Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-xc2tv Total loading time: 0 Render date: 2025-12-24T05:39:08.864Z Has data issue: false hasContentIssue false

Part III - Frontiers of Time-Series Econometrics

Published online by Cambridge University Press:  11 November 2025

Victor Chernozhukov
Affiliation:
Massachusetts Institute of Technology
Johannes Hörner
Affiliation:
Yale University, Connecticut
Eliana La Ferrara
Affiliation:
Harvard University, Massachusetts
Iván Werning
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Advances in Economics and Econometrics
Twelfth World Congress
, pp. 115 - 116
Publisher: Cambridge University Press
Print publication year: 2026

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Amir-Ahmadi, P., and Drautzburg, T. (2021). “Identification and inference with ranking restrictions,” Quantitative Economics, 12, 139.10.3982/QE1277CrossRefGoogle Scholar
Andrews, I., Gentzkow, M., and Shapiro, J. M. (2017). “Measuring the sensitivity of parameter estimates to estimation moments,” Quarterly Journal of Economics, 132, 15531592.10.1093/qje/qjx023CrossRefGoogle Scholar
Andrews, I., Gentzkow, M., and Shapiro, J. M. (2020). “On the informativeness of descriptive statistics for structural estimates,” Econometrica, 88, 22312258.10.3982/ECTA16768CrossRefGoogle Scholar
Arias, J. E., Caldara, D., and Rubio-Ramírez, J. F. (2019). “The systematic component of monetary policy in SVARs: An agnostic identification procedure,” Journal of Monetary Economics, 101, 113.10.1016/j.jmoneco.2018.07.011CrossRefGoogle Scholar
Arias, J. E., Rubio-Ramírez, J. F., and Waggoner, D. F. (2018). “Inference based on SVARs identified with sign and zero restrictions: Theory and applications,” Econometrica, 86, 685720.10.3982/ECTA14468CrossRefGoogle Scholar
Armstrong, T. B., and Kolesár, M. (2021). “Sensitivity analysis using approximate moment condition models,” Quantitative Economics, 12, 77108.10.3982/QE1609CrossRefGoogle Scholar
Artstein, Z. (1983). “Distributions of random sets and random selections,” Israel Journal of Mathematics, 46, 313324.10.1007/BF02762891CrossRefGoogle Scholar
Bacchiocchi, E., and Kitagawa, T. (2020). “Locally-but not globally-identified SVARs.” cemmap Working Paper CWP40/20.Google Scholar
Barankin, E. (1960). “Sufficient parameters: Solution of the minimal dimensionality problem,” Annals of the Institute of Statistical Mathematics, 12, 91118.10.1007/BF01733119CrossRefGoogle Scholar
Baumeister, C., and Hamilton, J. D. (2015). “Sign restrictions, structural vector autore-gressions, and useful prior information,” Econometrica, 83, 19631999.10.3982/ECTA12356CrossRefGoogle Scholar
Berger, J. O. (1984). “The robust Bayesian viewpoint.” In Kadane, J. (ed.), Robustness of Bayesian Analysis. Amsterdam: North-Holland, pp. 132.Google Scholar
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. New York: Springer.10.1007/978-1-4757-4286-2CrossRefGoogle Scholar
Berger, J. O., and Berliner, L. M. (1986). “Robust Bayes and empirical Bayes analysis with ε-contaminated priors,” The Annals of Statistics, 14, 461486.10.1214/aos/1176349933CrossRefGoogle Scholar
Berger, J. O. (1994). “An overview of robust Bayesian analysis,” TEST, 3, 558.10.1007/BF02562676CrossRefGoogle Scholar
Betrò, B., and Ruggeri, F. (1992). “Conditional Γ-minimax actions under convex losses,” Communications in Statistics, Part A – Theory and Methods, 21, 10511066.10.1080/03610929208830830CrossRefGoogle Scholar
Bonhomme, S., and Weidner, M. (2022). “Minimizing sensitivity to model misspecification,” Quantitative Economics, 13, 907954.CrossRefGoogle Scholar
Brown, L. D., and Purves, R. (1973). “Measurable selections of extrema,” Annals of Statistics, 1, 902912.CrossRefGoogle Scholar
Chamberlain, G. (2000). “Econometric applications of maxmin expected utilities,” Journal of Applied Econometrics, 15, 625644.10.1002/jae.583CrossRefGoogle Scholar
Chamberlain, G., and Leamer, E. E. (1976). “Matrix weighted averages and posterior bounds,” Journal of the Royal Statistical Society, Series B (Methodological), 38, 7384.CrossRefGoogle Scholar
Chen, X., Christensen, T. M., and Tamer, E. (2018). “Monte Carlo confidence sets for identified sets,” Econometrica, 86, 19652018.10.3982/ECTA14525CrossRefGoogle Scholar
Chib, S., and Jeliazkov, I. (2001). “Likelihoods from the Metropolis Hastings output,” Journal of the American Statistical Association, 96, 270281.10.1198/016214501750332848CrossRefGoogle Scholar
Christensen, T. M., and Connault, B. (2023). “Counterfactual sensitivity and robustness,” Econometrica, 91, 263298.10.3982/ECTA17232CrossRefGoogle Scholar
Christiano, L. J., Eichenbaum, M., and Evans, C. L. (1999). “Monetary policy shocks: What have we learned and to what end?” In Taylor, J. B. and Woodford, M. (eds.), Handbook of Macroeconomics, vol. 1, Part A. Amsterdam: Elsevier, pp. 65148.10.1016/S1574-0048(99)01005-8CrossRefGoogle Scholar
DasGupta, A., and Studden, W. J. (1989). “Frequentist behavior of robust Bayes estimates of normal means,” Statistics and Decisions, 7, 333361.Google Scholar
Del Negro, M., and Schorfheide, F. (2011). “Bayesian macroeconometrics.” In Geweke, J., Koop, G., and Dijk, H. V. (eds.), Oxford Handbook of Bayesian Econometrics. Oxford: Oxford University Press, pp. 293389.Google Scholar
Denneberg, D. (1994). Non-additive Measure and Integral. Dordrecht: Kluwer Academic.10.1007/978-94-017-2434-0CrossRefGoogle Scholar
Dey, D. K., and Micheas, A. C. (2000). “Ranges of posterior expected losses and ε-robust actions.” In Ríos Insua, D. and Ruggeri, F. (eds.), Robust Bayesian Analysis. New York: Springer, pp. 145159.CrossRefGoogle Scholar
Ellsberg, D. (1961). “Risk, ambiguity, and the Savage axioms,” Quarterly Journal of Economics, 75, 643669.10.2307/1884324CrossRefGoogle Scholar
Gafarov, B., Meier, M., and Montiel Olea, J. L. (2018). “Delta-method inference for a class of set-identified SVARs,” Journal of Econometrics, 203, 316327.10.1016/j.jeconom.2017.12.004CrossRefGoogle Scholar
Geweke, J. (1999). “Simulation methods for Bayesian econometric models: Inference, development, and communication,” Econometric Reviews, 18, 1126.10.1080/07474939908800428CrossRefGoogle Scholar
Giacomini, R., and Kitagawa, T. (2021). “Robust Bayesian inference for set-identified models,” Econometrica, 89, 15191556.10.3982/ECTA16773CrossRefGoogle Scholar
Giacomini, R., Kitagawa, T., and Read, M. (2022a). “Robust Bayesian inference in proxy SVARs,” Journal of Econometrics, 228(1), 107126.CrossRefGoogle Scholar
Giacomini, R., Kitagawa, T., and Uhlig, H. (2019). “Estimation under ambiguity.” cemmap Working Paper CWP24/19.CrossRefGoogle Scholar
Giacomini, R., Kitagawa, T., and Volpicella, A. (2022b). “Uncertain identification,” Quantitative Economics, 13(1), 95123.10.3982/QE1671CrossRefGoogle Scholar
Gilboa, I., and Schmeidler, D. (1993). “Updating ambiguous beliefs,” Journal of Economic Theory, 59, 3349.10.1006/jeth.1993.1003CrossRefGoogle Scholar
Good, I. J. (1965). The Estimation of Probabilities. Cambridge, MA: MIT Press.Google Scholar
Gustafson, P. (2000). “Local robustness in Bayesian analysis.” In Ríos Insua, D. and Ruggeri, F. (eds.), Robust Bayesian Analysis. New York: Springer, pp. 7188.10.1007/978-1-4612-1306-2_4CrossRefGoogle Scholar
Hansen, L. P., and Sargent, T. J. (2001). “Robust control and model uncertainty,” American Economic Review, 91, 6066.10.1257/aer.91.2.60CrossRefGoogle Scholar
Ho, P. (2023). “Global robust Bayesian analysis in large models,” Journal of Econometrics, 235, 608642.10.1016/j.jeconom.2022.06.004CrossRefGoogle Scholar
Huber, P. J. (1973). “The use of Choquet capacities in statistics,” Bulletin of the International Statistical Institute, 45, 181191.Google Scholar
Huber, P. J., and Ronchetti, E. M. (2009). Robust Statistics, 2nd ed. New York: Wiley.10.1002/9780470434697CrossRefGoogle Scholar
Kitamura, Y., Otsu, T., and Evdokimov, K. (2013). “Robustness, infinitesimal neighborhoods, and moment restrictions,” Econometrica, 81, 11851201.Google Scholar
Kline, B., and Tamer, E. (2016). “Bayesian inference in a class of partially identified models,” Quantitative Economics, 7, 329366.10.3982/QE399CrossRefGoogle Scholar
Koopmans, T. C., and Reiersol, R. (1950). “The identification of structural characteristics,” Annals of Mathematical Statistics, 21, 165181.10.1214/aoms/1177729837CrossRefGoogle Scholar
Kudō, H. (1967). “On partial prior information and the property of parametric sufficiency.” In Cam, L. L. and Neyman, J. (eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 251265.Google Scholar
Lavine, M., Wasserman, L., and Wolpert, R. L. (1991). “Bayesian inference with specified marginals,” Journal of the American Statistical Association, 86, 964971.10.1080/01621459.1991.10475139CrossRefGoogle Scholar
Leamer, E. E. (1978). Specification Searches. New York: Wiley.Google Scholar
Leamer, E. E. (1982). “Sets of posterior means with bounded variance priors,” Econo-metrica, 50, 725736.10.2307/1912610CrossRefGoogle Scholar
Liao, Y., and Simoni, A. (2013). “Semi-parametric Bayesian partially identified models based on support function.” arXiv:1212.3267.Google Scholar
Manski, C. F. (1981). “Learning and decision making when subjective probabilities have subjective domains,” Annals of Statistics, 9, 5965.10.1214/aos/1176345332CrossRefGoogle Scholar
Manski, C. F. (2000). “Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice,” Journal of Econometrics, 95, 415442.CrossRefGoogle Scholar
Mertens, K., and Ravn, M. O. (2013). “The dynamic effects of personal and corporate income tax changes in the United States,” American Economic Review, 103, 12121247.10.1257/aer.103.4.1212CrossRefGoogle Scholar
Molchanov, I. (2005). Theory of Random Sets. London: Springer.Google Scholar
Molchanov, I., and Molinari, F. (2018). Random Sets in Econometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Moon, H. R., and Schorfheide, F. (2011). “Bayesian and frequentist inference in partially identified models.” NBER Working Paper No. 14882.Google Scholar
Moon, H. R., and Schorfheide, F. (2012). “Bayesian and frequentist inference in partially identified models,” Econometrica, 80, 755782.Google Scholar
Moreno, E., and Cano, J. A. (1995). “Classes of bidimensional priors specified on a collection of sets: Bayesian robustness,” Journal of Statistical Inference and Planning, 46, 325334.CrossRefGoogle Scholar
Müller, U. K. (2012). “Measuring prior sensitivity and prior informativeness in large Bayesian models,” Journal of Monetary Economics, 59, 581597.10.1016/j.jmoneco.2012.09.003CrossRefGoogle Scholar
Norets, A., and Tang, X. (2014). “Semiparametric inference in dynamic binary choice models,” Review of Economic Studies, 81, 12291262.10.1093/restud/rdt050CrossRefGoogle Scholar
Peterson, I. R., James, M. R., and Dupuis, P. (2000). “Minimax optimal control of stochastic uncertain systems with relative entropy constraints,” ISSS Transactions on Automatic Control, 45, 398412.10.1109/9.847720CrossRefGoogle Scholar
Pires, C. P. (2002). “A rule for updating ambiguous beliefs,” Theory and Decision, 33, 137152.10.1023/A:1021255808323CrossRefGoogle Scholar
Poirier, D. J. (1998). “Revising beliefs in nonidentified models,” Econometric Theory, 14, 483509.10.1017/S0266466698144043CrossRefGoogle Scholar
Read, M. (2022). “Algorithms for inference in SVARs identified with sign and zero restrictions,” The Econometrics Journal, 25, 699718.10.1093/ectj/utac009CrossRefGoogle Scholar
Rieder, H. (1994). Robust Asymptotic Statistics. New York: Springer.10.1007/978-1-4684-0624-5CrossRefGoogle Scholar
Ríos Insua, D., and Ruggeri, F. (eds.) (2000). Robust Bayesian Analysis. New York: Springer.10.1007/978-1-4612-1306-2CrossRefGoogle Scholar
Robbins, H. (1956). “An empirical Bayes approach to statistics,” Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pp. 157163.Google Scholar
Rothenberg, T. J. (1971). “Identification in parametric models,” Econometrica, 39, 577591.CrossRefGoogle Scholar
Rubio-Ramírez, J. F., Waggoner, D. F., and Zha, T. (2010). “Structural vector autoregres-sions: Theory of identification and algorithms for inference,” Review of Economic Studies, 77, 665696.10.1111/j.1467-937X.2009.00578.xCrossRefGoogle Scholar
Schmeidler, D. (1989). “Subjective probability and expected utility without additivity,” Econometrica, 57, 571587.CrossRefGoogle Scholar
Shyamalkumar, N. D. (2000). “Likelihood robustness.” In Ríos Insua, D. and Ruggeri, F. (eds.), Robust Bayesian Analysis. New York: Springer, pp. 127143.10.1007/978-1-4612-1306-2_7CrossRefGoogle Scholar
Sims, C. A., Waggoner, D. F., and Zha, T. (2008). “Methods for inference in large multiple-equation Markov-switching models,” Journal of Econometrics, 146, 255274.10.1016/j.jeconom.2008.08.023CrossRefGoogle Scholar
Sivaganesan, S., and Berger, J. O. (1989). “Ranges of posterior measures for priors with unimodal contaminations,” Annals of Statistics, 17, 868889.CrossRefGoogle Scholar
Stock, J. H., and Watson, M. W. (2018). “Identification and estimation of dynamic causal effects in macroeconomics using external instruments,” The Economic Journal, 128, 917948.CrossRefGoogle Scholar
Uhlig, H. (2005). “What are the effects of monetary policy on output? Results from an agnostic identification procedure,” Journal of Monetary Economics, 52, 381419.10.1016/j.jmoneco.2004.05.007CrossRefGoogle Scholar
Uhlig, H. (2017). “Shocks, sign restrictions, and identification.” In Honoré, B., Pakes, A., Piazzesi, M., and Samuelson, L. (eds.), Advances in Economics and Econometrics: Eleventh World Congress. Cambridge: Cambridge University Press, pp. 95127.10.1017/9781108227223.004CrossRefGoogle Scholar
Vidakovic, B. (2000). “Γ-Minimax: A paradigm for conservative robust Bayesians.” In Ríos Insua, D. and Ruggeri, F. (eds.), Robust Bayesian Analysis. New York: Springer, pp. 241259.10.1007/978-1-4612-1306-2_13CrossRefGoogle Scholar
Wald, A. (1950). Statistical Decision Functions. New York: Wiley.Google Scholar
Wasserman, L. A. (1990). “Prior envelopes based on belief functions,” The Annals of Statistics, 18, 454464.10.1214/aos/1176347511CrossRefGoogle Scholar
Watson, J., and Holmes, C. (2016). “Approximate models and robust decisions,” Statistical Science, 31, 465489.Google Scholar

References

Anatolyev, S. (2003). “The form of the optimal nonlinear instrument for multiperiod conditional moment restrictions,” Econometric Theory, 19(4), 602609.10.1017/S0266466603194054CrossRefGoogle Scholar
Anatolyev, S. (2007). “Optimal instruments in time series: A survey,” Journal of Economic Surveys, 21, 143173.10.1111/j.1467-6419.2007.00501.xCrossRefGoogle Scholar
Anatolyev, S. (2019). “Many instruments and/or regressors: A friendly guide,” Journal of Economic Surveys, 33(2), 689726.10.1111/joes.12295CrossRefGoogle Scholar
Anatolyev, S., and Mikusheva, A. (2022). “Factor models with many assets: Strong factors, weak factors, and the two-pass procedure,” Journal of Econometrics, 229(1), 103126.10.1016/j.jeconom.2021.01.002CrossRefGoogle Scholar
Andrews, I., Stock, J. H., and Sun, L. (2019). “Weak instruments in IV regression: Theory and practice,” Annual Review of Economics, 11, 727753.CrossRefGoogle Scholar
Angrist, J. D., and Frandsen, B. (2020). “Machine labor.” NBER Working Paper No. 26584.Google Scholar
Angrist, J. D., Imbens, G. W., and Krueger, A. B. (1999). “Jackknife instrumental variables estimation,” Journal of Applied Econometrics, 14, 5767.10.1002/(SICI)1099-1255(199901/02)14:1<57::AID-JAE501>3.0.CO;2-G3.0.CO;2-G>CrossRefGoogle Scholar
Angrist, J. D., and Krueger, A. B. (1991). “Does compulsory school attendance affect schooling and earnings?,” Quarterly Journal of Economics, 106, 9791014.10.2307/2937954CrossRefGoogle Scholar
Angrist, J. D., and Krueger, A. B. (1995). “Split-sample instrumental variables estimates of the return to schooling,” Journal of Business & Economic Statistics, 13, 225235.10.1080/07350015.1995.10524597CrossRefGoogle Scholar
Ascari, G., Magnusson, L. M., and Mavroeidis, S. (2021). “Empirical evidence on the Euler equation for consumption in the US,” Journal of Monetary Economics, 117, 129152.10.1016/j.jmoneco.2019.12.004CrossRefGoogle Scholar
Ash, E., Chen, D., Zhang, X., Huang, Z., and Wang, R. (2018). “Deep IV in law: Analysis of appellate impacts on sentencing using high-dimensional instrumental variables.” Mimeo.Google Scholar
Babii, A., Ghysels, E., and Striaukas, J. (2020). “Estimation and HAC-based inference for machine learning time series regressions.” UNC Working Paper.Google Scholar
Bai, J. (2003). “Inferential theory for factor models of large dimensions,” Econometrica, 71, 135173.10.1111/1468-0262.00392CrossRefGoogle Scholar
Bai, J., and Ng, S. (2002). “Determining the number of factors in approximate factor models,” Econometrica, 70, 191221.10.1111/1468-0262.00273CrossRefGoogle Scholar
Bai, J., and Ng, S. (2009). “Selecting instrumental variables in a data rich environment,” Journal of Time Series Econometrics, 1(1), 134.Google Scholar
Bai, J., and Ng, S. (2010). “Instrumental variables estimation in a data rich environment,” Econometric Theory, 26, 15771606.10.1017/S0266466609990727CrossRefGoogle Scholar
Bekker, P. A. (1994). “Alternative approximations to the distributions of instrumental variable estimators,” Econometrica, 62, 657681.10.2307/2951662CrossRefGoogle Scholar
Belloni, A., Chen, D., Chernozhukov, V., and Hansen, C. (2012). “Sparse models and methods for optimal instruments with an application to eminent domain,” Econometrica, 80, 23692429.Google Scholar
Belloni, A., Chernozhukov, V., and Hansen, C. (2010). “Inference methods for high-dimensional sparse econometric models.” In Acemoglu, D., Arellano, M., and Dekel, E. (eds.), Advances in Economics and Econometrics, 10th World Congress, pp. 245295. Cambridge: Cambridge University Press.Google Scholar
Bernanke, B., Boivin, J., and Eliasz, P. S. (2005). “Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach,” Quarterly Journal of Economics, 120, 387422.Google Scholar
Carrasco, M. (2012). “A regularization approach to the many instruments problem,” Journal of Econometrics, 170(2), 383398.10.1016/j.jeconom.2012.05.012CrossRefGoogle Scholar
Carrasco, M., and Rossi, B. (2016). “In-sample inference and forecasting in misspecified factor models,” Journal of Business and Economic Statistics, 34(3), 313338.10.1080/07350015.2016.1186029CrossRefGoogle Scholar
Chamberlain, G. (1987). “Asymptotic efficiency in estimation with conditional moment restrictions,” Journal of Econometrics, 34, 305334.10.1016/0304-4076(87)90015-7CrossRefGoogle Scholar
Chao, J. C., and Swanson, N. R. (2005). “Consistent estimation with a large number of weak instruments,” Econometrica, 73(5), 16731692.10.1111/j.1468-0262.2005.00632.xCrossRefGoogle Scholar
Chao, J. C., Swanson, N. R., Hausman, J. A., Newey, W. K., and Woutersen, T. (2012). “Asymptotic distribution of JIV in a heteroscedastic IV regression with many instruments,” Econometric Theory, 28, 4286.10.1017/S0266466611000120CrossRefGoogle Scholar
Clarida, R., Galí, J., and Gertler, M. (1998). “Monetary policy rules in practice: Some international evidence,” European Economic Review, 42, 10331067.10.1016/S0014-2921(98)00016-6CrossRefGoogle Scholar
Davidson, R., and MacKinnon, J. (2014). “Confidence sets based on inverting Anderson–Rubin tests,” Econometrics Journal, 17, S39–S58.10.1111/ectj.12015CrossRefGoogle Scholar
Donald, S. G., and Newey, W. K. (2001). “Choosing the number of instruments,” Econometrica, 69(5), 11611191.10.1111/1468-0262.00238CrossRefGoogle Scholar
Dovi, M. (2020). “Robust inference with high-dimensional instrumental variables and the new Keynesian Phillips curve.” Unpublished Manuscript.Google Scholar
Fama, E. F., and MacBeth, J. (1973). “Risk, return and equilibrium: Empirical tests,” Journal of Political Economy, 81, 607636.10.1086/260061CrossRefGoogle Scholar
Fuhrer, J. C., and Rudebusch, G. D. (2004). “Estimating the Euler equation for output,” Journal of Monetary Economics, 51, 11331153.10.1016/j.jmoneco.2003.10.004CrossRefGoogle Scholar
Galí, J., and Gertler, M. (1999). “Inflation dynamics: A structural econometric analysis,” Journal of Monetary Economics, 44(2), 195222.10.1016/S0304-3932(99)00023-9CrossRefGoogle Scholar
Gilchrist, D. S., and Sands, E. G. (2016). “Something to talk about: Social spillover in movie consumption,” Journal of Political Economy, 124(5), 13391382.10.1086/688177CrossRefGoogle Scholar
Han, C., and Phillips, P. C. B. (2006). “GMM with many moment conditions,” Econometrica, 74(1), 147192.10.1111/j.1468-0262.2006.00652.xCrossRefGoogle Scholar
Hansen, B., and West, K. D. (2002). “Generalized method of moments and macroeconomics,” Journal of Business and Economic Statistics, 20, 460469.CrossRefGoogle Scholar
Hansen, C., Hausman, J., and Newey, W. (2008). “Estimation with many instruments,” Journal of Business & Economic Statistics, 26, 398422.10.1198/073500108000000024CrossRefGoogle Scholar
Hansen, C., and Kozbur, D. (2014). “Instrumental variables estimation with many weak instruments using regularized JIVE,” Journal of Econometrics, 182, 290308.10.1016/j.jeconom.2014.04.022CrossRefGoogle Scholar
Hansen, L. P. (1985). “A method for calculating bounds on the asymptotic variance– covariance matrices of generalized method of moments estimators,” Journal of Econometrics, 30, 203228.10.1016/0304-4076(85)90138-1CrossRefGoogle Scholar
Hansen, L. P., Heaton, J. C., and Ogaki, M. (1988). “Efficiency bounds implied by multiperiod conditional moment restrictions,” Journal of the American Statistical Association, 83, 863871.10.1080/01621459.1988.10478675CrossRefGoogle Scholar
Hansen, L. P., and Singleton, K. J. (1982). “Generalized instrumental variables estimation of nonlinear rational expectations models,” Econometrica, 50(5), 12691286.10.2307/1911873CrossRefGoogle Scholar
Häusler, E., and Luschgy, H. (2015). Stable Convergence and Stable Limit Theorems. Berlin: Springler.10.1007/978-3-319-18329-9CrossRefGoogle Scholar
Hausman, J., Newey, W., Woutersen, T., Chao, J., and Swanson, N. (2012). “Instrumental variable estimation with heteroskedasticity and many instruments,” Quantitative Economics, 3, 211255.10.3982/QE89CrossRefGoogle Scholar
Hayashi, F., and Sims, C. (1983). “Nearly efficient estimation of time series models with predetermined, but not exogenous, instruments,” Econometrica, 51(3), 783798.10.2307/1912158CrossRefGoogle Scholar
Kapetanios, G., Khalaf, L., and Marcellino, M. (2016). “Factor-based identificationrobust inference in IV regressions,” Journal of Applied Econometrics, 31, 821842.CrossRefGoogle Scholar
Kapetanios, G., and Marcellino, M. (2010). “Factor-GMM estimation with large sets of possibly weak instruments,” Computational Statistics and Data Analysis, 54, 26552675.10.1016/j.csda.2010.04.008CrossRefGoogle Scholar
Kleibergen, F. (2002). “Pivotal statistics for testing structural parameters in instrumental variables regression,” Econometrica, 70, 17811803.10.1111/1468-0262.00353CrossRefGoogle Scholar
Kleibergen, F., and Mavroeidis, S. (2009). “Weak instrument robust tests in GMM and the new Keynesian Phillips curve,” Journal of Business & Economic Statistics, 27(3), 293339.10.1198/jbes.2009.08280CrossRefGoogle Scholar
Luo, Y., and Spindler, M. (2017). “L2-boosting for economic applications,” American Economic Review, 107(5), 270273.10.1257/aer.p20171040CrossRefGoogle Scholar
Mavroeidis, S. (2004). “Weak identification of forward-looking models in monetary economics,” Oxford Bulletin of Economics and Statistics, 66, 609635.10.1111/j.1468-0084.2004.00095.xCrossRefGoogle Scholar
Mavroeidis, S., Plagborg-Møller, M., and Stock, J. H. (2014). “Empirical evidence on inflation expectations in the new Keynesian Phillips curve,” Journal of Economic Literature, 52(1), 124188.10.1257/jel.52.1.124CrossRefGoogle Scholar
McCracken, M., and Ng, S. (2020). “FRED-QD: A quarterly database for macroeconomic research.” Mimeo.Google Scholar
Mikusheva, A. (2010). “Robust confidence sets in the presence of weak instruments,” Journal of Econometrics, 157, 236247.10.1016/j.jeconom.2009.12.003CrossRefGoogle Scholar
Mikusheva, A., and Sun, L. (2020). “Inference with many weak instruments.” Working Paper.Google Scholar
Moreira, M. (2003). “A conditional likelihood ratio test for structural models,” Econo-metrica, 71(4), 10271048.10.1111/1468-0262.00438CrossRefGoogle Scholar
Newey, W. K. (1990). “Efficient instrumental variables estimation of nonlinear models,” Econometrica, 58, 809837.10.2307/2938351CrossRefGoogle Scholar
Newey, W., and Windmeijer, F. (2009). “Generalized method of moments with many weak moment conditions,” Econometrica, 77(3), 687719.Google Scholar
Okui, R. (2011). “Instrumental variable estimation in the presence of many moment conditions,” Journal of Econometrics, 165, 7086.10.1016/j.jeconom.2011.05.007CrossRefGoogle Scholar
Shanken, J. (1992). “On the estimation of beta-pricing models,” Review of Financial Studies, 5, 133.10.1093/rfs/5.1.1CrossRefGoogle Scholar
Stock, J. H., and Watson, M. W. (2002a). “Forecasting using principal components from a large number of predictors,” Journal of the American Statistical Association, 97, 11671179.10.1198/016214502388618960CrossRefGoogle Scholar
Stock, J. H., and Watson, M. W. (2002b). “Macroeconomic forecasting using diffusion indices,” Journal of Business and Economic Statistics, 20, 147162.10.1198/073500102317351921CrossRefGoogle Scholar
Stock, J. H., and Watson, M. W. (2005). “Implications of dynamic factor models for VAR analysis.” Mimeo.10.3386/w11467CrossRefGoogle Scholar
Stock, J. H., and Watson, M. W. (2012). “Generalized shrinkage methods for forecasting using many predictors,” Journal of Business & Economic Statistics, 30(4), 481493.10.1080/07350015.2012.715956CrossRefGoogle Scholar
Stock, J. H., Wright, J. H., and Yogo, M. (2002). “A survey of weak instruments and weak identification in generalized method of moments,” Journal of Business & Economic Statistics, 20(4), 518529.10.1198/073500102288618658CrossRefGoogle Scholar
Stock, J. H., and Yogo, M. (2005). “Testing for weak instruments in linear IV regression.” In Andrews, D. W. K. and Stock, J. H. (eds.), Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg, pp. 80108. Cambridge: Cambridge University Press.10.1017/CBO9780511614491.006CrossRefGoogle Scholar
Tibshirani, R. (1996). “Regression shrinkage and selection via Lasso,” Journal of the London Statistical Society, Series B, 58, 267288.10.1111/j.2517-6161.1996.tb02080.xCrossRefGoogle Scholar
Wang, R., and Shao, X. (2020). “Hypothesis testing for high-dimensional time series via self-normalisation,” Annals of Statistics, 48(5), 27282758.10.1214/19-AOS1904CrossRefGoogle Scholar
Yogo, M. (2004). “Estimating the elasticity of intertemporal substitution when instruments are weak,” Review of Economics and Statistics, 86(3), 797810.10.1162/0034653041811770CrossRefGoogle Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×