Published online by Cambridge University Press: 08 December 2022
In this chapter, we shall give an introduction to Euler–Arnold theory for partial differential equations (PDEs). The main idea of this theory is to reinterpret certain PDEs as smooth ordinary differential equations (ODEs) on infinite-dimensional manifolds. One advantage of this idea is that the usual solution theory for ODEs can be used to establish properties for the PDE under consideration. This principle has been successfully applied to a variety of PDE arising for example in hydrodynamics. Among these are the Euler equations for an ideal fluid, the Camassa–Holm equation, the Hunter–Saxton and the inviscid Burgers equation. Indeed there is a much longer list of physically relevant PDE which fit into this setting. We shall mainly orient ourselves along the classical exposition by Arnold and Ebin and Marsden and study the Euler equation of an incompressible ideal fluid.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.