Anderson localization. Phys Today, 62(8), 2429.Google Scholar
Lekner, J. (2016). Theory of Reflection: Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves. Springer.Google Scholar
Li, J., Slandrino, A., and Engheta, N. (2007). Shaping light beams in the nanometer scale: a Yagi–Uda nanoantenna in the optical domain. Phys Rev B, 76, 25403.Google Scholar
Limonov, M. F., and De La Rue, R. M. (2012). Optical Properties of Photonic Structures: Interplay of Order and Disorder. CRC Press.Google Scholar
Lu, T., Peng, W., Zhu, S., and Zhang, D. (2016). Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications. Nanotechnology, 27(12), 122001.Google Scholar
Maciá, E., (2005). The role of aperiodic order in science and technology. Rep Prog Phys, 69(2), 397.Google Scholar
Novotny, L., and van Hulst, N. (2011). Antennas for light. Nat Photonics, 5(2), 8390.Google Scholar
Park, Q. H., (2009). Optical antennas and plasmonics. Contemp Phys, 50(2), 407423.Google Scholar
Parker, A. R. (2000). 515 million years of structural color. J Optics A, 2, R15R28.Google Scholar
Poelwijk, F. J. (2000). Interference in Random Lasers. PhD thesis, University of Amsterdam.Google Scholar
Thompson, D. (2007). Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bulletin, 40(4), 267269.Google Scholar
Van den Broek, J. M., Woldering, L. A., Tjerkstra, R. W., et al. (2012). Inverse-woodpile photonic band gap crystals with a cubic diamond-like structure made from single-crystalline silicon. Adv Funct Mater, 22(1), 2531.Google Scholar
Vukusic, P., and Sambles, J. (2003). Photonic structures in biology. Nature, 424, 852855.CrossRefGoogle ScholarPubMed
Vukusic, P., Hallam, B., and Noyes, J. (2007). Brilliant whiteness in ultrathin beetle scales. Science, 315(5810), 348.Google Scholar
Wilts, B. D., Michielsen, K., De Raedt, H., and Stavenga, D. G. (2012). Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal. J R Soc Interface, 9(72), 16091614.Google Scholar

References

Abadeer, N. S., Brennan, M. R., Wilson, W. L., and Murphy, C. J. (2014). Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano, 8(8), 83928406.Google Scholar
Arnold, S., Khoshsima, M., Teraoka, I., Holler, S., and Vollmer, F. (2003). Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett, 28(4), 272274.Google Scholar
Baldycheva, A., Tolmachev, V., Perova, T., et al. (2011). Silicon photonic crystal filter with ultrawide passband characteristics. Opt Lett, 36, 18541856.Google Scholar
Bendickson, J. M., Dowling, J. P., and Scalora, M. (1996). Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Phys Rev E, 53, 41074121.Google Scholar
Birner, A., Wehrspohn, R. B., Gösele, U. M., and Busch, K. (2001). Silicon-based photonic crystals. Adv Mat, 13, 377382.Google Scholar
Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitetskonstanten und Leitfehigkeiten der Mischkorper aus isotropen Substanzen. Ann Phys, 416, 636664.Google Scholar
Busch, K., von Freymann, G., Linden, S., et al. (2007). Periodic nanostructures for photonics. Phys Rep, 444, 101202.Google Scholar
Chen, Y. C., and Bahl, G. (2015). Raman cooling of solids through photonic density of states engineering. Optica, 2(10), 893899.Google Scholar
Chung, T., Lee, S. Y., Song, E. Y., Chun, H., and Lee, B. (2011). Plasmonic nanostructures for nano-scale bio-sensing. Sensors, 11(11), 1090710929.Google Scholar
Domaradzki, J., Kaczmarek, D., Mazur, M., et al. (2016). Investigations of optical and surface properties of Ag single thin film coating as semitransparent heat reflective mirror. Mater Sci Poland, 34(4), 747753.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Ghenuche, P., Cherukulappurath, S., Taminiau, T. H., van Hulst, N. F., and Quidant, R. (2008). Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys Rev Lett, 101(11), 116805.Google Scholar
Guzatov, D. V., and Klimov, V. V. (2011). Optical properties of a plasmonic nano-antenna: an analytical approach. New J Phys, 13(5), 053034.Google Scholar
Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R., and Sigalas, M. (1994). Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commun, 89(5), 413416.Google Scholar
Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D. (2011). Photonic Crystals: Molding the Flow of Light. Princeton University Press.Google Scholar
Kreibig, U., and Vollmer, M. (1995). Optical Properties of Metal Clusters. Springer.Google Scholar
Li, K., Stockman, M. I., and Bergman, D. J. (2003). Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett, 91(22), 227402.Google Scholar
Lin, S.-Y., Fleming, J. G., Hetherington, D. L., et al. (1998). A three-dimensional photonic crystal operating at infrared wavelengths. Nature, 394(6690), 251253.Google Scholar
Lutich, A. A., Gaponenko, S. V., Gaponenko, N. V., et al. (2004). Anisotropic light scattering in nanoporous materials: a photon density of states effect. Nano Lett, 4, 17551758.Google Scholar
Madelung, O. (2012). Semiconductors: Data Handbook. Springer Science & Business Media.Google Scholar
Pellegrini, V., Tredicucci, A., Mazzoleni, C., and Pavesi, L. (1995). Enhanced optical properties in porous silicon microcavities. Phys Rev B, 52, R14328–R14331.Google Scholar
Petrov, E. P., Bogomolov, V. N., Kalosha, I. I., and Gaponenko, S. V. (1998). Spontaneous emission of organic molecules in a photonic crystal. Phys Rev Lett, 81, 7780.Google Scholar
Reynolds, A., Lopez-Tejeira, F., Cassagne, D., et al. (1999). Spectral properties of opal-based photonic crystals having a SiO2 matrix. Phys Rev B, 60, 1142211426.Google Scholar
Sakoda, K. (2004). Optical Properties of Photonic Crystals. Springer.Google Scholar
Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S., and Moerner, W. E. (2005). Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett, 94(1), 017402.Google Scholar
Schuurmans, F. J. P., Vanmaekelbergh, D., van de Lagemaat, J., and Lagendijk, A. (1999). Strongly photonic macroporous gallium phosphide networks. Science, 284, 141143.Google Scholar
Strutt, J. W. (Lord Rayleigh) (1887). On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Phil Mag S, 24, 145159.Google Scholar
Taminiau, T. H., Stefani, F. D., and van Hulst, N. F. (2008). Enhanced directional excitation and emission of single emitters by a nano-optical Yagi–Uda antenna. Opt Expr, 16 (14), 1085810866.Google Scholar
Teyssier, J., Saenko, S. V., Van Der Marel, D., and Milinkovitch, M. C. (2015). Photonic crystals cause active colour change in chameleons. Nat Commun, 6, 6368.Google Scholar
Tjerkstra, R. W., Woldering, L. A., van den Broek, J. M., et al. (2011). Method to pattern etch masks in two inclined planes for three-dimensional nano-and microfabrication. J Vac Sci Technol, 29(6), 061604.Google Scholar
Vlasov, Y. A., Bo, X. Z., Sturm, J. C., and Norris, D. J. (2001). On-chip natural assembly of silicon photonic band gap crystals. Nature, 414, 289293.Google Scholar
Voitovich, A. P. (2006). Spectral properties of films. In: Di Bartolo, B. and Forte, O. (eds.), Advance in Spectroscopy for Lasers and Sensing. Springer, 351353.Google Scholar
Vukusic, P., and Sambles, J. (2003). Photonic structures in biology. Nature, 424, 852855.Google Scholar
Wang, R., Wang, X., -H., Gu, B., -Y., and Yang, G., -Z. (2001). Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals. J Appl Phys, 90, 43074312.Google Scholar
Yariv, A., and Yeh, P. (1984). Optical Waves in Crystals. Wiley & Sons.Google Scholar

Further reading

Andrew, P., and Barnes, W. L. (2001). Molecular fluorescence above metallic gratings. Phys Rev B, 64 (12), 125405.Google Scholar
Barnes, W. L. (1998). Fluorescence near interfaces: the role of photonic mode density. J Mod Optics, 45, 661699.Google Scholar
Bharadwaj, P., Deutsch, B., and Novotny, L. (2009). Optical antennas. Adv Opt Photonics, 1, 438483.Google Scholar
Biagioni, P., Huang, J. S., and Hecht, B. (2012). Nanoantennas for visible and infrared radiation. Rep Prog Phys, 75, 024402.Google Scholar
Bykov, V. P. (1993). Radiation of Atoms in a Resonant Environment. World Scientific.Google Scholar
Cho, K. (2003). Optical Response of Nanostructures: Nonlocal Microscopic Theory. Springer.Google Scholar
De Martini, F., Marrocco, M., Mataloni, P., Crescentini, L., and Loudon, R. (1991). Spontaneous emission in the optical microscopic cavity. Phys Rev A, 43, 2480.Google Scholar
Drexhage, K. H. (1970). Influence of a dielectric interface on fluorescence decay time. J Luminescence, 12, 693701.Google Scholar
Fujita, M., Takahashi, S., Tanaka, Y., Asano, T., and Noda, S. (2005). Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science, 308, 12961298.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press, chs. 13 and 14.Google Scholar
Gaponenko, S. V. (2014). Satyendra Nath Bose and nanophotonics. J Nanophotonics, 8, 087599.Google Scholar
Geddes, C.D., and Lakowicz, J.R. (eds.) (2007). Radiative Decay Engineering. Springer Science & Business Media.Google Scholar
Klimov, V. (2014). Nanoplasmonics. CRC Press.Google Scholar
Klimov, V. V., and Ducloy, M. (2004). Spontaneous emission rate of an excited atom placed near a nanofiber. Phys Rev A, 69, 013812.Google Scholar
Lee, K. G., Eghlidi, H., Chen, X. W., et al. (2012). Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface. Opt Express, 20(21), 2333123338.Google Scholar
Oraevskii, A. N. (1994). Spontaneous emission in a cavity. Physics – Uspekhi, 37, 393405.Google Scholar
Parker, G. J. (2010). Biomimetically-inspired photonic nanomaterials. J Mater Sci Mater Electron, 21, 965979.Google Scholar
Törmä, P., and Barnes, W. L. (2015). Strong coupling between surface plasmon polaritons and emitters. Rep Prog Phys, 78, 013901.Google Scholar

References

Allan, G., and Delerue, C. (2004). Confinement effects in PbSe quantum wells and nanocrystals. Phys Rev B, 70, 245321.Google Scholar
Amos, R. M., and Barnes, W. L. (1997). Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror. Phys Rev B, 55, 7249.Google Scholar
Barnett, S. M., and Loudon, R. (1996). Sum rule for modified spontaneous emission rates. Phys Rev Lett, 77, 24442448.Google Scholar
Bharadwaj, P., Deutsch, B., and Novotny, L. (2009). Optical antennas. Adv Opt Photonics, 1, 438483.Google Scholar
Bose, S. N. (1924). Planck’s Gesetz und Lichtquantenhypothese. Zs. Physik, 26, 178181.Google Scholar
Bunkin, F. V., and Oraevskii, A. N. (1959). ) Spontaneous emission in a cavity. Izvestia Vuzov, Radiophysics, 2, 181188. (In Russian).Google Scholar
Busch, K., von Freymann, G., Linden, S., et al. (2007). Periodic nanostructures for photonics. Phys Rep, 444, 101202.Google Scholar
D’Aguanno, G., Mattiucci, N., Centini, M., Scalora, M., and Bloemer, M. J. (2004). Electromagnetic density of modes for a finite-size three-dimensional structure. Phys Rev E, 69, 057601.Google Scholar
De Martini, F., Innocenti, G., Jacobowitz, G. R., and Mataloni, P. (1987). Anomalous spontaneous emission time in a microscopic optical cavity. Phys Rev Lett, 59, 29552958.Google Scholar
Guzatov, D. V., and Klimov, V. V. (2005). Radiative decay engineering by triaxial nanoellipsoids. Chem Phys Lett, 412, 341346.Google Scholar
Guzatov, D. V., Gaponenko, S. V., and Demir, H. V. (2018a). Plasmonic enhancement of electroluminescence. AIP Advances, 8, 015324.Google Scholar
Guzatov, D. V., Gaponenko, S. V., and Demir, H. V. (2018b). Possible plasmonic acceleration of LED modulation for Li-Fi applications. Plasmonics. DOI 10.1007/s11468-018-0730-6.Google Scholar
Guzatov, D. V., Vaschenko, S. V., Stankevich, V. V., et al. (2012). Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. J Phys Chem C, 116 (19), 1072310733.Google Scholar
Kinkhabwala, A., Yu, Z., Fan, Sh, et al. (2009). Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Phot, 3, 654657.Google Scholar
Klimov, V. V. (2009). Nanoplasmonics. Fizmatlit. (In Russian)Google Scholar
Klimov, V. V., and Letokhov, V. S. (2005). Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface. Laser Phys, 15, 6173.Google Scholar
Koenderink, A. F., Kafesaki, M., Soukolis, C. M., and Sandoghdar, V. (2005). Spontaneous emission in the near field of two-dimensional photonic crystals. Opt Lett, 30, 32103212.Google Scholar
Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R., and Bay, S. (2000). Fundamental quantum optics in structured reservoirs. Rep Prog Phys, 63, 455503.Google Scholar
Maksymov, I. S., Staude, I., Miroshnichenko, A. E., and Kivshar, Y. S. (2012). Optical Yagi–Uda nanoantennas. Nanophotonics, 1(1), 6581.Google Scholar
Noda, S., Fujita, M., and Asano, T. (2007). Spontaneous-emission control by photonic crystals and nanocavities. Nat Photonics, 1(8), 449458.Google Scholar
Novotny, L., and Hecht, B. (2012). Principles of Nano-Optics. Cambridge University Press.Google Scholar
Purcell, E. M. (1946). Spontaneous emission probabilities at radio frequencies. Phys Rev, 69, 681.Google Scholar
Schubert, E. F. (2006). Light-Emitting Diodes. Cambridge University Press.Google Scholar
Yablonovitch, E., Gmitter, T. J., and Bhat, R. (1988). Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures. Phys Rev Lett, 61, 25462549.Google Scholar

Further reading

Chow, W. W., and Koch, S. W. (2013). Semiconductor-Laser Fundamentals: Physics of the Gain Materials. Springer Science & Business Media.Google Scholar
Coleman, J. J. (2012). The development of the semiconductor laser diode after the first demonstration in 1962. Semicond Sci Technol, 27, 090207.Google Scholar
Gaponenko, S. V. (2005). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gmachl, C., Capasso, F., Sivco, D. L., and Cho, A. Y. (2001). Recent progress in quantum cascade lasers and applications, Rep Prog Phys, 64, 15331601.Google Scholar
Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J., and Carlson, R. O. (1962). Coherent light emission from GaAs junctions. Phys Rev Lett, 9, 366368.Google Scholar
Keller, U. (2010). Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl Phys B, 100, 1528.Google Scholar
Koechner, W. (2013). Solid-State Laser Engineering. Springer.Google Scholar
Ledentsov, N. N. (2011). Quantum dot laser. Semicond Sci Technol, 26, 014001.Google Scholar
Sennaroglu, A. (ed.) (2006). Solid-State Lasers and Applications. CRC Press.Google Scholar
Svelto, O., and Hanna, D. C. (1998). Principles of Lasers, 4th edn. Plenum Press.Google Scholar
Ustinov, V. M., Zhukov, A. E., Egorov, A. Y., and Maleev, N. A. (2003). Quantum Dot Lasers. Oxford University Press.Google Scholar

References

Alferov, Z. I. (1998). The history and future of semiconductor heterostructures. Semiconductors, 32, 114.Google Scholar
Arakawa, Y., and Sakaki, H. (1982). Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 40, 939941.Google Scholar
Bret, G., and Gires, F. (1964). Giant pulse laser and light amplifier using variable transmission coefficient glasses as light switches. Appl Phys Lett, 4, 175176.Google Scholar
Dingle, R., Wiegmann, W., and Henry, C. H. (1974). Quantum states of confined carriers in very thin AlxGa1 – xAs-GaAs-AlxGa1 – x As heterostructures. Phys Rev Lett, 33, 827830.Google Scholar
Dupuis, R. D., Dapkus, P. D., Chin, R., Holonyak, N., and Kirchoefer, S. W. (1979). Continuous 300 K laser operation of single quantum well Alx Ga1−xAsGaAs heterostructure diodes grown by metalorganic chemical vapor deposition. Appl Phys Lett, 34, 265267.Google Scholar
Egorov, A. Y., Zhukov, A. E., Kop’ev, P. S., et al. (1994). Effect of deposition conditions on the formation of (In, Ga) As quantum clusters in a GaAs matrix. Semiconductors, 28, 809811.Google Scholar
Faist, J., Capasso, F., Sivco, D. L., et al. (1994). Quantum cascade laser. Science, 264(5158), 553556.Google Scholar
Gaponenko, M., Metz, P. W., Härkönen, A., et al. (2014). SESAM mode-locked red praseodymium laser. Opt Lett, 39, 69396941.Google Scholar
Kazarinov, R. F., and Suris, R. A. (1971). Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice, Sov Phys Semicond, 5, 707709.Google Scholar
Semiconductor Laser Market Analysis (2016). Semiconductor laser market analysis by laser type, by application, and segment forecasts to 2024. www.reportbuyer.com/product/4144263, accessed May 2018.Google Scholar
Tsang, W. T. (1981). A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam. Appl Phys Lett, 39 134137.Google Scholar

Further reading

Agranovich, V. M., Gartstein, Y. N., and Litinskaya, M. (2011). Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Reviews, 111, 51795214.Google Scholar
Clegg, R. M. (2009). Förster resonance energy transfer – FRET what is it, why do it, and how it’s done. In: Gadella, T. W. J. (ed.), Laboratory Techniques in Biochemistry and Molecular Biology, vol. 33. Academic Press.Google Scholar
Govorov, A., Hernández-Martínez, P. L., and Demir, H. V. (2016). Understanding and Modeling of Förster-type Resonance Energy Transfer (FRET), vols. I–III. Springer.Google Scholar
Valeur, B., and Berberan-Santos, M. N. (2012). Molecular Fluorescence: Principles and Applications, 2nd edn. Wiley-VCH.Google Scholar

References

Agranovich, V. M., Gartstein, Y. N., and Litinskaya, M. (2011). Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Reviews, 111, 51795214.Google Scholar
Baer, R., and Rabani, E. (2008). Theory of resonance energy transfer involving nanocrystals: the role of high multipoles. J Chem Phys, 128, 184710.Google Scholar
Beard, M. C. (2011). Multiple exciton generation in semiconductor quantum dots. J Phys Chem Lett, 2, 12821288.Google Scholar
Born, M., and Wolf, E. (1999). Principles of Optics. 7th edn. Cambridge University Press.Google Scholar
Bredas, J.-L., and Silbey, R. (2009). Excitons surf along conjugated polymer chains. Science, 323, 348349.Google Scholar
Clegg, R. M. (1996). Fluorescence resonance energy transfer. In: Wang, X.F. and Herman, B. (eds.), Fluorescence Imaging Spectroscopy and Microscopy. John Wiley & Sons, 179252.Google Scholar
Clegg, R. M. (2009). Förster resonance energy transfer – FRET what is it, why do it, and how it’s done. In: Gadella, T. W. J. (ed.), Laboratory Techniques in Biochemistry and Molecular Biology, vol. 33. Academic Press.Google Scholar
Dexter, D. L. (1953). A theory of sensitized luminescence in solids. J Chem Phys, 21, 836850.Google Scholar
Förster, Th (1946). Energieanwenderung und fluoreszenz. Naturwissenschaften, 6, 166175.Google Scholar
Förster, Th (1948). Zwischenmolekulare energiewanderung und fluoreszens. Annalen der Physik, 437, 5575.Google Scholar
Förster, Th (1949). Expermentelle und theoretische untersuchtung des zwischengmolekularen übergangs von elektronenanregungsenergie. Z Elektrochem, 53, 93100.Google Scholar
Förster, Th (1951). Fluoreszenz Organischer Verbindungen. Vandenhoeck & Ruprecht.Google Scholar
Hernández-Martínez, P. L., Govorov, A. O., and Demir, H. V. (2013). Generalized theory of Förster-type nonradiative energy transfer in nanostructures with mixed dimensionality. J Phys Chem C, 117, 1020310212.Google Scholar
Klimov, V. I., Mikhailovsky, A. A., Xu, S., et al. (2000). Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290, 314317.Google Scholar
Köhler, A., and Bassler, H. (2009). Triplet states in organic semiconductors. Mater Sci Eng, R66, 71109.Google Scholar
Lakowicz, J. R. (2010). Principles of Fluorescence Spectroscopy. 3rd edn. Springer.Google Scholar
Nozik, A. J. (2008). Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett, 457, 311.Google Scholar
O’Regan, B., and Grätzel, M. (1991). A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737740.Google Scholar
Saricifcti, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F. (1992). Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258, 14741476.Google Scholar
Stryer, L., and Haugland, R. P. (1967). Energy transfer: a spectroscopic ruler. PNAS, 58, 719726.Google Scholar
Valeur, B. (2002). Molecular Fluorescence: Principles and Applications. Wiley-VCH.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×