Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T20:33:16.986Z Has data issue: false hasContentIssue false

14 - Spherically symmetric gravitational fields of isolated objects

from Part II - The theory of gravitation

Published online by Cambridge University Press:  30 May 2024

Jerzy Plebanski
Affiliation:
National Polytechnic Institute of Mexico
Andrzej Krasinski
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences
Get access

Summary

Solutions of the Einstein and Einstein–Maxwell equations for spherically symmetric metrics (those of Schwarzschild and Reissner–Nordstr\“{o}m) are derived and discussed in detail. The equations of orbits of planets and of bending of light rays in a weak field are derived and discussed. Two methods to measure the bending of rays are presented. Properties of gravitational lenses are described. The proof (by Kruskal) that the singularity of the Schwarzschild metric at r = 2m is spurious is given. The relation of the r = 2m surface to black holes is discussed. Embedding of the Schwarzschild spacetime in a 6-dimensional flat Riemann space is presented. The maximal extension of the Reissner–Nordstr\“{o}m metric (by the method of Brill, Graves and Carter) is derived. Motion of charged and uncharged particles in the Reissner–Nordstr\“{o}m spacetime is described.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×