Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-xc2tv Total loading time: 0 Render date: 2025-12-30T22:36:27.514Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 December 2025

Jean-Paul Montagner
Affiliation:
Institut de Physique du Globe de Paris
David Mainprice
Affiliation:
Université de Montpellier
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2026

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abramson, E. H., Brown, J. M. and Slutsky, L. J. 1999. Applications of impulsive stimulated scattering in the earth and planetary sciences. Annual Review of Physical Chemistry, 50(1), 279313.CrossRefGoogle ScholarPubMed
Abt, D. L., Fischer, K. M., French, S. W. et al. 2010. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research: Solid Earth, 115.CrossRefGoogle Scholar
Adams, B. L., Wright, S. I. and Kunze, K. 1993. Orientation imaging: The emergence of a new microscopy. Metallurgical Transactions A, 24(4), 819831.CrossRefGoogle Scholar
Ahrens, T. J, Holland, K. G. and Chen, G. Q. 2002. Phase diagram of iron, revised-core temperatures. Geophysical Research Letters, 29(7), 541.CrossRefGoogle Scholar
Aki, K. 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute, 35, 415456.Google Scholar
Aki, K. and Kaminuma, K. 1963. Phase velocity of Love waves in Japan. Bulletin of Earthquake Research Institute, 41, 243259.Google Scholar
Aki, K. and Richards, P. 1980. Quantitative Seismology: Theory and Methods. Freeman, W. H..Google Scholar
Aki, K. and Richards, P. G. 2002. Quantitative Seismology, 2nd ed. University Science Books.Google Scholar
Alboussiere, T., Deguen, R., and Melzani, M. 2010. Melting-induced stratification above the Earth’s inner core due to convective translation. Nature, 466(7307), 744.CrossRefGoogle ScholarPubMed
Alder, C., Bodin, T., Ricard, Y., Capdeville, Y. et al. 2017. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities. Geophysical Journal International, 211(3), 15851600.CrossRefGoogle Scholar
Aldridge, D. F. 1994. Short note: Linearization of the eikonal equation. Geophysics, 59(10), 16311632.CrossRefGoogle Scholar
Alfe, D., Gillan, M. J., and Price, G. D. 1999. The melting curve of iron at the pressures of the Earth’s core from ab initio calculations. Nature, 401(6752), 462464.Google Scholar
Allègre, C. J. and Turcotte, D. L. 1986. Implications of a two-component marble-cake mantle. Nature, 323, 123127.CrossRefGoogle Scholar
Almqvist, B. S. G. and Mainprice, D. 2017. Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Reviews of Geophysics, 55(2), 367433.CrossRefGoogle Scholar
Alshits, V. I., and Lothe, J. 2004. Some basic properties of bulk elastic waves in anisotropic media. Wave Motion, 40, 297313. 510CrossRefGoogle Scholar
Alshits, V. I., Sarychev, A. V. and Shuvalov, A. L. 1985. Classification of degeneracies and analysis of their stability in the theory of elastic waves in crystals. Journal of Experimental and Theoretical Physics (JETP), 62(3), 531539.Google Scholar
Alterman, Z., Jarosch, H., and Pekeris, C. L. 1959. Oscillations of the Earth. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 252, 8095.Google Scholar
Anderson, D. L. 1961. Elastic wave propagation in layered anisotropic media. Journal of Geophysical Research, 66, 29532963.CrossRefGoogle Scholar
Anderson, D. L. 1989. Theory of the Earth. Blackwell.Google Scholar
Anderson, D. L. and Bass, J. D. 1984. Mineralogy and composition of the upper mantle. Geophysical Research Letters, 11, 637640.CrossRefGoogle Scholar
Anderson, D. L. and Bass, J. D. 1986. Transition region of the Earth’s upper mantle. Nature, 320, 321328.CrossRefGoogle Scholar
Anderson, D. L. and Dziewonski, A. M. 1982. Upper mantle anisotropy: evidence from free oscillations. Geophysical Journal of the Royal Astronomical Society, 69(2), 383404.CrossRefGoogle Scholar
Anderson, D. L., Minster, B. and Cole, D. 1974. The effect of oriented cracks on seismic velocities. Journal of Geophysical Research, 79(26), 40114015.CrossRefGoogle Scholar
Ando, M. 1984. ScS polarization anisotropy around the Pacific Ocean. Journal of Physics of the Earth, 32(3), 179195.CrossRefGoogle Scholar
Ando, M., Ishikawa, Y., and Yamazaki, F. 1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. Journal of Geophysical Research: Solid Earth, 88(B7), 58505864.CrossRefGoogle Scholar
Angel, R. J., Alvaro, M., and Nestola, F. 2017. 40 years of mineral elasticity: A critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. Physics and Chemistry of Minerals, 45(2), 95113.CrossRefGoogle Scholar
Ansel, V. and Nataf, H. C. 1989. Anisotropy beneath 9 stations of the GEOSCOPE Broadband Network as deduced from shear-wave splitting. Geophysical Research Letters, 16(5), 409412.CrossRefGoogle Scholar
Ardhuin, F., Stutzmann, E., Schimmel, M., and Mangeney, A. 2011. Ocean wave sources of seismic noise. Journal of Geophysical Research: Oceans, 116(C9).CrossRefGoogle Scholar
Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. 2005. Fast and simple calculus on tensors in the log-Euclidean framework. Pages 115122 of International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer.Google Scholar
Arts, R. J. 1993. A Study of General Anisotropic Elasticity In Rocks By Wave Propagation: Theoretical and Experimental Aspects. PhD thesis, Université Paris 6, IPGP.Google Scholar
Aubert, J., Amit, H., Hulot, G., and Olson, P. 2008. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature, 454(7205), 758.CrossRefGoogle ScholarPubMed
Audet, P. 2016. Receiver functions using OBS data: Promises and limitations from numerical modelling and examples from the Cascadia Initiative. Geophysical Journal International, 205(3), 17401755.CrossRefGoogle Scholar
Auer, L., Boschi, L., Becker, T. W., Nissen-Meyer, T. and Giardini, D. 2014. SAVANI: A variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. Journal of Geophysical Research: Solid Earth, 119(4), 30063034.CrossRefGoogle Scholar
Auld, B. A. 1973. Acoustic Fields and Waves in Solids. Wiley.Google Scholar
Avouac, J.-P. and Tapponnier, P. 1993. Kinematic model of active deformation in central Asia. Geophysical Research Letters, 20(10), 895898.CrossRefGoogle Scholar
Babuška, V. and Cara, M. 1991. Seismic Anisotropy. Kluwer Academics Publishers.Google Scholar
Babuška, V., Plomerová, J. and Šílený, J. 1984. Spatial variations of P residuals and deep structure of the European lithosphere. Geophysical Journal International, 79(1), 363383.CrossRefGoogle Scholar
Babuška, V., Plomerová, J. and Šílený, J. 1993. Models of seismic anisotropy in the deep continental lithosphere. Physics of the Earth and Planetary Interiors, 78(3–4), 167191.Google Scholar
Babuška, V., Montagner, J.-P., Plomerová, J. and Girardin, N. 1998. Age-dependent large-scale fabric of the mantle lithosphere as derived from surface-wave velocity anisotropy. Pages 257280 of Geodynamics of Lithosphere and Earth’s Mantle. Springer.CrossRefGoogle Scholar
Backus, G. E. 1962. Long-wave anisotropy produced by horizontal layering. Journal of Geophysical Research, 67, 44274440.CrossRefGoogle Scholar
Backus, G. E. 1965. Possible forms of seismic anisotropy of the uppermost mantle under oceans. Journal of Geophysical Research, 70(14), 34293439.CrossRefGoogle Scholar
Backus, G. E. and Gilbert, J. F. 1967. Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal of the Royal Astronomical Society, 13(1–3), 247276.CrossRefGoogle Scholar
Backus, G. and Gilbert, F. 1968. The resolving power of gross Earth data. Geophysical Journal of the Royal Astronomical Society, 16(2), 169205.CrossRefGoogle Scholar
Backus, G. and Gilbert, F. 1970. Uniqueness in the inversion of inaccurate gross Earth data. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 123192.Google Scholar
Badro, J., Fiquet, Guillaume, Guyot, F. et al. 2003. Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300(5620), 789791.CrossRefGoogle Scholar
Bamford, D. 1977. Pn velocity anisotropy in a continental upper mantle. Geophysical Journal of the Royal Astronomical Society, 49(1), 2948.CrossRefGoogle Scholar
Barberini, V., Burlini, L. and Zappone, A. 2007. Elastic properties, fabric and seismic anisotropy of amphibolites and their contribution to the lower crust reflectivity. Tectonophysics, 445(3–4), 227244.Google Scholar
Barruol, G. and Kern, H. 1996. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea zone: Experimental and calculated data. Physics of the Earth and Planetary Interiors, 95(3–4), 175194.Google Scholar
Barruol, G. and Mainprice, D. 1993. 3-D seismic velocities calculated from lattice-preferred orientation and reflectivity of a lower crustal section: examples of the Val Sesia section (Ivrea zone, northern Italy). Geophysical Journal International, 115(3), 11691188.CrossRefGoogle Scholar
Barruol, G., and Sigloch, K. 2013. Investigating La Réunion hot spot from crust to core. Eos, Transactions American Geophysical Union, 94(23), 205207.CrossRefGoogle Scholar
Barruol, G., Suetsugu, D., Shiobara, H. et al. 2009. Mapping upper mantle flow beneath French Polynesia from broadband ocean bottom seismic observations. Geophysical Research Letters, 36(14).CrossRefGoogle Scholar
Barruol, G., Sigloch, K., Scholz, J. R. et al. 2019. Large-scale flow of Indian Ocean asthenosphere driven by Réunion plume. Nature Geoscience, 12(12), 10431049.CrossRefGoogle Scholar
Bass, J. D. and Zhang, J. S. 2015. Theory and practice: Techniques for measuring high-P-T elasticity. Pages 293312 of Schubert, G. (ed.), Treatise on Geophysics, 2nd ed. Elsevier.CrossRefGoogle Scholar
Batchelor, G. K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. Journal of Fluid Mechanics, 5(1), 113133.CrossRefGoogle Scholar
Becker, T. W. 2017. Superweak asthenosphere in light of upper mantle seismic anisotropy. Geochemistry, Geophysics, Geosystems, 18(5), 19862003.CrossRefGoogle Scholar
Becker, T. W. and Boschi, L. 2002. A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems, 3(1), 1003.CrossRefGoogle Scholar
Becker, T. W., Ekström, J. B. Kellogg G. and O’Connell, R. J. 2003. Comparison of azimuthal seismic anisotropy from surface waves and finite-strain from global mantle-circulation models. Geophysics Journal International, 155, 696714.CrossRefGoogle Scholar
Becker, T. W., and Faccenna, C. 2009. A review of the role of subduction dynamics for regional and global plate motions. Pages 334 of Subduction Zone Geodynamics. Springer.CrossRefGoogle Scholar
Becker, T. W., Lebedev, S. and Long, M. D. 2012. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. Journal of Geo-physical Research, 117(B01306).Google Scholar
Becker, T. W., Conrad, C. P., Schaeffer, A. J. and Lebedev, S. 2014. Origin of azimuthal seismic anisotropy in oceanic plates and mantle. Earth and Planetary Science Letters, 401, 236250.Google Scholar
Becker, T. W., Schaeffer, A. J., Lebedev, S. and Conrad, C. P. 2015. Toward a generalized plate motion reference frame. Geophysical Research Letters, 42(9), 31883196.CrossRefGoogle Scholar
Beghein, C. and Trampert, J. 2003. Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299(5606), 552555.CrossRefGoogle ScholarPubMed
Beghein, C., Yuan, K., Schmerr, N. and Xing, Z. 2014. Changes in seismic anisotropy shed light on the nature of the Gutenberg discontinuity. Science, 343(6176), 12371240.CrossRefGoogle ScholarPubMed
Benioff, H., Gutenberg, B. and Richter, C. F. 1954. Progress report, Seismological Laboratory, California Institute of Technology, 1953. Eos, Transactions of the American Geophysical Union, 35(6), 979987.Google Scholar
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P. et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 12391260.CrossRefGoogle Scholar
Benveniste, Y. 1986. On the Mori–Tanaka’s method in cracked bodies. Mechanics Research Communications, 13(4), 193201.CrossRefGoogle Scholar
Bercovici, D. and Karato, S.-I. 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425, 3944.CrossRefGoogle ScholarPubMed
Bercovici, D., Schubert, G. and Glatzmaier, G. A. 1991. Modal growth and coupling in three-dimensional spherical convection. Geophysical and Astrophysical Fluid Dynamics, 61(1–4), 149159.CrossRefGoogle Scholar
Bernard, P., Chouliaras, G., Tzanis, A. et al. 1997. Seismic and electrical anisotropy in the Mornos delta, Gulf of Corinth, Greece, and its relationship with GPS strain measurements. Geophysical Research Letters, 24(17), 22272230.CrossRefGoogle Scholar
Bernauer, F., Wassermann, J. and Igel, H. 2012. Rotational sensors: A comparison of different sensor types. Journal of Seismology, 16(4), 595602.CrossRefGoogle Scholar
Berryman, J. G. and Berge, P. A. 1993. Rock elastic properties: Dependence on microstructure. American Society of Mechanical Engineers Applied Mechanics Division Publications, 166, 11.Google Scholar
Beucler, E. 2002. Tomographie régionale et globale du manteau terrestre: approche par les ondes de volume et de surface. PhD thesis, Institut de Physique du Globe de Paris.Google Scholar
Beucler, E. and Montagner, J.-P. 2006. Computation of large anisotropic seismic hetero-geneities. Geophysical Journal International, 165, 447468.CrossRefGoogle Scholar
Beucler, E., Stutzmann, E. and Montagner, J.-P. 2003. Measuring surface wave higher mode phase velocities using a rollercoaster type algorithm. Geophysical Journal International, 155, 289307.CrossRefGoogle Scholar
Bezacier, L., Reynard, B., Bass, J. D., Sanchez-Valle, C. and Van de Moortèle, B. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289(1–2), 198208.CrossRefGoogle Scholar
Billen, M. I. 2008. Modeling the dynamics of subducting slabs. Annual Review of Earth and Planetary Sciences, 36, 325356.CrossRefGoogle Scholar
Birch, F. 1952. Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57(2), 227286.CrossRefGoogle Scholar
Birch, F. 1960. The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65(4), 10831102.CrossRefGoogle Scholar
Bishop, A. C. 1967. An Outline of Crystal Morphology. Hutchinson & Co Ltd.Google Scholar
Bishop, J. F. W. and Hill, R. 1951. XLVI. A theory of the plastic distortion of a poly-crystalline aggregate under combined stresses. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(327), 414427.CrossRefGoogle Scholar
Bloss, F. D. 1961. An Introduction to the Methods of Optical Crystallography. Holt, Rinehart and Winston.Google Scholar
Bodin, T., Capdeville, Y., Romanowicz, B. and Montagner, J.-P. 2015. Interpreting radial anisotropy in global and regional tomographic models. Pages 105144 of The Earth’s Heterogeneous Mantle. Springer.CrossRefGoogle Scholar
Bodin, T., Leiva, J., Romanowicz, B., Maupin, V. and Yuan, Huaiyu. 2016. Imaging anisotropic layering with Bayesian inversion of multiple data types. Geophysical Journal International, 206(1), 605629.CrossRefGoogle Scholar
Bokelmann, G. H. R. 1995. P-wave array polarization analysis and effective anisotropy of the brittle crust. Geophysical Journal International, 120(1), 145162.CrossRefGoogle Scholar
Borgnis, F. E. 1955. Specific directions of longitudinal wave propagation in anisotropic media. Physical Review, 98(May), 10001005.CrossRefGoogle Scholar
Boschi, L. and Dziewonski, A. M. 1999. High-and low-resolution images of the Earth’s mantle: Implications of different approaches to tomographic modeling. Journal of Geophysical Research, 104, 2556725594.CrossRefGoogle Scholar
Boschi, L. and Woodhouse, J. H. 2006. Surface wave ray tracing and azimuthal anisotropy: a generalized spherical harmonic approach. Geophysical Journal International, 164(3), 569578.CrossRefGoogle Scholar
Bostock, M. G. 1998. Mantle stratigraphy and evolution of the Slave province. Journal of Geophysical Research: Solid Earth, 103(B9), 2118321200.CrossRefGoogle Scholar
Boudier, F., Baronnet, A. and Mainprice, D. 2010. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite. Journal of Petrology, 51(1–2), 495512.CrossRefGoogle Scholar
Boulanger, Ph. and Hayes, M. 1998. Bounds on elastic wave speeds in crystals: Theory and applications. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1977), 22892322.CrossRefGoogle Scholar
Bowman, J. R. and Ando, M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International, 88(1), 2541.CrossRefGoogle Scholar
Bozdag˘, E., Peter, D., Lefebvre, M. et al. 2016. Global adjoint tomography: First-generation model. Geophysical Journal International, 207(3), 17391766.CrossRefGoogle Scholar
Brenguier, F., Campillo, M., Hadziioannou, C. et al. 2008a. Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science, 321(5895), 14781481.CrossRefGoogle ScholarPubMed
Brenguier, F., Shapiro, N. M., Campillo, M. et al. 2008b. Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126.CrossRefGoogle Scholar
Brillouin, L. 1922. Diffusion de la lumière et des rayons X par un corps transparent homogène. Annales de physique, 9(17), 88122.CrossRefGoogle Scholar
Bristow, J. R. 1960. Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals. British Journal of Applied Physics, 11(2), 8185.CrossRefGoogle Scholar
Brodholt, J. P. and Vŏadlo, L. 2006. Applications of density functional theory in the geosciences. MRS Bulletin, 31(9), 675680.CrossRefGoogle Scholar
Browaeys, J. T. and Chevrot, S. 2004. Decomposition of the elastic tensor and geophysical applications. Geophysical Journal International, 159(2), 667678.CrossRefGoogle Scholar
Brown, J. M. 2018. Determination of elastic moduli from measured acoustic velocities. Ultrasonics, 90, 2331.CrossRefGoogle ScholarPubMed
Brown, J. M., Abramson, E. H. and Angel, R. J. 2006. Triclinic elastic constants for low albite. Physics and Chemistry of Minerals, 33(4), 256265.CrossRefGoogle Scholar
Brown, J. M., Angel, R. J. and Ross, N. L. 2016. Elasticity of plagioclase feldspars. Journal of Geophysical Research: Solid Earth, 121(2), 663675.CrossRefGoogle Scholar
Brown, R. J. S. and Korringa, J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40(4), 608616.CrossRefGoogle Scholar
Brugger, K. 1965. Pure modes for elastic waves in crystals. Journal of Applied Physics, 36(3), 759768.CrossRefGoogle Scholar
Brune, J. and Dorman, J. 1963. Seismic waves and Earth structure in the Canadian shield. Bulletin of the Seismological Society of America, 53(1), 167209.Google Scholar
Bruner, W. M. 1976. Comment on ‘Seismic velocities in dry and saturated cracked solids’ by Richard J. O’Connell and Bernard Budiansky. Journal of Geophysical Research, 81(14), 25732576.CrossRefGoogle Scholar
Buck, W. R. 1985. When does small-scale convection begin beneath oceanic lithosphere? Nature, 313(6005), 775.CrossRefGoogle Scholar
Budiansky, B. 1965. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13(4), 223227.CrossRefGoogle Scholar
Budiansky, B. and O’Connell, R. J. 1976. Elastic moduli of a cracked solid. International Journal of Solids and Structures, 12(2), 8197.CrossRefGoogle Scholar
Budiansky, B., Sumner, E. E., Jr. and O’Connell, R. J. 1983. Bulk thermoelastic attenuation of composite materials. Journal of Geophysical Research: Solid Earth, 88(B12), 1034310348.CrossRefGoogle Scholar
Bunge, H.-J. 1982. Texture Analysis in Materials Science: Mathematical Methods. Butterworth-Heinemann.Google Scholar
Burgos, G. 2012. Tomographie du Manteau Supérieur par Inversion de Ondes de Surface. PhD thesis, Institut de Physique du Globe de Paris.Google Scholar
Burgos, G., Montagner, J.-P., Beucler, E. et al. 2014. Oceanic lithosphere–asthenosphere boundary from surface wave dispersion data. Journal of Geophysical Research: Solid Earth, 119(2), 10791093.CrossRefGoogle Scholar
Burke, K., Steinberger, B., Torsvik, T. H., and Smethurst, M. A. 2008. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth and Planetary Science Letters, 265(1-2), 4960.CrossRefGoogle Scholar
Busse, F. H. 1983. Convection-driven zonal flows in the major planets. Pure and Applied Geophysics, 121(3), 375390.CrossRefGoogle Scholar
Butler, R., Lay, T., Creager, K. et al. 2004. The Global Seismographic Network surpasses its design goal. Eos, Transactions of the American Geophysical Union, 85(23), 225229.CrossRefGoogle Scholar
Bystricky, M., Kunze, K., Burlini, L. and Burg, J.-P. 2000. High shear strain of olivine aggregates: Rheological and seismic consequences. Science, 290(5496), 15641567.CrossRefGoogle ScholarPubMed
Campillo, M. and Paul, A. 2003. Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547549.CrossRefGoogle ScholarPubMed
Cao, A. and Romanowicz, B. 2007. Test of the innermost inner core models using broadband PKIKP travel time residuals. Geophysical Research Letters, 34(8).CrossRefGoogle Scholar
Cao, A., Romanowicz, B. and Takeuchi, Nozomu. 2005. An observation of PKJKP: Inferences on inner core shear properties. Science, 308(5727), 14531455.CrossRefGoogle ScholarPubMed
Capdeville, Y. and Marigo, J. J. 2007. Second order homogenization of the elastic wave equation for non-periodic layered media. Geophysical Journal International, 170, 823838.CrossRefGoogle Scholar
Capdeville, Y. and Marigo, J.-J. 2008. Shallow layer correction for spectral element like methods. Geophysical Journal International, 172(3), 11351150.CrossRefGoogle Scholar
Capdeville, Y. and Marigo, J.-J. 2013. A non-periodic two scale asymptotic method to take account of rough topographies for 2-D elastic wave propagation. Geophysical Journal International, 192(1), 163189.CrossRefGoogle Scholar
Capdeville, Y., Stutzmann, E. and Montagner, J.-P. 2000. Effects of a plume on long period surface waves computed with normal modes coupling. Physics of the Earth and Planetary Interiors, 119, 5774.CrossRefGoogle Scholar
Capdeville, Y., Chaljub, E., Vilotte, J.-P. and Montagner, J.-P. 2003. Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models. Geophysical Journal International, 152(1), 3467.CrossRefGoogle Scholar
Capdeville, Y. Guillot, L. and Marigo, J.-J. 2010. 2-D non-periodic homogenization to upscale elastic media for p–sv waves. Geophysical Journal International, 182(2), 903922.CrossRefGoogle Scholar
Carcione, J. M. 2001. Wavefield in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous media, Handbook of Geophysical Exploration, Volume 31. Pergamon Press.Google Scholar
Carcione, J. M., Picotti, S., Cavallini, F. and Santos, J. E. 2012. Numerical test of the Schoenberg–Muir theory. Geophysics, 77(2), C27C35.CrossRefGoogle Scholar
Catti, M. 1982. Modelling of structural and elastic changes of forsterite (Mg2SiO4) under Stress. Physics and Chemistry of Minerals, 16, 582590.CrossRefGoogle Scholar
Catti, M. 1989. Crystal elasticity and inner strain: a computational model. Acta Crystallo-graphica Section A, 45(1), 2025.CrossRefGoogle Scholar
Cauchy, A. L. B. 1822. Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides élastiques ou non élastiques. Paris.Google Scholar
Cazenave, A., Souriau, A. and Dominh, K. 1989. Global coupling of Earth surface topography with hotspots, geoid and mantle heterogeneities. Nature, 340, 5457.CrossRefGoogle Scholar
Cazenave, A., Houry, S., Lago, B. and Dominh, K. 1992. Geosat-derived geoid anomalies at medium wavelength. Journal of Geophysical Research: Solid Earth, 97(B5), 70817096.CrossRefGoogle Scholar
Cˇerveny`, V. 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media. Geophysical Journal International, 29(1), 113.Google Scholar
Cˇerveny`, V. 2005. Seismic Ray Theory. Cambridge University Press.Google Scholar
Chai, M., Brown, J. M. and Slutsky, L. J. 1997. The elastic constants of an aluminous orthopyroxene to 12.5 GPa. Journal of Geophysical Research: Solid Earth, 102(B7), 1477914785.CrossRefGoogle Scholar
Chan, J. and Schmitt, D. R. 2015. Initial seismic observations from a deep borehole drilled into the Canadian Shield in northeast Alberta. International Journal of Earth Sciences, 104(6), 15491562.CrossRefGoogle Scholar
Chang, S.-J. and Ferreira, A. M. G. 2019. Inference on water content in the mantle transition zone near subducted slabs from anisotropy tomography. Geochemistry, Geophysics, Geosystems.CrossRefGoogle Scholar
Chang, S.-J., Ferreira, A. M. G., Ritsema, J., Heijst, H. J. and Woodhouse, J. H. 2015. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research: Solid Earth, 120(6), 42784300.CrossRefGoogle Scholar
Chapman, C. 2004. Fundamentals of Seismic Wave Propagation. Cambridge University Press.CrossRefGoogle Scholar
Chastel, Y. B., Dawson, P. R, Wenk, H.-R. and Bennett, K. 1993. Anisotropic convection with implications for the upper mantle. Journal of Geophysical Research: Solid Earth, 98(B10), 1775717771.CrossRefGoogle Scholar
Chen, M. and Tromp, J. 2007. Theoretical and numerical investigation of global and regional seismic wave propagation in weakly anisotropic Earth models. Geophysical Journal International, 168, 11301152.CrossRefGoogle Scholar
Chen, M., Niu, F., Liu, Q., Tromp, J. and Zheng, X. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons. Journal of Geophysical Research: Solid Earth, 120(3), 17621786.CrossRefGoogle Scholar
Chevrot, S. 2000. Multichannel analysis of shear wave splitting. Journal of Geophysical Research, 105(21), 57921590.CrossRefGoogle Scholar
Chevrot, S. 2006. Finite-frequency vectorial tomography: A new method for high-resolution imaging of upper mantle anisotropy. Geophysical Journal International, 165(2), 641657.CrossRefGoogle Scholar
Chheda, T. D, Mookherjee, M., Mainprice, D. et al. 2014. Structure and elasticity of phlogopite under compression: Geophysical implications. Physics of the Earth and Planetary Interiors, 233, 112.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, S. 1982. Pyroxene orientation within the upper mantle. Bulletin of the Geological Society of America, 93, 279288.2.0.CO;2>CrossRefGoogle Scholar
Christensen, N. I. 1966. Elasticity of ultrabasic rocks. Journal of Geophysical Research, 71(24), 59215931.CrossRefGoogle Scholar
Christensen, U. 1984. Instability of a hot boundary layer and initiation of thermo-chemical plumes. Annales Geophysicae, 2, 311320.Google Scholar
Christoffel, E. B. 1877. Über die Fortpflanzung von Stössen durch elastische feste Körper. Annali di Matematica Pura ed Applicata (1867-1897), 8(1), 193243.CrossRefGoogle Scholar
Chung, D. H. and Buessem, W. R. 1967. The Voigt–Reuss–Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe. Journal of Applied Physics, 38(6), 25352540.CrossRefGoogle Scholar
Claerbout, J. F. 1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2), 264269.CrossRefGoogle Scholar
Cline, C. J. II, Faul, U. H., David, E. C., Berry, A. J. and Jackson, I. 2018. Redox-influenced seismic properties of upper mantle olivine. Nature, 555, 355358.CrossRefGoogle Scholar
Clouard, V. and Gerbault, M. 2008. Break-up spots: Could the Pacific open as a consequence of plate kinematics? Earth and Planetary Science Letters, 265(1), 195208.CrossRefGoogle Scholar
Clyne, T. W. and Withers, P. J. 1993. An Introduction to Metal Matrix Composites. Cambridge University Press.CrossRefGoogle Scholar
Cochard, A., Igel, H., Schuberth, B. et al. 2006. Rotational motions in seismology: Theory, observation, simulation. Pages 391411 of Earthquake Source Asymmetry, Structural Media and Rotation Effects. Springer.CrossRefGoogle Scholar
Cohen-Tannoudji, C., Diu, B. and Laloë, F. 1973. Mécanique quantique. Vols. 1 and 2 Collection Enseignement des Sciences.Google Scholar
Cohen-Tannoudji, C., Laloe, F. and Diu, B. 2017. Mécanique quantique. Vol. 3. EDP Sciences.Google Scholar
Collins, J. A., Wolfe, C. J. and Laske, G. 2012. Shear wave splitting at the Hawaiian hot spot from the PLUME land and ocean bottom seismometer deployments. Geochemistry, Geophysics, Geosystems, 13(2).CrossRefGoogle Scholar
Conrad, C. P. and Lithgow-Bertelloni, C. 2002. How mantle slabs drive plate tectonics. Science, 298(5591), 207209.CrossRefGoogle ScholarPubMed
Conrad, C. P., Behn, M. D. and Silver, P. G. 2007. Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle. Journal of Geophysical Research, 112(B7), B07317.CrossRefGoogle Scholar
Cooper, R. F. 2002. Seismic wave attenuation: Energy dissipation in viscoelastic crystalline solids. Reviews in Mineralogy and Geochemistry, 51(1), 253290.CrossRefGoogle Scholar
Cormier, V. F. and Stroujkova, A. 2005. Waveform search for the innermost inner core. Earth and Planetary Science Letters, 236(1–2), 96105.CrossRefGoogle Scholar
Cottaar, S. and Romanowicz, B. 2013. Observations of changing anisotropy across the southern margin of the African LLSVP. Geophysical Journal International, ggt285.Google Scholar
Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. and Besse, J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166, 177195.CrossRefGoogle Scholar
Cousins, C. S. G. 1978. The symmetry of inner elastic constants. Journal of Physics C: Solid State Physics, 11(24), 48814900.CrossRefGoogle Scholar
Cousins, C. S. G. 2001. Inner Elasticity and the Higher-Order Elasticity of Some Diamond and Graphite Allotropes. PhD thesis, University of Exeter.Google Scholar
Crampin, S. 1967. Coupled Rayleigh–Love second modes. Geophysical Journal International, 12(3), 229235.CrossRefGoogle Scholar
Crampin, S. 1984a. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophysical Journal International, 76(1), 135145.CrossRefGoogle Scholar
Crampin, S. 1984b. An introduction to wave propagation in anisotropic media. Geophysical Journal of the Royal Astronomical Society, 76, 1728.CrossRefGoogle Scholar
Crampin, S. 1970. The dispersion of surface waves in multilayered anisotropic media. Geophysical Journal International, 21(3), 387402.CrossRefGoogle Scholar
Crampin, S. 1975. Distinctive particle motion of surface waves as a diagnostic of anisotropic layering. Geophysical Journal International, 40(2), 177186.CrossRefGoogle Scholar
Crampin, S. 1981. A review of wave motion in anisotropic and cracked elastic media. Wave motion, 3(4), 343391.CrossRefGoogle Scholar
Crampin, S. 1982. Comment [on “Possible forms of seismic anisotropy of the uppermost mantle under oceans” by George E. Backus]. Journal of Geophysical Research: Solid Earth (1978–2012), 87(B6), 46364640.CrossRefGoogle Scholar
Crampin, S. and Booth, D. C. 1985. Shear-wave polarizations near the North Anatolian Fault; II, Interpretation in terms of crack-induced anisotropy. Geophysical Journal of the Royal Astronomical Society, 83, 7592.CrossRefGoogle Scholar
Crampin, S. and King, D. W. 1977. Evidence for anisotropy in the upper mantle beneath Eurasia from the polarization of higher mode seismic surface waves. Geophysical Journal International, 49(1), 5985.CrossRefGoogle Scholar
Crampin, S. and Lovell, J. H. 1991. A decade of shear-wave splitting in the Earth’s crust: what does it mean? What use can we make of it? And what should we do next? Geophysical Journal International, 107(3), 387407.CrossRefGoogle Scholar
Crampin, S. and Taylor, D. B. 1971. The propagation of surface waves in anisotropic media. Geophysical Journal International, 25(1-3), 7187.CrossRefGoogle Scholar
Crampin, S., Volti, T. and Stefánsson, R. 1999. A successfully stress-forecast earthquake. Geophysical Journal International, 138(1), F1F5.CrossRefGoogle Scholar
Creager, K. C. 1992. Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature, 356(6367), 309.CrossRefGoogle Scholar
Crosson, R. S. and Lin, J.-W. 1971. Voigt and Reuss prediction of anisotropic elasticity of dunite. Journal of Geophysical Research, 76(2), 570578.CrossRefGoogle Scholar
Cupillard, P. and Capdeville, Y. 2018. Non-periodic homogenization of 3-D elastic media for the seismic wave equation. Geophysical Journal International, 213(2), 9831001.CrossRefGoogle Scholar
Cupillard, P., Delavaud, E., Burgos, G. et al. 2012. RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale. Geophysical Journal International, 188(3), 12031220.CrossRefGoogle Scholar
Dahlen, F. A. and Tromp, J. 1998. Theoretical Global Seismology. Princeton University Press.Google Scholar
Dahlen, F. A., Hung, S. H. and Nolet, G. 2002. Fréchet kernels for finite-frequency traveltimes – I. Theory. Geophysical Journal International, 141(1), 157174.CrossRefGoogle Scholar
Daley, P. F. and Hron, F. 1977. Reflection and transmission coefficients for transversely isotropic media. Bulletin of the Seismological Society of America, 67(3), 661675.CrossRefGoogle Scholar
Dante, C. 2008. Canada’s craton: a bottoms-up view. GSA Today, 18(6), 4.Google Scholar
Davaille, A. 1999. Simultaneaous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402, 756760.CrossRefGoogle Scholar
Davaille, A. and Jaupart, C. 1994. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. Journal of Geophysical Research, 99(B10), 1985319.CrossRefGoogle Scholar
David, C., Menéndez, B. and Darot, M. 1999. Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. International Journal of Rock Mechanics and Mining Sciences, 36(4), 433448.CrossRefGoogle Scholar
Davies, G. F. 1974. Effective elastic moduli under hydrostatic stress – I. Quasi-harmonic theory. Journal of Physics and Chemistry of Solids, 35(11), 15131520.CrossRefGoogle Scholar
Davies, G. F. and Dziewonski, AQ. M. 1975. Homogeneity and constitution of the Earth’s lower mantle and outer core. Physics of the Earth and Planetary Interiors, 10(4), 336343.CrossRefGoogle Scholar
Debayle, E. 1999. SV-wave azimuthal anisotropy in the Australian upper mantle: Pre-liminary results from automated Rayleigh waveform inversion. Geophysical Journal International, 137, 747754.CrossRefGoogle Scholar
Debayle, E. and Kennett, B. L. N. 2000. Anisotropy in the Australian upper mantle from Love and Rayleigh waveform inversion. Earth and Planetary Science Letters, 184, 339351.CrossRefGoogle Scholar
Debayle, E. and Ricard, Y. 2013. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth and Planetary Science Letters, 376, 165177.CrossRefGoogle Scholar
Debayle, E. and Sambridge, M. 2004. Inversion of massive surface wave datasets: Model construction and resolution assessment. Journal of Geophysical Research, 109, B02316.CrossRefGoogle Scholar
Debayle, E., Lévêque, J.-J. and Cara, M. 2001. Seismic evidence for a deeply rooted low-velocity anomaly in the upper mantle beneath the northeastern Afro/Arabian continent. Earth and Planetary Science Letters, 193, 423436.CrossRefGoogle Scholar
Debayle, E., Dubuffet, F. and Durand, S. 2016. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophysical Research Letters, 43(2), 674682.CrossRefGoogle Scholar
DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S. 1990. Current plate motions. Geophysical Journal International, 101(2), 425478.CrossRefGoogle Scholar
DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21(20), 21912194.CrossRefGoogle Scholar
DeMets, C., Gordon, R. G. and Argus, D. F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1), 180.CrossRefGoogle Scholar
Demouchy, S. and Bolfan-Casanova, N. 2016. Distribution and transport of hydrogen in the lithospheric mantle: A review. Lithos, 240, 402425.CrossRefGoogle Scholar
Demouchy, S., Wang, Q. and Tommasi, A. 2023. Deforming the upper mantle: Olivine mechanical properties and anisotropy. Elements, 19(3), 151157.CrossRefGoogle Scholar
Derode, A., Larose, E., Campillo, M. and Fink, M. 2003. How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Applied Physics Letters, 83(15), 30543056.CrossRefGoogle Scholar
Deuss, A. 2014. Heterogeneity and anisotropy of Earth’s inner core. Annual Review of Earth and Planetary Sciences, 42, 103126.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. 2001. Theoretical free-oscillation spectra: The importance of wide band coupling. Geophysical Journal International, 146(3), 833842.CrossRefGoogle Scholar
Deuss, A., Woodhouse, J. H, Paulssen, H. and Trampert, J. 2000. The observation of inner core shear waves. Geophysical Journal International, 142(1), 6773.CrossRefGoogle Scholar
Deuss, A., Irving, J. C. E. and Woodhouse, J. H. 2010. Regional variation of inner core anisotropy from seismic normal mode observations. Science, 328(5981), 10181020.CrossRefGoogle ScholarPubMed
Deuss, A., Ritsema, J. and Van Heijst, H. 2011. Splitting function measurements for Earth’s longest period normal modes using recent large earthquakes. Geophysical Research Letters, 38(4).CrossRefGoogle Scholar
Doornbos, D. J. 1974. The anelasticity of the inner core. Geophysical Journal International, 38(2), 397415.CrossRefGoogle Scholar
Draeger, C. and Fink, M. 1999. One-channel time-reversal in chaotic cavities: Theoretical limits. The Journal of the Acoustical Society of America, 105(2), 611617.CrossRefGoogle Scholar
Durand, S., Montagner, J. P., Roux, P. et al. 2011. Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophysical Research Letters, 38(13), L13303.CrossRefGoogle Scholar
Durek, J. J. and Romanowicz, B. 1999. Inner core anisotropy inferred by direct inversion of normal mode spectra. Geophysical Journal International, 139(3), 599622.CrossRefGoogle Scholar
Duvall, T. I., Jr., Jeffferies, S. M., Harvey, J. W., and Pomerantz, M. A. 1993. Time–distance helioseismology. Nature, 362(6419), 430.CrossRefGoogle Scholar
Dziewonski, A. M. 1971. Upper mantle models from “pure-path” dispersion data. Journal of Geophysical Research, 76, 25872601.CrossRefGoogle Scholar
Dziewonski, A. M. 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research: Solid Earth, 89(B7), 59295952.CrossRefGoogle Scholar
Dziewonski, A. M. 1994. The FDSN: History and objectives. Annals of Geophysics, 37(5).Google Scholar
Dziewonski, A. M. and Anderson, D. L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297356.CrossRefGoogle Scholar
Edmonds, A. R. 1960. Angular Momentum and Quantum Mechanics. Princeton University Press.Google Scholar
Ekström, G. 2006. A simple method of representing azimuthal anisotropy on a sphere. Geophysical Journal International, 165(2), 668671.Google Scholar
Ekström, G. 2011. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s. Geophysical Journal International, 187(3), 16681686.CrossRefGoogle Scholar
Ekström, G. and Dziewonski, A. M. 1998. The unique anisotropy of the Pacific upper mantle. Nature, 394, 168172.CrossRefGoogle Scholar
England, P. and Houseman, G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India–Asia collision zone. Journal of Geophysical Research: Solid Earth, 91(B3), 36643676.CrossRefGoogle Scholar
Engler, O. and Randle, V. 2009. Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping. CRC Press.CrossRefGoogle Scholar
Eshelby, J. D. and Peierls, R. E. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376396.Google Scholar
Estey, L. H. and Douglas, B. J. 1986. Upper mantle anisotropy: A preliminary model. Journal of Geophysical Research: Solid Earth (1978–2012), 91(B11), 1139311406.CrossRefGoogle Scholar
Every, A. G. 1980. General closed-form expressions for acoustic waves in elastically anisotropic solids. Physics Review B, 22(Aug), 17461760.CrossRefGoogle Scholar
Faccenda, M. and Capitanio, F. A. 2013. Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochemistry, Geophysics, Geosystems, 14(1), 243262.CrossRefGoogle Scholar
Faccenda, M., Burlini, L., Gerya, T. V. and Mainprice, D. 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455(7216), 1097.CrossRefGoogle Scholar
Faccenna, C. and Becker, T. W. 2010. Shaping mobile belts by small-scale convection. Nature, 465(7298), 602.CrossRefGoogle ScholarPubMed
Farnetani, C. G. 1997. Excess temperature of mantle plumes: The role of chemical stratification across D″. Geophysical Research Letters, 24, 15831586.CrossRefGoogle Scholar
Farnetani, C. G. and Samuel, H. 2005. Beyond the thermal plume paradigm. Geophysical Research Letters, 32(7).CrossRefGoogle Scholar
Farra, V. 2004. Improved first-order approximation of group velocities in weakly anisotropic media. Studia Geophysica et Geodaetica, 48(1), 199213.CrossRefGoogle Scholar
Farra, V. 2005. First-order ray tracing for qS waves in inhomogeneous weakly anisotropic media. Geophysical Journal International, 161(2), 309324.CrossRefGoogle Scholar
Farra, V. and Psencik, I. 2003. Properties of the zeroth-, first-, and higher-order approximations of attributes of elastic waves in weakly anisotropic media. Journal of the Acoustical Society of America, 114(3), 13661378.CrossRefGoogle ScholarPubMed
Farra, V. and Vinnik, L. 1994. Shear-wave splitting in the mantle of the Pacific. Geophysical Journal International, 119(1), 195218.CrossRefGoogle Scholar
Faul, U. H., and Jackson, I. 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1), 119134.CrossRefGoogle Scholar
Faul, U. and Jackson, I. 2015. Transient creep and strain energy dissipation: An experimental perspective. Annual Review of Earth and Planetary Sciences, 43(1), 541569.CrossRefGoogle Scholar
Fedorov, F. 1968. Theory of Elastic Waves in Crystals. Plenum Press.CrossRefGoogle Scholar
Fei, Y. and Ahrens, T. J. 1995. Thermal expansion. Mineral Physics and Crystallography: A Handbook of Physical Constants, 2, 2944.Google Scholar
Ferreira, A. M. G. Woodhouse, J. H., Visser, K. and Trampert, J. 2010. On the robustness of global radially anisotropic surface wave tomography. Journal of Geophysical Research: Solid Earth, 115(B4).CrossRefGoogle Scholar
Ferreira, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.-J. and Schardong, L. 2019. Ubiquitous lower-mantle anisotropy beneath subduction zones. Nature Geoscience, 12(4), 301306.CrossRefGoogle Scholar
Fichtner, A. 2010. Full Seismic Waveform Modelling and Inversion. Springer Science & Business Media.CrossRefGoogle Scholar
Fichtner, A. and Villaseñor, A. 2015. Crust and upper mantle of the western Mediterranean: Constraints from full-waveform inversion. Earth and Planetary Science Letters, 428, 5262.CrossRefGoogle Scholar
Fichtner, A., Kennett, B. L. N., Igel, H. and Bunge, H.-P. 2010. Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290(3–4), 270280.CrossRefGoogle Scholar
Fichtner, A., Kennett, B. L. N and Trampert, J. 2013. Separating intrinsic and apparent anisotropy. Physics of the Earth and Planetary Interiors, 219, 1120.CrossRefGoogle Scholar
Fink, M. 1992. Time reversal of ultrasonic fields. I. Basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39(5), 555566.CrossRefGoogle ScholarPubMed
Fiquet, G., Badro, J., Guyot, F. et al. 2004. Application of inelastic X-ray scattering to the measurements of acoustic wave velocities in geophysical materials at very high pressure. Physics of the Earth and Planetary Interiors, 143, 518.CrossRefGoogle Scholar
Fisher, E. .S and McSkimin, H. J. 1958. Adiabatic elastic moduli of single crystal alphauranium. Journal of Applied Physics, 29(10), 14731484.CrossRefGoogle Scholar
Fischer, K. M. and Wiens, D. A. 1996. The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth and Planetary Science Letters, 142(1), 253260.CrossRefGoogle Scholar
Fischer, K. M. and Yang, X. 1994. Anisotropy in Kuril–Kamchatka Subduction Zone structure. Geophysical Research Letters, 21(1), 58.CrossRefGoogle Scholar
Fisher, R. A. 1953. Dispersion on a sphere. Proceedings of the Royal Society, Series A, 217(1130), 295305.CrossRefGoogle Scholar
Flynn, D. 1962. On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society, 118 (1-4), 385428.CrossRefGoogle Scholar
Fontaine, F. R., Barruol, G., Kennett, Brian L. N. et al. 2009. Upper mantle anisotropy beneath Australia and Tahiti from P wave polarization: Implications for real-time earthquake location. Journal of Geophysical Research: Solid Earth, 114(B3).CrossRefGoogle Scholar
Ford, H. A., Long, M. D., He, X. and Lynner, C. 2015. Lowermost mantle flow at the eastern edge of the African Large Low Shear Velocity Province. Earth and Planetary Science Letters, 420, 1222.CrossRefGoogle Scholar
Ford, H. A., Long, M. D. and Wirth, E. A. 2016. Midlithospheric discontinuities and complex anisotropic layering in the mantle lithosphere beneath the Wyoming and Superior provinces. Journal of Geophysical Research: Solid Earth, 121(9), 66756697.CrossRefGoogle Scholar
Forsyth, D. W. 1975. The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal of the Royal Astronomical Society, 43, 103162.CrossRefGoogle Scholar
Forsyth, D. and Uyeda, S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International, 43(1), 163200.CrossRefGoogle Scholar
Forsyth, D. W. and Scheirer, D. S. 1998. Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science, 280(5367), 12151220.Google Scholar
Fortin, J., Schubnel, A. and Guéguen, Y. 2005. Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone. International Journal of Rock Mechanics and Mining Sciences, 42(7–8), 873889.CrossRefGoogle Scholar
Fortin, J., Guéguen, Y. and Schubnel, A. 2007. Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs . Journal of Geophysical Research: Solid Earth, 112(B8).CrossRefGoogle Scholar
Fouch, M. J. and Fischer, K. M. 1996. Mantle anisotropy beneath northwest Pacific subduction zones. Journal of Geophysical Research: Solid Earth, 101(B7), 1598716002.CrossRefGoogle Scholar
Fouch, M. J. and Rondenay, S. 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors, 158(24), 292320.CrossRefGoogle Scholar
Fouch, M. J., Fischer, K. M., Parmentier, E. M., Wysession, M. E, and Clarke, T. J. 2000. Shear wave splitting, continental keels, and patterns of mantle flow. Journal of Geophysical Research: Solid Earth, 105(B3), 62556275.CrossRefGoogle Scholar
French, S., Lekic, V. and Romanowicz, B. 2013. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science, 342(6155), 227230.CrossRefGoogle ScholarPubMed
French, S. W. and Romanowicz, B. A. 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophysical Journal International, 199(3), 13031327.CrossRefGoogle Scholar
French, S. W. and Romanowicz, B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567), 95.CrossRefGoogle ScholarPubMed
Frost, D. and McCammon, C. 2008. The redox state of Earth’s Mantle. Annual Review of Earth and Planetary Sciences, 36(04), 389420.CrossRefGoogle Scholar
Fukao, Y. 1984. Evidence from core-reflected shear waves for anisotropy in the Earth’s mantle. Nature, 309, 695698.CrossRefGoogle Scholar
Fukao, Y., Obayashi, M., Inoue, H. and Nenbai, M. 1992. Subducting slabs stagnate in the mantle transition zone. Journal of Geophysical Research, 97, 48094822.CrossRefGoogle Scholar
Fukao, Y. Nishida, K., Suda, N., Nawa, K. and Kobayashi, N. 2002. A theory of Earth’s background free oscillations. Journal of Geophysical Research, 107(B9), 2206.CrossRefGoogle Scholar
Gaboret, C. 2002. Dynamique du manteau terrestre, PhD Thesis, IPG Paris.Google Scholar
Gaboret, C., Forte, A.M. and Montagner, J.-P. 2003. The unique dynamics of the Pacific hemisphere mantle and its signature on seismic anisotropy. Earth and Planetary Science Letters, 208, 219233.CrossRefGoogle Scholar
Gaherty, J. B. and Jordan, T. H. 1995. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science, 268(5216), 14681471.CrossRefGoogle Scholar
Gaherty, J. B., Jordan, T. H. and Gee, L. S. 1996. Seismic structure of the upper mantle in a central Pacific corridor. Journal of Geophysical Research: Solid Earth, 101(B10), 2229122309.CrossRefGoogle Scholar
Gaherty, J. B., Kato, M. and Jordan, T. H. 1999. Seismological structure of the upper mantle: A regional comparison of seismic layering. Physics of the Earth and Planetary Interiors, 110(1), 2141.CrossRefGoogle Scholar
Gale, J. D. 1996. Empirical potential derivation for ionic materials. Philosophical Magazine B, 73(1), 319.CrossRefGoogle Scholar
Gale, J. D. 1997. GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629637.CrossRefGoogle Scholar
Garcia, R., Tkalčić, H. and Chevrot, S. 2006. A new global PKP data set to study Earth’s core and deep mantle. Physics of the Earth and Planetary Interiors, 159(1–2), 1531.CrossRefGoogle Scholar
Garnero, E. J. and Helmberger, D. V. 1996. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophysical Research Letters, 23(9), 977980.CrossRefGoogle Scholar
Garnero, E. J., Grand, S. P. and Helmberger, D. V. 1993. Low P-wave velocity at the base of the mantle. Geophysical Research Letters, 20(17), 18431846.CrossRefGoogle Scholar
Garnero, E. J. and Lay, T. 1997. Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. Journal of Geophysical Research, 102, 81218135.CrossRefGoogle Scholar
Gassmann, F. 1951. Elastic waves through a packing of spheres. Geophysics, 16(4), 673685.CrossRefGoogle Scholar
Geller, R. J. and Hara, T. 1993. Two efficient algorithms for iterative linearized inversion of seismic waveform data. Geophysical Journal International, 115(3), 699710.CrossRefGoogle Scholar
Gerst, A. and Savage, M. K. 2004. Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool. Science, 306(5701), 15431547.CrossRefGoogle ScholarPubMed
Giardini, D., Li, X.-D. and Woodhouse, J. H. 1987. Three-dimensional structure of the Earth from splitting in free-oscillation spectra. Nature, 325(6103), 405.CrossRefGoogle Scholar
Gibbs, J. W. 1901. Vector Analysis: A Text-book for the Use of Students of Mathematics and Physics, Founded Upon the Lectures of J. Willard Gibbs. Yale University Press.Google Scholar
Gilbert, F. 1971. Excitation of normal modes of the Earth by earthquake sources. Geophysical Journal of the Royal Astronomical Society, 22, 223226.CrossRefGoogle Scholar
Gilbert, F. and Backus, G. E. 1966. Propagator matrices in elastic wave and vibration problems. Geophysics, 31(2), 326332.CrossRefGoogle Scholar
Girardin, N. and Farra, V. 1998. Azimuthal anisotropy in the upper mantle from observations of P-to-S converted phases: application to southeast Australia. Geophysical Journal International, 133(3), 615629.CrossRefGoogle Scholar
Grand, S., Van der Hilst, R. and Widiyantoro, S. 1997. Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4), 17.Google Scholar
Grechka, V. and Kachanov, M. 2006. Effective elasticity of rocks with closely spaced and intersecting cracks. Geophysics, 71(3), D85D91.CrossRefGoogle Scholar
Green, G. 1828. An essay on the application of mathematical analysis to the theories of electricity and magnetism. Published by the author in Nottingham, UK. arXiv:0807.0088 [physics.hist-ph]Google Scholar
Griffin, W. L., O’Reilly, S. Y., Doyle, B. J. et al. 2004. Lithosphere mapping beneath the North American Plate. Lithos, 77(1–4), 873922.CrossRefGoogle Scholar
Griot, D.-A., Montagner, J.-P. and Tapponnier, P. 1998a. Confontration of mantle seismic anisotropy with two extreme models of strain, in Central Asia. Geophysical Research Letters, 25, 14471450.CrossRefGoogle Scholar
Griot, D.-A., Montagner, J.-P. and Tapponnier, P. 1998b. Phase velocity structure from Rayleigh and Love waves in Tibet and its neighboring regions. Journal of Geophysical Research, 103, 2121521232.CrossRefGoogle Scholar
Gripp, A. E. and Gordon, R. G. 2002. Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150(2), 321361.CrossRefGoogle Scholar
Gu, Y. J., Dziewonski, A. M., Su, W. and Ekström, G. 2001. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. Journal of Geophysical Research: Solid Earth, 106(B6), 1116911199.CrossRefGoogle Scholar
Gubbins, D. 1981. Rotation of the inner core. Journal of Geophysical Research: Solid Earth, 86(B12), 1169511699.CrossRefGoogle Scholar
Gubernatis, J. E. and Krumhansl, J. A. 1975. Macroscopic engineering properties of polycrystalline materials: Elastic properties. Journal of Applied Physics, 46(5), 18751883.CrossRefGoogle Scholar
Guéguen, Y. and Kachanov, M. 2011. Effective elastic properties of cracked rocks: An overview. Pages 73125 of: Mechanics of crustal rocks. Springer.CrossRefGoogle Scholar
Guéguen, Y. and Palciauskas, V. 1994. Introduction to the Physics of Rocks. Princeton University Press.Google Scholar
Guillot, L., Capdeville, Y. and Marigo, J.-J. 2010. 2-D non-periodic homogenization of the elastic wave equation: SH case. Geophysical Journal International, 182(3), 14381454.CrossRefGoogle Scholar
Gung, Y., Panning, M. and Romanowicz, B. 2003. Global anisotropy and the thickness of continents. Nature, 422(6933), 707.CrossRefGoogle ScholarPubMed
Gutenberg, B. 1931. Microseisms in North America. Bulletin of the Seismological Society of America, 21(1), 124.CrossRefGoogle Scholar
Hager, B. H. and O’Connell, R. J. 1979. Kinematic models of large-scale flow in the Earth’s mantle. Journal of Geophysical Research: Solid Earth, 84(B3), 10311048.CrossRefGoogle Scholar
Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. and Dziewonski, A. M. 1985. Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003), 541.CrossRefGoogle Scholar
Hahn, T., Shmueli, U. and Arthur, J. C. W. 1983. International Tables for Crystallography. Vol. 1. Reidel.Google Scholar
Hansen, L. N., Zhao, Y.-H., Zimmerman, M. E. and Kohlstedt, D. L. 2014. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth and Planetary Science Letters, 387, 157168.CrossRefGoogle Scholar
Hansen, L. N., Qi, C. and Warren, J. M. 2016. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere. Proceedings of the National Academy of Sciences, 113(38), 1050310506.CrossRefGoogle Scholar
Harkrider, D. G. and Anderson, D. L. 1962. Computation of surface wave dispersion for multilayered anisotropic media. Bulletin of the Seismological Society of America, 52(2), 321332.CrossRefGoogle Scholar
Harmon, N., Forsyth, D. W., Fischer, K. M. and Webb, S. C. 2004. Variations in shear-wave splitting in young Pacific seafloor. Geophysical Research Letters, 31(15).CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127140.CrossRefGoogle Scholar
Haskell, N. A. 1953. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1), 1734.CrossRefGoogle Scholar
Hasselmann, K. 1963. A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1(2), 177210.CrossRefGoogle Scholar
Haussühl, S and Siegert, H. 1969. Bestimmung des Elastizitatstensors trikliner Kristalle: Beispiel CuSO4.5H2O. Zeitschrift für Kristallographie û Crystalline Materials, 1969, 129(4), 142246.Google Scholar
Havlin, C., Holtzman, B. K. and Hopper, E. 2021. Inference of thermodynamic state in the asthenosphere from anelastic properties, with applications to North American upper mantle. Physics of the Earth and Planetary Interiors, 314, 106639.CrossRefGoogle Scholar
Haxby, W. F. and Weissel, J. K. 1986. Evidence for small-scale mantle convection from Seasat altimeter data. Journal of Geophysical Research: Solid Earth, 91(B3), 35073520.CrossRefGoogle Scholar
Hayn, M., Panet, I., Diament, M. et al. 2012. Wavelet-based directional analysis of the gravity field: evidence for large-scale undulations. Geophysical Journal International, 189(3), 14301456.CrossRefGoogle Scholar
Healy, D. 2009. Elastic field in 3D due to a spheroidal inclusion: MATLABTM code for Eshelby’s solution. Computers & Geosciences, 35(10), 21702173.CrossRefGoogle Scholar
Healy, D., Jones, R. R. and Holdsworth, R. E. 2006. Three-dimensional brittle shear fracturing by tensile crack interaction. Nature, 439(7072), 6467.CrossRefGoogle ScholarPubMed
Heintz, M., Debayle, E. and Vauchez, A. 2005. Upper mantle structure of the South American continent and neighboring oceans from surface wave tomography. Tectonophysics, 406(1–2), 115139.CrossRefGoogle Scholar
Helbig, Klaus. 1993. Longitudinal directions in media of arbitrary anisotropy. Geophysics, 58(5), 680691.CrossRefGoogle Scholar
Helbig, K. 1994. Foundations of Anisotropy for Exploration Physics. Handbook of Geo-physical Exploration. Section 1, Seismic Exploration. Pergamon Press.Google Scholar
Helbig, K. 1998. A formalism for the consistent description of non-linear elasticity of anisotropic media. Oil & Gas Science and Technology–revue de L’Institut Francais Du Petrole, 53(09), 693708.Google Scholar
Helbig, K. and Schoenberg, Michael. 1987. Anomalous polarization of elastic waves in transversely isotropic media. The Journal of the Acoustical Society of America, 81(5), 12351245.CrossRefGoogle Scholar
Hess, H. 1964. Seismic anisotropy in exploration seismics. Nature, 203, 629631.CrossRefGoogle Scholar
Hielscher, R., Mainprice, D. and Schaeben, H. 2010. Material behavior: Texture and anisotropy. Pages 9731003 of Handbook of Geomathematics. Springer.CrossRefGoogle Scholar
Hill, R. 1952. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349.CrossRefGoogle Scholar
Hill, R. 1965. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), 213222.CrossRefGoogle Scholar
Hirn, A. 1977. Anisotropy in the continental upper mantle: Possible evidence from explosion seismology. Geophysical Journal International, 49(1), 4958.CrossRefGoogle Scholar
Hirn, A., Jiang, M., Sapin, M. et al. 1995. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 375(6532), 571574.CrossRefGoogle Scholar
Hirth, G., Evans, R. L. and Chave, A. D. 2000. Comparison of continental and oceanic mantle electrical conductivity: Is the Archean lithosphere dry? Geochemistry, Geophysics, Geosystems, 1(12).CrossRefGoogle Scholar
Hobiger, M., Wegler, U., Shiomi, K. and Nakahara, H. 2012. Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan. Journal of Geophysical Research: Solid Earth, 117(B9).CrossRefGoogle Scholar
Holmes, A. 1931. XVIII. Radioactivity and earth movements. Transactions of the Geological Society of Glasgow, 18(3), 559606.CrossRefGoogle Scholar
Holtzman, B. K. and Kendall, J.-M. 2010. Organized melt, seismic anisotropy, and plate boundary lubrication. Geochemistry, Geophysics, Geosystems, 11(12).CrossRefGoogle Scholar
Holtzman, B. K., Kohlstedt, D. L., Zimmerman, M. E., Heidelbach, F., Hiraga, T. and Hustoft, J. 2003. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301(5637), 12271230.CrossRefGoogle ScholarPubMed
Honda, S. 1986. Strong anisotropic flow in a finely layered asthenosphere. Geophysical Research Letters, 13(13), 14541457.CrossRefGoogle Scholar
Hongsresawat, S., Panning, M. P., Russo, R. M. et al. 2015. US Array shear wave splitting shows seismic anisotropy from both lithosphere and asthenosphere. Geology, 43(8), 667670.CrossRefGoogle Scholar
Hornby, B. E., Schwartz, L. M. and Hudson, J. A. 1994. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59(10), 15701583.CrossRefGoogle Scholar
Horvàth, F., Dovenyi, R., Szalay, Á. and Royden, L. H. 1988. Subsidence, thermal, and maturation history of the Great Hungarian Plain: Chapter 26. AAPG, 45, 2748.Google Scholar
Houseman, G. and England, P. 1986. Finite strain calculations of continental deformation: 1. Method and general results for convergent zones. Journal of Geophysical Research: Solid Earth, 91(B3), 36513663.CrossRefGoogle Scholar
Hu, Y. and McMechan, G. A. 2009. Comparison of effective stiffness and compliance for characterizing cracked rocks. Geophysics, 74(2), D49D55.CrossRefGoogle Scholar
Hu, Y. and McMechan, G. A. 2010. Theoretical elastic stiffness tensor at high crack density. Journal of Seismic Exploration, 19(1), 4368.Google Scholar
Hu, Y., Wu, Z., Dera, P. K. and Bina, C. R. 2016. Thermodynamic and elastic properties of pyrope at high pressure and high temperature by first-principles calculations. Journal of Geophysical Research: Solid Earth, 121(9), 64626476.CrossRefGoogle Scholar
Hudson, J. A. 1980. Overall properties of a cracked solid. Pages 371384 of Mathematical Proceedings of the Cambridge Philosophical Society, Volume 88. Cambridge University Press.Google Scholar
Hudson, J. A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society, 64(1), 133150.CrossRefGoogle Scholar
Hudson, J. A. 1986. A higher order approximation to the wave propagation constants for a cracked solid. Geophysical Journal of the Royal Astronomical Society, 87(1), 265274.CrossRefGoogle Scholar
Hudson, J. A. and Crampin, S. 1991. Discussion on “A calculus for finely layered anisotropic media,” by Schoenberg, M. and Muir, F. (Geophysics, 54, B1, 589, 1989). Geophysics, 56, 572575.CrossRefGoogle Scholar
Igel, H., Schreiber, U., Flaws, A. et al. 2005. Rotational motions induced by the M8. 1 Tokachi-oki earthquake, September 25, 2003. Geophysical Research Letters, 32(8).CrossRefGoogle Scholar
Iitaka, T., Hirose, K., Kawamura, K. and Murakami, M. 2004. The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature, 430(6998), 442445.CrossRefGoogle ScholarPubMed
Iitaka, T., Hirose, K., Kawamura, K. and Murakami, M. 2004b. The elasticity of the MgSiO3 post-perovskite phase in the lowermost mantle. Nature, 430, 442445.CrossRefGoogle ScholarPubMed
Irving, J. C. E and Deuss, A. 2011. Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical Research: Solid Earth, 116(B4).CrossRefGoogle Scholar
Isaak, D. G. 1992. High-temperature elasticity of iron-bearing olivines. Journal of Geo-physical Research: Solid Earth, 97(B2), 18711885.CrossRefGoogle Scholar
Ishii, M. and Dziewoński, A. M. 2003. Distinct seismic anisotropy at the centre of the Earth. Physics of the Earth and Planetary Interiors, 140(1–3), 203217.CrossRefGoogle Scholar
Ishii, M., Tromp, J., Dziewoński, A. M. and Ekström, G. 2002. Joint inversion of normal mode and body wave data for inner core anisotropy 1. Laterally homogeneous anisotropy. Journal of Geophysical Research: Solid Earth, 107(B12).Google Scholar
Ismaıl, W. B. and Mainprice, D. 1998. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296(1–2), 145157.CrossRefGoogle Scholar
Ivankina, T. I., Zel, I. Y., Lokajicek, T. et al. 2017. Elastic anisotropy of layered rocks: Ultrasonic measurements of plagioclase–biotite–muscovite (sillimanite) gneiss versus texture-based theoretical predictions (effective media modeling). Tectonophysics, 712 –713, 8294.CrossRefGoogle Scholar
Jackson, I., Fitz Gerald, J. D., Faul, U. H. and Tan, B. H. 2002. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal of Geophysical Research: Solid Earth, 107(B12), ECV 5–1–ECV 516.CrossRefGoogle Scholar
Jakobsen, M., Hudson, J. A. and Johansen, T. A. 2003. T-matrix approach to shale acoustics. Geophysical Journal International, 154(2), 533558.CrossRefGoogle Scholar
Jaupart, C., Mareschal, J.-C., Guillou-Frottier, L. and Davaille, A. 1998. Heat flow and thickness of the lithosphere in the Canadian Shield. Journal of Geophysical Research: Solid Earth, 103(B7), 1526915286.CrossRefGoogle Scholar
Jeanloz, R. and Wenk, H.-R. 1988. Convection and anisotropy of the inner core. Geophysical Research Letters, 15(1), 7275.CrossRefGoogle Scholar
Jech, J. and Pšenčik, I. 1989. First-order perturbation method for anisotropic media. Geophysical Journal International, 99(2), 369376.CrossRefGoogle Scholar
Ji, S., Wang, Q., Marcotte, D., Salisbury, M. H. and Xu, Z. 2007. P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. Journal of Geophysical Research: Solid Earth, 112(B9).CrossRefGoogle Scholar
Ji, S., Shao, T., Michibayashi, K. et al. 2015. Magnitude and symmetry of seismic anisotropy in mica-and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 120(9), 64046430.CrossRefGoogle Scholar
Jiang, F., Gwanmesia, G. D., Dyuzheva, T. I. and Duffy, T. S. 2009. Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Physics of the Earth and Planetary Interiors, 172(3–4), 235240.CrossRefGoogle Scholar
Johnson, P. and Rasolofosaon, P. 1996. Nonlinear elasticity and stress-induced anisotropy in rock. Journal of Geophysical Research, 101(02), 31133124.CrossRefGoogle Scholar
Jordan, T. H. 1975. The continental tectal inclusion. Reviews of Geophysics, 13(3), 112.CrossRefGoogle Scholar
Jordan, T. H. 1978a. A procedure for estimating lateral variations from low frequency eigenspectra data. Geophysical Journal of the Royal Astronomical Society, 52, 441455.CrossRefGoogle Scholar
Jordan, T. H. 1978b. Composition and development of the continental tectosphere. Nature, 274(5671), 544.CrossRefGoogle Scholar
Jordan, T. H. 1981. Global tectonic regionalization for seismological data analysis. Bulletin of the Seismological Society of America, 71(4), 11311141.Google Scholar
Jordan, T. H. 2015. An effective medium theory for three-dimensional elastic hetero-geneities. Geophysical Journal International, 203(2), 13431354.CrossRefGoogle Scholar
Jordan, T. H., Puster, P., Glatzmaier, G. A. and Tackley, P. J. 1993. Comparisons between seismic Earth structures and mantle flow models based on radial correlation functions. Science, 261(5127), 14271431.CrossRefGoogle ScholarPubMed
Jousset, P., Reinsch, T., Ryberg, T. et al. 2018. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509.CrossRefGoogle ScholarPubMed
Julian, B. R., Davies, D. and Sheppard, R. M. 1972. PKJKP. Nature, 235(5337), 317.CrossRefGoogle Scholar
Jung, H. Y. and Karato, S.-I. 2001. Water-induced fabric transitions in olivine. Science, 293, 14601462.CrossRefGoogle ScholarPubMed
Kachanov, M. 1980. Continuum model of medium with cracks. Journal of the Engineering Mechanics Division, 106(5), 10391051.CrossRefGoogle Scholar
Kachanov, M. L. 1982. A microcrack model of rock inelasticity part I: Frictional sliding on microcracks. Mechanics of Materials, 1(1), 1927.CrossRefGoogle Scholar
Kaminski, E. and Ribe, N. M. 2001. A kinematic model for recrystallization and texture development in olivine polycrystals. Earth and Planetary Science Letters, 189(3–4), 253267.CrossRefGoogle Scholar
Kaminski, E. and Ribe, N. 2002. Time scales for the evolution of seismic anisotropy in mantle flow. Geochemistry, Geophysics, Geosystems, 3, 2001GC000222.CrossRefGoogle Scholar
Kaminski, E., Ribe, N. M. and Browaeys, J. T. 2004. D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophysical Journal International, 158(2), 744752.CrossRefGoogle Scholar
Kanamori, H. and Anderson, D. L. 1977. Importance of physical dispersion in surface wave and free oscillation problems: Review. Reviews of Geophysics and Space Physics, 15, 105112.CrossRefGoogle Scholar
Karato, S.-I. 1999. Seismic anisotropy of the Earth’s inner core resulting from flow induced by Maxwell stresses. Nature, 402(6764), 871.CrossRefGoogle Scholar
Karato, S.-I. 1992. On the Lehmann discontinuity. Geophysical Research Letters, 19(22), 22552258.CrossRefGoogle Scholar
Karato, S. 1995. Effects of water on the seismic wave velocities in the upper mantle. Proceedings of the Japan Academy, 71, 6266.Google Scholar
Karato, S.-I. 1998. Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection. Pure and Applied Geophysics, 151, 565587.CrossRefGoogle Scholar
Karato, S. I. 1989. Grain growth kinetics in olivine aggregates. Tectonophysics, 168(4), 255273.CrossRefGoogle Scholar
Karato, S.-I. 2008. Deformation of Earth Materials: An introduction to the rheology of Solid Earth. Cambridge University Press.CrossRefGoogle Scholar
Karato, S.-I. 2012. On the origin of the asthenosphere. Earth and Planetary Science Letters, 321, 95103.CrossRefGoogle Scholar
Karato, S.-I. and Jung, H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3), 193207.CrossRefGoogle Scholar
Karato, S.-I. and Spetzler, H. A. 1990. Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Reviews of Geophysics, 28(4), 399421.CrossRefGoogle Scholar
Karato, S.-I., Jung, H. Katayama, I., and Skemer, P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 5995.CrossRefGoogle Scholar
Karki, B. B., Wentzcovitch, R. M., De Gironcoli, S. and Baroni, S. 2000. High-pressure lattice dynamics and thermoelasticity of MgO. Physical Review B, 61(13), 8793.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L. and Wentzcovitch, R. M. 2001. High-pressure elastic properties of major materials of Earth’s mantle from first principles. Reviews of Geophysics, 39(4), 507534.CrossRefGoogle Scholar
Kawakatsu, H. 2016a. A new fifth parameter for transverse isotropy. Geophysical Journal International, 204(1), 682685.CrossRefGoogle Scholar
Kawakatsu, H. 2016b. A new fifth parameter for transverse isotropy II: Partial derivatives. Geophysical Journal International, 206(1), 360367.CrossRefGoogle Scholar
Kawakatsu, H. 2018. A new fifth parameter for transverse isotropy III: Reflection and transmission coefficients. Geophysical Journal International, 213(1), 426433.CrossRefGoogle Scholar
Kawakatsu, H. and Montagner, J.-P. 2008. Time reversal seismic source imaging and moment–tensor inversion. Geophysical Journal International, 175, 686688.CrossRefGoogle Scholar
Kawakatsu, H. and Utada, H. 2017. Seismic and electrical signatures of the lithosphere– asthenosphere system of the normal oceanic mantle. Annual Review of Earth and Planetary Sciences, 45(1).CrossRefGoogle Scholar
Kawakatsu, H. and Watada, S. 2007. Seismic evidence for deep-water transportation in the mantle. Science, 316(5830), 14681471.CrossRefGoogle ScholarPubMed
Kawakatsu, H., Kumar, P., Takei, Y., et al. 2009. Seismic evidence for sharp lithosphere– asthenosphere boundaries of oceanic plates. Science, 324, 499502.CrossRefGoogle ScholarPubMed
Kawakatsu, H., Montagner, J.-P. and Song, T.-R. A. 2015. On DLA’s η. Geological Society of America Special Papers, 514, SPE51403.Google Scholar
Kawasaki, I. and Tanimoto, T. 1981. Radiation patterns of body waves due to the seismic dislocation occurring in an anisotropic source medium. Bulletin of the Seismological Society of America, 71(1), 3750.CrossRefGoogle Scholar
Kawazoe, T., Ohuchi, T., Nishihara, Y. et al. 2013. Seismic anisotropy in the mantle transition zone induced by shear deformation of wadsleyite. Physics of the Earth and Planetary Interiors, 216, 9198.CrossRefGoogle Scholar
Kelvin, L. 1856. On stresses and strains (XXI. Elements of a mathematical theory of elasticity, Part 1). Philosophical Transactions of The Royal Society, 166, 481489.Google Scholar
Kendall, J.-M. 2000. Seismic anisotropy in the boundary layers of the mantle. Pages 133159 in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union.Google Scholar
Kendall, J.-M. and Silver, P. G. 1996. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature, 381(6581), 409412.CrossRefGoogle Scholar
Kendall, J.-M., and Silver, P. G. 1998. Investigating causes of D″ anisotropy. In The Core-Mantle Boundary Region, M. Gurnis, M. E. Wysession, E. Knittle, B. A. Buffett (eds.). American Geophysical Union, pp. 97118.Google Scholar
Kendall, J.-M., Pilidou, S., Keir, D. et al. 2006. Mantle upwellings, melt migration and the rifting of Africa: Insights from seismic anisotropy. Geological Society, London, Special Publications, 259(1), 5572.Google Scholar
Kennett, B. L. N. and Engdahl, E. R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105, 429465.CrossRefGoogle Scholar
Kennett, B. L. N., Engdahl, E. R. and Buland, R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108124.CrossRefGoogle Scholar
Kern, H. 1982. Elastic-wave velocity in crustal and mantle rocks at high pressure and temperature: the role of the high–low quartz transition and of dehydration reactions. Physics of the Earth and Planetary Interiors, 29(1), 1223. (Special Issue: Properties of Materials at High Pressures and High Temperatures.)CrossRefGoogle Scholar
Kern, H. 1990. Laboratory seismic measurements: An aid in the interpretation of seismic field data. Terra Nova, 2(6), 617628.CrossRefGoogle Scholar
Kern, H. and Wenk, H. R. 1990. Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa mylonite zone, California. Journal of Geophysical Research: Solid Earth, 95(B7), 1121311223.CrossRefGoogle Scholar
Khatkevich, A. G. 1963. Acoustic axes in crystals. Soviet Physics Crystallography, 7, 601604.Google Scholar
King, S. D. and Ritsema, J. 2000. African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons. Science, 290, 11371140.CrossRefGoogle ScholarPubMed
Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. et al. 1983. Optimization by simulated annealing. Science, 220(4598), 671680.CrossRefGoogle ScholarPubMed
Kirkwood, S. C. and Crampin, S. 1981. Surface-wave propagation in an ocean basin with an anisotropic upper mantle: Observations of polarization anomalies. Geophysical Journal International, 64(2), 487497.CrossRefGoogle Scholar
Knittle, E. 1995. Static compression measurements of equations of state. Mineral Physics and Crystallography: A Handbook of Physical Constants, 2, 98142.Google Scholar
Knopoff, L. 1964. Solid-Earth geophysics. Quarterly Reviews of Geophysics, 2, 625660.CrossRefGoogle Scholar
Kobayashi, N. and Nishida, K. 1998. Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature, 395, 357360.CrossRefGoogle Scholar
Kocks, U. F., Tomé, C. N. and Wenk, H.-R. 2000. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge University Press.Google Scholar
Kohn, W. and Sham, L. J. 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140(Nov), A1133–A1138.CrossRefGoogle Scholar
Kolodner, I. I. 1966. Existence of longitudinal waves in anisotropic media. The Journal of the Acoustical Society of America, 40(3), 730731.CrossRefGoogle Scholar
Komatitsch, D. 1997. Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène. PhD thesis, Institut de Physique du Globe de Paris.Google Scholar
Komatitsch, D. and Tromp, J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139, 806822.CrossRefGoogle Scholar
Komatitsch, D. and Vilotte, J.-P. 1998. The spectral element method: an efficient tool to simulate the seismic response of 3D and 3D geological structures. Bulletin of the Seismological Society of America, 88, 369392.CrossRefGoogle Scholar
Komatitsch, D., Barnes, C. and Tromp, J. 2000. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 65(4), 12511260.CrossRefGoogle Scholar
Komatitsch, D., Ritsema, J. and Tromp, J. 2002. The spectral-element simulations, Beowulf Computing, and Global Seismology. Science, 298, 17371742.CrossRefGoogle ScholarPubMed
Komatitsch, D., Vinnik, L. P. and Chevrot, S. 2010. SHdiff–SVdiff splitting in an isotropic Earth. Journal of Geophysical Research: Solid Earth, 115(B7).CrossRefGoogle Scholar
Korringa, J. 1973. Theory of elastic constants of heterogeneous media. Journal of Mathematical Physics, 14(4), 509513.CrossRefGoogle Scholar
Kreemer, C. 2009. Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. Journal of Geophysical Research: Solid Earth, 114(B10).CrossRefGoogle Scholar
Kröner, E. 1967. Elasticity theory of materials with long range cohesive forces. Interna-tional Journal of Solids and Structures, 3(5), 731742.Google Scholar
Kröner, E. 1977. Bounds for effective elastic moduli of disordered materials. Journal of the Mechanics and Physics of Solids, 25(2), 137155.Google Scholar
Kube, C. M. 2016. Elastic anisotropy of crystals. AIP Advances, 6(9), 095209.CrossRefGoogle Scholar
Kuge, K. and Kawakatsu, H. 1993. Significance of non-double couple components of deep and intermediate-depth earthquakes: implications from moment tensor inversions of long-period seismic waves. Physics of the Earth and Planetary Interiors, 75(4), 243266.CrossRefGoogle Scholar
Kumar, P., Yuan, X., Kumar, M. R. et al. 2007. The rapid drift of the Indian tectonic plate. Nature, 449(7164), 894.CrossRefGoogle ScholarPubMed
ppers, H. and Siegert, H. 1970. The elastic constants of the triclinic crystals, ammonium and potassium tetroxalate dihydrate. Acta Crystallographica Section A, 26(4), 401405.Google Scholar
Labrosse, S., Hernlund, J. W. and Coltice, N. 2007. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450(7171), 866.CrossRefGoogle ScholarPubMed
Lailly, P. 1984. Migration methods: Partial but efficient solutions to the seismic inverse problem. Inverse Problems of Acoustic and Elastic Waves. Defense Technical Information Center 13871403.Google Scholar
Lamé, G. 1852. Leçons sur la théorie mathématique de l’élasticité des corps solides Bachelier.Google Scholar
Langston, C. A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), 47494762.CrossRefGoogle Scholar
Larmat, C., Montagner, J.-P., Fink, M. et al. 2006. Time-reversal imaging of seismic sources and application to the great Sumatra earthquake. Geophysical Research Letters, 33(19).CrossRefGoogle Scholar
Lay, T. 2015. Lower mantle and D″ layer. Pages. 683723. of Treatise on Geophysics, 2nd ed. Elsevier.CrossRefGoogle Scholar
Lay, T. and Helmberger, D. V. 1983. A lower mantle S-wave triplication and the shear velocity structure of D? Geophysical Journal International, 75(3), 799837.CrossRefGoogle Scholar
Lay, T. and Young, C. J. 1991. Analysis of seismic SV waves in the core’s penumbra. Geophysical Research Letters, 18(8), 13731376.CrossRefGoogle Scholar
Lay, T., Williams, Q. and Garnero, E. J. 1998. The core–mantle boundary layer and deep Earth dynamics. Nature, 392(6675), 461468.CrossRefGoogle Scholar
Lebensohn, R. A., and Tomé, C. N. 1993. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica et Materialia, 41(9), 26112624.CrossRefGoogle Scholar
Lebensohn, R. A., Zecevic, M., Knezevic, M. and McCabe, Rodney J. 2016. Average intra-granular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach. Acta Materialia, 104, 228236.CrossRefGoogle Scholar
Lee, W. H. K., Celebi, M., Todorovska, M. I. and Igel, H. 2009. Introduction to the special issue on rotational seismology and engineering applications. Bulletin of the Seismological Society of America, 99(2B), 945957.CrossRefGoogle Scholar
Lehmann, I. 1936. P′ Publications du Bureau Central Scientifiques 14, 87115.Google Scholar
Lei, M., Ledbetter, H. and Xie, Y. 1994. Elastic constants of a material with orthorhombic symmetry: An alternative measurement approach. Journal of Applied Physics, 76(5), 27382741.CrossRefGoogle Scholar
Lekić, V. and Romanowicz, B. 2011a. Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophysical Journal International, 185(2), 799831.CrossRefGoogle Scholar
Lekic, V. and Romanowicz, B. 2011b. Tectonic regionalization without a priori information: A cluster analysis of upper mantle tomography. Earth and Planetary Science Letters, 308(1–2), 151160.CrossRefGoogle Scholar
Lekić, V., Matas, J., Panning, M. and Romanowicz, B. 2009. Measurement and implications of frequency dependence of attenuation. Earth and Planetary Science Letters, 282(1–4), 285293.CrossRefGoogle Scholar
Lerch, F. J., Klosko, S. M., Wagner, C. A. and Patel, G. B. 1985. On the accuracy of recent Goddard gravity models. Journal of Geophysical Research: Solid Earth, 90(B11), 93129334.CrossRefGoogle Scholar
Lev, E. and Hager, B. H. 2008. Rayleigh–Taylor instabilities with anisotropic lithospheric viscosity. Geophysical Journal International, 173(3), 806814.CrossRefGoogle Scholar
Lévêque, J.-J. and Cara, M. 1983. Long-period Love wave overtone data in North America and the Pacific Ocean: New evidence for upper mantle anisotropy. Physics of the Earth and Planetary Interiors, 33(3), 164179.CrossRefGoogle Scholar
Levin, V. and Park, J. 1998. Quasi-Love phases between Tonga and Hawaii: Observations, simulations, and explanations. Journal of Geophysical Research: Solid Earth, 103(B10), 2432124331.CrossRefGoogle Scholar
Levshin, A. and Ratnikova, L. 1984. Apparent anisotropy in inhomogeneous media. Geophysical Journal International, 76(1), 6569.CrossRefGoogle Scholar
Levshin, A. L., Pisarenko, V. F. and Pogrebinsky, G. A. 1972. Frequency–time analysis of oscillations. Annales de Geophysique, 28(2), 211.Google Scholar
Levshin, A. L., Ritzwoller, M. H. and Ratnikova, L. I. 1994. The nature and cause of polarization anomalies of surface waves crossing northern and central Eurasia. Geophysical Journal International, 117(3), 577590.CrossRefGoogle Scholar
Li, J., Zheng, Y., Thomsen, L., Lapen, T. J. and Fang, X. 2018a. Deep earthquakes in subducting slabs hosted in highly anisotropic rock fabric. Nature Geoscience, 11(9), 696.CrossRefGoogle Scholar
Li, X.-D. and Romanowicz, B. 1995. Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophysical Journal International, 121(3), 695709.CrossRefGoogle Scholar
Li, X.D. and Romanowicz, B. 1996. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. Journal of Geophysical Research, 101, 22, 24522, 273.CrossRefGoogle Scholar
Li, X.-D. and Tanimoto, T. 1993. Waveforms of long-period body waves in slightly aspherical Earth model. Geophysical Journal International, 112, 92102.CrossRefGoogle Scholar
Li, Y., Vočadlo, L. and Brodholt, J. P. 2018b. The elastic properties of HCP-Fe alloys under the conditions of the Earth’s inner core. Earth and Planetary Science Letters, 493, 118127.CrossRefGoogle Scholar
Lin, F.-C. and Ritzwoller, M. H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophysical Journal International, 186(3), 11041120.CrossRefGoogle Scholar
Lin, P.-Y. P., Gaherty, J. B., Jin, G. et al. 2016. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature, 535(7613), 538541.CrossRefGoogle ScholarPubMed
Lindsey, N. J. and Martin, E. R. 2021. Fiber-optic seismology. Annual Review of Earth and Planetary Sciences, 49, 309336.CrossRefGoogle Scholar
Liu, H.-P., Anderson, D. L. and Kanamori, H. 1976. Velocity dispersion due to anelasticity: Implications for seismology and mantle composition. Geophysical Journal International, 47(1), 4158.CrossRefGoogle Scholar
Liu, Q. Y., Van Der Hilst, R. D., Li, Y. et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5), 361.CrossRefGoogle Scholar
Liu, X. and Zhao, D. 2017. P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan. Geophysical Journal International, 210(3), 14101431.CrossRefGoogle Scholar
Lloyd, G. E. and Ferguson, C. C. 1986. A spherical electron-channelling pattern map for use in quartz petrofabric analysis. Journal of Structural Geology, 8(5), 517526.CrossRefGoogle Scholar
Lobkis, O. I. and Weaver, R. L. 2001. On the emergence of the Green’s function in the correlations of a diffuse field. The Journal of the Acoustical Society of America, 110(6), 30113017.CrossRefGoogle Scholar
Lognonné, P. 1991. Normal modes and seismograms in an anelastic rotating Earth. Journal of Geophysical Research, 96, 20,30920,319.CrossRefGoogle Scholar
Lognonné, P. and Romanowicz, B. 1990. Modelling of coupled normal modes of the Earth: The spectral method. Geophysical Journal International, 102, 365395.CrossRefGoogle Scholar
Lognonné, P. and Clévédé, E. 2002. 10 Normal modes of the Earth and planets. International Geophysics, 81, 125I.CrossRefGoogle Scholar
Long, M. D. and Becker, T. W. 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, 341354.CrossRefGoogle Scholar
Long, M. D. and Silver, P. G. 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319(5861), 315318.CrossRefGoogle ScholarPubMed
Long, M. D. and Silver, P. G. 2009. Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics. Journal of Geophysical Research: Solid Earth, 114(B10).CrossRefGoogle Scholar
Long, M. D. and van der Hilst, R. D. 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Physics of the Earth and Planetary Interiors, 151(3–4), 206222.CrossRefGoogle Scholar
Long, M. D., Jackson, K. G. and McNamara, J. F. 2016. SKS splitting beneath Transportable Array stations in eastern North America and the signature of past lithospheric deformation. Geochemistry, Geophysics, Geosystems, 17(1), 215.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1950. A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(857), 135.Google Scholar
Love, A. E. H. 1911. Some Problems of Geodynamics: Being an Essay to which the Adams Prize in the University of Cambridge was Adjudged in 1911. University of Cambridge. Love, A. E. H. 1927. A Treatise on the Mathematical Theory of Elasticity. Dover Publications.Google Scholar
Lynner, C. and Long, M. D. 2014. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophysical Research Letters, 41(10), 34473454.CrossRefGoogle Scholar
Lythgoe, K. H., Deuss, A., Rudge, J. F. and Neufeld, J. A. 2014. Earth’s inner core: Innermost inner core or hemispherical variations? Earth and Planetary Science Letters, 385, 181189.CrossRefGoogle Scholar
Mainprice, D. 1990. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Computers & Geosciences, 16(3), 385393.CrossRefGoogle Scholar
Mainprice, D. 1997. Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges. Tectonophysics, 279(1–4), 161179.Google Scholar
Mainprice, D. 2000. The estimation of seismic properties of rocks with heterogeneous microstructures using a local cluster model: Preliminary results. Physics and Chemistry of the Earth Part A–Solid Earth and Geodesy, 25(2), 155161.CrossRefGoogle Scholar
Mainprice, D. 2007. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. Pages 437491 of Treatise on Geophysics, Elseivier.CrossRefGoogle Scholar
Mainprice, D. 2015. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. Treatise on Geophysics, 2nd ed. Elsevier.Google Scholar
Mainprice, D. and Humbert, M. 1994. Methods of calculating petrophysical properties from lattice preferred orientation data. Surveys in Geophysics, 15(5), 575592.CrossRefGoogle Scholar
Mainprice, D., and Silver, P. G. 1993. Interpretation of SKS-waves using samples from the subcontinental lithosphere. Physics of the Earth and Planetary Interiors, 78(3–4), 257280.CrossRefGoogle Scholar
Mainprice, D., Barruol, G. and Ismaïl, W. B. 2000. The seismic anisotropy of the Earth’s mantle: From single crystal to polycrystal. Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, 237264.Google Scholar
Mainprice, D., Tommasi, A., Couvy, H., Cordier, P. and Frost, D. J. 2005. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature, 433(7027), 731.Google Scholar
Mainprice, D., Le Page, Y., Rodgers, J. and Jouanna, P. 2008a. Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure. Earth and Planetary Science Letters, 274(3–4), 327338.Google Scholar
Mainprice, D., Tommasi, A., Ferre, D., Carrez, P. and Cordier, P. 2008b. Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth and Planetary Science Letters, 271(1–4), 135144.Google Scholar
Mäkinen, A. M. and Deuss, A. 2011. Global seismic body-wave observations of temporal variations in the Earth’s inner core, and implications for its differential rotation. Geophysical Journal International, 187(1), 355370.CrossRefGoogle Scholar
Mao, Z., Fan, D., Lin, J.-Y. et al. 2015. Elasticity of single-crystal olivine at high pressures and temperatures. Earth and Planetary Science Letters, 426, 204215.CrossRefGoogle Scholar
Marone, F. and Romanowicz, B. 2007a. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature, 447(7141), 198201.Google Scholar
Marone, F. and Romanowicz, B. 2007b. Non-linear crustal corrections in high-resolution regional waveform seismic tomography. Geophysical Journal International, 170(1), 460467.CrossRefGoogle Scholar
Marquering, H., Dahlen, F. A. and Nolet, G. 1999. Three-dimensional sensitivity kernels for finite-frequency traveltimes: The banana-doughnut paradox. Geophysical Journal International, 137(3), 805815.CrossRefGoogle Scholar
Martin, R. M. 2004. Electronic Structure Basic Theory and Practical Methods. Cambridge University Press.CrossRefGoogle Scholar
Martin-Short, R., Allen, R. M., Bastow, I. D., Totten, E. and Richards, M. A. 2015. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system. Nature Geoscience, 8(12), 965968.CrossRefGoogle Scholar
Mason, T. A. and Adams, B. L. 1999. Use of microstructural statistics in predicting polycrystalline material properties. Metallurgical and Materials Transactions A, 30(4), 969979.CrossRefGoogle Scholar
Mason, W. P. 1939. A dynamic measurement of the elastic, electric and piezoelectric constants of rochelle salt. Physical Review, 55(8), 775.CrossRefGoogle Scholar
Masson, Y. and Romanowicz, B. 2017. Box tomography: Localized imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, 211(1), 141163.CrossRefGoogle Scholar
Masters, G. and Richards-Dinger, K. 1998. On the efficient calculation of ordinary and generalized spherical harmonics. Geophysical Journal International, 135(1), 307309.CrossRefGoogle Scholar
Masters, G., Jordan, T. H., Silver, P. G. and Gilbert, F. 1982. Aspherical Earth structure from fundamental spheroidal-mode data. Nature, 298(5875), 609613.CrossRefGoogle Scholar
Matsui, M. and Busing, W. R. 1984. Calculation of the elastic constants and high-pressure properties of diopside, CaMgSi2O6. American Mineralogist, 69(11–12), 10901095.Google Scholar
Matthies, S. 2012. GEO-MIX-SELF calculations of the elastic properties of a textured graphite sample at different hydrostatic pressures. Journal of Applied Crystallography, 45(1), 116.CrossRefGoogle Scholar
Matthies, S. and Humbert, M. 1993. The realization of the concept of a geometric mean for calculating physical constants of polycrystalline materials. Physica status solidi (b), 177(2), K47K50.CrossRefGoogle Scholar
Matthies, S. and Humbert, M. 1995. On the principle of a geometric mean of even-rank symmetric tensors for textured polycrystals. Journal of Applied Crystallography, 28(3), 254266.CrossRefGoogle Scholar
Matzel, E., Sen, M. K. and Grand, S. P. 1996. Evidence for anisotropy in the deep mantle beneath Alaska. Geophysical Research Letters, 23(18), 24172420.CrossRefGoogle Scholar
Maupin, V. and Park, J. 2015. Theory and observations: Wave propagation in anisotropic media. Chapter 9 of Treatise of Geophysics, Volume 1. Elsevier.Google Scholar
Maupin, V. 1994. On the possibility of anisotropy in the D″ layer as inferred from the polarization of diffracted S waves. Physics of the Earth and Planetary Interiors, 87(1), 132.CrossRefGoogle Scholar
Maupin, V. 2004. Comment on ‘The azimuthal dependence of surface wave polarization in a slightly anisotropic medium’ by T. Tanimoto. Geophysical Journal International, 159(1), 365368.CrossRefGoogle Scholar
Maupin, V, Garnero, E. J., Lay, T. and Fouch, M. J. 2005. Azimuthal anisotropy in the D″ layer beneath the Caribbean. Journal of Geophysical Research: Solid Earth, 110(B8).CrossRefGoogle Scholar
Maurya, S. 2016. Deep Structure of the Indian Continent. PhD Thesis, Institut de Physique du Globe de Paris.Google Scholar
Maurya, S., Montagner, J.-P, Kumar, M. R. et al. 2016. Imaging the lithospheric structure beneath the Indian continent. Journal of Geophysical Research: Solid Earth, 121(10), 74507468.CrossRefGoogle Scholar
Mavko, G. M. 1980. Velocity and attenuation in partially molten rocks. Journal of Geophysical Research: Solid Earth, 85(B10), 51735189.CrossRefGoogle Scholar
Mazzullo, A., Stutzmann, E., Montagner, J. P. et al. 2016. Anisotropic tomography around La Réunion Island from Rayleigh waves. In AGU Fall Meeting Abstracts.CrossRefGoogle Scholar
McCammon, C. 1997. Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387(6634), 694.CrossRefGoogle Scholar
McEvilly, T. V. 1964. Central U.S. crust: Upper mantle structure from Love and Rayleigh wave phase velocity inversion. Bulletin of the Seismological Society of America, 54, 19972016.CrossRefGoogle Scholar
McKenzie, D. 1979. Finite deformation during fluid flow. Geophysical Journal International, 58(3), 689715.CrossRefGoogle Scholar
McKenzie, D., Jackson, J. and Priestley, K. 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3), 337349.CrossRefGoogle Scholar
McLaughlin, R. 1977. A study of the differential scheme for composite materials. International Journal of Engineering Science, 15(4), 237244.CrossRefGoogle Scholar
McNamara, A. K., Garnero, E. J. and Rost, S. 2010. Tracking deep mantle reservoirs with ultra-low velocity zones. Earth and Planetary Science Letters, 299(1–2), 19.CrossRefGoogle Scholar
Meade, C., Silver, P. G. and Kaneshima, S. 1995. Laboratory and seismological observations of lower mantle anisotropy. Geophysical Research Letters, 22, 12931296.CrossRefGoogle Scholar
Mehrabadi, M. M. and Cowin, S. C. 1990. Eigentensors of linear anisotropic elastic materials. The Quarterly Journal of Mechanics and Applied Mathematics, 43(1), 1541.CrossRefGoogle Scholar
Meier, U., Curtis, A. and Trampert, J. 2007. Global crustal thickness from neural network inversion of surface wave data. Geophysical Journal International, 169(2), 706722.CrossRefGoogle Scholar
Melia, P. JU. and Carlson, R. L. 1984. An experimental test of P-wave anisotropy in stratified media. Geophysics, 49(4), 374378.CrossRefGoogle Scholar
Menéndez, B., Zhu, W. and Wong, T.-F. 1996. Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. Journal of Structural Geology, 18(1), 116.CrossRefGoogle Scholar
Mensch, T. and Rasolofosaon, P. 1997. Elastic-wave velocities in anisotropic media of arbitrary symmetry: Generalization of Thomsen’s parameters ε, δ and γ. Geophysical Journal International, 128(1), 4364.CrossRefGoogle Scholar
Merkel, S. 2010. Radial diffraction in the diamond anvil cell: Methods and applications. Pages 111122 of High-Pressure Crystallography. Springer.CrossRefGoogle Scholar
Metropolis, N. and Ulam, S. 1949. The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335341.CrossRefGoogle ScholarPubMed
Michibayashi, K., Mainprice, D., Fujii, A. et al. 2016. Natural olivine crystal-fabrics in the western Pacific convergence region: A new method to identify fabric type. Earth and Planetary Science Letters, 443, 7080.CrossRefGoogle Scholar
Militzer, B., Wenk, H.-R., Stackhouse, S. and Stixrude, L. 2011. First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy. American Mineralogist, 96, 125137.CrossRefGoogle Scholar
Miller, V. and Savage, M. 2001. Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu. Science, 293(5538), 22312233.Google Scholar
Miller, W. H. 1839. A Treatise on Crystallography. For J. & JJ Deighton.Google Scholar
Minster, J. B. and Jordan, T. H. 1978. Present-day plate motion. Journal of Geophysical Research, 83, 53315354.CrossRefGoogle Scholar
Mises, R von. 1928. Mechanik der plastischen Formänderung von Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik, 8(3), 161185.CrossRefGoogle Scholar
Mitchell, B. J. and Yu, G.-K. 1980. Surface wave dispersion, regionalized velocity models, and anisotropy of the Pacific crust and upper mantle. Geophysical Journal International, 63(2), 497514.CrossRefGoogle Scholar
Miyazaki, T., Sueyoshi, K. and Hiraga, T. 2013. Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature, 502(7471), 321.Google Scholar
Moakher, M. and Norris, A. N. 2006. The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. Journal of Elasticity, 85(3), 215263.CrossRefGoogle Scholar
Mochizuki, E. 1986. The free oscillations of an anisotropic and heterogeneous Earth. Geophysical Journal International, 86(1), 167176.CrossRefGoogle Scholar
Molinari, A., Canova, G.R. and Ahzi, S. 1987. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica, 35(12), 29832994.CrossRefGoogle Scholar
Monnereau, M., Calvet, M., Margerin, L. and Souriau, A. 2010. Lopsided growth of Earth’s inner core. Science, 328(5981), 10141017.CrossRefGoogle ScholarPubMed
Montagner, J.-P. 1985. Seismic anisotropy of the Pacific Ocean inferred from long-period surface waves dispersion. Physics of the Earth and Planetary Interiors, 38(1), 2850.CrossRefGoogle Scholar
Montagner, J.-P. 1986a. Regional three-dimensional structures using long-period surface waves. Annals of Geophysics, 4,B, 283294.Google Scholar
Montagner, J.-P. 1986b. 3-dimensional structure of the Indian Ocean inferred from long period surface waves. Geophysical Research Letters, 13(4), 315318.CrossRefGoogle Scholar
Montagner, J.-P. 1986c. Etude de la structure profonde de la terre à partir des ondes de surface de longue période. PhD thesis, University Paris 6.Google Scholar
Montagner, J.-P. 1994. Can seismology tell us anything about convection in the mantle? Reviews of Geophysics, 32,(2), 115137.CrossRefGoogle Scholar
Montagner, J.-P. 1998. Where can seismic anisotropy be detected in the Earth’s mantle? In boundary layers... Pure and Applied Geophysics, 151, 223256.CrossRefGoogle Scholar
Montagner, J.-P. 2002. Upper mantle low anisotropy channels below the Pacific Plate. Earth and Planetary Science Letters, 202(2), 263274.CrossRefGoogle Scholar
Montagner, J.-P. 2015. Upper mantle structure: Global isotropic and anisotropic elastic tomography. Chapter 19 of Treatise of Geophysics, Volume 1. Elsevier.Google Scholar
Montagner, J.-P. and Anderson, D.L. 1989a. Petrological constraints on seismic anisotropy. Physics of the Earth and Planetary Interiors, 44, 82105.CrossRefGoogle Scholar
Montagner, J.-P. and Anderson, D. L. 1989b. Constrained reference mantle model. Physics of the Earth and Planetary Interiors, 58(2), 205227.CrossRefGoogle Scholar
Montagner, J.-P. and Anderson, D. L. 2015. The Pacific megagash: A future plate boundary? Geological Society of America Special Papers, 514, 157166.CrossRefGoogle Scholar
Montagner, J.-P. and Burgos, G. 2018. Lithospheric and asthenospheric structure below oceans from Anisotropic tomography. Lithospheric Discontinuities, 5569.Google Scholar
Montagner, J.-P. and Guillot, Laurent. 2002. Seismic anisotropy and global geodynamics. Reviews in Mineralogy and geochemistry, 51(1), 353385.CrossRefGoogle Scholar
Montagner, J.-P. and Jobert, N. 1981. Investigation of upper mantle structure under young regions of the southeast Pacific using long-period Rayleigh waves. Physics of the Earth and Planetary Interiors, 27, 206222.CrossRefGoogle Scholar
Montagner, J.-P. and Jobert, N. 1988. Vectorial tomography -II. Application to the Indian Ocean. Geophys. J., 94, 309344.CrossRefGoogle Scholar
Montagner, J.-P. and Kennett, B. L. N. 1996. How to reconcile body-wave and normal-mode reference Earth models. Geophysical Journal International, 125, 229248.CrossRefGoogle Scholar
Montagner, J.-P. and Nataf, H. C. 1986. A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research, 91, 511520.CrossRefGoogle Scholar
Montagner, J.-P. and Nataf, H. C. 1988. Vectorial tomography – I. Theory. Geophysical Journal, 94, 295307.CrossRefGoogle Scholar
Montagner, J.-P. and Romanowicz, B. 1993. Degrees 2, 4, 6 inferred from seismic Tomography. Geophysical Research Letters, 20, 631634.CrossRefGoogle Scholar
Montagner, J.-P. and Roult, G. 2008. Normal modes of the earth. Page 012004 of Journal of Physics: Conference Series, vol. 118. IOP Publishing.Google Scholar
Montagner, J.-P. and Tanimoto, T. 1990. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research, 95, 47974819.CrossRefGoogle Scholar
Montagner, J.-P. and Tanimoto, T. 1991. Global upper mantle tomography of seismic velocities and anisotropies. Journal of Geophysical Research, 96, 2033720351.CrossRefGoogle Scholar
Montagner, J.-P., Griot-Pommera, D.-A. and Lavé, J. 2000. How to relate body wave and surface wave anisotropy? Journal of Geophysical Research, 105, 1901519027.CrossRefGoogle Scholar
Montagner, J.-P. Marty, B., Stutzmann, E. et al. 2007. Mantle upwellings and convective instabilities revealed by seismic tomography and helium isotope geochemistry beneath eastern Africa. Geophysical Research Letters, 34(21).CrossRefGoogle Scholar
Montelli, R., Nolet, G. and Dahlen, T. A. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338343.CrossRefGoogle ScholarPubMed
Mookherjee, M., Mainprice, D., Maheshwari, K. et al. 2016. Pressure induced elastic softening in framework aluminosilicate-albite (NaAlSi3O8). Scientific Reports, 6(1), 110.CrossRefGoogle ScholarPubMed
Morawiec, A. 1989. Calculation of polycrystal elastic constants from single-crystal data. Physica status solidi (b), 154(2), 535541.CrossRefGoogle Scholar
Morawiec, A. 1994. Review of deterministic methods of calculation of polycrystal elastic constants. Textures and Microstructures, 22(3), 139167.CrossRefGoogle Scholar
Mordret, A., Shapiro, N. M., Singh, S. et al. 2013. Azimuthal anisotropy at Valhall: The Helmholtz equation approach. Geophysical Research Letters, 40(11), 26362641.CrossRefGoogle Scholar
Morelli, A. and Dziewonski, A. M. 1993. Body wave traveltimes and a spherically symmetric P-and S-wave velocity model. Geophysical Journal International, 112(2), 178194.CrossRefGoogle Scholar
Morelli, A., Dziewonski, A. M. and Woodhouse, J. H. 1986. Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters, 13(13), 15451548.CrossRefGoogle Scholar
Morgan, W. J. 1971. Convection plumes in the lower mantle. Nature, 230, 4243.CrossRefGoogle Scholar
Mori, T. and Tanaka, K. 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), 571574.CrossRefGoogle Scholar
Morris, G. B., Raitt, R .W. and Shor, G. G. Jr. 1969. Velocity anisotropy and delay-time maps of the mantle near Hawaii. Journal of Geophysical Research, 74(17), 43004316.CrossRefGoogle Scholar
Mosegaard, K. and Tarantola, A. 1995. Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth, 100(B7), 1243112447.CrossRefGoogle Scholar
Moulik, P. and Ekström, G. 2014. An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long-period waveforms. Geophysical Journal International, 199(3), 17131738.CrossRefGoogle Scholar
Mozhaev, V., Bosia, F. Weihnacht, M. 2011. Oblique acoustic axes in trigonal crystals. Journal of Computational Acoustics, 09(11).Google Scholar
Muir, J. M. R. and Brodholt, J. P. 2015. Elastic properties of ferrous bearing MgSiO3 and their relevance to ULVZs. Geophysical Journal International, 201(1), 496504.CrossRefGoogle Scholar
Mura, T. and Mura, T. 1987. Isotropic inclusions. Micromechanics of Defects in Solids, 74128.Google Scholar
Murakami, M., Hirose, K., Sata, N., Ohishi, Y., and Kawamura, K. 2004a. Phase transition of MgSiO3 perovskite in the deep lower mantle. Science, 304, 855858.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N. and Ohishi, Y. 2004b. Post-perovskite phase transition in MgSiO3. Science, 304(5672), 855858.CrossRefGoogle ScholarPubMed
Murakami, M., Ohishi, Y., Hirao, N. and Hirose, K. 2009. Elasticity of MgO to 130 GPa: Implications for lower mantle mineralogy. Earth and Planetary Science Letters, 277(1–2), 123129.CrossRefGoogle Scholar
Musgrave, M. J. P. 2003. Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals. Acoustical Society of America.Google Scholar
Nakata, N. and Nishida, K. 2019. Body wave exploration. Seismic Ambient Noise, 479(239), 480.CrossRefGoogle Scholar
Nataf, H.-C. 2000. Seismic imaging of mantle plumes. Annual Review of Earth and Planetary Sciences, 28(1), 391417.CrossRefGoogle Scholar
Nataf, H.-C. and Ricard, Y. 1996. 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling. Physics of the Earth and Planetary Interiors, 95, 101122.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I., and Anderson, D. L. 1984. Anisotropy and shear-velocity heterogeneities in the upper mantle. Geophysical Research Letters, 11, 109112.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I., and Anderson, D. L. 1986. Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, 3: Inversion. Geophysical Research Letters, 91, 72617307.CrossRefGoogle Scholar
Natarov, S. I. and Conrad, Clinton P. 2012. The role of Poiseuille flow in creating depth-variation of asthenospheric shear. Geophysical Journal International, 190(3), 12971310.CrossRefGoogle Scholar
Navier, C. L. 1821. Lois de l’équilibre et du mouvement des corps solides élastiques. Paper read to the Académie des Sciences. Paris.Google Scholar
Newnham, R. E. 2004. Properties of Materials: Anisotropy, Symmetry, Structure. Oxford University Press.CrossRefGoogle Scholar
Nicolas, A., Achauer, U. and Daignieres, M. 1994. Rift initiation by lithospheric rupture. Earth and Planetary Science Letters, 123, 281298.CrossRefGoogle Scholar
Nicolas, A. and Christensen, N. I. 1987. Formation of anisotropy in upper mantle peridotites: A review. Pages 111123 of Composition, Structure and Dynamics of the Lithosphere– Asthenosphere System. American Geophysical Union.CrossRefGoogle Scholar
Nicolas, A., Boudier, F. and Boullier, A. M. 1973. Mechanisms of flow in naturally and experimentally deformed peridotites. American Journal of Science, 273(10), 853876.CrossRefGoogle Scholar
Nicolas, A., Boudier, F. and Bouchez, J. L. 1980. Interpretation of peridotite structures from ophiolitic and oceanic environments. American Journal of Science, 280(Pt 1), 192210.Google Scholar
Nishida, K., Kobayashi, N. and Fukao, Y. 2000. Resonant oscillations between the solid earth and the atmosphere. Science, 287(5461), 22442246.CrossRefGoogle ScholarPubMed
Nishida, K., Kawakatsu, H., Fukao, Y. and Obara, K. 2008. Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors. Geophysical Research Letters, 35(16).CrossRefGoogle Scholar
Nishimura, C. E. and Forsyth, D. W. 1989. The anisotropic structure of the upper mantle in the Pacific. Geophysical Journal International, 96(2), 203229.CrossRefGoogle Scholar
Nishizawa, O. 1982. Seismic velocity anisotropy in a medium containing oriented cracks. Journal of Physics of the Earth, 30(4), 331347.CrossRefGoogle Scholar
Nita, B., Maurya, S. and Montagner, J.-P. 2016. Anisotropic tomography of the European lithospheric structure from surface wave studies. Geochemistry, Geophysics, Geosystems, 17(6), 20152033.CrossRefGoogle Scholar
Niu, F. and Chen, Q.-F. 2008. Seismic evidence for distinct anisotropy in the innermost inner core. Nature Geoscience, 1(10), 692.CrossRefGoogle Scholar
Nolet, G. 2008. A Breviary of Seismic Tomography. Cambridge University Press.CrossRefGoogle Scholar
Nolet, G. and Kennett, B. 1978. Normal-mode representations of multiple-ray reflections in a spherical earth. Geophysical Journal International, 53(2), 219226.CrossRefGoogle Scholar
Norris, A. N. 1985. A differential scheme for the effective moduli of composites. Mechanics of Materials, 4(1), 116.CrossRefGoogle Scholar
Norris, A. N. 1989. On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes. The Quarterly Journal of Mechanics and Applied Mathematics, 42(3), 413426.CrossRefGoogle Scholar
Norris, A. N. 2004. Acoustic axes in elasticity. Wave Motion, 40(4), 315328.CrossRefGoogle Scholar
Nowacki, A. and Wookey, J. 2016. The limits of ray theory when measuring shear wave splitting in the lowermost mantle with ScS waves. Geophysical Journal International, 207(3), 15731583.CrossRefGoogle Scholar
Nowacki, A., Wookey, J. and Kendall, J.-M. 2011. New advances in using seismic anisotropy, mineral physics and geodynamics to understand deformation in the lowermost mantle. Journal of Geodynamics, 52(3), 205228.CrossRefGoogle Scholar
Nowacki, A., Kendall, J.-M., Wookey, J. and Pemberton, A. 2015. Mid-mantle anisotropy in subduction zones and deep water transport. Geochemistry, Geophysics, Geosystems, 16(3), 764784.CrossRefGoogle Scholar
Nur, A. 1971. Effects of stress on velocity anisotropy in rocks with cracks. Journal of Geophysical Research, 76(8), 20222034.CrossRefGoogle Scholar
Nur, A. and Simmons, G. 1969. The effect of saturation on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2), 183193.CrossRefGoogle Scholar
Nye, J. F. 1985. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.Google Scholar
Obrebski, M., Kiselev, S., Vinnik, L. and Montagner, J.-P. 2010. Anisotropic stratification beneath Africa from joint inversion of SKS and P receiver functions. Journal of Geophysical Research: Solid Earth, 115(B9).CrossRefGoogle Scholar
O’Connell, R. J. and Budiansky, B. 1974. Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 54125426.CrossRefGoogle Scholar
O’Doherty, R. F. and Anstey, N A. 1971. Reflections on amplitudes. Geophysical Prospecting, 19(3), 430458.CrossRefGoogle Scholar
Oganov, A. R. and Ono, S. 2004. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430, 445448.CrossRefGoogle ScholarPubMed
Oganov, A. R., Brodholt, J. P. and Price, G. D. 2001. Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth and Planetary Science Letters, 184(3–4), 555560.CrossRefGoogle Scholar
Ohuchi, T., Fujino, K., Kawazoe, T. and Irifune, T. 2014. Crystallographic preferred orientation of wadsleyite and ringwoodite: Effects of phase transformation and water on seismic anisotropy in the mantle transition zone. Earth and Planetary Science Letters, 397, 133144.CrossRefGoogle Scholar
Okal, E. A. and Cansi, Y. 1998. Detection of PKJKP at intermediate periods by progressive multi-channel correlation. Earth and Planetary Science Letters, 164(1–2), 2330.CrossRefGoogle Scholar
Oldham, R. D. 1906. The constitution of the interior of the Earth, as revealed by earthquakes. Quarterly Journal of the Geological Society, 62(1–4), 456475.CrossRefGoogle Scholar
Olson, P. 1990. Hot spots, swells and mantle plumes. Magma Transport and Storage, 3351.Google Scholar
Olson, P., Yuen, D. A. and Balsiger, D. 1984. Mixing of passive heterogeneities by mantle convection. Journal of Geophysical Research: Solid Earth, 89(B1), 425436.Google Scholar
Panning, M. P., Lekic, V., and Romanowicz, B. A. 2010. Importance of crustal corrections in the development of a new global model of radial anisotropy. Journal of Geophysical Research, 115.CrossRefGoogle Scholar
Panning, M., and Romanowicz, B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167(1), 361379.CrossRefGoogle Scholar
Park, J. 1986. Synthetic seismograms from coupled free oscillations: Effects of lateral structure and rotation. Journal of Geophysical Research: Solid Earth, 91(B6), 64416464.CrossRefGoogle Scholar
Park, J. 1987. Asymptotic coupled-mode expressions for multiplet amplitude anomalies and frequency shifts on an aspherical earth. Geophysical Journal International, 90(1), 129169.CrossRefGoogle Scholar
Park, J. and Levin, V. 2002. Seismic anisotropy: Tracing plate dynamics in the mantle. Science, 296, 5567.CrossRefGoogle ScholarPubMed
Parker, R. L. and Oldenburg, D. W. 1973. Thermal model of ocean ridges. Nature Physical Science, 242(122), 137.CrossRefGoogle Scholar
Parrinello, M. and Rahman, A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics, 52(12), 71827190.CrossRefGoogle Scholar
Pekeris, C. L. 1935. Thermal convection in the interior of the Earth. Geophysical Journal International, 3, 343367.CrossRefGoogle Scholar
Peselnick, L. and Nicolas, A. 1978. Seismic anisotropy in an ophiolite peridotite: Application to oceanic upper mantle. Journal of Geophysical Research: Solid Earth (1978– 2012), 83(B3), 12271235.CrossRefGoogle Scholar
Peselnick, L., Nicolas, A. and Stevenson, P. R. 1974. Velocity anisotropy in a mantle peridotite from the Ivrea Zone: Application to upper mantle anisotropy. Journal of Geophysical Research, 79(8), 11751182.CrossRefGoogle Scholar
Peterson, J. and Hutt, C. R. 1989. IRIS/USGS Plans for Upgrading the Global Seismograph Network. Technical report, US Geological Survey.CrossRefGoogle Scholar
Peterson, J. et al. 1993. Observations and modeling of seismic background noise. Open File Report.CrossRefGoogle Scholar
Pham, N. D., Igel, H., de la Puente, J., Käser, M. and Schoenberg, M. A. 2010. Rotational motions in homogeneous anisotropic elastic media. Geophysics, 75(5), D47D56.CrossRefGoogle Scholar
Phinney, R. A., and Burridge, R. 1973. Representation of elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics. Geophys. J. R. Astron. Soc., 34, 451487.CrossRefGoogle Scholar
Plomerová, J., Šíleny`, J. and Babuška, V. 1996. Joint interpretation of upper-mantle anisotropy based on teleseismic P-travel time delays and inversion of shear-wave splitting parameters. Physics of the Earth and Planetary Interiors, 95(3–4), 293309.CrossRefGoogle Scholar
Plomerová, J., Kouba, D. and Babuška, V. 2002. Mapping the lithosphere–asthenosphere boundary through changes in surface-wave anisotropy. Tectonophysics, 358(1–4), 175185.CrossRefGoogle Scholar
Poirier, J.-P. 1985. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press.CrossRefGoogle Scholar
Poirier, J.-P. 2000. Introduction to the Physics of the Earth’s Interior 2nd Edition. Cambridge University Press.Google Scholar
Poisson, S.-D. 1830. Mémoire sur la propagation du mouvement dans les milieux élastiques. Vol. 4. L’Académie des sciences.Google Scholar
Poli, P., Campillo, M., Pedersen, H. et al. 2012. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science, 338(6110), 10631065.CrossRefGoogle ScholarPubMed
Postma, G. W. 1955. Wave propagation in a stratified medium. Geophysics, 20(4), 780806.CrossRefGoogle Scholar
Pouilloux, L., Kaminski, E. and Labrosse, S. 2007. Anisotropic rheology of a cubic medium and implications for geological materials. Geophysical Journal International, 170(2), 876885.CrossRefGoogle Scholar
Poupinet, G., Pillet, R. and Souriau, A. 1983. Possible heterogeneity of the Earth’s core deduced from PKIKP travel times. Nature, 305(5931), 204206.CrossRefGoogle Scholar
Priestley, K., Debayle, E., McKenzie, D. and Pilidou, S. 2006. Upper mantle structure of eastern Asia from multimode surface waveform tomography. Journal of Geophysical Research: Solid Earth, 111(B10).CrossRefGoogle Scholar
Raitt, R. W., Shor, G. G., Francis, T. J. G. and Morris, G. B. 1969. Anisotropy of the Pacific upper mantle. Journal of Geophysical Research, 74(12), 30953109.CrossRefGoogle Scholar
Ranganathan, S. I. and Ostoja-Starzewski, M. 2008. Universal elastic anisotropy index. Physical Review Letters, 101(5), 055504.CrossRefGoogle ScholarPubMed
Raterron, P. and Merkel, S. 2009. In situ rheological measurements at extreme pressure and temperature using synchrotron X-ray diffraction and radiography. Journal of Synchrotron Radiation, 16, 748756.CrossRefGoogle ScholarPubMed
Raterron, P., Amiguet, E., Chen, J., Li, L. and Cordier, P. 2008. Experimental deformation of olivine single crystals at mantle pressures and temperatures. Physics of the Earth and Planetary Interiors, 172(1–2), 7483.CrossRefGoogle Scholar
Ravalec, M. L. and Guéguen, Y. 1996. High- and low- frequency elastic moduli for a saturated porous/cracked rock: Differential self-consistent and poroelastic theories. Geophysics, 61(4), 10801094.CrossRefGoogle Scholar
Rayleigh, Lord. 1887. XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 24(147), 145159,CrossRefGoogle Scholar
Reuss, A. 1929. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift fur Angewandte Mathematik und Physik, 9, 4958.CrossRefGoogle Scholar
Revenaugh, J. and Jordan, T. H. 1991. Mantle layering from ScS reverberations: 1. Waveform inversion of zeroth-order reverberations. Journal of Geophysical Research: Solid Earth, 96(B12), 1974919762.CrossRefGoogle Scholar
Rhie, J. and Romanowicz, B. 2004. Seismic hum. Nature, 431, 552555.CrossRefGoogle Scholar
Ribe, N. M. 1989. Seismic anisotropy and mantle flow. Journal of Geophysical Research: Solid Earth (1978–2012), 94(B4), 42134223.CrossRefGoogle Scholar
Ricard, Y., Doglioni, C. and Sabadini, R. 1991. Differential rotation between lithosphere and mantle: A consequence of lateral mantle viscosity variations. Journal of Geophysical Research: Solid Earth, 96(B5), 84078415.CrossRefGoogle Scholar
Ricard, Y., Durand, S., Montagner, J.-P. and Chambat, F. 2014. Is there seismic attenuation in the mantle? Earth and Planetary Science Letters, 388, 257264.CrossRefGoogle Scholar
Richards, M. A. and Hager, B. H. 1988. The Earth’s geoid and the large-scale structure of mantle convection. Pages 247271 of Runcorn, S. K. (ed), The Physic of the Planets. John Wiley.Google Scholar
Richter, F. M. and Parsons, B. 1975. On the interaction of two scales of convection in the mantle. Journal of Geophysical Research, 80(17), 25292541.CrossRefGoogle Scholar
Ringwood, A. E. 1975. Composition and Petrology of the Earth’Mantle. McGraw-Hill, New-York, 618pp.Google Scholar
Ritsema, J. and Allen, R. M. 2003. The elusive mantle plume. Earth and Planetary Science Letters, 207, 112.CrossRefGoogle Scholar
Ritsema, J., van Heijst, H., and Woodhouse, J. H. 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286, 19251928.CrossRefGoogle ScholarPubMed
Ritterbex, S., Carrez, P., Gouriet, K. and Cordier, P. 2015. Modeling dislocation glide in Mg2SiO4 ringwoodite: Towards rheology under transition zone conditions. Physics of the Earth and Planetary Interiors, 248(11), 2029.CrossRefGoogle Scholar
Ritterbex, S., Carrez, P. and Cordier, P. 2020. Deformation across the mantle transition zone: A theoretical mineral physics view. Earth and Planetary Science Letters, 547, 116438.CrossRefGoogle Scholar
Ritzwoller, M., Masters, G. and Gilbert, F. 1986. Observations of anomalous splitting and their interpretation in terms of aspherical structure. Journal of Geophysical Research: Solid Earth, 91(B10), 1020310228.CrossRefGoogle Scholar
Ritzwoller, M. H., Levshin, A. L., Ratnikova, L. I. and Egorkin, A. A. 1998. Intermediate-period group-velocity maps across central Asia, western China and parts of the Middle East. Geophysical Journal International, 134(2), 315328.Google Scholar
Riznichenko, Y. V. 1949. Seismic quasi-anisotropy. Bulletin of the Academy of Sciences of the USSR. Geophysics series, 13, 518544.Google Scholar
Robin, L. 1958. Fonctions sphériques de Legendre et fonctions sphéroidales. Gauthier Villars.Google Scholar
Romanowicz, B. 1987. Multiplet–multiplet coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of the Earth’s normal modes. Geophysical Journal of the Royal Astronomical Society, 90, 75100.CrossRefGoogle Scholar
Romanowicz, B. 2002. Inversion of surface waves: A review. International Geophysics Series, 81(A), 149174.Google Scholar
Romanowicz, B. 2003. Global mantle tomography: Progress status in the past 10 years. Annual Review of Earth and Planetary Sciences, 31(1), 303328.CrossRefGoogle Scholar
Romanowicz, B. and Dziewonski, A. M. 1986. Toward a federation of broadband seismic networks. Eos, Transactions American Geophysical Union, 67(25), 541542.CrossRefGoogle Scholar
Romanowicz, B. and Gung, Y. 2002. Superplumes and the core–mantle boundary to the lithosphere; implications for heat flux. Science, 296, 513516.CrossRefGoogle Scholar
Romanowicz, B. and Mitchell, B. J. 2015. Deep Earth structure Q of the Earth from crust to core. Pages 731774 of Treatise on Geophysics. Elsevier.Google Scholar
Romanowicz, B. and Roult, G. 1986. First-order asymptotics for the eigenfrequencies of the Earth and application to the retrieval of large-scale lateral variations of structure. Geophysical Journal International, 87(1), 209239.CrossRefGoogle Scholar
Romanowicz, B. and Snieder, R. 1988. A new formalism for the effect of lateral heterogeneity on normal modes and surface waves-II. General anisotropic perturbation. Geophysical Journal International, 93(1), 9199.CrossRefGoogle Scholar
Romanowicz, B. and Wenk, H.-R. 2017. Anisotropy in the deep Earth. Physics of the Earth and Planetary Interiors, 269, 5890.CrossRefGoogle Scholar
Romanowicz, B. and Yuan, H. 2012. On the interpretation of SKS splitting measurements in the presence of several layers of anisotropy. Geophysical Journal International, 188(3), 11291140.CrossRefGoogle Scholar
Romanowicz, B., Cara, M., Fels, J. F and Rouland, D. 1984. GEOSCOPE: A French initiative on long period three-component global seismic networks. Eos Transactions AGU, 65, 753756.CrossRefGoogle Scholar
Romanowicz, B., Cao, A., Godwal, B., Wenk, H.-R., Ventosa, S. and Jeanloz, R. 2016. Seismic anisotropy in the Earth’s innermost inner core: Testing structural models against mineral physics predictions. Geophysical Research Letters, 43, 93100.CrossRefGoogle Scholar
Ronov, A. B. and Yaroshevsky, A. A. 1967. Pages 3757 of Chemical Composition of the Earth’s Crust. American Geophysical Union.Google Scholar
Roscoe, R. 1952. The viscosity of suspensions of rigid spheres. British journal of applied physics, 3(8), 267.CrossRefGoogle Scholar
Roscoe, R. 1973. Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries. Rheologica acta, 12(3), 404411.CrossRefGoogle Scholar
Roult, G. Rouland, D. and Montagner, J.-P. 1994. Antartica II: Upper-mantle structure from velocities and anisotropy. Phys. Earth Planet. Inter., 84, 3357.CrossRefGoogle Scholar
Roux, P. 2009. Passive seismic imaging with directive ambient noise: Application to surface waves and the San Andreas Fault in Parkfield, CA. Geophysical Journal International, 179(1), 367373.CrossRefGoogle Scholar
Royden, L. H. 1988. Late Cenozoic tectonics of the Pannonian Basin System: Chapter 3. AAPG.CrossRefGoogle Scholar
Royden, L. H., Burchfiel, B. C., King, R. W. et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788790.CrossRefGoogle ScholarPubMed
Royer, D. and Dieulesaint, E. 1996. Ondes élastiques dans les solides: propagation libre et guidée. Masson.Google Scholar
Rudzki, M. P. 1911. Parametrische Darstellung der elastischen Welle in anisotropen Medien. Imprimerie de l’Université.Google Scholar
Rudzki, M. P. 1912. Sur la propagation d’une onde élastique superficielle dans un milieu transversalement isotrope. Akad. Litterarum Cracoviensis.Google Scholar
Rumpker, G. and Thomson, C. J. 1994. Seismic-waveform effects of conical points in gradually varying anisotropic media. Geophysical Journal International, 118(3), 759780.CrossRefGoogle Scholar
Rümpker, G. and Silver, P. G. 1998. Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy. Geophysical Journal International, 135(3), 790800.CrossRefGoogle Scholar
Russell, J. B., Gaherty, J. B. Lin, P.-Y. P. et al. 2019. High-resolution constraints on Pacific upper mantle petrofabric inferred from surface-wave anisotropy. Journal of Geophysical Research: Solid Earth, 124(1), 631657.CrossRefGoogle Scholar
Russo, R. M. and Silver, P. G. 1994. Trench-parallel flow beneath the Nazca Plate from seismic anisotropy. Science, 263(5150), 11051111.CrossRefGoogle ScholarPubMed
Rychert, C. A. and Shearer, P. M. 2009. A global view of the lithosphere–asthenosphere boundary. Science, 324(5926), 495498.CrossRefGoogle ScholarPubMed
Ryzhova, T. V. 1964. Elastic properties of plagioclase. Bulletin of the Academy of Sciences of the USSR, Geophysics Series, 7, 633635.Google Scholar
Saade, M., Montagner, J.-P., Roux, P. et al. 2015. Influence of seismic anisotropy on the cross correlation tensor: numerical investigations. Geophysical Journal International, 201(2), 595604.CrossRefGoogle Scholar
Saade, M., Montagner, J.-P., Roux, P. et al. 2017. Monitoring of seismic anisotropy at the time of the 2008 Iwate–Miyagi (Japan) earthquake. Geophysical Journal International, 211(1), 483497.CrossRefGoogle Scholar
Saade, M., Araragi, K., Montagner, J.-P. et al. 2019. Evidence of reactivation of a hydrothermal system from seismic anisotropy changes. Nature Communications, 10(1), 18.CrossRefGoogle ScholarPubMed
Sambridge, M. 1999. Geophysical inversion with a neighbourhood algorithm – I. Searching a parameter space. Geophysical Journal International, 138, 479494.CrossRefGoogle Scholar
Sang, L. and Bass, J. D. 2014. Single-crystal elasticity of diopside to 14GPa by Brillouin scattering. Physics of the Earth and Planetary Interiors, 228, 7579.CrossRefGoogle Scholar
Sarout, J. and Guéguen, Y. 2008. Anisotropy of elastic wave velocities in deformed shales: Part 2 – Modeling results. Geophysics, 73(5), D91D103.CrossRefGoogle Scholar
Satsukawa, T., Ildefonse, B., Mainprice, D. et al. 2013. A database of plagioclase crystal preferred orientations (CPO) and microstructures–implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks. Solid Earth, 4(2), 511542.CrossRefGoogle Scholar
Savage, M. K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave. Reviews of Geophysics, 37(1), 65106.CrossRefGoogle Scholar
Sayers, C. M. 1994. P-wave propagation in weakly anisotropic media. Geophysical Journal International, 116(3), 799805.CrossRefGoogle Scholar
Sayers, C. M. and Kachanov, M. 1991. A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics. International Journal of Solids and Structures, 27(6), 671680.CrossRefGoogle Scholar
Schaeffer, A. J. Lebedev, S. and Becker, T. W. 2016. Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(2), 901933.CrossRefGoogle Scholar
Schlue, J. W. and Knopoff, L. 1977. Shear-wave polarization anisotropy in the Pacific Basin. Geophysical Journal International, 49(1), 145165.CrossRefGoogle Scholar
Schmeling, H. 1985. Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity. Physics of the Earth and Planetary Interiors, 41(1), 3457.CrossRefGoogle Scholar
Schmerr, N. 2012. The Gutenberg discontinuity: Melt at the lithosphere–asthenosphere boundary. Science, 335(6075), 14801483.CrossRefGoogle ScholarPubMed
Schoenberg, M. and Helbig, K. 1997. Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62(6), 19541974.CrossRefGoogle Scholar
Schoenberg, M. and Sayers, C. M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60(1), 204211.CrossRefGoogle Scholar
Schoenberg, M. E. and Muir, F. 1989. A calculus for finely layered anisotropic media. Geophysics, 54(5), 581589.CrossRefGoogle Scholar
Scholz, J.-R., Barruol, G., Fontaine, F. R. et al. 2018. SKS splitting in the Western Indian Ocean from land and seafloor seismometers: Plume, plate and ridge signatures. Earth and Planetary Science Letters, 498, 169184.CrossRefGoogle Scholar
Schulte-Pelkum, V. and Blackman, D. K. 2003. A synthesis of seismic P and S anisotropy. Geophysical Journal International, 154(1), 166178.CrossRefGoogle Scholar
Schulte-Pelkum, V., Masters, G. and Shearer, P. M. 2001. Upper mantle anisotropy from long-period P polarization. Journal of Geophysical Research: Solid Earth, 106(B10), 2191721934.CrossRefGoogle Scholar
Schuster, G. Thomas. 2009. Seismic Interferometry, Volume 1. Cambridge University Press.CrossRefGoogle Scholar
Sebai, A., Stutzmann, E., Montagner, J.-P., Beucler, E. and Sicilia, D. 2006. Hotspot and superswell beneath Africa as inferred from surface wave anisotropic tomography. Physics of the Earth and Planetary Interiors, 155, 4862.CrossRefGoogle Scholar
Sens-Schönfelder, C. and Wegler, U. 2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21).CrossRefGoogle Scholar
Seront, B., Mainprice, D. and Christensen, N. I. 1993. A determination of the three-dimensional seismic properties of anorthosite: Comparison between values calculated from the petrofabric and direct laboratory measurements. Journal of Geophysical Research: Solid Earth, 98(B2), 22092221.CrossRefGoogle Scholar
Shafiro, B. and Kachanov, M. 1997. Materials with fluid-filled pores of various shapes: Effective elastic properties and fluid pressure polarization. International Journal of Solids and Structures, 34(27), 35173540.CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T. 1969. Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B, 25(5), 925946.CrossRefGoogle Scholar
Shao, T., Ji, S., Kondo, Yosuke, M. et al. 2014. Antigorite-induced seismic anisotropy and implications for deformation in subduction zones and the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(3), 20682099.CrossRefGoogle Scholar
Shapiro, N. M. and Campillo, M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7).CrossRefGoogle Scholar
Shapiro, N. M., Campillo, M., Stehly, L. and Ritzwoller, M. H. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 16151618.CrossRefGoogle ScholarPubMed
Shapiro, S. A, Hubral P., and Ursin, Bjorn. 1996. Reflectivity/transmissivity for one- dimensional inhomogeneous random elastic media: Dynamic-equivalent-medium approach. Geophysical Journal International, 126(1), 184196.CrossRefGoogle Scholar
Shearer, P. M. 2007. Seismic scattering in the deep Earth. Pages 695730 of Treatise on Geophysics. Elsevier.CrossRefGoogle Scholar
Shearer, P. M. and Chapman, C. H. 1988. Ray tracing in anisotropic media with a linear gradient. Geophysical Journal International, 94(3), 575580.CrossRefGoogle Scholar
Shearer, P. M. and Chapman, C. H. 1989. Ray tracing in azimuthally anisotropic media – I. Results for models of aligned cracks in the upper crust. Geophysical Journal International, 96(1), 5164.CrossRefGoogle Scholar
Shearer, P. M. and Toy, K. M. 1991. PKP (BC) versus PKP (DF) differential travel times and aspherical structure in the Earth’s inner core. Journal of Geophysical Research: Solid Earth, 96(B2), 22332247.CrossRefGoogle Scholar
Shearer, P. M. Rychert, C. A. and Liu, Q. 2011. On the visibility of the inner-core shear wave phase PKJKP at long periods. Geophysical Journal International, 185(3), 13791383.CrossRefGoogle Scholar
Shito, A., Karato, S.-I. and Park, J. 2004. Frequency dependence of Q in Earth’s upper mantle inferred from continuous spectra of body waves. Geophysical Research letters, 31(12).CrossRefGoogle Scholar
Shuvalov, A. L. and Every, A. G. 1996. Curvature of acoustic slowness surface of anisotropic solids near symmetry axes. Physical Review B, 53(Jun), 1490614916.CrossRefGoogle ScholarPubMed
Sicilia, D., Montagner, J.-P., Cara, M. et al. 2008. Shear-wave velocities ands anisotropic upper mantle structure beneath the Afar plume. Tectonophysics, 462, 164177.CrossRefGoogle Scholar
Sidorin, I., Gurnis, M. and Helmberger, D. V. 1999. Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286(5443), 13261331.CrossRefGoogle ScholarPubMed
Sieminski, A., Liu, Q., Trampert, J. and Tromp, J. 2007a. Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods. Geophysical Journal International, 171, 368389.CrossRefGoogle Scholar
Sieminski, A., Liu, Q., Trampert, J. and Tromp, J. 2007b. Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods. Geophysical Journal International, 168(3), 11531174.CrossRefGoogle Scholar
Sieminski, A., Trampert, J. and Tromp, J. 2009. Principal component analysis of anisotropic finite-frequency sensitivity kernels. Geophysical Journal International, 179(2), 11861198.CrossRefGoogle Scholar
Signorelli, J. and Tommasi, A. 2015. Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear. Earth and Planetary Science Letters, 430, 356366.CrossRefGoogle Scholar
Silver, P. G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24, 385432.CrossRefGoogle Scholar
Silver, P. G. and Chan, W. W. 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 335(6185), 34.CrossRefGoogle Scholar
Silver, P. G. and Chan, W. W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96, 16,42916,454.CrossRefGoogle Scholar
Silver, P. G. and Long, M. D. 2011. The non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography. Geophysical Journal International, 184(3), 14151427.CrossRefGoogle Scholar
Silver, P. G. and Savage, M. K. 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 119(3), 949963.CrossRefGoogle Scholar
Simmons, G. 1964. Velocity of shear waves in rocks to 10 kilobars, 1. Journal of Geophysical Research, 69(6), 11231130.CrossRefGoogle Scholar
Simmons, N. A., Forte, A. M. and Grand, S. P. 2009. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity. Geophysical Journal International, 177(3), 12841304.CrossRefGoogle Scholar
Simons, F. J., Nolet, G., Georgief, P. et al. 2009. On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans. Journal of Geophysical Research: Solid Earth, 114(B5).CrossRefGoogle Scholar
Singh, S. C., Taylor, M. A. J. and Montagner, J.-P. 2000. On the presence of liquid in Earth’s inner core. Science, 287(5462), 24712474.CrossRefGoogle ScholarPubMed
Sirotin, Yu. I. and Shaskolskaya, M. P. 1982. Fundamentals of Crystal physics. Mir Publishers Moscow.Google Scholar
Slawinski, M. A. 2020. Waves And Rays In Elastic Continua (Fourth Edition). World Scientific.CrossRefGoogle Scholar
Sleeswyk, A. W. and Sivin, N. 1983. Dragons and toads. The Chinese seismoscope of AD 132. Chinese Science, 119.Google Scholar
Smith, G. P. and Ekström, G. 1999. A global study of Pn anisotropy beneath continents. Journal of Geophysical Research: Solid Earth, 104(B1), 963980.CrossRefGoogle Scholar
Smith, M. L. and Dahlen, F. A. 1975. Correction [to ‘The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium’ by Martin L. Smith and FA Dahlen]. Journal of Geophysical Research, 80(14), 19231923.CrossRefGoogle ScholarPubMed
Smith, M. F. and Dahlen, F. A. 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78, 33213333.CrossRefGoogle Scholar
Smith, S. W. 1986. IRIS: A program for the next decade. Eos, Transactions American Geophysical Union, 67(16), 213219.CrossRefGoogle Scholar
Snieder, R. 1986. 3D Linearized scattering of surface waves and formalism for surface wave holography. Geophysical Journal of the Royal Astronomical Society, 84, 581605.CrossRefGoogle Scholar
Snieder, R. 1993. Global inversions using normal modes and long-period surface waves. Pages 23-63 of Seismic Tomography. Chapman and Hall.Google Scholar
Snieder, R., Grêt, A., Douma, H. and Scales, J. 2002. Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 22532255.CrossRefGoogle ScholarPubMed
Soda, Y. and Wenk, H.-R. 2014. Antigorite crystallographic preferred orientations in serpentinites from Japan. Tectonophysics, 615, 199212.CrossRefGoogle Scholar
Solomatov, V. S. and Moresi, L.-N. 2000. Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. Journal of Geophysical Research: Solid Earth, 105(B9), 2179521817.CrossRefGoogle Scholar
Song, T.-R. A. and Kawakatsu, H. 2012. Subduction of oceanic asthenosphere: Evidence from sub-slab seismic anisotropy. Geophysical Research Letters, 39(17).CrossRefGoogle Scholar
Song, T.-H. A. and Kawakatsu, H. 2013. Subduction of oceanic asthenosphere: A critical appraisal in central Alaska. Earth and Planetary Science Letters, 367, 8294.CrossRefGoogle Scholar
Song, X. and Jordan, T. H. 2017. Stochastic representations of seismic anisotropy: Transversely isotropic effective media models. Geophysical Journal International, 209(3), 18311850.CrossRefGoogle Scholar
Song, X. and Jordan, T. H. 2018. Effective-medium models of inner-core anisotropy. Journal of Geophysical Research: Solid Earth, 123(7), 57935813.CrossRefGoogle Scholar
Song, X. and Richards, P. G. 1996. Seismological evidence for differential rotation of the Earth’s inner core. Nature, 382(6588), 221.CrossRefGoogle Scholar
Souriau, A. and Calvet, M. 2015. Deep Earth structure: the Earth’s cores. Pages XX of Treatise on Geophysics, 2nd ed. Elsevier.Google Scholar
Speziale, S., Duffy, T. S. and Angel, R. J. 2004. Single-crystal elasticity of fayalite to 12 GPa. Journal of Geophysical Research: Solid Earth, 109(B12).CrossRefGoogle Scholar
Speziale, S., Marquardt, H. and Duffy, T. S. 2014. Brillouin scattering and its application in geosciences. Reviews in Mineralogy and Geochemistry, 78(1), 543603.CrossRefGoogle Scholar
Spies, M. 1994. Elastic waves in homogeneous and layered transversely isotropic media: plane waves and Gaussian wave packets. A general approach. The Journal of the Acoustical Society of America, 95(4), 17481760.CrossRefGoogle Scholar
Stackhouse, S., Brodholt, J. P., Wookey, J., Kendall, J.-M. and Price, G. D. 2005. The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth and Planetary Science Letters, 230(1–2), 110.CrossRefGoogle Scholar
Stanke, F. E. 1986. Spatial autocorrelation functions for calculations of effective propagation constants in polycrystalline materials. The Journal of the Acoustical Society of America, 80(5), 14791485.CrossRefGoogle Scholar
Stanke, F. E. and Kino, G. S. 1984. A unified theory for elastic wave propagation in polycrystalline materials. The Journal of the Acoustical Society of America, 75(3), 665681.CrossRefGoogle Scholar
Stein, C. A. and Stein, S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391), 123.CrossRefGoogle Scholar
Steinle-Neumann, G. and Cohen, R. E. 2004. Comment on the importance of the free energy for elasticity under pressure. Journal of Physics: Condensed Matter, 16(47), 87838786.Google Scholar
Steinle-Neumann, G., Stixrude, L., Cohen, R. E. and Gülseren, O. 2001. Elasticity of iron at the temperature of the Earth’s inner core. Nature, 413(6851), 5760.CrossRefGoogle ScholarPubMed
Stixrude, L. and Cohen, R. E. 1995. High-pressure elasticity of iron and anisotropy of Earth’s inner core. Science, 267(5206), 19721975.CrossRefGoogle ScholarPubMed
Stixrude, L. and Lithgow-Bertelloni, C. 2005a. Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. Journal of Geophysical Research: Solid Earth, 110(B3).CrossRefGoogle Scholar
Stixrude, L. and Lithgow-Bertelloni, C. 2005b. Thermodynamics of mantle minerals – I. Physical properties. Geophysical Journal International, 162(2), 610632.CrossRefGoogle Scholar
Stixrude, L. and Lithgow-Bertelloni, C. 2010. Thermodynamics of the Earth’s mantle. Reviews in Mineralogy and Geochemistry, 71(1), 465484.CrossRefGoogle Scholar
Sturgeon, W., Ferreira, A. M. G., Faccenda, M., Chang, S.-J. and Schardong, L. 2019. On the origin of radial anisotropy near subducted slabs in the midmantle. Geochemistry, Geophysics, Geosystems, 20(11), 51055125.CrossRefGoogle Scholar
Stutzmann, E. and Montagner, J.-P. 1993. An inverse technique for retrieving higher mode phase velocity and mantle structure. Geophysical Journal International, 113, 669683.CrossRefGoogle Scholar
Stutzmann, E. and Montagner, J.-P. 1994. Tomography of the transition zone from the inversion of higher mode surface waves. Phys. Earth Planet. Inter., 86, 99115.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. 1991. Predominance of long-wavelength heterogeneity in the mantle. Nature, 352(6331), 121.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. 1995. Inner core anisotropy in three dimensions. Journal of Geophysical Research: Solid Earth, 100(B6), 98319852.CrossRefGoogle Scholar
Su, W.-J., Woodward, R. L. and Dziewonski, A. M. 1992. Deep origin of mid-ocean-ridge seismic velocity anomalies. Nature, 360(6400), 149.CrossRefGoogle Scholar
Suda, N., Nawa, K. and Fukao, Y. 1998. Earth’ s background free oscillations. Science, 279, 20892091.CrossRefGoogle ScholarPubMed
Suetsugu, D. and Nakanishi, I. 1987. Regional and azimuthal dependence of phase velocities of mantle Rayleigh waves in the Pacific Ocean. Physics of the Earth and Planetary Interiors, 47, 230245.CrossRefGoogle Scholar
Sumita, I. and Olson, P. 1999. A laboratory model for convection in Earth’s core driven by a thermally heterogeneous mantle. Science, 286(5444), 15471549.CrossRefGoogle ScholarPubMed
Sun, X. and Song, X. 2008. Tomographic inversion for three-dimensional anisotropy of Earth’s inner core. Physics of the Earth and Planetary Interiors, 167(1–2), 5370.CrossRefGoogle Scholar
Suzuki, I., Anderson, O. and Sumino, Y. 1983. Elastic properties of a single-crystal forsterite Mg2SiO4, up to 1,200 K. Physics and Chemistry of Minerals, 10(01), 3846.CrossRefGoogle Scholar
Tackley, P. J. 1998. Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D. The Core-Mantle Boundary Region, Geodynamics Series, 28, 231253.CrossRefGoogle Scholar
Takeo, A., Forsyth, D. W., Weeraratne, D. S. and Nishida, K. 2014. Estimation of azimuthal anisotropy in the NW Pacific from seismic ambient noise in seafloor records. Geo-physical Journal International, 199(1), 1122.Google Scholar
Takeuchi, H. and Saito, M. 1972. Seismic surface waves. Methods in Computational Physics, 11, 217295.Google Scholar
Tanaka, S. and Hamaguchi, H. 1997. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP (BC)–PKP (DF) times. Journal of Geophysical Research: Solid Earth, 102(B2), 29252938.CrossRefGoogle Scholar
Tanimoto, T. 1984. A simple derivation of the formula to calculate synthetic long period seismograms in heterogeneous Earth by normal mode summation. Geophysical Journal of the Royal Astronomical Society, 77, 275278.CrossRefGoogle Scholar
Tanimoto, T. 1985. The Backus–Gilbert approach to the three-dimensional structure in the upper mantle – I. Lateral variation of surface wave phase velocity with its error and resolution. Geophysical Journal of the Royal Astronomical Society, 82(1), 105123.CrossRefGoogle Scholar
Tanimoto, T. 1986. Free oscillations of a slightly anisotropic Earth. Geophysical Journal of the Royal Astronomical Society, 87, 493517.CrossRefGoogle Scholar
Tanimoto, T. 1990. Long wavelength S-wave velocity structure throughout the mantle. Geophysical Journal International, 100, 327336.CrossRefGoogle Scholar
Tanimoto, T. 2004. The azimuthal dependence of surface wave polarization in a slightly anisotropic medium. Geophysical Journal International, 156(1), 7378.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. 1984. Mapping convection in the mantle. Geophysical Research Letters, 11, 297290.CrossRefGoogle Scholar
Tape, C., Liu, Q., Maggi, A. and Tromp, J. 2009. Adjoint tomography of the southern California crust. Science, 325(5943), 988992.CrossRefGoogle ScholarPubMed
Tapponnier, P., Peltzer, G. L. D. A. Y., Le Dain, A. Y., Armijo, R., and Cobbold, P. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611616.2.0.CO;2>CrossRefGoogle Scholar
Tarantola, A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 12591266.CrossRefGoogle Scholar
Tarantola, A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Tarantola, A. and Valette, B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics and Space Physics, 20, 219232.CrossRefGoogle Scholar
Tateno, S., Hirose, K., Ohishi, Y. and Tatsumi, Y. 2010. The structure of iron in Earth’s inner core. Science, 330(6002), 359361.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1938. Plastic strain in metals. Journal of the Institute of Metals, 62, 307324.Google Scholar
Thomas, C., Wookey, J., Brodholt, J. and Fieseler, T. 2011. Anisotropy as cause for polarity reversals of D″ reflections. Earth and Planetary Science Letters, 307(3–4), 369376.CrossRefGoogle Scholar
Thomsen, L. 1972. Elasticity of polycrystals and rocks. Journal of Geophysical Research, 77(2), 315327.CrossRefGoogle Scholar
Thomsen, L. 1986. Weak elastic anisotropy. Geophysics, 51(10), 19541966.CrossRefGoogle Scholar
Thomson, W. T. 1950. Transmission of elastic waves through a stratified solid medium. Journal of applied Physics, 21(2), 8993.CrossRefGoogle Scholar
Thurston, R. N. and Brugger, K. 1964. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Physical Review, 133(6A), A1604.CrossRefGoogle Scholar
Thybo, H. and Perchuc´, E. 1997. The seismi´c 8 discontinuity and partial melting in continental mantle. Science, 275(5306), 16261629.CrossRefGoogle ScholarPubMed
Tinder, R. F. 2008. Tensor properties of solids, part one: Equilibrium tensor properties of solids. Synthesis Lectures on Engineering, 2(1), 1144.CrossRefGoogle Scholar
Tkalcˇi´c, H., Young, M., Bodin, T., Ngo, S. and Sambridge, M. 2013. The shuffling rotation of the Earth’s inner core revealed by earthquake doublets. Nature Geoscience, 6(6), 497.Google Scholar
Tomar, G., Shapiro, N. M., Mordret, A., Singh, S. C. and Montagner, J.-P. 2016. Radial anisotropy in Valhall: Ambient noise-based studies of Scholte and Love waves. Geophysical Journal International, 208(3), 15241539.CrossRefGoogle Scholar
Tommasi, A., Mainprice, D., Canova, G. and Chastel, Y. 2000. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. Journal of Geophysical Research: Solid Earth, 105(B4), 78937908.CrossRefGoogle Scholar
Tommasi, A., Mainprice, D., Cordier, P., Thoraval, C. and Couvy, H. 2004. Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone. Journal of Geophysical Research: Solid Earth, 109(B12).CrossRefGoogle Scholar
Tommasi, A., Goryaeva, A., Carrez, P., Cordier, P. and Mainprice, D. 2018. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth’s D″ layer. Earth and Planetary Science Letters, 492, 3546.CrossRefGoogle Scholar
Torsvik, T. H., Steinberger, B., Gurnis, M. and Gaina, C. 2010. Plate tectonics and net lithosphere rotation over the past 150 My. Earth and Planetary Science Letters, 291(1), 106112.CrossRefGoogle Scholar
Trampert, J. and van Heijst, H. J. 2002. Global azimuthal anisotropy in the transition zone. Science, 296(5571), 12971299.CrossRefGoogle ScholarPubMed
Trampert, J. and Woodhouse, J. H. 2003. Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s. Geophysical Journal International, 154(1), 154165.CrossRefGoogle Scholar
Tromp, J., Tape, C. and Liu, Q. 2005. Seismic tomography, adjoint methods, time reversal and banana–doughnut kernels. Geophysical Journal International, 160, 195216.CrossRefGoogle Scholar
Truesdell, C. 1966. Existence of longitudinal waves. The Journal of the Acoustical Society of America, 40(3), 729730.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K. and Wentzcovitch, R. M. 2004a. Elasticity of post-perovskite MgSiO3. Geophysical Research Letters, 31(14), 4.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K. and Wentzcovitch, R. M. 2004b. Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth and Planetary Science Letters, 224(3–4), 241248.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Dekura, H. and Ritterbex, S. 2020. Ab initio study on the lower mantle minerals. Annual Review of Earth and Planetary Sciences, 48(1), null.CrossRefGoogle Scholar
Tsujino, N., Nishihara, Y., Yamazaki, D. et al. 2016. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature, 539(7627), 8184.CrossRefGoogle ScholarPubMed
Tsvankin, I. 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics, 62(4), 12921309.CrossRefGoogle Scholar
Tsvankin, I. 2005. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. Elsevier.Google Scholar
Vacher, P., Mocquet, A. and Sotin, C. 1998. Computation of seismic profiles from mineral physics: The importance of the non-olivine components for explaining the 660 km depth discontinuity. Physics of the Earth and Planetary Interiors, 106(3), 275298.CrossRefGoogle Scholar
Vacher, R. and Boyer, L. 1972. Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Physical Review B, 6(2), 639.CrossRefGoogle Scholar
van der Hilst, R. D., Widiyantoro, S. and Engdahl, E. R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386, 578584.CrossRefGoogle Scholar
Van der Lee, S. 2002. High-resolution estimates of lithospheric thickness from Missouri to Massachusetts, USA. Earth and Planetary Science Letters, 203(1), 1523.Google Scholar
van der Meijde, M., Marone, F., Giardini, D. and van der Lee, S. 2003. Seismic evidence for water deep in Earth’s upper mantle. Science, 300(5625), 15561558.CrossRefGoogle Scholar
Van Wijk, J. W., Baldridge, W. S., Van Hunen, J. et al. 2010. Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere. Geology, 38(7), 611614.CrossRefGoogle Scholar
Vauchez, A. and Nicolas, A. 1991. Mountain building: Strike-parallel motion and mantle anisotropy. Tectonophysics, 185(3), 183201.CrossRefGoogle Scholar
Vavrycˇuk, V. 2003. Parabolic lines and caustics in homogeneous weakly anisotropic solids. Geophysical Journal International, 152(2), 318334.CrossRefGoogle Scholar
Vavrycˇuk, V. 2004. Inversion for anisotropy from non-double-couple components of moment tensors. Journal of Geophysical Research: Solid Earth, 109(B7).Google Scholar
Vavrycˇuk, V. 2005. Acoustic axes in weak triclinic anisotropy. Geophysical Journal International, 163(2), 629638.CrossRefGoogle Scholar
Vidal, V., Crambes, C. and Davaille, A. 2003. Intermittence des instabilités petite échelle dans la convection de Rayleigh-Bénard forcée par un écoulement cisaillant. Compterendus de la 6e Rencontre du Non-Linéaire, 301306.Google Scholar
Vinnik, L. P. 1977. Detection of waves converted from P to Sv in the mantle. Physics of the Earth and Planetary Interiors, 15, 3945.CrossRefGoogle Scholar
Vinnik, L. P. and Farra, V. 1992. Multiple-SCS technique for measuring anisotropy in the mantle. Geophysical Research Letters, 19(5), 489492.CrossRefGoogle Scholar
Vinnik, L. P., Kosarev, G. L. and Makeyeva, L. I. 1984. Anisotropy in the lithosphere from observations of SKS and SKKS. Proceedings of the Academy of Science USSR Geological Society Section, 278, 13351339.Google Scholar
Vinnik, L. and Montagner, J.-P. 1996. Shear wave splitting in the mantle Ps phases. Geophysical Research Letters, 23, 24492452.CrossRefGoogle Scholar
Vinnik, L. P., Farra, V. and Romanowicz, B. 1989a. Azimuthal anisotropy in the Earth from observations of SKS at Geoscope and NARS broadband stations. Bulletin of the Seismological Society of America, 79(5), 15421558.Google Scholar
Vinnik, L. P., Kind, R., Kosarev, G. L. and Makeyeva, L. I. 1989b. Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophysical Journal International, 99, 549559.CrossRefGoogle Scholar
Vinnik, L., Romanowicz, B., Le Stunff, Y. and Makeyeva, L. 1995. Seismic anisotropy in the D″- layer. Geophysical Research Letters, 22(13), 16571660.CrossRefGoogle Scholar
Vinnik, L., Chevrot, S. and Montagner, J.-P. 1997. Evidence for a stagnant plume in the transition zone? Geophysical Research Letters, 24, 10071010.CrossRefGoogle Scholar
Vinnik, L., Chevrot, S. and Montagner, J.-P. 1998a. Seismic evidence of flow at the base of the upper mantle. Geophysical Research Letters, 25, 19951998.CrossRefGoogle Scholar
Vinnik, L., Breger, L. and Romanowicz, B. 1998b. Anisotropic structures at the base of the Earth’s mantle. Nature, 393(6685), 564567.CrossRefGoogle Scholar
Vinnik, L., Kumar, M. R., Kind, R. and Farra, V. 2003a. Super-deep low-velocity layer beneath the Arabian plate. Geophysical Research Letters, 30(7).CrossRefGoogle Scholar
Vinnik, L., Montagner, J.-P, Girardin, N., Dricker, I. and Saul, J. 2003b. Comment on “Shear-wave splitting to test mantle deformation models around Hawaii” by Kristoffer T. Walker, Götz HR Bokelmann, and Simon L. Klemperer. Geophysical Research Letters, 30(13).CrossRefGoogle Scholar
Visser, K., Trampert, J. and Kennett, B. L. N. 2008. Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves. Geophysical Journal International, 172, 10161032.CrossRefGoogle Scholar
Vocˇadlo, L., Brodholt, J., Alfè, D., Price, G. D. and Gillan, M. J. 1999. The structure of iron under the conditions of the Earth’s inner core. Geophysical Research Letters, 26(9), 12311234.CrossRefGoogle Scholar
Vocˇadlo, L., Dobson, D. P. and Wood, I. G. 2009. Ab initio calculations of the elasticity of HCP-Fe as a function of temperature at inner-core pressure. Earth and Planetary Science Letters, 288(3–4), 534538.CrossRefGoogle Scholar
Voigt, W. 1928. Lehrbuch der Kristallphysik. Teuber Verlag.Google Scholar
Walker, K. T., Bokelmann, G. H. and Klemperer, S. L. 2001. Shear-wave splitting to test mantle deformation models around Hawaii. Geophysical Research Letters, 28, 43194322.CrossRefGoogle Scholar
Wallace, D. C. 1972. Thermodynamics of Crystals. John Wiley & Sons,Inc. USA.Google Scholar
Walpole, J., Wookey, J., Kendall, J.-M. and Masters, T.-G. 2017. Seismic anisotropy and mantle flow below subducting slabs. Earth and Planetary Science Letters, 465, 155167.CrossRefGoogle Scholar
Walsh, J. B. 1965. The effect of cracks on the compressibility of rock. Journal of Geophysical Research (1896-1977), 70(2), 381389.CrossRefGoogle Scholar
Walsh, J. B. 1969. New analysis of attenuation in partially melted rock. Journal of Geophysical Research, 74(17), 43334337.CrossRefGoogle Scholar
Wang, N., Montagner, J.-P., Fichtner, A. and Capdeville, Y. 2013. Intrinsic versus extrinsic seismic anisotropy: The radial anisotropy in reference Earth models. Geophysical Research Letters, 40(16), 42844288.CrossRefGoogle Scholar
Wang, Y., Durham, W. B., Getting, I. C. and Weidner, D. J. 2003. The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments, 74(6), 30023011.CrossRefGoogle Scholar
Wang, Z. and Dahlen, F. A. 1995. Spherical-spline parameterization of three-dimensional Earth models. Geophysical Research Letters, 22(22), 30993102.CrossRefGoogle Scholar
Wapenaar, K., Draganov, D. and Robertsson, J. O. A. 2008. Seismic Interferometry: History and Present Status. Society of Exploration Geophysicists.CrossRefGoogle Scholar
Watt, J. P. 1979. Hashin–Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry. Journal of Applied Physics, 50(10), 62906295.CrossRefGoogle Scholar
Watt, J. P. 1988. Elastic properties of polycrystalline minerals: Comparison of theory and experiment. Physics and Chemistry of Minerals, 15(6), 579587.CrossRefGoogle Scholar
Watt, J. P. and Peselnick, L. 1980. Clarification of the Hashin–Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. Journal of Applied Physics, 51(3), 15251531.CrossRefGoogle Scholar
Weaver, R. and Lobkis, O. I. 2002. On the emergence of the Green’s function in the correlations of a diffuse field: Pulse echo using thermal photon. Ultrasonics, 40, 435439.CrossRefGoogle Scholar
Wegener, A. 1915. Die Entstehung der Kontinente und Ozeane. Vieweg.Google Scholar
Wehinger, B., Bosak, A., Nazzareni, S. et al. 2016. Dynamical and elastic properties of MgSiO3 perovskite (bridgmanite). Geophysical Research Letters, 43(6), 25682575.CrossRefGoogle Scholar
Weidner, D. J., Bass, J. D., Ringwood, A. E. and Sinclair, W. 1982. The single-crystal elastic moduli of stishovite. Journal of Geophysical Research: Solid Earth, 87(B6), 47404746.CrossRefGoogle Scholar
Weiss, T., Siegesmund, S., Rabbel, W., Bohlen, T, and Pohl, M. 1999. Seismic velocities and anisotropy of the lower continental crust: A review. Pages 97–122 of Seismic Exploration of the Deep Continental Crust. Springer.Google Scholar
Wentzcovitch, R. M., Karki, B. B., Cococcioni, M. and de Gironcoli, S. 2004. Thermoelastic properties of MgSiO3-perovskite: Insights on the nature of the Earth’s lower Mantle. Phys. Rev. Lett., 92(Jan), 018501.CrossRefGoogle ScholarPubMed
Wheeler, J. 2009. The preservation of seismic anisotropy in the Earth’s mantle during diffusion creep. Geophysical Journal International, 178(3), 17231732.CrossRefGoogle Scholar
Whitcomb, J. H., Garmany, J. D. and Anderson, D. L. 1973. Earthquake prediction: Variation of seismic velocities before the San Francisco earthquake. Science, 180(4086), 632635.CrossRefGoogle ScholarPubMed
Whitehead, J. A. and Luther, D. S. 1975. Dynamics of laboratory diapir and plume models. Journal of Geophysical Research, 80, 705717.CrossRefGoogle Scholar
Wielandt, E. and Steim, J. M. 1986. A digital very-broad-band seismograph. Annales Geophysicae, Series B, 4(3), 227232.Google Scholar
Wielandt, E. and Streckeisen, G. 1982. The leaf-spring seismometer: design and performance. Bull. Seismol. Soc. Am., 72(A), 23492367.Google Scholar
Willis, J. R. 1977. Bounds and self-consistent estimates for the overall properties of anisotropic composites. Journal of the Mechanics and Physics of Solids, 25(3), 185202.CrossRefGoogle Scholar
Wolfe, C. J. and Solomon, S. C. 1998. Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science, 280(5367), 12301232.CrossRefGoogle ScholarPubMed
Woodhouse, J. H. 1980. The coupling and attenuation of nearly resonant multiplets in the Earth’s free oscillation spectrum. Geophysical Journal of the Royal Astronomical Society, 61(2), 261283.CrossRefGoogle Scholar
Woodhouse, J. H. and Dahlen, F. A. 1978. The effect of a general aspherical perturbation on the free oscillations of the Earth. Geophysical Journal of the Royal Astronomical Society, 53, 335354.CrossRefGoogle Scholar
Woodhouse, J. H. and Deuss, A. 2007. Earth’s free oscillations. Pages XX of Treatise on Geophysics. Elsevier.Google Scholar
Woodhouse, J. H. and Dziewonski, A. M. 1984. Mapping the upper mantle: Three-dimensional modeling of Earth structure by inversion of seismic Waveforms. Journal of Geophysical Research, 89, 59535986.CrossRefGoogle Scholar
Woodhouse, J. H. and Dziewonski, A. M. 1989. Seismic modelling of the Earth’s large-scale three-dimensional structure. Philosophical Transactions of the Royal Society A, 328, 291308.Google Scholar
Woodhouse, J. H. and Girnius, T. P. 1982. Surface waves and free oscillations in a regionalized Earth model. Geophysical Journal of the Royal Astronomical Society, 68, 653673.CrossRefGoogle Scholar
Woodhouse, J. H., Giardini, D. and Li, Xiang-Dong. 1986. Evidence for inner core anisotropy from free oscillations. Geophysical Research Letters, 13(13), 15491552.CrossRefGoogle Scholar
Woodward, R. L. and Masters, G. 1991. Global upper mantle structure from long-period differential travel times. Journal of Geophysical Research, 96, 63516377.CrossRefGoogle Scholar
Wookey, J., Kendall, J.-M. and Barruol, G. 2002. Mid-mantle deformation inferred from seismic anisotropy. Nature, 415, 777780.CrossRefGoogle ScholarPubMed
Wookey, J. and Helffrich, G. 2008. Inner-core shear-wave anisotropy and texture from an observation of PKJKP waves. Nature, 454(7206), 873.CrossRefGoogle ScholarPubMed
Wookey, J. and Kendall, J.-M. 2008. Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth and Planetary Science Letters, 275(1–2), 3242.CrossRefGoogle Scholar
Wu, C., Ba, J., Carcione, J. et al. 2020. A squirt-flow theory to model wave anelasticity in rocks containing compliant microfractures. Physics of the Earth and Planetary Interiors, 301, 106450.CrossRefGoogle Scholar
Wu, X. Y., Baud, P. and Wong, T.-F. 2000. Micromechanics of compressive failure and spatial evolution of anisotropic damage in Darley Dale sandstone. International Journal of Rock Mechanics and Mining Sciences, 37(1–2), 143160.CrossRefGoogle Scholar
stefeld, A., Bokelmann, G., Zaroli, C. and Barruol, G. 2008. SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515528.CrossRefGoogle Scholar
stefeld, A., Bokelmann, G., Barruol, G. and Montagner, J.-P. 2009. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Physics of the Earth and Planetary Interiors, 176(3), 198212.CrossRefGoogle Scholar
Yamauchi, H. and Takei, Y. 2024. Effect of melt on polycrystal anelasticity. Journal of Geophysical Research: Solid Earth, 129(4), e2023JB027738.Google Scholar
Yao, H., van der Hilst, R. D. and Montagner, J.-P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research: Solid Earth, 115(B12).CrossRefGoogle Scholar
Yoshida, S., Sumita, I. and Kumazawa, M. 1996. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. Journal of Geophysical Research: Solid Earth, 101(B12), 2808528103.CrossRefGoogle Scholar
Yu, Y., Park, J. and Wu, F. 1995. Mantle anisotropy beneath the Tibetan Plateau: Evidence from long-period surface waves. Physics of the Earth and Planetary Interiors, 87(3–4), 231246.CrossRefGoogle Scholar
Yuan, H. and Romanowicz, B. 2010. Lithospheric layering in the North American craton. NATURE, 466(7310), 1063U68.CrossRefGoogle ScholarPubMed
Yuan, K. and Beghein, C. 2013. Seismic anisotropy changes across upper mantle phase transitions. Earth and Planetary Science Letters, 374, 132144.CrossRefGoogle Scholar
Yuan, K. and Beghein, C. 2014. Three-dimensional variations in Love and Rayleigh wave azimuthal anisotropy for the upper 800 km of the mantle. Journal of Geophysical Research: Solid Earth, 119(4), 32323255.CrossRefGoogle Scholar
Yuen, D. A. and Peltier, W. R. 1980. Mantle plumes and the thermal stability of the D″ layer. Geophysical Research Letters, 7(9), 625628.CrossRefGoogle Scholar
Zener, C. 1948. Theory of strain interaction of solute atoms. Physical Review, 74(Sep), 639647.CrossRefGoogle Scholar
Zha, C.-S., Duffy, T. S., Downs, R. T., Mao, H.-K. and Hemley, R. J. 1998. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letters, 159(1), 2533.CrossRefGoogle Scholar
Zhang, S., Cottaar, S., Liu, T., Stackhouse, S. and Militzer, B. 2016. High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264273.CrossRefGoogle Scholar
Zhang, S. and Karato, S.-I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534), 774777.CrossRefGoogle Scholar
Zhu, H. and Tromp, J. 2013. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean. Science, 341(6148), 871875.CrossRefGoogle ScholarPubMed
Zhu, H., Bozdag˘, E., Peter, D. and Tromp, J. 2012. Structure of the European upper mantle revealed by adjoint tomography. Nature Geoscience.CrossRefGoogle Scholar
Zhu, H., Bozdag˘, E. and Tromp, J. 2015. Seismic structure of the European upper mantle based on adjoint tomography. Geophysical Journal International, 201(1), 1852.CrossRefGoogle Scholar
Zumberge, M. A., Wyatt, F. K. Dong, X.-Y. and Hanada, H. 1988. Optical fibers for measurement of earth strain. Applied Optics, 27(19), 41314138.CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jean-Paul Montagner, Institut de Physique du Globe de Paris, David Mainprice, Université de Montpellier
  • Book: Anisotropic Seismology
  • Online publication: 13 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781139031271.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jean-Paul Montagner, Institut de Physique du Globe de Paris, David Mainprice, Université de Montpellier
  • Book: Anisotropic Seismology
  • Online publication: 13 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781139031271.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jean-Paul Montagner, Institut de Physique du Globe de Paris, David Mainprice, Université de Montpellier
  • Book: Anisotropic Seismology
  • Online publication: 13 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781139031271.022
Available formats
×