Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T22:30:19.393Z Has data issue: false hasContentIssue false

Section 2

Published online by Cambridge University Press:  19 November 2021

Olutoyin A. Olutoye
Affiliation:
Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Anesthesia for Maternal-Fetal Surgery
Concepts and Clinical Practice
, pp. 83 - 136
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Faye-Peterson, O, Crombleholme, T. Twin-twin transfusion: part 2: infant anomalies, clinical intervention and placental examination. Neoreviews. 2008;9(9):e380.Google Scholar
Bamberg, C, Hecher, K. Update on twin-to-twin transfusion syndrome. Best Pract Res Clin Obstet Gynaecol. 2019;58:5565.Google Scholar
Society for Maternal-Fetal Medicine, Simpson LL. Twin-twin transfusion syndrome. Am J Obstet Gynecol. 2013;208(1):318.Google Scholar
Michelfelder, E, Gottliebson, W, Border, W, et al. Early manifestations and spectrum of recipient twin cardiomyopathy in twin-twin transfusion syndrome: relation to Quintero stage. Ultrasound Obstet Gynecol. 2007;30(7):965971.CrossRefGoogle ScholarPubMed
Johnson, A. Diagnosis and management of twin-twin transfusion syndrome. Clin Obstet Gynecol. 2015;58(3):611631.Google Scholar
Quintero, RA, Morales, WJ, Allen, MH, et al. Staging of twin-twin transfusion syndrome. J Perinatol. 1999; 19(8 Pt 1):550555.Google Scholar
Khalil, A, Rodgers, M, Baschat, A, et al. ISUOG Practice Guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet Gynecol. 2016;47(2):247263.Google Scholar
Oepkes, D, Sueters, M. Antenatal fetal surveillance in multiple pregnancies. Best Pract Res Clin Obstet Gynaecol. 2017;38:5970.CrossRefGoogle ScholarPubMed
Stagnati, V, Zanardini, C, Fichera, A, et al. Early prediction of twin-to-twin transfusion syndrome: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49(5):573582.Google Scholar
Senat, MV, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004;351(2):136144.Google Scholar
Salomon, LJ, Ortqvist, L, Aegerter, P, et al. Long-term developmental follow-up of infants who participated in a randomized clinical trial of amniocentesis vs laser photocoagulation for the treatment of twin-to-twin transfusion syndrome. Am J Obstet Gynecol. 2010;203(5):444.e1–444.e7.Google Scholar
Ville, Y, Hyett, J, Hecher, K, Nicolaides, K. Preliminary experience with endoscopic laser surgery for severe twin-twin transfusion syndrome. N Engl J Med. 1995;332(4):224227.Google Scholar
Slaghekke, F, Oepkes, D. Solomon technique versus selective coagulation for twin-twin transfusion. Twin Research Hum Genet. 2016;19(3):217221.Google Scholar
Quintero, RA, Comas, C, Bornick, PW, et al. Selective versus non-selective laser photocoagulation of placental vessels in twin-to-twin transfusion syndrome. Ultrasound Obstet Gynecol. 2000;16(3):230236.Google Scholar
Ngamprasertwong, P, Habli, M, Boat, A, et al. Maternal hypotension during fetoscopic surgery: incidence and its impact on fetal survival outcomes. ScientificWorldJournal. 2013;2013:709059.Google Scholar
Van Mieghem, T, Klaritsch, P, Done, E, et al. Assessment of fetal cardiac function before and after therapy for twin-to-twin transfusion syndrome. Am J Obstet Gynecol. 2009;200(4):400.e1–400.e7.Google Scholar
Lopriore, E, Middeldorp, JM, Oepkes, D, Klumper, FJ, Walther, FJ, Vandenbussche, FP. Residual anastomoses after fetoscopic laser surgery in twin-to-twin transfusion syndrome: frequency, associated risks and outcome. Placenta. 2007; 28(2-3):204208.Google Scholar
Gupta, R, Kilby, M, Cooper, G. Fetal surgery and anaesthetic implications. BJA Educ. 2008;8(2):7175.Google Scholar
Rossi, AC, Kaufman, MA, Bornick, PW, Quintero, RA. General vs local anesthesia for the percutaneous laser treatment of twin-twin transfusion syndrome. Am J Obstet Gynecol. 2008;199(2):137.e1–137.e7.Google Scholar
Lewi, L, Jani, J, Blickstein, I, et al. The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: a prospective cohort study. Am J Obstet Gynecol. 2008;199(5):514.e1–514.e8.Google Scholar
Slaghekke, F, Zhao, DP, Middeldorp, JM, et al. Antenatal management of twin-twin transfusion syndrome and twin anemia-polycythemia sequence. Expert Rev Hematol. 2016;9(8):815820.Google Scholar
Van de Velde, M, Van Schoubroeck, D, Lewi, LE, et al. Remifentanil for fetal immobilization and maternal sedation during fetoscopic surgery: a randomized, double-blind comparison with diazepam. Anesth Analg. 2005;101(1):251258.Google Scholar
Middeldorp, JM, Lopriore, E, Sueters, M, et al. Laparoscopically guided uterine entry for fetoscopy in twin-to-twin transfusion syndrome with completely anterior placenta: a novel technique. Fetal Diagn Ther. 2007;22(6):409415.Google Scholar
Papanna, R, Johnson, A, Ivey, RT, et al. Laparoscopy-assisted fetoscopy for laser surgery in twin-twin transfusion syndrome with anterior placentation. Ultrasound Obstet Gynecol. 2010;35:6570.Google Scholar
Shamshirsaz, AA, Javadian, P, Ruano, R, et al. Comparison between laparoscopically assisted and standard fetoscopic laser ablation in patients with anterior and posterior placentation in twin-twin transfusion syndrome: a single center study. Prenat Diagn. 2015;35(4):376381.Google Scholar

References

Verla, MA, Style, CC, Olutoye, OO. Prenatal intervention for the management of congenital diaphragmatic hernia. Pediatr Surg Int. 2018;34(6):579587.Google Scholar
Allan, DW, Greer, JJ. Pathogenesis of nitrofen-induced congenital diaphragmatic hernia in fetal rats. J Appl Physiol. 1997;83(2):338347.Google Scholar
Butler, N, Claireaux, AE. Congenital diaphragmatic hernia as a cause of perinatal mortality. Lancet. 1962;1(7231):659663.CrossRefGoogle ScholarPubMed
Harrison, MR, Adzick, NS, Estes, JM, Howell, LJ. A prospective study of the outcome for fetuses with diaphragmatic hernia. JAMA. 1994;271(5):382384.Google Scholar
Mah, VK, Zamakhshary, M, Mah, DY, et al. Absolute vs relative improvements in congenital diaphragmatic hernia survival: what happened to “hidden mortality.” J Pediatr Surg. 2009;44(5):877882.Google Scholar
Mehollin-Ray, AR, Cassady, CI, Cass, DL, Olutoye, OO. Fetal MR imaging of congenital diaphragmatic hernia. Radiographics. 2012;32(4):10671084.Google Scholar
Mesas Burgos, C, Hammarqvist-Vejde, J, Frenckner, B, Conner, P. Differences in outcomes in prenatally diagnosed congenital diaphragmatic hernia compared to postnatal detection: a single-center experience. Fetal Diagn Ther. 2016;39(4):241247.Google Scholar
Akinkuotu, AC, Cruz, SM, Abbas, PI, et al. Risk-stratification of severity for infants with CDH: Prenatal versus postnatal predictors of outcome. J Pediatr Surg. 2016;51(1):4448.Google Scholar
Jani, J, Nicolaides, KH, Keller, RL, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol. 2007;30(1):6771.Google Scholar
Zamora, IJ, Olutoye, OO, Cass, DL, et al. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH). J Pediatr Surg. 2014;49(5):688693.Google Scholar
Kohl, T. Minimally invasive fetoscopic interventions: an overview in 2010. Surg Endosc. 2010;24(8):20562067.Google Scholar
Ruano, R, Ali, RA, Patel, P, et al. Fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia: indications, outcomes, and future directions. Obstet Gynecol Surv. 2014;69(3):147158.CrossRefGoogle ScholarPubMed
Peiro, JL, Carreras, E, Guillen, G, et al. Therapeutic indications of fetoscopy: a 5-year institutional experience. J Laparoendosc Adv Surg Tech A. 2009;19(2):229236.Google Scholar
Belfort, MA, Olutoye, OO, Cass, DL, et al. Feasibility and outcomes of fetoscopic tracheal occlusion for severe left diaphragmatic hernia. Obstet Gynecol. 2017;129(1):2029.Google Scholar
Deprest, J, Nicolaides, K, Done, E, et al. Technical aspects of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia. J Pediatr Surg. 2011;46(1):2232.Google Scholar
Kohl, T, Muller, A, Franz, A, et al. Temporary fetoscopic tracheal balloon occlusion enhanced by hyperoncotic lung distension: is there a role in the treatment of fetal pulmonary hypoplasia from early preterm premature rupture of membranes? Fetal Diagn Ther. 2007;22(6):462465.Google Scholar
Kohl, T, Geipel, A, Tchatcheva, K, et al. Life-saving effects of fetal tracheal occlusion on pulmonary hypoplasia from preterm premature rupture of membranes. Obstet Gynecol. 2009;113 (2 Pt 2):480483.Google Scholar
Lally, KP. Congenital diaphragmatic hernia – the past 25 (or so) years. J Pediatr Surg. 2016;51(5):695698.CrossRefGoogle ScholarPubMed
Harrison, MR, Adzick, NS, Bullard, KM, et al. Correction of congenital diaphragmatic hernia in utero VII: a prospective trial. J Pediatr Surg. 1997;32(11):16371642.CrossRefGoogle ScholarPubMed
Harrison, MR, Adzick, NS, Longaker, MT, et al. Successful repair in utero of a fetal diaphragmatic hernia after removal of herniated viscera from the left thorax. N Engl J Med. 1990;322(22):15821584.Google Scholar
Harrison, MR, Adzick, NS, Flake, AW, Jennings, RW. The CDH two-step: a dance of necessity. J Pediatr Surg. 1993;28(6):813816.CrossRefGoogle ScholarPubMed
Harrison, MR, Adzick, NS, Flake, AW, et al. Correction of congenital diaphragmatic hernia in utero: VI. Hard-earned lessons. J Pediatr Surg. 1993;28(10):1411–1417.Google Scholar
MacGillivray, TE, Jennings, RW, Rudolph, AM, et al. Vascular changes with in utero correction of diaphragmatic hernia. J Pediatr Surg. 1994;29(8):992996.Google Scholar
Skarsgard, ED, Meuli, M, VanderWall, KJ, et al. Fetal endoscopic tracheal occlusion (‘Fetendo-PLUG’) for congenital diaphragmatic hernia. J Pediatr Surg. 1996;31(10):13351338.Google Scholar
Alcorn, D, Adamson, TM, Lambert, TF, et al. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat. 1977;123(Pt 3):649660.Google ScholarPubMed
Carmel, JA, Friedman, F, Adams, FH. Fetal tracheal ligation and lung development. Am J Dis Child. 1965;109(5):452456.Google ScholarPubMed
Lanman, JT, Schaffer, A, Herod, L, et al. Distensibility of the fetal lung with fluid in sheep. Pediatr Res. 1971;5:586.Google Scholar
Wilson, JM, DiFiore, JW, Peters, CA. Experimental fetal tracheal ligation prevents the pulmonary hypoplasia associated with fetal nephrectomy: possible application for congenital diaphragmatic hernia. J Pediatr Surg. 1993;28(11):1433–1439.Google Scholar
Beierle, EA, Langham, MR, Jr., Cassin, S. In utero lung growth of fetal sheep with diaphragmatic hernia and tracheal stenosis. J Pediatr Surg. 1996;31(1):141146.CrossRefGoogle ScholarPubMed
Bealer, JF, Skarsgard, ED, Hedrick, MH, et al. The ‘PLUG’ odyssey: adventures in experimental fetal tracheal occlusion. J Pediatr Surg. 1995;30(2):361364.Google Scholar
DiFiore, JW, Fauza, DO, Slavin, R, et al. Experimental fetal tracheal ligation reverses the structural and physiological effects of pulmonary hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg. 1994;29(2):248256.Google Scholar
Hedrick, MH, Estes, JM, Sullivan, KM, et al. Plug the lung until it grows (PLUG): a new method to treat congenital diaphragmatic hernia in utero. J Pediatr Surg. 1994;29(5):612617.CrossRefGoogle Scholar
Harrison, MR, Adzick, NS, Flake, AW, et al. Correction of congenital diaphragmatic hernia in utero VIII: Response of the hypoplastic lung to tracheal occlusion. J Pediatr Surg. 1996;31(10):13391348.Google Scholar
Mychaliska, GB, Bealer, JF, Graf, JL, et al. Operating on placental support: the ex utero intrapartum treatment procedure. J Pediatr Surg. 1997;32(2):227230.CrossRefGoogle ScholarPubMed
Harrison, MR, Albanese, CT, Hawgood, SB, et al. Fetoscopic temporary tracheal occlusion by means of detachable balloon for congenital diaphragmatic hernia. Am J Obstet Gynecol. 2001;185(3):730733.Google Scholar
Harrison, MR, Sydorak, RM, Farrell, JA, et al. Fetoscopic temporary tracheal occlusion for congenital diaphragmatic hernia: prelude to a randomized, controlled trial. J Pediatr Surg. 2003;38(7):10121020.Google Scholar
Chiba, T, Albanese, CT, Farmer, DL, et al. Balloon tracheal occlusion for congenital diaphragmatic hernia: experimental studies. J Pediatr Surg. 2000;35(11):15661570.Google Scholar
Longaker, MT, Golbus, MS, Filly, RA, et al. Maternal outcome after open fetal surgery. A review of the first 17 human cases. JAMA. 1991;265(6):737741.Google Scholar
Deprest, J, Gratacos, E, Nicolaides, KH. Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet Gynecol. 2004;24(2):121126.CrossRefGoogle ScholarPubMed
Luks, FI, Gilchrist, BF, Jackson, BT, Piasecki, GJ. Endoscopic tracheal obstruction with an expanding device in a fetal lamb model: preliminary considerations. Fetal Diagn Ther. 1996;11(1):6771.Google Scholar
Kohl, T. Fetoscopic surgery: where are we today? Curr Opin Anaesthesiol. 2004;17(4):315321.Google Scholar
Ruano, R, Yoshisaki, CT, da Silva, MM, et al. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39(1):2027.Google Scholar
Deprest, J, Jani, J, Gratacos, E, et al. Fetal intervention for congenital diaphragmatic hernia: the European experience. Semin Perinatol. 2005;29(2):94103.Google Scholar
Jani, J, Gratacos, E, Greenough, A, et al. Percutaneous fetal endoscopic tracheal occlusion (FETO) for severe left-sided congenital diaphragmatic hernia. Clin Obstet Gynecol. 2005;48(4):910922.Google Scholar
Peralta, CF, Sbragia, L, Bennini, JR, et al. Fetoscopic endotracheal occlusion for severe isolated diaphragmatic hernia: initial experience from a single clinic in Brazil. Fetal Diagn Ther. 2011;29(1):7177.Google Scholar
Jani, JC, Nicolaides, KH, Gratacos, E, et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2009;34(3):304310.Google Scholar

References

Gardiner, HM, Kovacevic, A, Tulzer, G, et al. Natural history of 107 cases of fetal aortic stenosis from a European multicenter retrospective study. Ultrasound Obstet Gynecol. 2016;48(3):373381. doi: 10.1002/uog.15876 [doi].Google Scholar
Moon-Grady, AJ, Morris, SA, Belfort, M, et al. International fetal cardiac intervention registry: A worldwide collaborative description and preliminary outcomes. J Am Coll Cardiol. 2015;66(4):388399. doi: 10.1016/j.jacc.2015.05.037 [doi].Google Scholar
Freud, LR, McElhinney, DB, Marshall, AC, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: Postnatal outcomes of the first 100 patients. Circulation. 2014;130(8):638645. doi: 10.1161/CIRCULATIONAHA.114.009032 [doi].Google Scholar
Mallmann, MR, Herberg, U, Gottschalk, I, et al. Fetal cardiac intervention in critical aortic stenosis with severe mitral regurgitation, severe left atrial enlargement, and restrictive foramen ovale. Fetal Diagn Ther. 2020;47(5):440447. doi: 10.1159/000502840 [doi].Google Scholar
Tulzer, A, Arzt, W, Gitter, R, et al. Immediate effects and outcome of in-utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact ventricular septum or critical pulmonary stenosis. Ultrasound Obstet Gynecol. 2018;52(2):230237. doi: 10.1002/uog.19047 [doi].Google Scholar
Jantzen, DW, Moon-Grady, AJ, Morris, SA, et al. Hypoplastic left heart syndrome with intact or restrictive atrial septum: A report from the international fetal cardiac intervention registry. Circulation. 2017;136(14):13461349. doi: 10.1161/CIRCULATIONAHA.116.025873 [doi].Google Scholar
Friedman, KG, Sleeper, LA, Freud, LR, et al. Improved technical success, postnatal outcome and refined predictors of outcome for fetal aortic valvuloplasty. Ultrasound Obstet Gynecol. 2018;52(2):212220. doi: 10.1002/uog.17530 [doi].Google Scholar
Nugent, AW, Kowal, RC, Juraszek, AL, Ikemba, C, Magee, K. Model of magnetically guided fetal cardiac intervention: Potential to avoid direct cardiac puncture. J Matern Fetal Neonatal Med. 2013;26(18):17781781. doi: 10.3109/14767058.2013.818116 [doi].Google Scholar
Bakker, MK, Bergman, JEH, Krikov, S, et al. Prenatal diagnosis and prevalence of critical congenital heart defects: An international retrospective cohort study. BMJ Open. 2019;9(7):e028139-2018–028139. doi: 10.1136/bmjopen-2018-028139 [doi].Google Scholar
Lytzen, R, Vejlstrup, N, Bjerre, J, et al. Live-born major congenital heart disease in Denmark: Incidence, detection rate, and termination of pregnancy rate from 1996 to 2013. JAMA Cardiol. 2018;3(9):829837. doi: 10.1001/jamacardio.2018.2009 [doi].Google Scholar
Idorn, L, Olsen, M, Jensen, AS, et al. Univentricular hearts in Denmark 1977 to 2009: Incidence and survival. Int J Cardiol. 2013;167(4):13111316. doi: 10.1016/j.ijcard.2012.03.182 [doi].Google Scholar
Egbe, A, Uppu, S, Lee, S, Ho, D, Srivastava, S. Changing prevalence of severe congenital heart disease: A population-based study. Pediatr Cardiol. 2014;35(7):12321238. doi: 10.1007/s00246-014-0921-7 [doi].Google Scholar
Donofrio, MT, Moon-Grady, AJ, Hornberger, LK, et al. Diagnosis and treatment of fetal cardiac disease: A scientific statement from the American Heart Association. Circulation. 2014;129(21):21832242. doi: 10.1161/01.cir.0000437597.44550.5d [doi].Google Scholar
Kirk, JS, Riggs, TW, Comstock, CH, Lee, W, Yang, SS, Weinhouse, E. Prenatal screening for cardiac anomalies: The value of routine addition of the aortic root to the four-chamber view. Obstet Gynecol. 1994;84(3):427431.Google Scholar
Del Bianco, A, Russo, S, Lacerenza, N, et al. Four chamber view plus three-vessel and trachea view for a complete evaluation of the fetal heart during the second trimester. J Perinat Med. 2006;34(4):309312. doi: 10.1515/JPM.2006.059 [doi].Google Scholar
Bahtiyar, MO, Dulay, AT, Weeks, BP, et al. Prevalence of congenital heart defects in monochorionic/diamniotic twin gestations: A systematic literature review. J Ultrasound Med. 2007;26(11):14911498. doi: 26/11/1491[pii].Google Scholar
Lopriore, E, Bokenkamp, R, Rijlaarsdam, M, et al. Congenital heart disease in twin-to-twin transfusion syndrome treated with fetoscopic laser surgery. Congenit Heart Dis. 2007;2(1):3843. doi: 10.1111/j.1747-0803.2007.00070.x [doi].CrossRefGoogle ScholarPubMed
Stumpflen, I, Stumpflen, A, Wimmer, M, Bernaschek, G. Effect of detailed fetal echocardiography as part of routine prenatal ultrasonographic screening on detection of congenital heart disease. Lancet. 1996;348(9031):854857. doi: S0140-6736(96)04069-X [pii].Google Scholar
Yagel, S, Weissman, A, Rotstein, Z, et al. Congenital heart defects: Natural course and in utero development. Circulation. 1997;96(2):550555. doi: 10.1161/01.cir.96.2.550 [doi].Google Scholar
Rakha, S, El Marsafawy, H. Sensitivity, specificity, and accuracy of fetal echocardiography for high-risk pregnancies in a tertiary center in Egypt. Arch Pediatr. 2019;26(6):337341. doi: S0929-693X(19)30117-4 [pii].Google Scholar
Pinheiro, DO, Varisco, BB, Silva, MBD, et al. Accuracy of prenatal diagnosis of congenital cardiac MalformationsAcuracia do diagnostico pre-natal de cardiopatias congenitas. Rev Bras Ginecol Obstet. 2019;41(1):1116. doi: 10.1055/s-0038-1676058 [doi].Google Scholar
Pasierb, MM, Penalver, JM, Vernon, MM, Arya, B. The role of regional prenatal cardiac screening for congenital heart disease: A single center experience. Congenit Heart Dis. 2018;13(4):571577. doi: 10.1111/chd.12611 [doi].Google Scholar
Yu, D, Sui, L, Zhang, N. Performance of first-trimester fetal echocardiography in diagnosing fetal heart defects: Meta-analysis and systematic review. J Ultrasound Med. 2020;39(3):471480. doi: 10.1002/jum.15123 [doi].Google Scholar
McBrien, A, Hornberger, LK. Early fetal echocardiography. Birth Defects Res. 2019;111(8):370379. doi: 10.1002/bdr2.1414 [doi].Google Scholar
Rychik, J, Ayres, N, Cuneo, B, et al. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J Am Soc Echocardiogr. 2004;17(7):803810. doi: 10.1016/j.echo.2004.04.011 [doi].Google Scholar
Hornberger, LK, Sahn, DJ. Rhythm abnormalities of the fetus. Heart. 2007;93(10):12941300. doi: 93/10/1294[pii].Google Scholar
Stewart, PA, Wladimiroff, JW. Fetal echocardiography and color doppler flow imaging: The Rotterdam experience. Ultrasound Obstet Gynecol. 1993;3(3):168175. doi: 10.1046/j.1469-0705.1993.03030168.x [doi].CrossRefGoogle ScholarPubMed
Copel, JA, Morotti, R, Hobbins, JC, Kleinman, CS. The antenatal diagnosis of congenital heart disease using fetal echocardiography: Is color flow mapping necessary? Obstet Gynecol. 1991;78(1):18.Google Scholar
Gembruch, U, Chatterjee, MS, Bald, R, et al. Color doppler flow mapping of fetal heart. J Perinat Med. 1991;19(1–2):2732.Google Scholar
Moon-Grady, A, Shahanavaz, S, Brook, M, et al. Can a complete fetal echocardiogram be performed at 12 to 16 weeks’ gestation? J Am Soc Echocardiogr. 2012;25(12):13421352. doi: 10.1016/j.echo.2012.09.003 [doi].Google Scholar
Comas Gabriel, C, Galindo, A, Martinez, JM, et al. Early prenatal diagnosis of major cardiac anomalies in a high-risk population. Prenat Diagn. 2002;22(7):586593. doi: 10.1002/pd.372 [doi].Google Scholar
Fouron, JC, Fournier, A, Proulx, F, et al. Management of fetal tachyarrhythmia based on superior vena cava/aorta doppler flow recordings. Heart. 2003;89(10):12111216. doi: 10.1136/heart.89.10.1211 [doi].Google Scholar
Carvalho, JS, Prefumo, F, Ciardelli, V, et al. Evaluation of fetal arrhythmias from simultaneous pulsed wave doppler in pulmonary artery and vein. Heart. 2007;93(11):14481453. doi: hrt.2006.101659 [pii].Google Scholar
Copel, JA, Pilu, G, Kleinman, CS. Congenital heart disease and extracardiac anomalies: Associations and indications for fetal echocardiography. Am J Obstet Gynecol. 1986;154(5):11211132. doi: 0002-9378(86)90773-8 [pii].Google Scholar
Cai, M, Huang, H, Su, L, et al. Fetal congenital heart disease: Associated anomalies, identification of genetic anomalies by single-nucleotide polymorphism array analysis, and postnatal outcome. Medicine (Baltimore). 2018;97(50):e13617. doi: 10.1097/MD.0000000000013617 [doi].Google Scholar
Sun, H, Yi, T, Hao, X, et al. Contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting. Ultrasound Obstet Gynecol. 2020;56(2):225232. doi: 10.1002/uog.21883 [doi].Google Scholar
Lord, J, McMullan, DJ, Eberhardt, RY, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet. 2019;393(10173):747757. doi: S0140-6736(18)31940-8 [pii].Google Scholar
Schidlow, DN, Freud, L, Friedman, K, Tworetzky, W. Fetal interventions for structural heart disease. Echocardiography. 2017;34(12):18341841. doi: 10.1111/echo.13667 [doi].Google Scholar
Krishnan, A, Arya, B, Moak, JP, Donofrio, MT. Outcomes of fetal echocardiographic surveillance in anti-SSA exposed fetuses at a large fetal cardiology center. Prenat Diagn. 2014;34(12):12071212. doi: 10.1002/pd.4454 [doi].Google Scholar
Co-Vu, J, Lopez-Colon, D, Vyas, HV, et al. Maternal hyperoxygenation: A potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography. 2017;34(12):18221833. doi: 10.1111/echo.13722 [doi].Google Scholar
Cuneo, BF, Moon-Grady, AJ, Sonesson, SE, et al. Heart sounds at home: Feasibility of an ambulatory fetal heart rhythm surveillance program for anti-SSA-positive pregnancies. J Perinatol. 2017;37(3):226230. doi: 10.1038/jp.2016.220 [doi].Google Scholar
Rychik, J, Khalek, N, Gaynor, JW, et al. Fetal intrapericardial teratoma: Natural history and management including successful in utero surgery. Am J Obstet Gynecol. 2016;215(6):780.e1-780.e7. doi: S0002-9378(16)30575-0 [pii].Google Scholar
Riskin-Mashiah, S, Moise, KJ, Jr., Wilkins, I, et al. In utero diagnosis of intrapericardial teratoma: A case for in utero open fetal surgery. Prenat Diagn. 1998;18(12):13281330. doi: 10.1002/(SICI)1097-0223(199812)18:123.0.CO;2-7 [pii].Google Scholar
Edwards, LA, Lara, DA, Sanz Cortes, M, et al. Chronic maternal hyperoxygenation and effect on cerebral and placental vasoregulation and neurodevelopment in fetuses with left heart hypoplasia. Fetal Diagn Ther. 2019;46(1):4557. doi: 10.1159/000489123 [doi].Google Scholar
Arunamata, A, Axelrod, DM, Bianco, K, et al. Chronic antepartum maternal hyperoxygenation in a case of severe fetal Ebstein’s anomaly with circular shunt physiology. Ann Pediatr Cardiol. 2017;10(3):284287. doi: 10.4103/apc.APC_20_17 [doi].Google Scholar
Lara, DA, Morris, SA, Maskatia, SA, et al. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016;48(3):365372. doi: 10.1002/uog.15846 [doi].Google Scholar
Zeng, S, Zhou, Q, Zhang, M, et al. Features and outcome of fetal cardiac aneurysms and diverticula: A single center experience in China. Prenat Diagn. 2016;36(1):6873. doi: 10.1002/pd.4714 [doi].Google Scholar
Garcia Rodriguez, R, Rodriguez Guedes, A, Garcia Delgado, R, et al. Prenatal diagnosis of cardiac diverticulum with pericardial effusion in the first trimester of pregnancy with resolution after early pericardiocentesis. Case Rep Obstet Gynecol. 2015;2015:154690. doi: 10.1155/2015/154690 [doi].Google Scholar
Carpenter, RJ, Jr., Strasburger, JF, Garson A, Jr., et al. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. J Am Coll Cardiol. 1986;8(6):14341436. doi: S0735-1097(86)80319-9 [pii].Google Scholar
Zhou, L, Vest, AN, Chmait, RH, et al. A percutaneously implantable fetal pacemaker. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4459–4463. doi: 10.1109/EMBC.2014.6944614 [doi].Google Scholar
Nassr, AA, Shazly, SA, Morris, SA, et al. Prenatal management of fetal intrapericardial teratoma: A systematic review. Prenat Diagn. 2017;37(9):849863. doi: 10.1002/pd.5113 [doi].Google Scholar
Heerema-McKenney, A, Harrison, MR, Bratton, B, et al. Congenital teratoma: A clinicopathologic study of 22 fetal and neonatal tumors. Am J Surg Pathol. 2005;29(1):2938. doi: 00000478-200501000-00004 [pii].Google Scholar
Gardiner, HM. In utero intervention for severe congenital heart disease. Best Pract Res Clin Obstet Gynaecol. 2019;58:4254. doi: S1521-6934(19)30003-3 [pii].CrossRefGoogle Scholar
Gellis, L, Tworetzky, W. The boundaries of fetal cardiac intervention: Expand or tighten? Semin Fetal Neonatal Med. 2017;22(6):399403. doi: S1744-165X(17)30095-1 [pii].Google Scholar
Kovacevic, A, Ohman, A, Tulzer, G, et al. Fetal hemodynamic response to aortic valvuloplasty and postnatal outcome: A European multicenter study. Ultrasound Obstet Gynecol. 2018;52(2):221229. doi: 10.1002/uog.18913 [doi].Google Scholar
Freud, LR, Moon-Grady, A, Escobar-Diaz, MC, et al. Low rate of prenatal diagnosis among neonates with critical aortic stenosis: Insight into the natural history in utero. Ultrasound Obstet Gynecol. 2015;45(3):326332. doi: 10.1002/uog.14667 [doi].Google Scholar
Makikallio, K, McElhinney, DB, Levine, JC, et al. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: Patient selection for fetal intervention. Circulation. 2006;113(11):14011405. doi: CIRCULATIONAHA.105.588194 [pii].Google Scholar
Tworetzky, W, Wilkins-Haug, L, Jennings, RW, et al. Balloon dilation of severe aortic stenosis in the fetus: Potential for prevention of hypoplastic left heart syndrome: Candidate selection, technique, and results of successful intervention. Circulation. 2004;110(15):21252131. doi: 01.CIR.0000144357.29279.54 [pii].Google Scholar
Rychik, J, Rome, JJ, Collins, MH, et al. The hypoplastic left heart syndrome with intact atrial septum: Atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999;34(2):554560. doi: S0735-1097(99)00225-9 [pii].Google Scholar
Vlahos, AP, Lock, JE, McElhinney, DB, van der Velde, ME. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: Outcome after neonatal transcatheter atrial septostomy. Circulation. 2004;109(19):23262330. doi: 10.1161/01.CIR.0000128690.35860.C5 [doi].Google Scholar
Goltz, D, Lunkenheimer, JM, Abedini, M, et al. Left ventricular obstruction with restrictive inter-atrial communication leads to retardation in fetal lung maturation. Prenat Diagn. 2015;35(5):463470. doi: 10.1002/pd.4559 [doi].CrossRefGoogle ScholarPubMed
Arai, S, Fujii, Y, Kotani, Y, et al. Surgical outcome of hypoplastic left heart syndrome with intact atrial septum. Asian Cardiovasc Thorac Ann. 2015;23(9):10341038. doi: 10.1177/0218492315606581 [doi].Google Scholar
Bichell, D. Invited commentary. Ann Thorac Surg. 2020;109(3):833834. doi: S0003-4975(19)31550-4 [pii].Google Scholar
Salve, GG, Datar, GM, Perumal, G, et al. Impact of high-risk characteristics in hypoplastic left heart syndrome. World J Pediatr Congenit Heart Surg. 2019;10(4):475484. doi: 10.1177/2150135119852319 [doi].Google Scholar
Vida, VL, Bacha, EA, Larrazabal, A, et al. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: Surgical experience from a single center. Ann Thorac Surg. 2007;84(2):581585; discussion 586. doi: S0003-4975(07)00729-1 [pii].Google Scholar
Glatz, JA, Tabbutt, S, Gaynor, JW, et al. Hypoplastic left heart syndrome with atrial level restriction in the era of prenatal diagnosis. Ann Thorac Surg. 2007;84(5):16331638. doi: S0003-4975(07)01367-7 [pii].Google Scholar
Gellis, L, Drogosz, M, Lu, M, et al. Echocardiographic predictors of neonatal illness severity in fetuses with critical left heart obstruction with intact or restrictive atrial septum. Prenat Diagn. 2018;38(10):788794. doi: 10.1002/pd.5322 [doi].CrossRefGoogle ScholarPubMed
Divanovic, A, Hor, K, Cnota, J, et al. Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: Clinical experience using pulmonary venous doppler analysis. J Thorac Cardiovasc Surg. 2011;141(4):988994. doi: 10.1016/j.jtcvs.2010.09.043 [doi].Google Scholar
Chaturvedi, RR, Ryan, G, Seed, M, et al. Fetal stenting of the atrial septum: Technique and initial results in cardiac lesions with left atrial hypertension. Int J Cardiol. 2013;168(3):20292036. doi: 10.1016/j.ijcard.2013.01.173 [doi].Google Scholar
Kalish, BT, Tworetzky, W, Benson, CB, et al. Technical challenges of atrial septal stent placement in fetuses with hypoplastic left heart syndrome and intact atrial septum. Catheter Cardiovasc Interv. 2014;84(1):7785. doi: 10.1002/ccd.25098 [doi].Google Scholar
Rogers, LS, Peterson, AL, Gaynor, JW, et al. Mitral valve dysplasia syndrome: A unique form of left-sided heart disease. J Thorac Cardiovasc Surg. 2011;142(6):13811387. doi: 10.1016/j.jtcvs.2011.06.002 [doi].Google Scholar
Vogel, M, McElhinney, DB, Wilkins-Haug, LE, et al. Aortic stenosis and severe mitral regurgitation in the fetus resulting in giant left atrium and hydrops: Pathophysiology, outcomes, and preliminary experience with pre-natal cardiac intervention. J Am Coll Cardiol. 2011;57(3):348355. doi: 10.1016/j.jacc.2010.08.636 [doi].Google Scholar
Ide, T, Miyoshi, T, Kitano, M, et al. Fetal critical aortic stenosis with natural improvement of hydrops fetalis due to spontaneous relief of severe restrictive atrial communication. J Obstet Gynaecol Res. 2015;41(7):11371140. doi: 10.1111/jog.12681 [doi].Google Scholar
Belfort, MA, Morris, SA, Espinoza, J, et al. Thulium laser-assisted atrial septal stent placement: First use in fetal hypoplastic left heart syndrome and intact atrial septum. Ultrasound Obstet Gynecol. 2019;53(3):417418. doi: 10.1002/uog.20161 [doi].Google Scholar
Tulzer, G, Arzt, W, Franklin, RC, et al. Fetal pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum. Lancet. 2002;360(9345):15671568. doi: S0140-6736(02)11531-5 [pii].Google Scholar
Gomez Montes, E, Herraiz, I, Mendoza, A, Galindo, A. Fetal intervention in right outflow tract obstructive disease: Selection of candidates and results. Cardiol Res Pract. 2012;2012:592403. doi: 10.1155/2012/592403 [doi].Google Scholar
Polat, T, Danisman, N. Pulmonary valvulotomy in a fetus with pulmonary atresia with intact ventricular septum: First experience in Turkey. Images Paediatr Cardiol. 2012;14(3):611.Google Scholar
Tworetzky, W, McElhinney, DB, Marx, GR, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: Techniques and outcomes. Pediatrics. 2009;124(3):e510-8. doi: 10.1542/peds.2008-2014 [doi].Google Scholar
Roman, KS, Fouron, JC, Nii, M, et al. Determinants of outcome in fetal pulmonary valve stenosis or atresia with intact ventricular septum. Am J Cardiol. 2007;99(5):699703. doi: S0002-9149(06)02277-6 [pii].Google Scholar
Gardiner, HM. In-utero intervention for severe congenital heart disease. Best Pract Res Clin Obstet Gynaecol. 2008;22(1):4961. doi: 10.1016/j.bpobgyn.2007.06.003.Google Scholar
Gottschalk, I, Strizek, B, Menzel, T, et al. Severe pulmonary stenosis or atresia with intact ventricular septum in the fetus: The natural history. Fetal Diagn Ther. 2020;47(5):420428. doi: 10.1159/000502178 [doi].Google Scholar
Marshall, AC, Levine, J, Morash, D, et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn. 2008;28(11):10231028. doi: 10.1002/pd.2114 [doi].Google Scholar
Jaeggi, E, Renaud, C, Ryan, G, Chaturvedi, R. Intrauterine therapy for structural congenital heart disease: Contemporary results and Canadian experience. Trends Cardiovasc Med. 2016;26(7):639646. doi: 10.1016/j.tcm.2016.04.006 [doi].Google Scholar
Ferschl, MB, Feiner, J, Vu, L, et al. A comparison of spinal anesthesia versus monitored anesthesia care with local anesthesia in minimally invasive fetal surgery. Anesth Analg. 2020;130(2):409415. doi: 10.1213/ANE.0000000000003947 [doi].Google Scholar
McElhinney, DB, Marshall, AC, Wilkins-Haug, LE, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120(15):14821490. doi: 10.1161/CIRCULATIONAHA.109.848994 [doi].Google Scholar
Arzt, W, Wertaschnigg, D, Veit, I, et al. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: Experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011;37(6):689695. doi: 10.1002/uog.8927 [doi].Google Scholar
Galindo, A, Gomez-Montes, E, Gomez, O, et al. Fetal aortic valvuloplasty: Experience and results of two tertiary centers in Spain. Fetal Diagn Ther. 2017;42(4):262270. doi: 10.1159/000460247 [doi].Google Scholar

References

Practice bulletin no. 145: antepartum fetal surveillance. Obstet Gynecol. 2014;124:182192.Google Scholar
Manning, FA, Platt, LD. Maternal hypoxemia and fetal breathing movements. Obstet Gynecol. 1979;53:758760.Google Scholar
Boddy, K, Dawes, GS, Fisher, R, et al. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol. 1974;243:599618.Google Scholar
Natale, R, Clewlow, F, Dawes, GS. Measurement of fetal forelimb movements in the lamb in utero. Am J Obstet Gynecol. 1981;140:545551.Google Scholar
Murata, Y, Martin, CB, Jr., Ikenoue, T, et al. Fetal heart rate accelerations and late decelerations during the course of intrauterine death in chronically catheterized rhesus monkeys. Am J Obstet Gynecol. 1982;144:218223.Google Scholar
Weiner, CP, Sipes, SL, Wenstrom, K. The effect of fetal age upon normal fetal laboratory values and venous pressure. Obstet Gynecol. 1992;79:713718.Google Scholar
Manning, FA, Snijders, R, Harman, CR, et al. Fetal biophysical profile score. VI. Correlation with antepartum umbilical venous fetal pH. Am J Obstet Gynecol. 1993;169:755763.Google Scholar
Freeman, RK, Anderson, G, Dorchester, W. A prospective multi-institutional study of antepartum fetal heart rate monitoring. II. Contraction stress test versus nonstress test for primary surveillance. Am J Obstet Gynecol. 1982;143:778781.Google Scholar
Boehm, FH, Salyer, S, Shah, DM, Vaughn, WK. Improved outcome of twice weekly nonstress testing. Obstet Gynecol. 1986;67:566568.Google Scholar
Manning, FA, Morrison, I, Harman, CR, et al. Fetal assessment based on fetal biophysical profile scoring: experience in 19,221 referred high-risk pregnancies. II. An analysis of false-negative fetal deaths. Am J Obstet Gynecol. 1987;157:880884.Google Scholar
Miller, DA, Rabello, YA, Paul, RH. The modified biophysical profile: antepartum testing in the 1990s. Am J Obstet Gynecol. 1996;174:812817.Google Scholar
Thacker, SB, Berkelman, RL. Assessing the diagnostic accuracy and efficacy of selected antepartum fetal surveillance techniques. Obstet Gynecol Surv. 1986;41:121141.Google Scholar
Pearson, JF, Weaver, JB. Fetal activity and fetal wellbeing: an evaluation. Br Med J. 1976;1:13051307.Google Scholar
Andersen, HF, Johnson, TR, Jr., Flora, JD, Jr., Barclay, ML. Gestational age assessment. II. Prediction from combined clinical observations. Am J Obstet Gynecol. 1981;140:770774.Google Scholar
Neldam, S. Fetal movements as an indicator of fetal well-being. Dan Med Bull. 1983;30:274278.Google Scholar
O’Neill, E, Thorp, J. Antepartum evaluation of the fetus and fetal well being. Clin Obstet Gynecol. 2012;55:722730.Google Scholar
Patrick, J, Campbell, K, Carmichael, L, et al. Patterns of gross fetal body movements over 24-hour observation intervals during the last 10 weeks of pregnancy. Am J Obstet Gynecol. 1982;142:363371.Google Scholar
Moore, TR, Piacquadio, K. A prospective evaluation of fetal movement screening to reduce the incidence of antepartum fetal death. Am J Obstet Gynecol. 1989;160:10751080.Google Scholar
Grant, A, Elbourne, D, Valentin, L, Alexander, S. Routine formal fetal movement counting and risk of antepartum late death in normally formed singletons. Lancet. 1989;2:345349.Google Scholar
Mangesi, L, Hofmeyr, GJ, Smith, V, Smyth, RM. Fetal movement counting for assessment of fetal wellbeing. Cochrane Database Syst Rev. 2015;CD004909.Google Scholar
Evertson, LR, Gauthier, RJ, Schifrin, BS, Paul, RH. Antepartum fetal heart rate testing. I. Evolution of the nonstress test. Am J Obstet Gynecol. 1979;133:2933.Google Scholar
ACOG Practice Bulletin No. 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet Gynecol. 2009;114:192202.Google Scholar
Macones, GA, Hankins, GD, Spong, CY, et al. The 2008 National Institute of Child Health and Human Development workshop report on electronic fetal monitoring: update on definitions, interpretation, and research guidelines. J Obstet Gynecol Neonatal Nurs. 2008;37:510515.Google Scholar
Tan, KH, Smyth, RM, Wei, X. Fetal vibroacoustic stimulation for facilitation of tests of fetal wellbeing. Cochrane Database Syst Rev. 2013;CD002963.Google Scholar
Wheeler, T, Murrills, A. Patterns of fetal heart rate during normal pregnancy. Br J Obstet Gynaecol. 1978;85:1827.Google Scholar
Bishop, EH. Fetal acceleration test. Am J Obstet Gynecol. 1981;141:905909.Google Scholar
Druzin, ML, Gratacos, J, Keegan, KA, Paul, RH. Antepartum fetal heart rate testing. VII. The significance of fetal bradycardia. Am J Obstet Gynecol. 1981;139:194198.Google Scholar
Lavin, JP, Jr., Miodovnik, M, Barden, TP. Relationship of nonstress test reactivity and gestational age. Obstet Gynecol. 1984;63:338344.Google Scholar
Park, MI, Hwang, JH, Cha, KJ, et al. Computerized analysis of fetal heart rate parameters by gestational age. Int J Gynaecol Obstet. 2001;74:157164.Google Scholar
Sadovsky, G, Nicolaides, KH. Reference ranges for fetal heart rate patterns in normoxaemic nonanaemic fetuses. Fetal Ther. 1989;4:6168.Google Scholar
Hatjis, CG, Meis, PJ. Sinusoidal fetal heart rate pattern associated with butorphanol administration. Obstet Gynecol. 1986;67:377380.Google Scholar
Grivell, RM, Alfirevic, Z, Gyte, GM, Devane, D. Antenatal cardiotocography for fetal assessment. Cochrane Database Syst Rev. 2012;12:CD007863.Google Scholar
ACOG practice bulletin. Antepartum fetal surveillance. Number 9, October 1999 (replaces Technical Bulletin Number 188, January 1994). Clinical management guidelines for obstetrician-gynecologists. Int J Gynaecol Obstet. 2000;68:175185.Google Scholar
Vintzileos, AM, Gaffney, SE, Salinger, LM, et al. The relationship between fetal biophysical profile and cord pH in patients undergoing cesarean section before the onset of labor. Obstet Gynecol. 1987;70:196201.Google Scholar
Manning, FA, Bondaji, N, Harman, CR, et al. Fetal assessment based on fetal biophysical profile scoring. VIII. The incidence of cerebral palsy in tested and untested perinates. Am J Obstet Gynecol. 1998;178:696706.Google Scholar
Chamberlain, PF, Manning, FA, Morrison, I, et al. Ultrasound evaluation of amniotic fluid volume. I. The relationship of marginal and decreased amniotic fluid volumes to perinatal outcome. Am J Obstet Gynecol. 1984;150:245249.Google Scholar
Manning, FA, Harman, CR, Morrison, I, et al. Fetal assessment based on fetal biophysical profile scoring. IV. An analysis of perinatal morbidity and mortality. Am J Obstet Gynecol. 1990;162:703709.Google Scholar
Nabhan, AF, Abdelmoula, YA. Amniotic fluid index versus single deepest vertical pocket as a screening test for preventing adverse pregnancy outcome. Cochrane Database Syst Rev. 2008;CD006593.Google Scholar
Vintzileos, AM, Gaffney, SE, Salinger, LM, et al. The relationships among the fetal biophysical profile, umbilical cord pH, and Apgar scores. Am J Obstet Gynecol. 1987;157:627–31.Google Scholar
Vintzileos, AM, Campbell, WA, Nochimson, DJ, Weinbaum, PJ. The use and misuse of the fetal biophysical profile. Am J Obstet Gynecol. 1987;156:527533.Google Scholar
Vintzileos, AM, Fleming, AD, Scorza, WE, et al. Relationship between fetal biophysical activities and umbilical cord blood gas values. Am J Obstet Gynecol. 1991;165:707713.Google Scholar
Martin, CB, Jr. Normal fetal physiology and behavior, and adaptive responses with hypoxemia. Semin Perinatol. 2008;32:239242.Google Scholar
Dayal, AK, Manning, FA, Berck, DJ, et al. Fetal death after normal biophysical profile score: An eighteen-year experience. Am J Obstet Gynecol. 1999;181:12311236.Google Scholar
Manning, FA. Fetal biophysical profile. Obstet Gynecol Clin North Am. 1999;26:557577,v.Google Scholar
Clark, SL, Sabey, P, Jolley, K. Nonstress testing with acoustic stimulation and amniotic fluid volume assessment: 5973 tests without unexpected fetal death. Am J Obstet Gynecol. 1989;160:694697.Google Scholar
Rutherford, SE, Phelan, JP, Smith, CV, Jacobs, N. The four-quadrant assessment of amniotic fluid volume: an adjunct to antepartum fetal heart rate testing. Obstet Gynecol. 1987;70:353356.Google Scholar
Manning, FA, Morrison, I, Lange, IR, et al. Fetal assessment based on fetal biophysical profile scoring: experience in 12,620 referred high-risk pregnancies. I. Perinatal mortality by frequency and etiology. Am J Obstet Gynecol. 1985;151:343350.Google Scholar
Manning, FA, Menticoglou, S, Harman, CR, et al. Antepartum fetal risk assessment: the role of the fetal biophysical profile score. Baillieres Clin Obstet Gynaecol. 1987;1:5572.Google Scholar
Manning, FA. Antepartum fetal surveillance. Curr Opin Obstet Gynecol. 1995;7:146149.Google Scholar
Seravalli, V, Baschat, AA. A uniform management approach to optimize outcome in fetal growth restriction. Obstet Gynecol Clin North Am. 2015;42:275288.Google Scholar
Alfirevic, Z, Stampalija, T, Gyte, GM. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2010;CD007529.Google Scholar
Berkley, E, Chauhan, SP, Abuhamad, A. Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol. 2012;206:300308.Google Scholar
DeVore, GR. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol. 2015;213:515.Google Scholar
Dunn, L, Sherrell, H, Review, Kumar S. Systematic review of the utility of the fetal cerebroplacental ratio measured at term for the prediction of adverse perinatal outcome. Placenta. 2017;54:6875.Google Scholar
Khalil, A, Morales-Rosello, J, Townsend, R, et al. Value of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and perinatal loss. Ultrasound Obstet Gynecol. 2016;47:7480.Google Scholar
Seravalli, V, Miller, JL, Block-Abraham, D, Baschat, AA. Ductus venosus Doppler in the assessment of fetal cardiovascular health: an updated practical approach. Acta Obstet Gynecol Scand. 2016;95:635644.Google Scholar
Baschat, AA, Harman, CR. Antenatal assessment of the growth restricted fetus. Curr Opin Obstet Gynecol. 2001;13:161168.Google Scholar
Gudmundsson, S, Tulzer, G, Huhta, JC, Marsal, K. Venous Doppler in the fetus with absent end-diastolic flow in the umbilical artery. Ultrasound Obstet Gynecol. 1996;7:262267.Google Scholar
Hofstaetter, C, Dubiel, M, Gudmundsson, S. Two types of umbilical venous pulsations and outcome of high-risk pregnancy. Early Hum Dev. 2001;61:111117.Google Scholar
Erskine, RL, Ritchie, JW. Umbilical artery blood flow characteristics in normal and growth-retarded fetuses. Br J Obstet Gynaecol. 1985;92:605610.Google Scholar
Giles, WB, Trudinger, BJ, Baird, PJ. Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br J Obstet Gynaecol. 1985;92:3138.Google Scholar
Reuwer, PJ, Bruinse, HW, Stoutenbeek, P, Haspels, AA. Doppler assessment of the fetoplacental circulation in normal and growth-retarded fetuses. Eur J Obstet Gynecol Reprod Biol. 1984;18:199205.Google Scholar
Devoe, LD, Gardner, P, Dear, C, Faircloth, D. The significance of increasing umbilical artery systolic-diastolic ratios in third-trimester pregnancy. Obstet Gynecol. 1992;80:684687.Google Scholar
Giles, W, Bisits, A. Clinical use of Doppler ultrasound in pregnancy: information from six randomised trials. Fetal Diagn Ther. 1993;8:247255.Google Scholar
Rychik, J, Tian, Z, Cohen, MS, et al. Acute cardiovascular effects of fetal surgery in the human. Circulation. 2004;110:15491556.Google Scholar
Howley, L, Wood, C, Patel, SS, et al. Flow patterns in the ductus arteriosus during open fetal myelomeningocele repair. Prenat Diagn. 2015;35:564570.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×