Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-mk7jb Total loading time: 0 Render date: 2025-12-23T17:30:36.703Z Has data issue: false hasContentIssue false

Part II - Frontiers of Modern Econometrics

Published online by Cambridge University Press:  11 November 2025

Victor Chernozhukov
Affiliation:
Massachusetts Institute of Technology
Johannes Hörner
Affiliation:
Yale University, Connecticut
Eliana La Ferrara
Affiliation:
Harvard University, Massachusetts
Iván Werning
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Advances in Economics and Econometrics
Twelfth World Congress
, pp. 47 - 48
Publisher: Cambridge University Press
Print publication year: 2026

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abowd, J. M., and Kramarz, F. (1999). “Chapter 40: The analysis of labor markets using matched employer–employee data,” Handbook of Labor Economics, 3(Part B), 26292710.10.1016/S1573-4463(99)30026-2CrossRefGoogle Scholar
Abowd, J. M., Kramarz, F., and Margolis, D. (1999). “High wage workers and high wage firms,” Econometrica, 67(2), 251333.10.1111/1468-0262.00020CrossRefGoogle Scholar
Ahmadpoor, M., and Jones, B. F. (2019). “Decoding team and individual impact in science and invention,” Proceedings of the National Academy of Sciences, 116(28), 1388513890.10.1073/pnas.1812341116CrossRefGoogle ScholarPubMed
Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). “Mixed membership stochastic blockmodels,” Journal of Machine Learning Research, 9(Sep), 19812014.Google ScholarPubMed
Akcigit, U., Baslandze, S., and Stantcheva, S. (2016). “Taxation and the international mobility of inventors,” American Economic Review, 106(10), 29302981.10.1257/aer.20150237CrossRefGoogle Scholar
Akcigit, U., Grigsby, J., and Nicholas, T. (2017). “The rise of American ingenuity: Innovation and inventors of the Golden Age.” NBER Working Paper No. 23047.Google Scholar
Allman, E. S., Matias, C., and Rhodes, J. A. (2009). “Identifiability of parameters in latent structure models with many observed variables,” Annals of Statistics, 37(6A), 30993132.10.1214/09-AOS689CrossRefGoogle Scholar
Allman, E. S., Matias, C., and Rhodes, J. A. (2011). “Parameter identifiability in a class of random graph mixture models,” Journal of Statistical Planning and Inference, 141(5), 17191736.10.1016/j.jspi.2010.11.022CrossRefGoogle Scholar
Anderson, K. A., and Richards-Shubik, S. (2019). “Collaborative production in science: An empirical analysis of coauthorships in economics.” CMU and Lehigh University Working Paper.Google Scholar
Andrews, M. J., Gill, L., Schank, T., and Upward, R. (2008). “High wage workers and low wage firms: Negative assortative matching or limited mobility bias?,” Journal of the Royal Statistical Society, Series A, 171(3), 673697.10.1111/j.1467-985X.2007.00533.xCrossRefGoogle Scholar
Arcidiacono, P., Foster, G., Goodpaster, N., and Kinsler, J. (2012). “Estimating spillovers using panel data, with an application to the classroom,” Quantitative Economics, 3(3), 421470.10.3982/QE145CrossRefGoogle Scholar
Arcidiacono, P., Kinsler, J., and Price, J. (2017). “Productivity spillovers in team production: Evidence from professional basketball,” Journal of Labor Economics, 35(1), 191225.10.1086/687529CrossRefGoogle Scholar
Arellano, M., and Bonhomme, S. (2009). “Robust priors in nonlinear panel data models,” Econometrica, 77, 489536.Google Scholar
Becker, G. S. (1973). “A theory of marriage: Part I,” Journal of Political Economy, 81(4), 813846.10.1086/260084CrossRefGoogle Scholar
Bell, A., Chetty, R., Jaravel, X., Petkova, N., and Van Reenen, J. (2019). “Who becomes an inventor in America? The importance of exposure to innovation,” Quarterly Journal of Economics, 134(2), 647713.10.1093/qje/qjy028CrossRefGoogle Scholar
Bertrand, M., and Schoar, A. (2003). “Managing with style: The effect of managers on firm policies,” Quarterly Journal of Economics, 118(4), 11691208.10.1162/003355303322552775CrossRefGoogle Scholar
Bickel, P., Choi, D., Chang, X., and Zhang, H. (2013). “Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels,” Annals of Statistics, 41(4), 19221943.10.1214/13-AOS1124CrossRefGoogle Scholar
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.Google Scholar
Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). “Variational inference: A review for statisticians,” Journal of the American Statistical Association, 112(518), 859877.10.1080/01621459.2017.1285773CrossRefGoogle Scholar
Bonhomme, S. (2017). “Econometric analysis of bipartite networks.” In Graham, B. and de Paula, A. (eds.), The Econometric Analysis of Network Data. Amsterdam: Elsevier, pp. 83121.Google Scholar
Bonhomme, S., Holzheu, K., Lamadon, T., Manresa, E., Mogstad, M., and Setzler, B. (2020). “How much should we trust estimates of firm effects and worker sorting?NBER Working Paper No. 27368.Google Scholar
Bonhomme, S., Jochmans, K., and Robin, J. M. (2016). “Nonparametric estimation of finite mixtures from repeated measurements,” Journal of the Royal Statistical Society, Series B, 78(1), 211229.10.1111/rssb.12110CrossRefGoogle Scholar
Bonhomme, S., Lamadon, T., and Manresa, E. (2019). “A distributional framework for matched employer–employee data,” Econometrica, 87(3), 699739.10.3982/ECTA15722CrossRefGoogle Scholar
Bonhomme, S., Lamadon, T., and Manresa, E. (2021). “Discretizing unobserved heterogeneity.” Unpublished manuscript.Google Scholar
Bonhomme, S., and Manresa, E. (2015). “Grouped patterns of heterogeneity in panel data,” Econometrica, 83(3), 11471184.10.3982/ECTA11319CrossRefGoogle Scholar
Bramoullé, Y., Djebbari, H., and Fortin, B. (2009). “Identification of peer effects through social networks,” Journal of Econometrics, 150(1), 4155.10.1016/j.jeconom.2008.12.021CrossRefGoogle Scholar
Carlier, G., and Ekeland, I. (2010). “Matching for teams,” Economic Theory, 42(2), 397418.10.1007/s00199-008-0415-zCrossRefGoogle Scholar
Celisse, A., Daudin, J. J., and Pierre, L. (2012). “Consistency of maximum-likelihood and variational estimators in the stochastic block model,” Electronic Journal of Statistics, 6, 18471899.10.1214/12-EJS729CrossRefGoogle Scholar
Chade, H., and Eeckhout, J. (2018). “Matching information,” Theoretical Economics, 13(1), 377414.10.3982/TE1820CrossRefGoogle Scholar
Chade, H., Eeckhout, J., and Smith, L. (2017). “Sorting through search and matching models in economics,” Journal of Economic Literature, 55(2), 493544.10.1257/jel.20150777CrossRefGoogle Scholar
Chamberlain, G. (1984). “Panel data.” In Griliches, Z. and Intriligator, M. D. (eds.), Handbook of Econometrics, vol. 2. Amsterdam: North-Holland, pp. 12471318.Google Scholar
Chamberlain, G. (1992). “Efficiency bounds for semiparametric regression,” Econometrica, 60, 567596.10.2307/2951584CrossRefGoogle Scholar
Chiappori, P.-A., and Salanié, B. (2016). “The econometrics of matching models,” Journal of Economic Literature, 54(3), 832861.10.1257/jel.20140917CrossRefGoogle Scholar
Chiappori, P.-A., Salanié, B., and Galichon, A. (2019). “On human capital and team stability,” Journal of Human Capital, 13(2), 236259.10.1086/702925CrossRefGoogle Scholar
Daudin, J. J., Picard, F., and Robin, S. (2008). “A mixture model for random graphs,” Statistics and Computing, 18(2), 173183.10.1007/s11222-007-9046-7CrossRefGoogle Scholar
Devereux, K. (2018). “Identifying the value of teamwork: Application to professional tennis.” Working Paper Series, No. 14.Google Scholar
Ductor, L., Fafchamps, M., Goyal, S., and van der Leij, M. J. (2014). “Social networks and research output,” Review of Economics and Statistics, 96(5), 936948.10.1162/REST_a_00430CrossRefGoogle Scholar
Eeckhout, J., and Kircher, P. (2011). “Identifying sorting – in theory,” The Review of Economic Studies, 78(3), 872906.10.1093/restud/rdq034CrossRefGoogle Scholar
Eeckhout, J., and Kircher, P. (2018). “Assortative matching with large firms,” Econometrica, 86(1), 85132.10.3982/ECTA14450CrossRefGoogle Scholar
Fafchamps, M., Van der Leij, M. J., and Goyal, S. (2010). “Matching and network effects,” Journal of the European Economic Association, 8(1), 203231.10.1162/jeea.2010.8.1.203CrossRefGoogle Scholar
Furman, J. L., and Gaule, P. (2013). “A review of economic perspectives on collaboration in science.” Workshop on Institutional & Organizational Supports for Team Science.Google Scholar
Gans, J., and Murray, F. (2014). “Markets for scientific attribution.” NBER Working Paper No. 20677.Google Scholar
Garicano, L., and Rossi-Hansberg, E. (2006). “Organization and inequality in a knowledge economy,” Quarterly Journal of Economics, 121(4), 13831435.Google Scholar
Gaure, S. (2014). “Correlation bias correction in two-way fixed-effects linear regression,” Stat, 3, 379390.10.1002/sta4.68CrossRefGoogle Scholar
Goyal, S., Van Der Leij, M. J., and Moraga-González, J. L. (2004). “Economics: An emerging small world.” Tinbergen Institute Discussion Paper, No. 04-001/1.Google Scholar
Goyal, S., Van Der Leij, M. J., and Moraga-González, J. L. (2006). “Economics: An emerging small world,” Journal of Political Economy, 114(2), 403412.10.1086/500990CrossRefGoogle Scholar
Hahn, J., and Moon, H. (2010). “Panel data models with finite number of multiple equilibria,” Econometric Theory, 26(3), 863881.10.1017/S0266466609990132CrossRefGoogle Scholar
Hall, B. H., Jaffe, A. B., and Trajtenberg, M. (2001). “The NBER Patent Citation Data File: Lessons, insights and methodological tools.” NBER Working Paper No. 8498.Google Scholar
Hall, P., and Zhou, X. H. (2003). “Nonparametric estimation of component distributions in a multivariate mixture,” Annals of Statistics, 31(1), 201224.10.1214/aos/1046294462CrossRefGoogle Scholar
Herkenhoff, K., Lise, J., Menzio, G., and Phillips, G. M. (2018). “Production and learning in teams.” NBER Working Paper No. 25179.Google Scholar
Holtz-Eakin, D., Newey, W., and Rosen, H. S. (1988). “Estimating vector autoregressions with panel data,” Econometrica, 56(6), 13711395.10.2307/1913103CrossRefGoogle Scholar
Hsieh, C. S., Konig, M. D., Liu, X., and Zimmermann, C. (2020). “Collaboration in bipartite networks.” Unpublished manuscript.Google Scholar
Hu, Y. (2008). “Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution,” Journal of Econometrics, 144(1), 2761.10.1016/j.jeconom.2007.12.001CrossRefGoogle Scholar
Hvattum, L. M. (2019). “A comprehensive review of plus–minus ratings for evaluating individual players in team sports,” International Journal of Computer Science in Sport, 18(1), 123.10.2478/ijcss-2019-0001CrossRefGoogle Scholar
Jackson, M. O., and Wolinsky, A. (1996). “A strategic model of social and economic networks,” Journal of Economic Theory, 71(1), 4474.10.1006/jeth.1996.0108CrossRefGoogle Scholar
Jaravel, X., Petkova, N., and Bell, A. (2018). “Team-specific capital and innovation,” American Economic Review, 108(4–5), 10341073.10.1257/aer.20151184CrossRefGoogle Scholar
Jochmans, K., and Weidner, M. (2019). “Fixed-effect regressions on network data,” Econometrica, 87(5), 15431560.10.3982/ECTA14605CrossRefGoogle Scholar
Kelso Jr., A. S., and Crawford, V. P. (1982). “Job matching, coalition formation, and gross substitutes,” Econometrica, 50(6), 14831504.10.2307/1913392CrossRefGoogle Scholar
Kline, P., Saggio, R., and Solvsten, M. (2020). “Leave-out estimation of variance components,” Econometrica, 88(5), 18591898.10.3982/ECTA16410CrossRefGoogle Scholar
Kodrzycki, Y. K., and Yu, P. (2006). “New approaches to ranking economics journals,” The BE Journal of Economic Analysis & Policy, 5(1), 1520.Google Scholar
Lei, J., and Rinaldo, A. (2015). “Consistency of spectral clustering in stochastic block models,” The Annals of Statistics, 43(1), 215237.10.1214/14-AOS1274CrossRefGoogle Scholar
Lerner, J., Tranmer, M., Mowbray, J., and Hancean, M. G. (2019). “REM beyond dyads: Relational hyperevent models for multi-actor interaction networks.” arXiv preprint arXiv:1912.07403.Google Scholar
Li, G. C., Lai, R., D’Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., et al. (2014). “Disambiguation and co-authorship networks of the US Patent Inventor Database (1975–2010),” Research Policy, 43(6), 941955.10.1016/j.respol.2014.01.012CrossRefGoogle Scholar
Mariadassou, M., Robin, S., and Vacher, C. (2010). “Uncovering latent structure in valued graphs: A variational approach,” The Annals of Applied Statistics, 4(2), 715742.10.1214/10-AOAS361CrossRefGoogle Scholar
Pearce, J. (2019). “Firm–inventor links and the composition of innovation.” Unpublished manuscript.Google Scholar
Snijders, T. A., and Nowicki, K. (1997). “Estimation and prediction for stochastic block-models for graphs with latent block structure,” Journal of Classification, 14(1), 75100.10.1007/s003579900004CrossRefGoogle Scholar
Talman, D., and Yang, Z. (2011). “A model of partnership formation,” Journal of Mathematical Economics, 47(2), 206212.10.1016/j.jmateco.2011.02.003CrossRefGoogle Scholar
Turnbull, K., Lunagómez, S., Nemeth, C., and Airoldi, E. (2019). “Latent space representations of hypergraphs.” arXiv preprint arXiv:1909.00472.Google Scholar
Weidmann, B., and Deming, D. J. (2020). “Team players: How social skills improve group performance.” NBER Working Paper No. 27071.Google Scholar
Woodcock, S. D. (2008). “Wage differentials in the presence of unobserved worker, firm, and match heterogeneity,” Labour Economics, 15(4), 771793.10.1016/j.labeco.2007.06.003CrossRefGoogle Scholar

References

Adachi, H. (2000). “On a characterization of stable matchings,” Economics Letters, 68(1), 4349.10.1016/S0165-1765(99)00241-4CrossRefGoogle Scholar
Anderson, J. E., and Van Wincoop, E. (2003). “Gravity with gravitas: A solution to the border puzzle,” American Economic Review, 93(1), 170192.10.1257/000282803321455214CrossRefGoogle Scholar
Azevedo, E. M., and Hatfield, J. W. (2018). “Existence of equilibrium in large matching markets with complementarities.” SSRN Working Paper 3268884.Google Scholar
Becker, G. S. (1973). “A theory of marriage: Part I,” Journal of Political Economy, 81(4), 813846.10.1086/260084CrossRefGoogle Scholar
Levinsohn, Berry, J., and Pakes, A. (1995). “Automobile prices in market equilibrium,” Econometrica, 63(4), 841890.Google Scholar
Berry, S. T. (1994). “Estimating discrete-choice models of product differentiation,” The RAND Journal of Economics, 25(2), 242262.10.2307/2555829CrossRefGoogle Scholar
Bonnet, O., Galichon, A., Hsieh, Y.-W., O’Hara, K., and Shum, M. (2022). “Yogurts choose consumers? Estimation of random utility models via two-sided matching,” The Review of Economic Studies, 89(6), 30853114.10.1093/restud/rdac006CrossRefGoogle Scholar
Brenier, Y. (1987). “Polar factorization and monotone rearrangement of vector-valued functions,” C. R. Acad. Sci. Paris, Ser. I, Mathematical Analysis, 305, 805808.Google Scholar
Carlier, G., Chernozhukov, V., De Bie, G., and Galichon, A. (2022). “Vector quantile regression and optimal transport, from theory to numerics,” Empirical Economics, 62, 3562.10.1007/s00181-020-01919-yCrossRefGoogle Scholar
Carlier, G., Chernozhukov, V., and Galichon, A. (2016). “Vector quantile regression: An optimal transport approach,” The Annals of Statistics, 44(3), 11651192.10.1214/15-AOS1401CrossRefGoogle Scholar
Carlier, G., Chernozhukov, A., and Galichon, A. (2017). “Vector quantile regression beyond the specified case,” Journal of Multivariate Analysis, 161, 96102.10.1016/j.jmva.2017.07.003CrossRefGoogle Scholar
Carlier, G., A, Dupuy, A. Galichon, and Y. Sun (2023). “SISTA: Learning optimal transport costs under sparsity constraints,” Communications on Pure and Applied Mathematics, 76(9), 16591677.10.1002/cpa.22047CrossRefGoogle Scholar
Carlier, G., and Ekeland, I. (2007). “Equilibrium structure of a bidimensional asymmetric city,” Nonlinear Analysis: Real World Applications, 8(3), 725748.Google Scholar
Chernozhukov, V., Galichon, A., Hallin, M., and Henry, M. (2017). “Monge–Kantorovich depth, quantiles, ranks and signs,” The Annals of Statistics, 45(1), 223256.10.1214/16-AOS1450CrossRefGoogle Scholar
Chernozhukov, V., Galichon, A., Henry, M., and Pass, B. (2021). “Identification of hedonic equilibrium and nonseparable simultaneous equations,” Journal of Political Economy, 129(3), 842870.10.1086/712447CrossRefGoogle Scholar
Chiappori, P.-A., McCann, R. J., and Nesheim, L. P. (2010). “Hedonic price equilibria, stable matching, and optimal transport: Equivalence, topology, and uniqueness,” Economic Theory, 42(2), 317354.10.1007/s00199-009-0455-zCrossRefGoogle Scholar
Chiong, K. X., Galichon, A., and Shum, M. (2016). “Duality in dynamic discrete-choice models,” Quantitative Economics, 7(1), 83115.10.3982/QE436CrossRefGoogle Scholar
Choo, E., and Siow, A. (2006). “Who marries whom and why,” Journal of Political Economy, 114(1), 175201.10.1086/498585CrossRefGoogle Scholar
Ciscato, E., Dupuy, A., Fox, J., Galichon, A., and Weber, S. (2021). “Family dynamics: Marriage, fertility and divorce.” In preparation.Google Scholar
Cuturi, M. (2013). “Sinkhorn distances: Lightspeed computation of optimal transport,” Advances in Neural Information Processing Systems, 26.Google Scholar
Dantzig, G. B. (1951). “A proof of the equivalence of the programming problem and the game problem.” In Koopmans, T. (ed.), Activity Analysis of Production and Allocation, pp. 330335. New York: Wiley.Google Scholar
Duffie, D. (1992). Dynamic Asset Pricing Theory. Princeton, NJ: Princeton University Press.Google Scholar
Dupuy, A., and Galichon, A. (2014). “Personality traits and the marriage market,” Journal of Political Economy, 122(6), 12711319.10.1086/677191CrossRefGoogle Scholar
Dupuy, A., Galichon, A., and Sun, Y. (2019). “Estimating matching affinity matrices under low-rank constraints,” Information and Inference: A Journal of the IMA, 8(4), 677689.10.1093/imaiai/iaz015CrossRefGoogle Scholar
Ekeland, I. (2010). “Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types,” Economic Theory, 42(2), 275315.10.1007/s00199-008-0427-8CrossRefGoogle Scholar
Ekeland, I., and Galichon, A. (2013). “The housing problem and revealed preference theory: Duality and an application,” Economic Theory, 54(3), 425441.10.1007/s00199-012-0719-xCrossRefGoogle Scholar
Ekeland, I., Galichon, A., and Henry, M. (2012). “Comonotonic measures of multivariate risks,” Mathematical Finance, 22(1), 109132.10.1111/j.1467-9965.2010.00453.xCrossRefGoogle Scholar
Ekeland, I., Heckman, J. J., and Nesheim, L. (2004). “Identification and estimation of hedonic models,” Journal of Political Economy, 112, S60–S109.10.1086/379947CrossRefGoogle Scholar
Fox, J., Galichon, A., and Corblet, P. (2021). “A dynamic model of two-sided matching.” In preparation.Google Scholar
Franklin, J., and Lorenz, J. (1989). “On the scaling of multidimensional matrices,” Linear Algebra and its Applications, 114–115, 717735.10.1016/0024-3795(89)90490-4CrossRefGoogle Scholar
Galichon, A. (2016). Optimal Transport Methods in Economics. Princeton, NJ: Princeton University Press.10.23943/princeton/9780691172767.001.0001CrossRefGoogle Scholar
Galichon, A., and Henry, M. (2009). “A test of non-identifying restrictions and confidence regions for partially identified parameters,” Journal of Econometrics, 152(2), 186196.10.1016/j.jeconom.2009.01.010CrossRefGoogle Scholar
Galichon, A., and Henry, M. (2011). “Set identification in models with multiple equilibria,” The Review of Economic Studies, 78(4), 12641298.10.1093/restud/rdr008CrossRefGoogle Scholar
Galichon, A., and Henry, M. (2012). “Dual theory of choice with multivariate risks,” Journal of Economic Theory, 147(4), 15011516.10.1016/j.jet.2011.06.002CrossRefGoogle Scholar
Galichon, A., Henry-Labordère, P., and Touzi, N. (2014). “A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options,” The Annals of Applied Probability, 24(1), 312336.10.1214/13-AAP925CrossRefGoogle Scholar
Galichon, A., Kominers, S. D., and Weber, S. (2019). “Costly concessions: An empirical framework for matching with imperfectly transferable utility,” Journal of Political Economy, 127(6), 28752925.10.1086/702020CrossRefGoogle Scholar
Galichon, A., and Salanié, B. (2022). “Cupid’s invisible hand: Social surplus and identification in matching models,” The Review of Economic Studies, 89(5), 26002629.10.1093/restud/rdab090CrossRefGoogle Scholar
Galichon, A., Samuelson, L., and Vernet, L. (2021). “The equilibrium flow problem.” In preparation.Google Scholar
Guimarães, P., and Portugal, P. (2010). “A simple feasible procedure to fit models with high-dimensional fixed effects,” Stata Journal, 10(4), 628649.10.1177/1536867X1101000406CrossRefGoogle Scholar
Head, K., and Mayer, T. (2014). “Chapter 3 – Gravity equations: Workhorse, toolkit, and cookbook,” Handbook of International Economics, 4, 131195.10.1016/B978-0-444-54314-1.00003-3CrossRefGoogle Scholar
Henry-Labordère, P. (2020). Model-Free Hedging: A Martingale Optimal Transport Viewpoint. London: Chapman & Hall.Google Scholar
Idel, M. (2016). “A review of matrix scaling and Sinkhorn’s normal form for matrices and positive maps.” arXiv:1609.06349v1.Google Scholar
Kelso, A. S., and Crawford, V. P. (1982). “Job matching, coalition formation, and gross substitutes,” Econometrica, 50(6), 14831504.10.2307/1913392CrossRefGoogle Scholar
Koenker, R. (2005). Quantile Regression. Cambridge: Cambridge University Press. Koenker, R., and G. Bassett (1978). “Regression quantiles,” Econometrica, 46(1), 3350.10.2307/1913643CrossRefGoogle Scholar
Koenker, R., and Ng, P. (2005). “Inequality constrained quantile regression,” Sankhy¯a: The Indian Journal of Statistics (2003–2007), 67(2), 418440.Google Scholar
Kuhn, H. W., and Tucker, A. W. (1958). “John von Neumann’s work in the theory of games and mathematical economics,” Bulletin of the American Mathematical Society, 64(3, Part 2), 100122.Google Scholar
Léger, F. (2021). “A gradient descent perspective on Sinkhorn,” Applied Mathematics & Optimization, 84(2), 18431855.10.1007/s00245-020-09697-wCrossRefGoogle Scholar
Léonard, C. (2014). “A survey of the Schrödinger problem and some of its connections with optimal transport,” Discrete & Continuous Dynamical Systems, 34(4), 1533.10.3934/dcds.2014.34.1533CrossRefGoogle Scholar
Murota, K. (1998). “Discrete convex analysis,” Mathematical Programming, 83(1), 313371.10.1007/BF02680565CrossRefGoogle Scholar
Nöldeke, G., and Samuelson, L. (2018). “The implementation duality,” Econometrica, 86(4), 12831324.10.3982/ECTA13307CrossRefGoogle Scholar
Ortega, J. M., and Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press.Google Scholar
Peyré, G., and Cuturi, M. (2019). “Computational optimal transport: With applications to data science,” Foundations and Trends in Machine Learning, 11(5), 355607.10.1561/2200000073CrossRefGoogle Scholar
Rust, J. (1987). “Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher,” Econometrica, 55(5), 9991033.10.2307/1911259CrossRefGoogle Scholar
Santambrogio, F. (2015). Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Basel: Birkhäuser.10.1007/978-3-319-20828-2CrossRefGoogle Scholar
Shapley, L. S., and Shubik, M. (1971). “The assignment game I: The core,” International Journal of Game Theory, 1(1), 111130.10.1007/BF01753437CrossRefGoogle Scholar
Silva, J. M. C. S., and Tenreyro, S. (2006). “The log of gravity,” Review of Economics and Statistics, 88(4), 641658.10.1162/rest.88.4.641CrossRefGoogle Scholar
Strassen, V. (1965). “The existence of probability measures with given marginals,” The Annals of Mathematical Statistics, 36(2), 423439.10.1214/aoms/1177700153CrossRefGoogle Scholar
Sun, N., and Yang, Z. (2006). “Equilibria and indivisibilities: Gross substitutes and complements,” Econometrica, 74(5), 13851402.10.1111/j.1468-0262.2006.00708.xCrossRefGoogle Scholar
Topkis, D. M. (1998). Supermodularity and Complementarity. Princeton, NJ: Princeton University Press.Google Scholar
Villani, C. (2003). Topics in Optimal Transportation. Providence, RI: American Mathematical Society.10.1090/gsm/058CrossRefGoogle Scholar
Villani, C. (2009). Optimal Transport: Old and New. Berlin: Springer-Verlag.10.1007/978-3-540-71050-9CrossRefGoogle Scholar
Von Neumann, J. (1953). “A certain zero-sum two-person game equivalent to the optimal assignment problem.” In Kuhn, H. W. and Tucker, A. W. (eds.), Contributions to the Theory of Games, vol. 2. Princeton, NJ: Princeton University Press, pp. 512.Google Scholar
Wigner, E. P. (1960). “The unreasonable effectiveness of mathematics in the natural sciences,” Communications on Pure and Applied Mathematics, 13(1), 114.10.1002/cpa.3160130102CrossRefGoogle Scholar
Wilson, A. G. (1969). “The use of entropy maximising models, in the theory of trip distribution, mode split and route split,” Journal of Transport Economics and Policy, 3(1), 108126.Google Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×