Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T14:21:03.414Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 March 2020

Michael El-Batanouny
Affiliation:
Boston University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Advanced Quantum Condensed Matter Physics
One-Body, Many-Body, and Topological Perspectives
, pp. 808 - 817
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abarenkov, I. V., and Heine, V. 1965. The Model Potential for Positive Ions. Philos. Mag., 12(117), 529537.Google Scholar
[2] Abergel, D.S.L., Apalkov, V., Berashevich, J., Ziegler, K., and Chakraborty, T. 2010. Properties of Graphene: A Theoretical Perspective. Adv. Phys., 59, 261482.Google Scholar
[3] Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V. 1979. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett., 42, 673676.Google Scholar
[4] Abrikosov, A. A., Gor’kov, L. P., and Dzyaloshinskii, I. E. 1959. On the Application of Quantum-Field-Theory Methods to Problems of Quantum Statistics at Finite Temperatures. Soviet Physics JETP, 36, 636641.Google Scholar
[5] Abrikosov, A. A., Gor’kov, L. P., and Dzyaloshinskii, I. E. 1975. Methods of Quantum Field Theory in Statistical Physics. Dover.Google Scholar
[6] Aharonov, Y., and Bohm, D. 1959. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev., 115, 485491.Google Scholar
[7] Allen, J. F., and Misener, A. D. 1938. Flow of Liquid Helium II. Nature, 141, 75.Google Scholar
[8] Allen, J. F., Peierls, R., and Uddin, M. Z. 1937. Heat Conduction in Liquid Helium. Nature, 140, 62.Google Scholar
[9] Altland, A., and Zirnbauer, M. R. 1997. Nonstandard Symmetry Classes in Meso-scopic Normal-Superconducting Hybrid Structures. Phys. Rev. B, 55, 11421161.CrossRefGoogle Scholar
[10] Anderson, P. W. 1958a. Absence of Diffusion in Certain Random Lattices. Phys. Rev., 109, 14921505.Google Scholar
[11] Anderson, P. W. 1958b. New Method in the Theory of Superconductivity. Phys. Rev., 110, 985986.Google Scholar
[12] Anderson, P. W. 1958c. Random-Phase Approximation in the Theory of Superconductivity. Phys. Rev., 112, 19001916.Google Scholar
[13] Anderson, P. W. 1959. New Approach to the Theory of Superexchange Interactions. Phys. Rev., 115, 213.Google Scholar
[14] Anderson, P. W. 1961. Localized Magnetic States in Metals. Phys. Rev., 124, 4153.Google Scholar
[15] Anderson, P. W., and Hasegawa, H. 1955. Considerations on Double Exchange. Phys. Rev., 100, 675681.CrossRefGoogle Scholar
[16] Anderson, Philip W. 1963. Theory of Magnetic Exchange Interactions:Exchange in Insulators and Semiconductors. Solid State Physics, vol. 14. Academic Press. Pages 99–214.Google Scholar
[17] Ando, Tsuneya. 2005. Theory of Electronic States and Transport in Carbon Nanotubes. J. Phys. Soc. Jpn., 74, 777817.CrossRefGoogle Scholar
[18] Andres, K., Graebner, J. E., and Ott, H. R. 1975. 4f -Virtual-Bound-State Formation in CeAl3 at Low Temperatures. Phys. Rev. Lett., 35, 17791782.Google Scholar
[19] Armitage, N. P., Mele, E. J., and Vishwanath, A. 2018. Weyl and Dirac Semimetals in Three-Dimensional Solids. Rev. Mod. Phys., 90, 015001.Google Scholar
[20] Ashcroft, N. W. 1966. Electron–Ion pseudopotentials in metals. Phys. Lett., 23, 4850.CrossRefGoogle Scholar
[21] Avron, J. E., Osadshy, D., and Seiler, R. 2003. A Topological Look at the Quantum Hall Effect. Phys. Today, 56(8), 38.Google Scholar
[22] Avron, J. E., Seiler, R., and Simon, B. 1983. Homotopy and Quantization in Condensed Matter Physics. Phys. Rev. Lett., 51, 5153.Google Scholar
[23] Balachandran, A. P. 1994. Topology in Physics – A Perspective. Found. Phys., vol. 24. Kluwer Academic Publishers–Plenum Publishers. Page 455.Google Scholar
[24] Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957. Theory of Superconductivity. Phys. Rev., 108, 11751204.Google Scholar
[25] Bernevig, B. Andrei, and Hughes, Taylor. 2013. Topological Insulators and Topological Superconductors. Princeton University Press.Google Scholar
[26] Bernevig, B. Andrei, Hughes, Taylor L., and Zhang, Shou-Cheng. 2006. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science, 314(5806), 17571761.Google Scholar
[27] Berry, M. V. 1984. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 392(1802), 4557.Google Scholar
[28] Berry, M. V. 1985. Aspects of Degeneracy. In: Casati, Giulio (ed), Chaotic Behaviour of Quantum Systems, Theory and Applications. NATO ASI Series.Google Scholar
[29] Bihlmayer, G. 2014. Relativistic Effects in Solids. In: Blügel, Stefan (ed), Computing Solids: Models, Ab Initio Methods, and Supercomputing. Lecture Notes 45th IFF Spring School.Google Scholar
[30] Bloch, F. 1932. Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika. Zeitschrift für Physik, 74, 295335.Google Scholar
[31] Bloch, F. Z. 1929. ber die Quantenmechanik der Elektronen in Kristallgittern. Physik, 52, 555.Google Scholar
[32] Bogolyubov, N. N., Tolmachev, V. V., and Shirkov, D. V. 1958. A New Method in the Theory of Superconductivity. Fortsch. Phys., 6, 605682.Google Scholar
[33] Bohm, A., Mostafazadeh, A., Koizumi, H., Niu, Q., and Zwanziger, J. 2010. The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics. Springer Verlag.Google Scholar
[34] Bohm, Arno, Boya, Luis J., and Kendrick, Brian. 1991. Derivation of the Geometrical Phase. Phys. Rev. A, 43, 12061210.CrossRefGoogle ScholarPubMed
[35] Bohm, David, and Pines, David. 1953. A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas. Phys. Rev., 92, 609625.CrossRefGoogle Scholar
[36] Born, M., and Oppenheimer, R. 1927. Zur Quantentheorie der Molekeln. Annalen der Physik, 389, 457484.Google Scholar
[37] Boya, Louis J. 1997. Rays and Phases: A Paradox? Z. Naturforsch., 52a, 6365.CrossRefGoogle Scholar
[38] Brown, Laurie M. 1978. The Idea of the Neutrino. Phys. Today, 31(9), 2328.CrossRefGoogle Scholar
[39] Burdick, Glenn A. 1963. Energy Band Structure of Copper. Phys. Rev., 129, 138150.Google Scholar
[40] Callaway, Joseph. 1955. Orthogonalized Plane Wave Method. Phys. Rev., 97, 933936.Google Scholar
[41] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K. 2009. The Electronic Properties of Graphene. Rev. Mod. Phys., 81, 109162.Google Scholar
[42] Cayssol, Jrme. 2013. Various Probes of Dirac Matter: From Graphene to Topological Insulators. arXiv, [cond-mat.mes-hall], 1303.5902.Google Scholar
[43] Chelikowsky, James R., and Cohen, Marvin L. 1976. Nonlocal Pseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-Blende Semiconductors. Phys. Rev. B, 14, 556582.Google Scholar
[44] Cohen, Marvin L., and Bergstresser, T. K. 1966. Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-Blende Structures. Phys. Rev., 141, 789796.Google Scholar
[45] Cohen, Marvin L., and Heine, Volker. 1970. The Fitting of Pseudopotentials to Experimental Data and Their Subsequent Application. Solid State Physics, vol. 24. Academic Press. Pages 37248.Google Scholar
[46] Coker, Ayodele, Lee, Taesul, and Das, T. P. 1980. Investigation of the Electronic Properties of Tellurium-Energy-Band Structure. Phys. Rev. B, 22, 29682975.Google Scholar
[47] Cooper, Leon N. 1956. Bound Electron Pairs in a Degenerate Fermi Gas. Phys. Rev., 104, 11891190.Google Scholar
[48] de Haas, W. J., de Boer, J., and van dn Berg, G. J. 1934. The Electrical Resistance of Gold, Copper and Lead at Low Temperatures. Physica, 1, 11151124.Google Scholar
[49] del Castillo, Gerardo F. Torres. 2012. Differentiable Manifolds: A Theoretical Physics Approach. Birkhuser Basel.CrossRefGoogle Scholar
[50] Dirac, P. A. M. 1928. The Quantum Theory of the Electron. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 117(778), 610624.Google Scholar
[51] Dirac, P. A. M. 1929. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 123, 714733.Google Scholar
[52] Dirac, P. A. M. 1931. Quantised Singularities in the Electromagnetic Field,. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 133(821), 6072.Google Scholar
[53] Donnelly, R. 2009. The Two-Fluid Theory and Second Sound in Liquid Helium. Phys. Today, 38, 34.Google Scholar
[54] Dyson, F. J. 1949a. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 75, 486502.Google Scholar
[55] Dyson, F. J. 1949b. The S Matrix in Quantum Electrodynamics. Phys. Rev., 75, 17361755.Google Scholar
[56] Dyson, Freeman J. 1962. The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics. J. Math. Phys., 3, 11991215.Google Scholar
[57] Dzyaloshinskii, I. 1958. A Thermodynamic Theory of Weak Ferromagnetism of Antiferromagnetics. J. Phys. Chem. Solids, 4, 241255.Google Scholar
[58] Eggert, Sebastian. 2007. One-Dimensional Quantum Wires: A Pedestrian Approach to Bosonization. In: Kuk, Y. (ed), Theoretical Survey of One Dimensional Wire Systems. Sowha Publishing.Google Scholar
[59] Eschrig, Helmut. 2011. Topology and Geometry for Physics. Lecture Notes in Physics, vol. 822. Springer-Verlag.Google Scholar
[60] Fetter, A. L., and Walecka, J. D. 1971. Quantum Theory of Many Particle System. McGraw-Hill Book Company.Google Scholar
[61] Feynman, R. P. 1949a. Space-Time Approach to Quantum Electrodynamics. Phys. Rev., 76, 769789.CrossRefGoogle Scholar
[62] Feynman, R. P. 1949b. The Theory of Positrons. Phys. Rev., 76, 749759.Google Scholar
[63] Feynman, R. P. 1972. Statistical Mechanics. Frontiers in Physics. W. A. Benjamin Inc. (1972), CRC Press (1998).Google Scholar
[64] Fock, V. A. 1930. N¨aherungsmethode zur Losung des quantenmechanischen Mehrkörperproblem (Approximation method for the solution of the quantum mechanical many-body problem). Z. Phys., 61, 126148.Google Scholar
[65] Fradkin, Eduardo. 2013. Field Theories of Condensed Matter Physics. second edn. Cambridge University Press.Google Scholar
[66] Franz, Marcel, and Molenkamp, Laurens (eds). 2013. Topological Insulators. Contemporary Concepts of Condensed Matter Science, vol. 6. Elsevier.Google Scholar
[67] Fré, Pietro Giuseppe. 2013. Gravity, a Geometrical Course: Development of the Theory and Basic Physical Applications. Vol. 1. Springer.Google Scholar
[68] Friedel, J. 1958. Metallic Alloys. Il Nuovo Cimento (1955-1965), 7, 287311.CrossRefGoogle Scholar
[69] Fruchart, Michel, and Carpentier, David. 2013. An Introduction to Topological Insulators. Comptes Rendus Physique, 14, 779815.Google Scholar
[70] Liang, Fu. 2011. Topological Crystalline Insulators. Phys. Rev. Lett., 106, 106802.Google Scholar
[71] Liang, Fu, and Kane, C. L. 2006. Time Reversal Polarization and a Z2 Adiabatic Spin Pump. Phys. Rev. B, 74, 195312.Google Scholar
[72] Gell-Mann, Murray, and Brueckner, Keith A. 1957. Correlation Energy of an Electron Gas at High Density. Phys. Rev. 106, 364368.Google Scholar
[73] Gell-Mann, Murray, and Low, Francis. 1951. Bound States in Quantum Field Theory. Phys. Rev., 84, 350354.Google Scholar
[74] Giamarchi, Thierry. 2004. Quantum Physics in One Dimension. International Series of Monographs on Physics. Oxford University Press.Google Scholar
[75] Ginzburg, V. L., and Landau, L. D. 1950. On the Theory of Superconductivity. Zh. Eksp. Teor. Fiz., 20, 10641082.Google Scholar
[76] Giuliani, Gabriele, and Vignale, Giovanni. 2005. Quantum Theory of the Electron Liquid. Cambridge University Press.Google Scholar
[77] Gor’kov, L. P. 1958. On the Energy Spectrum of Superconductors. Soviet Phys. JETP, 7, 505.Google Scholar
[78] Gor’kov, L. P. 1959. Microscopic Derivation of the Ginzburg–Landau Equations in the Theory of Superconductivity. Soviet Phys. JETP, 9, 1364.Google Scholar
[79] Gor’kov, L. P. 1960. Theory of Superconducting Alloys in a Strong Magnetic Field near the Critical Temperature. Soviet Phys. JETP, 10, 998.Google Scholar
[80] Gundmann, Marius. 2016. The Physics of Semiconductors: An Introduction. third edn. Graduate Texts in Physics. Springer International Publishing.CrossRefGoogle Scholar
[81] Haldane, F. D. M. 1981. “Luttinger Liquid Theory” of One-Dimensional Quantum Fluids. I. Properties of the Luttinger Model and Their Extension to the General 1D Interacting Spinless Fermi Gas. J. Phys. C: Solid State Phys., 14, 2585.Google Scholar
[82] Haldane, F. D. M. 1988. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly.Phys. Rev. Lett., 61, 2015– 2018.Google Scholar
[83] Haldane, F. D. M. 2014. Attachment of Surface Fermi Arcs to the Bulk Fermi Surface: Fermi-Level Plumbing in Topological Metals. arXiv[cond-mat.str-el], 1401.0529.Google Scholar
[84] Hamann, D. R., Schlüter, M., and Chiang, C. 1979. Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 14941497.Google Scholar
[85] Harrison, W. A. 2012. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond. Dover Books on Physics. Dover Publications.Google Scholar
[86] Hartree, D. R. 1928. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I, II and III. Math. Proc. Cambridge Philos. Soc., 24, 89, 111, 426.Google Scholar
[87] Hartree, D. R., and Hartree, W. 1935. Self-Consistent Field, with Exchange, for Beryllium. Proc. R. Soc. Lond. A: Math Phys. Eng. Sci., 150(869), 933.Google Scholar
[88] Hasan, M. Z., and Kane, C. L. 2010. Colloquium: Topological Insulators. Rev. Mod. Phys., 82, 30453067.Google Scholar
[89] Heine, Volker. 1970. The Pseudopotential Concept. Solid State Physics, vol. 24. Academic Press. Pages 136.Google Scholar
[90] Heisenberg, W. 1928. Zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 49, 619636.Google Scholar
[91] Henshaw, D. G., and Woods, A. D. B. 1961. Modes of Atomic Motions in Liquid Helium by Inelastic Scattering of Neutrons. Phys. Rev., 121, 12661274.Google Scholar
[92] Herring, Conyers. 1937. Accidental Degeneracy in the Energy Bands of Crystals. Phys. Rev., 52, 365373.Google Scholar
[93] Hohenberg, P., and Kohn, W. 1964. Inhomogeneous Electron Gas. Phys. Rev., 136, B864–B871.Google Scholar
[94] Hubbard, J. 1963. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. Lond., 276, 238257.Google Scholar
[95] Ivancevic, Vladimir G, and Ivancevic, Tijana T. 2007. Applied Differential Geometry. World Scientific.Google Scholar
[96] Jones, R. O. 2015. Density Functional Theory: Its Origins, Rise to Prominence, and Future. Rev. Mod. Phys., 87, 897923.Google Scholar
[97] Kaiser, David. 2005. Physics and Feynman’s Diagrams. American Scientist, 93(2), 156165.Google Scholar
[98] Kane, C. L., and Mele, E. J. 2005a. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett., 95, 146802.Google Scholar
[99] Kane, C. L., and Mele, E. J. 2005b. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett., 95, 226801.Google Scholar
[100] Kanisawa, K., Butcher, M. J., Yamaguchi, H., and Hirayama, Y. 2001. Imaging of Friedel Oscillation Patterns of Two-Dimensionally Accumulated Electrons at Epitaxially Grown InAs(111) A Surfaces. Phys. Rev. Lett., 86, 33843387.Google Scholar
[101] Kapitza, P. 1938. Viscosity of Liquid Helium below the λ-Point. Nature, 141, 74.Google Scholar
[102] Kasuya, Tadao. 1956. A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model. Prog. Theor. Phys., 16, 4557.Google Scholar
[103] Kellermann, E. W. 1940. Theory of the Vibrations of the Sodium Chloride Lattice. Philos. Trans. R Soc. Lond. Series A: Math. Phys. Eng. Sci., 238(798), 513548.Google Scholar
[104] King-Smith, R. D., and Vanderbilt, David. 1993. Theory of Polarization of Crystalline Solids. Phys. Rev. B, 47, 16511654.Google Scholar
[105] Klitzing, K. v., Dorda, G., and Pepper, M. 1980. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett., 45, 494497.Google Scholar
[106] Kohmoto, Mahito. 1985. Topological Invariant and the Quantization of the Hall Conductance. Ann. Phys., 160, 343354.Google Scholar
[107] Kohn, W., and Rostoker, N. 1954. Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium. Phys. Rev., 94(Jun), 11111120.Google Scholar
[108] Kohn, W., and Sham, L. J. 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140, A1133A1138.Google Scholar
[109] König, Markus, Wiedmann, Steffen, and Brüne, Christoph et. al. 2007. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318(5851), 766770.Google Scholar
[110] Konschuh, Sergej, Gmitra, Martin, and Fabian, Jaroslav. 2010. Tight-Binding Theory of the Spin-Orbit Coupling in Graphene. Phys. Rev. B, 82, 245412.Google Scholar
[111] Koopmans, T. 1934. ber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104113.Google Scholar
[112] Korringa, J. 1947. On the Calculation of the Energy of a Bloch Wave in a Metal. Physica, 13, 392400.Google Scholar
[113] Kramers, H. A. 1934. L’interaction Entre les Atomes Magnétogénes dans un Cristal Paramagnétique. Physica, 1, 182192.Google Scholar
[114] Kubo, R. 1957. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. of Japan, 12, 570586.Google Scholar
[115] Landau, L. 1957. The Theory of a Fermi Liquid. Soviet Phys. JETP, 30, 10581064.Google Scholar
[116] Landau, L. 1959. On the Theory of the Fermi Liquid. Soviet Phys. JETP, 35, 7074.Google Scholar
[117] LaShell, S., McDougall, B. A., and Jensen, E. 1996. Spin Splitting of an Au(111) Surface State Band Observed with Angle Resolved Photoelectron Spectroscopy. Phys. Rev. Lett., 77, 34193422.Google Scholar
[118] Laughlin, R. B. 1981. Quantized Hall Conductivity in Two Dimensions. Phys. Rev. B, 23, 56325633.Google Scholar
[119] Lee, W.S., Vishik, I.M., Lu, D.H., and Shen, Z-X. 2009. A Brief Update of Angle-Resolved Photoemission Spectroscopy on a Correlated Electron System. J. Phys.: Condens. Matter, 21, 164217.Google ScholarPubMed
[120] London, F. 1938a. The λ-Phenomenon of Liquid Helium and the Bose–Einstein Degeneracy. Nature, 141, 643.Google Scholar
[121] London, F. 1938b. On the Bose–Einstein Condensation. Phys. Rev., 54, 947954.Google Scholar
[122] London, F., and London, H. 1935. The Electromagnetic Equations of the Supraconductor. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 149(866), 7188.Google Scholar
[123] Luttinger, J. M. 1963. An Exactly Soluble Model of a Many-Fermion System. J. Math. Phys., 4, 11541162.Google Scholar
[124] Majorana, E. 1937. Teoria Simmetrica dell’Elettrone e del Positrone (Theory of the Symmetry of Electrons and Positrons). Il Nuovo Cimento, 14, 171.CrossRefGoogle Scholar
[125] Martin, P. C., and Schwinger, Julian. 1959. Theory of Many-Particle Systems. I. Phys. Rev., 115, 13421373.Google Scholar
[126] Matsubara, T. 1955. A New Approach to Quantum-Statistical Mechanics. Prog. Theor. Phys., 14, 351378.Google Scholar
[127] McMillan, W. L. 1968. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev., 167, 331344.Google Scholar
[128] Mead, C. A. 1980. The Molecular Aharonov–Bohm Effect in Bound States. Chem. Phys., 49, 2332.Google Scholar
[129] Mehta, M. L. 2004. Random Matrices. Pure and Applied Mathematics, vol. 142. Elsevier.Google Scholar
[130] Moore, J. E., and Balents, L. 2007. Topological Invariants of Time-Reversal-Invariant Band Structures. Phys. Rev. B, 75, 121306.Google Scholar
[131] Moriya, T. 1960. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev., 120, 9198.Google Scholar
[132] Mott, N. F. 1949. The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals. Proc. Phys. Soci., Section A, 62, 416.Google Scholar
[133] Mott, N. F., and Peierls, R. 1937. Discussion of the Paper by de Boer and Verwey. Proc. Phys. Soci., 49, 72.Google Scholar
[134] Mueller, F. M. 1967. Combined Interpolation Scheme for Transition and Noble Metals. Phys. Rev., 153, 659669.Google Scholar
[135] Murakami, S. 2007. Phase Transition between the Quantum Spin Hall and Insulator Phases in 3D: Emergence of a Topological Gapless Phase. New J. Phys., 9, 356.Google Scholar
[136] Murakami, S., Nagaosa, N., and Zhang, S-C. 2004. Spin-Hall Insulator. Phys. Rev. Lett., 93, 156804.Google Scholar
[137] Myron, H. W., and Freeman, A. J. 1975. Electronic Structure and Fermi-Surface-Related Instabilities in 1T − TaS2 and 1T − TaSe2. Phys. Rev. B, 11, 27352739.Google Scholar
[138] Nakahara, M. 2003. Geometry, Topology and Physics. second edn. Graduate Student Series in Physics. CRC Press; Taylor & Francis.Google Scholar
[139] Nambu, Y. 1960. Quasi-Particles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev., 117, 648663.Google Scholar
[140] Néel, L. 1932. Influence des fluctuations des champs moléculaires sur les propriétés magnétiques des corps. Theses, Universite de Strasbourg.Google Scholar
[141] Néel, L. 1952. Antiferromagnetism and Ferrimagnetism. Proc. Phys. Soc., Section A, 65(11), 869.Google Scholar
[142] Néel, M. L. 1948. Propriétés magnétiques des ferrites, ferrimagnétisme et antiferromagnétisme. Ann. Phys., 12, 137198.Google Scholar
[143] Negele, J. W., and Orland, H. 1998. Quantum Many-Particle Systems. Advanced Books Classics. Perseus Books.Google Scholar
[144] Nielsen, H. B., and Ninomiya, M. 1981a. Absence of Neutrinos on a Lattice: (I). Proof by Homotopy Theory. Nuclear Physics B, 185, 2040.CrossRefGoogle Scholar
[145] Nielsen, H. B., and Ninomiya, M. 1981b. Absence of Neutrinos on a Lattice: (II). Intuitive Topological Proof. Nuclear Physics B, 193, 173194.Google Scholar
[146] Nielsen, H. B., and Ninomiya, M. 1983. The Adler–Bell–Jackiw Anomaly and Weyl Fermions in a Crystal. Physics Letters B, 130, 389396.Google Scholar
[147] Onsager, L. 1949. Statistical Hydrodynamics. Il Nuovo Cimento, 6, 279287.Google Scholar
[148] Ortmann, F., Roche, S., and Valenzuela, S. O. (eds). 2015. Topological Insulators: Fundamentals and Perspectives. Wiley.Google Scholar
[149] Panati, G. 2007. Triviality of Bloch and Bloch–Dirac Bundles. Annales Henri Poincaré, 8, 9951011.Google Scholar
[150] Paulatto, L. 2008. Pseudopotential Methods for DFT Calculations. Lecture.Google Scholar
[151] Peierls, R. E. 1955. Quantum Theory of Solids. Oxford University Press.Google Scholar
[152] Peierls, R. E. 1985. Bird of Passage: Recollections of a Physicist. Princeton University Press.Google Scholar
[153] Petersen, L., and Hedegard, P. 2000. A Simple Tight-Binding Model of Spin–Orbit Splitting of sp–Derived Surface States. Surf. Sci., 459, 4956.Google Scholar
[154] Resta, R. 1992. Theory of the Electric Polarization in Crystals. Ferroelectrics, 136, 5155.Google Scholar
[155] Resta, R. 2012. Geometry and Topology in Electronic Structure Theory. University of Trieste.Google Scholar
[156] Richard, S., Aniel, F., and Fishman, G. 2004. Energy-Band Structure of Ge, Si, and GaAs: A Thirty-Band k · p Method. Phys. Rev. B, 70, 235204.Google Scholar
[157] Ruderman, M. A., and Kittel, C. 1954. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Phys. Rev., 96, 99102.Google Scholar
[158] Ryu, S., Schnyder, A. P., Furusaki, A., and Ludwig, A. W. W. 2010. Topological Insulators and Superconductors: Tenfold Way and Dimensional Hierarchy. New J. Phys., 12, 065010.Google Scholar
[159] Sakurai, J. J., and Napolitano, J. 2017. Modern Quantum Mechanics. second edn. Cambridge University Press.Google Scholar
[160] Schnyder, A. P., Ryu, S., Furusaki, A., and Ludwig, A. W. W. 2008. Classification of Topological Insulators and Superconductors in Three Spatial Dimensions. Phys. Rev. B, 78, 195125.Google Scholar
[161] Schnyder, A. P., Ryu, S., Furusaki, A., and Ludwig, A. W. W. 2009. Classification of Topological Insulators and Superconductors. AIP Conf. Proc., 1134, 1021.Google Scholar
[162] Schrieffer, J. R., and Wolff, P. A. 1966. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev., 149, 491492.Google Scholar
[163] Schulz, H. J., Cuniberti, G., and Pieri, P. 2000. Fermi Liquids and Luttinger Liquids. In: Morandi, G., Sodano, P., Tagliacozzo, A., and Tognetti, V. (eds), Field Theories for Low-Dimensional Condensed Matter Systems. Lecture Notes of the Les Houches Summer School, vol. 131. Springer.Google Scholar
[164] Semenoff, Gordon W. 1984. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Phys. Rev. Lett., 53, 24492452.Google Scholar
[165] Setyawan, W., and Curtarolo, S. 2010. High-Throughput Electronic Band Structure Calculations: Challenges and Tools. Comput. Mater. Sci., 49, 299312.Google Scholar
[166] Shen, S-Q. 2012. Topological Insulators: Dirac Equation in Condensed Matter. Springer Series in Solid-State Sciences. Springer-Verlag.Google Scholar
[167] Simon, B. 1983. Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase. Phys. Rev. Lett., 51, 21672170.Google Scholar
[168] Slater, J. C. 1937. Wave Functions in a Periodic Potential. Phys. Rev., 51(May), 846851.Google Scholar
[169] Slater, J. C. 1972. Symmetry and Energy Bands in Crystals. Dover Publications.Google Scholar
[170] Soluyanov, A. A., Gresch, D., and Wang, Z. et al. 2015. Type-II Weyl Semimetals. Nature, 527, 495.Google Scholar
[171] Steinhauer, J., Ozeri, R., Katz, N., and Davidson, N. 2002. Excitation Spectrum of a Bose–Einstein Condensate. Phys. Rev. Lett., 88, 120407.Google Scholar
[172] Stone, M., and Goldbart, P. 2009. Mathematics for Physics: A Guided Tour for Graduate Students. first edn. Cambridge University Press.Google Scholar
[173] Takahashi, R. 2015. Topological States on Interfaces Protected by Symmetry. Springer Theses.Google Scholar
[174] Tamtögl, A. 2012. Surface Dynamics and Structure of Bi(111) from Helium Atom Scattering. Ph.D. thesis, Graz University of Technology.Google Scholar
[175] Tanaka, Y., Sato, T., Nakayama, K., et al. 2013. Tunability of the k-Space Location of the Dirac Cones in the Topological Crystalline Insulator Pb1−xSnxTe. Phys. Rev. B, 87, 155105.Google Scholar
[176] Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. 1982. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett., 49, 405408.Google Scholar
[177] Tinkham, M. 1996. Introduction to Superconductivity. Dover.Google Scholar
[178] Tisza, L. 1938. Transport Phenomena in Helium II. Nature, 141, 913.Google Scholar
[179] Tisza, L. 1940a. About the Theory of Quantum Liquids. Application to Liquid Helium. II. J. Phys. Radium, 1, 350358.Google Scholar
[180] Tisza, L. 1940b. On the Theory of Quantum Liquids. Application to Liquid Helium. J. Phys. Radium, 1, 164172.Google Scholar
[181] Tomonaga, S-i. 1950. Remarks on Bloch’s Method of Sound Waves Applied to Many-Fermion Problems. Prog. Theor. Phys., 5, 544569.Google Scholar
[182] Townsend, P., and Sutton, J. 1962. Investigation by Electron Tunneling of the Superconducting Energy Gaps in Nb, Ta, Sn, and Pb. Phys. Rev., 128, 591595.Google Scholar
[183] Toya, T. 1958. Normal Vibrations of Sodium. J. Res. Inst. Catal. Hokkaido Univ., 6, 183195.Google Scholar
[184] Vafek, O., and Vishwanath, A. 2014. Dirac Fermions in Solids: From High-Tc Cuprates and Graphene to Topological Insulators and Weyl Semimetals. Annual Review of Condensed Matter Physics, 5, 83112.Google Scholar
[185] van Vleck, J. H. 1937. On the Anisotropy of Cubic Ferromagnetic Crystals. Phys. Rev., 52, 11781198.Google Scholar
[186] van Vleck, J. H. 1992. Quantum Mechanics: The Key to Understanding Magnetism. Pages 353–369 of: Lundqvist, S. (ed), Nobel Lectures, Physics 1971-1980. World Scientific, Singapore.Google Scholar
[187] Varma, C. M., and Yafet, Y. 1976. Magnetic Susceptibility of Mixed-Valence Rare-Earth Compounds. Phys. Rev. B, 13, 29502954.Google Scholar
[188] von Delft, J., and Schoeller, H. 1998. Bosonization for Beginners Refermionization for Experts. Ann. Phys., 7, 225305.Google Scholar
[189] von Neuman, J., and Wigner, E. P. 1929. Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z., 30, 467– 470.Google Scholar
[190] Vonsovskii, S. V. 1946. Zh. Eksp. Teor. Fiz., 16, 981.Google Scholar
[191] Wallace, P. R. 1947. The Band Theory of Graphite. Phys. Rev., 71, 622634.Google Scholar
[192] Wan, X., Turner, A. M., Vishwanath, A., and Savrasov, S. Y. 2011. Topological Semimetal and Fermi-Arc Surface States in the Electronic Structure of Pyrochlore Iridates. Phys. Rev. B, 83, 205101.Google Scholar
[193] Weyl, H. 1929. Elektron und Gravitation I. Zeitschrift für Physik, 56, 330352.Google Scholar
[194] Wick, G. C. 1954. Properties of Bethe–Salpeter Wave Functions. Phys. Rev., 96, 11241134.Google Scholar
[195] Wigner, E. P. 1932. Ueber die Operation der Zeitumkehr in der Quantenmechanik, Nachrichten von der Gesellschaft der Wissenschaften zu Gttingen. Math.-Phys. K., 546–559.Google Scholar
[196] Wigner, E. P. 1959. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press. Chaps 24 and 26.Google Scholar
[197] Wilczek, F., and Zee, A. 1984. Appearance of Gauge Structure in Simple Dynamical Systems. Phys. Rev. Lett., 52, 21112114.Google Scholar
[198] Wilson, A. 1931a. The Theory of Electronic Semi-Conductors. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 133(822), 458491.Google Scholar
[199] Wilson, A. 1931b. The Theory of Electronic Semi-Conductors. II. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 134(823), 277287.Google Scholar
[200] Witten, E. 1988. Topological Quantum Field Theory. Commun. Math. Phys., 117, 353386.Google Scholar
[201] Woods, A. D. B., Brockhouse, B. N., March, R. H., Stewart, A. T., and Bowers, R. 1962. Crystal Dynamics of Sodium at 90◦ K. Phys. Rev., 128, 11121120.Google Scholar
[202] Yao, Y., Ye, F., Qi, X.-L., Zhang, S-C., and Fang, Z. 2007. Spin–Orbit Gap of Graphene: First Principles Calculations. Phys. Rev. B, 75, 041401.Google Scholar
[203] Yosida, K. 1996. Theory of Magnetism. Springer Series in Solid State Sciences, vol. 122. Springer.Google Scholar
[204] Yosida, Kei. 1957. Magnetic Properties of Cu-Mn Alloys. Phys. Rev., 106, 893898.Google Scholar
[205] Yosida, Kei. 1966. Bound State Due to the s − d Exchange Interaction. Phys. Rev., 147, 223227.Google Scholar
[206] Zener, C. 1951. Interaction between the d Shells in the Transition Metals. Phys. Rev., 81, 440444.Google Scholar
[207] Ziman, J. M. 1965. Transport Phenomena in Helium II. Proc. Phys. SOC., 86, 337.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×