To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a locally compact, Hausdorff, second countable groupoid and A be a separable, $C_0(G^{(0)})$-nuclear, G-$C^*$-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from A into a separable, quotient $C^*$-algebra. Along the way, we construct the Busby invariant for G-actions.
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, based on the construction of small permutative categories of compact open bisections. This allows us to analyse homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with comparison.
Given a full right-Hilbert $\mathrm {C}^{*}$-module $\mathbf {X}$ over a $\mathrm {C}^{*}$-algebra A, the set $\mathbb {K}_{A}(\mathbf {X})$ of A-compact operators on $\mathbf {X}$ is the (up to isomorphism) unique $\mathrm {C}^{*}$-algebra that is strongly Morita equivalent to the coefficient algebra A via $\mathbf {X}$. As a bimodule, $\mathbb {K}_{A}(\mathbf {X})$ can also be thought of as the balanced tensor product $\mathbf {X}\otimes _{A} \mathbf {X}^{\mathrm {op}}$, and so the latter naturally becomes a $\mathrm {C}^{*}$-algebra. We generalize both of these facts to the world of Fell bundles over groupoids: Suppose $\mathscr {B}$ is a Fell bundle over a groupoid $\mathcal {H}$ and $\mathscr {M}$ is an upper semi-continuous Banach bundle over a principal $\mathcal {H}$-space X. If $\mathscr {M}$ carries a right-action of $\mathscr {B}$ and a sufficiently nice $\mathscr {B}$-valued inner product, then its imprimitivity Fell bundle$\mathbb {K}_{\mathscr {B}}(\mathscr {M})=\mathscr {M}\otimes _{\mathscr {B}} \mathscr {M}^{\mathrm {op}}$ is a Fell bundle over the imprimitivity groupoid of X, and it is the unique Fell bundle that is equivalent to $\mathscr {B}$ via $\mathscr {M}$. We show that $\mathbb {K}_{\mathscr {B}}(\mathscr {M})$ generalizes the “higher order” compact operators of Abadie–Ferraro in the case of saturated bundles over groups, and that the theorem recovers results such as Kumjian’s Stabilization trick.
Consider a possibly unsaturated Fell bundle $\mathcal {A}\to G$ over a locally compact, possibly non-Hausdorff, groupoid G. We list four notions of continuity of representations of $\mathit {C_c}(G;\mathcal {A})$ on a Hilbert space and prove their equivalence. This allows us to define the full $\mathit {C}^*$-algebra of the Fell bundle in different ways.
We consider the homology theory of étale groupoids introduced by Crainic and Moerdijk [A homology theory for étale groupoids. J. Reine Angew. Math.521 (2000), 25–46], with particular interest to groupoids arising from topological dynamical systems. We prove a Künneth formula for products of groupoids and a Poincaré-duality type result for principal groupoids whose orbits are copies of an Euclidean space. We conclude with a few example computations for systems associated to nilpotent groups such as self-similar actions, and we generalize previous homological calculations by Burke and Putnam for systems which are analogues of solenoids arising from algebraic numbers. For the latter systems, we prove the HK conjecture, even when the resulting groupoid is not ample.
We extend the Becker–Kechris topological realization and change-of-topology theorems for Polish group actions in several directions. For Polish group actions, we prove a single result that implies the original Becker–Kechris theorems, as well as Sami’s and Hjorth’s sharpenings adapted levelwise to the Borel hierarchy; automatic continuity of Borel actions via homeomorphisms and the equivalence of ‘potentially open’ versus ‘orbitwise open’ Borel sets. We also characterize ‘potentially open’ n-ary relations, thus yielding a topological realization theorem for invariant Borel first-order structures. We then generalize to groupoid actions and prove a result subsuming Lupini’s Becker–Kechris-type theorems for open Polish groupoids, newly adapted to the Borel hierarchy, as well as topological realizations of actions on fiberwise topological bundles and bundles of first-order structures.
Our proof method is new even in the classical case of Polish groups and is based entirely on formal algebraic properties of category quantifiers; in particular, we make no use of either metrizability or the strong Choquet game. Consequently, our proofs work equally well in the non-Hausdorff context, for open quasi-Polish groupoids and more generally in the point-free context, for open localic groupoids.
Carlsen [‘$\ast $-isomorphism of Leavitt path algebras over $\Bbb Z$’, Adv. Math.324 (2018), 326–335] showed that any $\ast $-homomorphism between Leavitt path algebras over $\mathbb Z$ is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of $\mathbb C$ enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every $\ast $-homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.
The complex algebra of an inverse semigroup with finitely many idempotents in each $\mathcal D$-class is stably finite by a result of Munn. This can be proved fairly easily using $C^{*}$-algebras for inverse semigroups satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many nonisomorphic finitely presented inverse semigroups with finitely many idempotents in each $\mathcal D$-class and non-Hausdorff universal groupoids. At this time, there is not a clear $C^{*}$-algebraic technique to prove these inverse semigroups have stably finite complex algebras.
For a given inverse semigroup action on a topological space, one can associate an étale groupoid. We prove that there exists a correspondence between the certain subsemigroups and the open wide subgroupoids in case that the action is strongly tight. Combining with the recent result of Brown et al., we obtain a correspondence between the certain subsemigroups of an inverse semigroup and the Cartan intermediate subalgebras of a groupoid C*-algebra.
Scarparo has constructed counterexamples to Matui’s HK-conjecture. These counterexamples and other known counterexamples are essentially principal but not principal. In the present paper, a counterexample to the HK-conjecture that is principal is given. Like Scarparo’s original counterexample, our counterexample is the transformation groupoid associated to a particular odometer. However, the relevant group is the fundamental group of a flat manifold (and hence is torsion-free) and the associated odometer action is free. The examples discussed here do satisfy the rational version of the HK-conjecture.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.
We prove that a minimal second countable ample groupoid has dynamical comparison if and only if its type semigroup is almost unperforated. Moreover, we investigate to what extent a not necessarily minimal almost finite groupoid has an almost unperforated type semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant property for metric spaces, which might be of independent interest in coarse geometry. As a consequence, we are able to construct new examples of almost finite principal groupoids lacking other desirable properties, such as amenability or even a-T-menability. This behaviour is in stark contrast to the case of principal transformation groupoids associated to group actions.
We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $-algebras associated to these groupoids. We provide a new characterization of $ 1 $-cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $-tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators ($ k $-Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{\ast } $-algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.
Twisted étale groupoid algebras have recently been studied in the algebraic setting by several authors in connection with an abstract theory of Cartan pairs of rings. In this paper we show that extensions of ample groupoids correspond in a precise manner to extensions of Boolean inverse semigroups. In particular, discrete twists over ample groupoids correspond to certain abelian extensions of Boolean inverse semigroups, and we show that they are classified by Lausch’s second cohomology group of an inverse semigroup. The cohomology group structure corresponds to the Baer sum operation on twists.
We also define a novel notion of inverse semigroup crossed product, generalizing skew inverse semigroup rings, and prove that twisted Steinberg algebras of Hausdorff ample groupoids are instances of inverse semigroup crossed products. The cocycle defining the crossed product is the same cocycle that classifies the twist in Lausch cohomology.
For a given inverse semigroup, one can associate an étale groupoid which is called the universal groupoid. Our motivation is studying the relation between inverse semigroups and associated étale groupoids. In this paper, we focus on congruences of inverse semigroups, which is a fundamental concept for considering quotients of inverse semigroups. We prove that a congruence of an inverse semigroup induces a closed invariant set and a normal subgroupoid of the universal groupoid. Then we show that the universal groupoid associated to a quotient inverse semigroup is described by the restriction and quotient of the original universal groupoid. Finally we compute invariant sets and normal subgroupoids induced by special congruences including abelianization.
Given an action ${\varphi }$ of inverse semigroup S on a ring A (with domain of ${\varphi }(s)$ denoted by $D_{s^*}$), we show that if the ideals $D_e$, with e an idempotent, are unital, then the skew inverse semigroup ring $A\rtimes S$ can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.
In this paper, we introduce quotients of étale groupoids. Using the notion of quotients, we describe the abelianizations of groupoid C*-algebras. As another application, we obtain a simple proof that effectiveness of an étale groupoid is implied by a Cuntz–Krieger uniqueness theorem for a universal groupoid C*-algebra.
We prove that $A_{R}(G)\otimes _{R}A_{R}(H)\cong A_{R}(G\times H)$ if $G$ and $H$ are Hausdorff ample groupoids. As part of the proof, we give a new universal property of Steinberg algebras. We then consider the isomorphism problem for tensor products of Leavitt algebras, and show that no diagonal-preserving isomorphism exists between $L_{2,R}\otimes L_{3,R}$ and $L_{2,R}\otimes L_{2,R}$. In fact, there are no unexpected diagonal-preserving isomorphisms between tensor products of finitely many Leavitt algebras. We give an easy proof that every $\ast$-isomorphism of Steinberg algebras over the integers preserves the diagonal, and it follows that $L_{2,\mathbb{Z}}\otimes L_{3,\mathbb{Z}}\not \cong L_{2,\mathbb{Z}}\otimes L_{2,\mathbb{Z}}$ (as $\ast$-rings).
Kaplansky introduced the notions of CCR and GCR $C^{\ast }$-algebras, because they have a tractable representation theory. Many years later, he introduced the notions of CCR and GCR rings. In this paper we characterize when the algebra of an ample groupoid over a field is CCR and GCR. The results turn out to be exact analogues of the corresponding characterization of locally compact groupoids with CCR and GCR $C^{\ast }$-algebras. As a consequence, we classify the CCR and GCR Leavitt path algebras.
We compute the homology groups of transformation groupoids associated with odometers and show that certain $(\mathbb{Z}\rtimes \mathbb{Z}_{2})$-odometers give rise to counterexamples to the HK conjecture, which relates the homology of an essentially principal, minimal, ample groupoid $G$ with the K-theory of $C_{r}^{\ast }(G)$. We also show that transformation groupoids of odometers satisfy the AH conjecture.