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Abstract

We prove Chai’s conjecture on the additivity of the base change conductor of semi-
abelian varieties in the case of Jacobians of proper curves. This includes the first
infinite family of non-trivial wildly ramified examples. Along the way, we extend
Raynaud’s construction of the Néron lft-model of a Jacobian in terms of the Picard
functor to arbitrary seminormal curves (beyond which Jacobians admit no Néron lft-
models, as shown by our more general structural results). Finally, we investigate the
structure of Jacobians of (not necessarily geometrically reduced) proper curves over
fields of degree of imperfection at most one and prove two conjectures about the exis-
tence of Néron models and Néron lft-models due to Bosch–Lütkebohmert–Raynaud for
Jacobians of general proper curves in the case of perfect residue fields, thus strength-
ening the author’s previous results in this situation.
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1. Introduction

Let OK be a Henselian discrete valuation ring with perfect residue field k and field of fractions
K. Let G be a semiabelian variety over K; i.e. suppose that G is a smooth connected algebraic
group over K which fits into an exact sequence

0 → T → G→ E → 0,

where E is an Abelian variety and T an algebraic torus over K, respectively. A Néron lft-
model of G is a smooth separated model N of G over OK such that for any smooth OK-
scheme S, any K-morphism SK → G uniquely extends to an OK-morphism S → N . These
group schemes are among the most well-studied objects in arithmetic geometry due to their
fundamental importance (see [BLR90] for a general introduction). However, questions regarding
their behaviour are usually very delicate. The two problems most often encountered are that
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Néron lft-models do not in general commute with ramified base change, and that the sequence

0 → T → N → Ñ → 0

of Néron lft-models induced by the sequence above is usually not exact.
Recall that G is said to have semiabelian reduction if the special fibre of N 0 is an extension

of an Abelian variety by a torus over k. It is well-known that there exists a finite separable
extension L of K such that GL has semiabelian reduction over the integral closure OL of OK in
L; we denote its Néron lft-model by NL. Following Chai [Cha00], we consider the base change
conductor

c(G) :=
1

eL/K
�OL

(coker((Lie N ) ⊗OK
OL → Lie NL)),

where eL/K is the ramification index of the extension K ⊆ L. The base change conductor is a
rational number which measures the failure of N 0 to commute with base change along OK ⊆ OL

(or, equivalently, the failure of G to have semiabelian reduction). Moreover, it does not depend
upon the choice of L.

In [Cha00, (8.1)], Chai conjectured that, given an exact sequence as above, we have

c(G) = c(T ) + c(E).

The conjecture has generated considerable interest and has led, for example, to new discoveries
in the field of motivic integration [CLN13]. It has been proven by Chai under the assumption
that k be finite or that K be of characteristic zero [Cha00, Theorem 4.1]; the latter case was later
re-proven in [CLN13, Theorem 4.2.4]. Furthermore, the conjecture can be shown by relatively
elementary means if L may be chosen to be tamely ramified over K (see the introduction to
[CLN13] for more details).

The purpose of the present paper is to prove Chai’s conjecture for Jacobians. More precisely,
we shall prove the following.

Theorem 1.1 (Theorem 3.15). Let C be a proper curve1 over K and assume that G := Pic0
C/K

is semiabelian. Then Chai’s conjecture holds for G.

Throughout the paper, we shall assume that OK is complete, that k is algebraically closed,
and that charK = p > 0. This leads to no loss of generality by Chai’s result in characteristic
zero (recalled above), together with [BLR90, Chapter 10.1, Proposition 3]. Moreover, except for
the last paragraph, we shall assume that C is reduced, which is no restriction either because,
assuming that Pic0

C/K is semiabelian, the morphism Pic0
C/K → Pic0

Cred/K is an isomorphism
[BLR90, Chapter 9.2, Proposition 5].

The tools we shall employ come from two sources. On the one hand, we shall generalise a
result originally due to Raynaud [LLR04, Theorem 3.1] and adapt the methods introduced there
to our situation. In particular, we obtain a description of the Néron lft-model of the Jacobian of
a proper seminormal curve in terms of the Picard functor of a suitably chosen model of the curve
(see Theorem 4.7 and Corollary 4.13), generalising Raynaud’s results [Ray70] as far as possible.
On the other hand, we shall make use of the methods developed by the author to study Néron
models of Jacobians of singular curves [Ove19, Ove24].

While our results do not solve the conjecture in full generality, the condition we impose is
completely different from those required by any of the other partial results currently known.
In particular, there are no conditions on either K or k (other than the latter’s perfectness,

1 That is, a purely one-dimensional scheme
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which is already present in Chai’s original conjecture), or the ramification of the extension L/K.
The conjecture is trivial whenever the sequence 0 → T → N → Ñ → 0 is exact; we include an
example which shows that this is not the case in general for Jacobians (see § 3.5.1). In particular,
it seems that our proof cannot be simplified significantly using the present methods.

Finally, we shall use this opportunity to show how the main results from [Ove24] (particularly
the two conjectures due to Bosch, Lütkebohmert and Raynaud) can be proven for Jacobians
without the condition of geometric reducedness imposed throughout [Ove24] if the residue fields
of the (Dedekind) base scheme S are perfect.

2. Preliminary results

2.1 Excellence and degrees of imperfection
Let R be a discrete valuation ring of equal characteristic p > 0. Let K and κ be the field of
fractions and the residue field of R, respectively. For any field F of characteristic p, we let δ(F )
be the unique nonnegative integer (or symbol ∞) such that [F : F p] = pδ(F ) and call it the degree
of imperfection of F . Clearly, F is perfect if and only if δ(F ) = 0. If R is excellent, the numbers
δ(K) and δ(κ) are related as follows.

Lemma 2.1. Suppose that R is excellent. Then δ(K) = δ(κ) + 1.

Proof. We begin by treating the case where δ(K) <∞ and claim that, in this case, the Frobenius
morphism R→ R, r �→ rp is finite. This is the same as showing that R is finite over Rp. As R
is integrally closed and integral over Rp, R is the integral closure of Rp in K. As R is excellent
and K is finite over Kp, this shows that R is finite over Rp. The fundamental equation [Sta18,
Tag 02MJ] shows that [κ : κp] is finite and

[K : Kp] = p[κ : κp],

as the Frobenius map R→ R clearly has ramification index p. This implies the claim from the
lemma in this case.

If δ(K) = ∞, all we must show is that δ(κ) = ∞ as well. Let Kp ⊆ L ⊆ K be a finite
subextension, and let RL be the integral closure of Rp in L. If π denotes a uniformiser of Rp

and πL a uniformiser2 of RL, then πp
L = επν for some ε ∈ Rp,× and ν ∈ N; moreover, we have

π = ηπeL
L for some η ∈ R×

L , eL ∈ N. Together these equations imply πp
L = εηνπeLν

L , so eL ∈ {1, p}.
For each Kp ⊆ L ⊆ K, let mL be the maximal ideal of RL. As above, we have the equation
[L : Kp] = eL[RL/mL : κp]. Then

κ = lim−→
L

RL/mL

as an extension of κp. However, as [K : Kp] = ∞, the integer [L : K] becomes arbitrarily
large as L runs through finite subextensions of Kp ⊆ K. Since eL is bounded independently
of L, the number [RL/mL : κp] must become arbitrarily large as well, which means that
[κ : κp] = ∞. �
Corollary 2.2. Let S be an excellent Dedekind scheme of equal characteristic p > 0 with field
of rational functions K. Then the following are equivalent:

(i) there exists a closed point x ∈ S such that κ(x) is perfect;
(ii) for all closed points x ∈ S, κ(x) is perfect; and
(iii) we have δ(K) = 1.

2 Because Rp is excellent and L is finite and purely inseparable over Kp, RL is a discrete valuation ring.
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Proof. (i) ⇒ (iii) follows from Lemma 2.1, as does (iii) ⇒ (ii) (both by considering OS,x) and
(ii) ⇒ (i) is trivial. �

We would like to remark that, using Lemma 2.1, we can give a procedure for constructing
non-excellent discrete valuation rings which is slightly easier than that due to Orgogozo (see
Raynaud’s exposition [Ray14]), although the construction we use is the same.

Proposition 2.3 (Cf. [Ray14, Proposition 11.6]). Let k be a perfect field of characteristic p > 0
and let k ⊆ L ⊆ k((t)) be a finitely generated subextension of transcendence degree ≥ 2. Then
the ring

R := L ∩ k[[t]]
is a non-excellent discrete valuation ring.

Proof. We can write L as a finite separable extension of a purely transcendental extension T of
k of transcendence degree n ≥ 2. Since L = Lp ⊗T p T (by the primitive element theorem), we see
that δ(T ) = δ(L). Moreover, clearly δ(T ) = n since k is perfect. If m denotes the maximal ideal
of R, we have m = L ∩ 〈t〉, so we have k ⊆ R/m ⊆ k[[t]]/〈t〉 = k. This shows that δ(R/m) = 0
whereas δ(L) ≥ 2 by assumption. Hence, R is not excellent by Lemma 2.1. �
Lemma 2.4. Let κ ⊆ � be an algebraic extension of fields of characteristic p > 0 which we assume
to be separable or finite. Then δ(�) = δ(κ).

Proof. Assume first that κ ⊆ � is finite. Then we have the towers of extensions κp ⊆ �p ⊆ �
and κp ⊆ κ ⊆ �. The tower law shows that [� : �p][�p : κp] = [κ : κp][� : κ]. Since clearly [� : κ] =
[�p : κp], the desired equality follows in this case. If � is separable over κ, then for any finite
subextension κ ⊆ �′ ⊆ �, we have �′ = �′p ⊗κp κ. This follows from the primitive element theorem.
But since � is the inductive limit of its finite subextensions and since tensor products commute
with inductive limits, we have � = �p ⊗κp κ, which clearly implies the claim. �

2.2 Stein reduced morphisms
Let f : X → S be a proper morphism of schemes with S locally Noetherian. Then f factors into
a morphism f ′ : X → Spec f∗OX and the canonical projection Spec f∗OX → S. Moreover, the
morphism f ′ has geometrically connected fibres (this is Stein factorisation [Sta18, Tag 03H0]).
We begin by making the following definition.

Definition 2.5. Let f : X → S be a proper morphism of schemes with S locally Noetherian.
We say that f is Stein reduced if the induced map f ′ has geometrically reduced fibres.

Even if S = SpecK for a field K, a general proper morphism f : X → S need not be Stein
reduced (this is the well-known phenomenon that X need not have geometrically reduced fibres
over Γ(X,OX)). One of the main observations of this paragraph is that if f : X → SpecK is a
proper morphism such that X is normal and δ(K) ≤ 1, then f is Stein reduced. The argument
we shall give is essentially due to Schröer (see [Sch10, proof of Lemma 1.3]).

Proposition 2.6. Let f : X → S be a proper morphism with S locally Noetherian. Suppose
that f is cohomologically flat in dimension zero and has normal fibres. Moreover, assume that
all points s ∈ S satisfy δ(κ(s)) ≤ 1. Then f is Stein reduced.

Proof. We may assume without loss of generality that S = SpecK for some field with δ(K) ≤ 1.
If K is perfect, all proper morphisms f : X → SpecK with X reduced are Stein reduced, so
we shall assume δ(K) = 1. Moreover, we may assume that X is connected, so that Γ(X,OX)
is a field, and replace K by Γ(X,OX). All we must show is that X ×K SpecK1/p is reduced
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[Sch10, Proposition 1.2]. Since K has degree of imperfection 1 (and, hence, so does Γ(X,OX) by
Lemma 2.4), we may pick any γ ∈ K1/p\K and obtain an isomorphism K1/p ∼= K[X]/〈Xp − γp〉.
Now let F be the field of rational functions on X. If F ⊗K K1/p were non-reduced, there
would have to exist an element ξ ∈ F such that ξp = γp. Now cover X by open affine sub-
sets U1, . . . , Un. Since ξ is clearly integral over Γ(Uj ,OUj ) for all j and since X is normal, we
see that ξ ∈ Γ(Uj ,OUj ) for all j. Hence, ξ ∈ K ⊆ K1/p, so ξ = γ, which contradicts our choice
of γ. �

2.3 General background
We recall a few basic results which we shall use freely throughout the paper. For a general
introduction to the theory of Picard functors and rigidificators, see [BLR90] or [Ray70]. For
a general introduction to Néron (lft-)models, see [BLR90]. We shall make extensive use of the
results from [LLR04] and our strategy is modelled in part on this paper. Some results in [LLR04]
are not correct as stated (see [LLR18]), but this does not affect any of the results from [LLR04]
which we shall use. All group schemes in this article will be commutative.

• If S is a Dedekind scheme, G is a group scheme locally of finite type over S and H is a closed
subgroup scheme of G which is flat over S, then the fppf-quotient G /H is representable by
a group scheme which is locally of finite type over S (see [Ana73, Théorème 4.C]).

• If S′ is a finite flat extension of S and G ′ → S′ is a separated group scheme locally of finite
type over S′, then ResS′/S G ′ is representable by a group scheme locally of finite type over
S, which is smooth (respectively, étale) over S if G ′ → S′ is smooth (respectively, étale); see
[Ove24, Lemma 2.7]. If G ′ → S′ is smooth and has connected fibres, then so does ResS′/S G
(combine [BLR90, Chapter 6.4, Theorem 1] with [CGP15, Proposition A.5.9]).

• If SpecA → SpecB → S are finite and faithfully flat morphisms of excellent Dedekind schemes
and Gm denotes the Néron lft-model of Gm (the base ring being clear from context),
the map of Néron lft-models ResB/S Gm → ResA/S Gm is a closed immersion and its quo-
tient is the Néron lft-model of its generic fibre [Ove24, Lemmata 2.8 and 2.9, and proofs
thereof].

• If S is the spectrum of a discrete valuation ring and F is an fppf-sheaf of Abelian groups on S,
then there exists a morphism F → F sep such that for any flat Z → S, any generically trivial
element of F sep(Z) is trivial and such that for any separated Abelian group algebraic space
G over S, any morphism F → G factors uniquely through F sep. In fact, F sep is the quotient
of F by the schematic closure of the unit section (defined functorially; see [Ray70, p. 40]). If
F is representable, then this functorial schematic closure of the unit section coincides with
the classical one (see [Ray70, p. 40]).

• An affine scheme SpecR is said to be seminormal if for all x, y ∈ R such that y2 = x3, there
is a (necessarily unique) a ∈ R such that x = a2 and y = a3. A scheme X is seminormal if
it can be covered by seminormal open affine subschemes [Sta18, Tags 0EUL and 0EUN]. See
[Sta18, Tag 0EUK] and [Ove24, subsection 2.4.1] for more details.

• For a closed immersion Z → X and a morphism Z → T, of schemes, we denote the push-out
of the resulting diagram in the category of schemes (if it exists) by X ∪Z T . See [Ove24,
subsection 2.4.2] for general results regarding their existence and behaviour (especially under
arbitrary base change), and for further references.

• For a proper, flat, and finitely presented morphism X → S of schemes, we denote by PicX/S

the fppf-sheafification of the presheaf

T �→ Pic(X ×S T ) (1)
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(cf. [BLR90, Chapter 8.1, Definition 2]). In fact, PicX/S is also equal to the étale sheafification
of the presheaf (1). This is well-known ([Ray70, p. 28, (1.2)] or [BLR90, p. 203]); for a complete
proof, see [Ove24, Proposition 2.27].

3. Chai’s conjecture for Jacobians

3.1 Degrees and compatible rigidification
Let f : X → S be a morphism of schemes which is proper, flat and locally of finite presentation.
A rigidificator of PicX/S (cf. [Ray70, BLR90]) is a closed subscheme Y ⊆ X finite and flat over S
such that for all S-schemes T, the canonical map Γ(XT ,OXT

) → Γ(YT ,OYT
) is injective. We have

an associated rigidified Picard functor (PicX/S , Y ) (see [Ray70, p. 30]), which is representable
by an algebraic space locally of finite presentation over S (see [Ray70, Théorème 2.3.1]). If f
is of relative dimension one (the only case of interest to us), then PicX/S and (PicX/S , Y ) are
formally smooth over S (see [Ray70, Corollaire 2.3.2]). We denote the functors ResX/S Gm and
ResY/S Gm by V ×

X and V ×
Y ; both are representable by group schemes over S and we have a

canonical exact sequence

0 → V ×
X → V ×

Y → (PicX/S , Y ) → PicX/S → 0

of sheaves on the big étale site of S (see [Ray70, Propositions 2.1.2 and 2.4.1]).
If S is a Dedekind scheme and X/S is a proper and flat relative curve, we construct open

and closed subfunctors PX/S (respectively, (PX/S , Y )) of PicX/S (respectively, (PicX/S , Y )) as
follows. Denote by K the field of fractions of S and let K ′ be a finite separable extension of K
such that all irreducible components of XK′ are geometrically irreducible. Let S′ be the integral
closure of S in K ′; the map S′ → S is then finite and locally free. Let Y1, . . . , Yd be the irreducible
components of XK′ (with their natural scheme structure) and let X1, . . . , Xd be their scheme-
theoretic closures in XS′ . The schemes X1, . . . , Xd are proper and flat over S′ with generic fibres
Y1, . . . , Yd. We consider the degree function

deg0 : PicX×SS′/S′ → Zd,

which is induced by the map L �→ (deg L |X1×S′T , . . . ,deg L |Xd×S′T ) for an S′-scheme T and
L ∈ Pic(X ×S T ). The degree function induces a map

deg : PicX/S → ResS′/S Zd .

It is easy to see that ResS′/S Zd is separated and étale over S, so the subfunctor

PX/S := ker deg

is open and closed in PicX/S . By [BLR90, Chapter 9.2, Corollary 14], the generic fibre of ker deg0

is equal to Pic0
XK′/K′ .3 Hence, the generic fibre of PX/S is equal to Pic0

XK/K . We construct
(PX/S , Y ) in a completely analogous way; neither construction depends upon the initial choice
of K ′. In particular, we obtain an exact sequence

0 → V ×
X → V ×

Y → (PX/S , Y ) → PX/S → 0.

Lemma 3.1. Let S′ → S be a morphism of schemes which is finite, of finite presentation and
flat. Let X ′ → S′ be proper, flat and of finite presentation. Let Y be a rigidificator of PicX′/S′ .

3 After base change to K alg, the map deg0 : PicX
K alg/K alg → Zd is the composition of the degree map

PicX
K alg/K alg → Zd from [BLR90, Chapter 9.2, Corollary 14] with the map Zd → Zd given by the matrix

diag(m1, . . . , md), where mj is the multiplicity of Xj,K alg for j = 1, . . . , d.
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Then Y is a rigidificator of PicX′/S and we have a canonical isomorphism

(PicX′/S , Y ) = ResS′/S(PicX′/S′ , Y ).

Proof. Let T be any S-scheme. Then X ′ ×S T = X ′ ×S′ (S′ ×S T ), and a similar identity holds
for Y . This shows that the map Γ(X ′ ×S T,OX′×ST ) → Γ(Y ×S T,OY ×ST ) is injective. The
proof of the second claim is purely formal and left to the reader. �

Now let R ⊆ R′ be a finite flat extension of rings such that R is a Henselian discrete valuation
ring and R′ is a finite product of Henselian discrete valuation rings. Put S := SpecR, S′ :=
SpecR′. Suppose we have a commutative diagram

such that the vertical arrows are proper and flat (hence, automatically of finite presentation), and
such that the special fibres of X ′ → S′ have no embedded components. Moreover, assume that
ψ is S-universally scheme-theoretically dominant and that there exists an open subset U ⊆ X
such that ψ−1(U ) is fibre-wise dense in X ′ and such that ψ is an isomorphism above U . Then
we have the following.

Proposition 3.2. There exists a rigidificator Y ⊆ X of PicX/S which is contained in U such
that ψ−1(Y ) is a rigidificator of PicX′/S′ .

Proof. We shall identify U and ψ−1(U ). Let Z1, . . . , Zn be the (reduced) irreducible components
of the special fibre of X ′ → S. By our assumption on U , the intersection U ∩ Zj is non-empty for
all j = 1, . . . , n. For each j, we choose a closed point xj ∈ U ∩ Zj with image mj in S′ which does
not lie on the intersection of two irreducible components and such that O(X′×R′Spec R′/mj),xj

is
Cohen–Macaulay for all j = 1, . . . , n (see [DG70, Exposé VIA, Lemme 1.1.2]). Raynaud [Ray70,
proof of Proposition 2.2.3(b)] has shown that there exists a rigidificator Y of PicX′/S′ whose
special fibre is set-theoretically equal to {x1, . . . , xn}. Because Y is a semilocal scheme, we see
that Y ⊆ U , so Y can be regarded as a closed subscheme of X. By the preceding lemma, we know
that Y is a rigidificator of PicX′/S . Because ψ is S-universally scheme-theoretically dominant, Y
is a rigidificator of PicX/S as well, as desired. �

By abuse of notation, both Y and ψ−1(Y ) will be denoted by Y, which we shall call a
compatible rigidificator.

3.2 Semi-factorial models and Picard functors
Let OK be a complete discrete valuation ring with algebraically closed residue field k and field
of fractions K of characteristic p > 0. Throughout this section, C will be a reduced proper curve
over K with normalisation C̃. A scheme X → SpecOK will be called semi-factorial (cf. [Pep13,
Définition 1.1]) if the map Pic X → Pic XK is surjective.

Definition 3.3. A model pair of C is a morphism ψ : C̃ → C of schemes over OK such that
the following conditions are satisfied:

(i) the structure morphisms f̃ : C̃ → SpecOK and f : C → SpecOK are proper and flat;
(ii) C̃ and C are models of C̃ and C, respectively,4 and ψK is the normalisation morphism;

4 That is, C ×OK Spec K ∼= C and similarly for C̃ and C̃. We fix a choice of such an isomorphism.
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(iii) the scheme C̃ is regular ;
(iv) the morphism ψ is finite, OK-universally scheme-theoretically dominant and an isomorphism

away from a closed subset of C which is finite and flat over OK .

Finally, ψ : C̃ → C will be called a strong model pair if there exist finite, faithfully flat and
regular OK-algebras B ⊆ A and closed immersions SpecA → C̃ and SpecB → C such that ψ
restricts to B → A and such that the following diagram is co-Cartesian.

Proposition 3.4. Let ψ : C̃ → C be a strong model pair over OK of a proper reduced curve C
over K. Then there is an exact sequence

0 → V ×
C → V ×

C̃
→ ResA/OK

Gm /(ResB/OK
Gm) → PicC /OK

→ Pic
C̃ /OK

→ 0

on the big étale site of SpecOK . Moreover, the Abelian sheaves V ×
C and V ×

C̃
are representable

by group schemes of finite presentation over OK .

Proof. The exactness of the sequence follows from [Ove24, Proposition 2.30]; the conditions
(i)–(v) as well as the standing assumption from [Ove24, Proposition 2.30] can be verified as in the
proof of [Ove24, Corollary 3.7]. The remaining claims follow from [BLR90, Chapter 8.1, Corollary
8] (with the notation from [BLR90], the scheme V is of finite presentation over OK because so
is the OK-module D ; see [BLR90, Chapter 8.1, Theorem 7] and [Sta18, Tag 00DO]). �

The main result in this section will be the following generalisation of a theorem of Raynaud
[LLR04, Theorem 3.1].

Theorem 3.5. Let C be a reduced proper curve over K which admits a strong model pair
ψ : C̃ → C over OK . Assume, moreover, that C is semi-factorial. Then the kernel and cokernel
of the natural morphism

λ : H1(C ,OC ) → Lie P sep
C /OK

have the same length.

The proof will proceed along similar lines as that of [LLR04, Theorem 3.1]. Given a strong
model pair ψ : C̃ → C of C, a compatible rigidificator Y is a closed subscheme Y ⊆ C finite
and flat over OK which is contained in an open subset of C above which ψ is an isomorphism,
such that Y is a rigidificator of C (with respect to OK), and a rigidificator of C̃ (with respect to
Γ(C̃ ,O

C̃
) and, hence, also with respect to OK). Such an object exists by Proposition 3.2. Indeed,

the special fibres of C̃ → Spec Γ(C̃ ,O
C̃
) are Cohen–Macaulay [Sta18, Tag 02JN] and, therefore,

have no embedded components [Sta18, Tag 0BXG]. Moreover, the morphism ψ is OK-universally
scheme-theoretically dominant because taking the push-out along SpecA → SpecB commutes
with arbitrary base change [Ove24, Proposition 2.19]. We obtain a canonical morphism

(PC /OK
, Y ) → (P

C̃ /OK
, Y ).

Now recall that we have a canonical exact sequence

0 → V ×
C → V ×

Y → (PC /OK
, Y ) → PC /OK

→ 0 (2)

in the étale topology, and similarly for C̃ (see [Ray70, Propositions 2.1.2 and 2.4.1]).

127

https://doi.org/10.1112/S0010437X24007516 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007516


O. Overkamp

Lemma 3.6. Let Y be a compatible rigidificator of the strong model pair ψ : C̃ → C . Then we
have a canonical exact sequence

0 → ResA/OK
Gm /ResB/OK

Gm → (PC /OK
, Y ) → (P

C̃ /OK
, Y ) → 0.

Proof. Put R := ResA/OK
Gm /ResB/OK

Gm and consider the following commutative diagram.

The rows in this diagram are exact by the exact sequence (2) (the top one being obviously
exact); the left vertical column is again clearly exact while the right vertical column is exact
by Proposition 3.4. Moreover, the central vertical column is a complex, which implies that it is
exact as well. �

Lemma 3.7. The algebraic space (PC /OK
, Y )0 is a separated scheme over OK .

Proof. If C = C̃ is regular, this follows from [LLR04, Proposition 3.2] together with Lemma 3.1.
Consider the exact sequence

0 → ResA/OK
Gm /ResB/OK

Gm → (PC /OK
, Y ) → (P

C̃ /OK
, Y ) → 0

from Lemma 3.6, which induces an exact sequence

0 → ResA/OK
Gm /ResB/OK

Gm → G → (P
C̃ /OK

, Y )0 → 0.

Then G is a group space over OK , and because (P
C̃
, Y )0 is separated over OK (see [LLR04,

Proposition 3.2]), so is G . In particular, G is a scheme [Ana73, Théorème 4.B]. Clearly, (PC , Y )0

is an open subspace of G and, hence, a scheme as well. �

Lemma 3.8. Let T be the Abelian group of all line bundles L on C (up to isomorphism) such
that both L |C and ψ∗L are trivial. Then T is finitely generated.

Proof. Consider the commutative diagram
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where the Qj are the obvious cokernels. Because Γ(C ,OC ), Γ(C̃ ,O
C̃
), A, and B are finite prod-

ucts of discrete valuation rings, and the maps Γ(C ,OC ) → Γ(C̃ ,O
C̃
) and B → A are finite and

faithfully flat, it is easy to see that q is injective and that coker qC is finitely generated. Using
the exact sequence from Proposition 3.4, we see that T = kerw. Hence, the snake lemma gives
an injection T → coker qC . �

Let HC and H
C̃

be the scheme-theoretic closures of the kernels of (PC/K , YK) → PC/K and
(P

C̃/K
, YK) → P

C̃/K
in (PC /OK

, Y ) and (P
C̃ /OK

, Y ), respectively. We have canonical morphisms

V ×
Y /ResΓ(C ,OC )/OK

Gm → H 1
C

and

V ×
Y /Res

Γ(C̃ ,O
C̃

)/OK
Gm → H 1

C̃
,

where

H 1
C := HC ∩ (PC /OK

, Y )0,

and similarly for C̃ . Because V ×
Y is smooth, these morphisms factor through the smoothenings

H̃C and H̃
C̃

of H 1
C and H 1

C̃
, respectively [BLR90, Chapter 7.1, Theorem 5]. Then we have the

following.

Lemma 3.9. The maps V ×
Y /ResΓ(C ,OC )/OK

Gm → H̃C and V ×
Y /Res

Γ(C̃ ,O
C̃

)/OK
Gm → H̃

C̃
are

open immersions.

Proof. The map V ×
Y /Res

Γ(C̃ ,O
C̃

)/OK
Gm → H̃

C̃
is an open immersion; this follows from [LLR04,

Lemma 3.5(d)] together with Lemma 3.1.
We shall first show the auxiliary claim that the cokernel of the map

(V ×
Y /ResΓ(C ,OC )/OK

Gm)(OK) → H̃C (OK) = H 1
C (OK)

is finitely generated. The cokernel Q of (V ×
Y /Res

Γ(C̃ ,O
C̃

)/OK
Gm)(OK) → H̃

C̃
(OK) is a finite

Abelian group. Now consider the map H 1
C (OK) → Q induced by the composition

H 1
C (OK) → H 1

C̃
(OK) = H̃

C̃
(OK) → Q

and let J be its kernel. It suffices to show that the cokernel of the induced map

(V ×
Y /ResΓ(C ,OC )/OK

Gm)(OK) → J

is finitely generated. An element of J is a rigidified line bundle (L , α) on C such that L ∈ T
(Lemma 3.8). An element of the kernel of the induced map J → T clearly comes from an element
of (V ×

Y /ResΓ(C ,OC )/OK
Gm)(OK), so the auxiliary claim follows. The remainder of the argument

now works as in the proof of [LLR04, Lemma 3.5(d)]: what we have just shown implies that the
cokernel of the induced map

(V ×
Y /ResΓ(C ,OC )/OK

Gm) ×OK
Spec k → H̃C ×OK

Spec k

has a finitely generated group of k-points. But since k is algebraically closed, this cokernel must
be finite over k, so the morphism from the lemma is quasi-finite. Since it is an isomorphism
generically and the target is regular, our claim follows from Zariski’s main theorem. �
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Exactly as in [LLR04, Proposition 3.3] (using the argument from [Ray70, p. 36]),5 we see
that there is a natural exact sequence

0 → Γ(C ,OC ) → Γ(Y,OY ) → Lie(PC /OK
, Y ) → Lie PC /OK

→ 0. (3)

Lemma 3.10. There is the following natural diagram with exact rows.

Proof. The morphism denoted by λ above coincides with the morphism λ : H1(C ,OC ) →
Lie P sep

C /OK
modulo the identification θC : Lie PC /OK

→ H1(C ,OC ) from [LLR04, Proposition
1.3(b)]. The lemma can now be proven exactly as in [LLR04, Lemma 3.5(e)]: Lemma 3.9 shows
that the map

Γ(Y,OY )/Γ(C ,OC ) → Lie H̃C

is an isomorphism; the top row of the diagram is induced by the exact sequence (3)
above. Moreover, we note that the canonical morphism (PC /OK

, Y )/HC → P sep
C /OK

is an iso-
morphism (cf. [BLR90, Chapter 9.5, Proposition 3, 3rd case]), which induces the bottom
row. �

We can now give the proof of Theorem 3.5, which follows the argument from [LLR04, p. 480]:
because OK is strictly Henselian, any element of PC /OK

(OK) is given by a line bundle L on
C . Because Y is semilocal, L |Y is trivial, so (PC /OK

, Y )(OK) → PC /OK
(OK) is surjective.

Moreover, the map PC /OK
(OK) → P sep

C /OK
(OK) is easily seen to be surjective since C is semi-

factorial. By [BLR90, Chapter 9.6, Lemma 2], the induced map

(PC /OK
, Y )0(OK) → P sep,0

C /OK
(OK)

is surjective as well. In particular, using [LLR04, Theorem 2.1(a)], we see that

�OK
(kerλ) = �OK

(cokerω) = �OK
(cokerπ) = �OK

(cokerλ),

as desired.

3.3 Relationship with the Néron model
We keep the notation from above. In particular, C is a proper reduced curve over K. We have
the following.

Proposition 3.11. Let G be a smooth connected group scheme over K which admits a Néron
lft-model N . Let G → SpecOK be a smooth separated model of G such that the map G (OK) →
G(K) is an isomorphism and such that ΦG := Gk(k)/G 0

k (k) is finitely generated as an Abelian
group. Then the map G → N is an isomorphism.

Proof. By definition, there is a unique morphism G → N which extends the identity at the
generic fibre. We shall first show that the induced map on identity components G 0 → N 0 is an
isomorphism; this part of the argument is essentially taken from [BLR90, p. 269]. By assump-
tion, the map G (OK) → N (OK) is an isomorphism; in particular, the map G (k) → N (k) is

5 There is a small typographical error in [LLR04]; we should put A0 = A = OS , and A ′ = OSε in the notation
of [Ray70] used in [LLR04].
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surjective. The cokernel of the induced morphism

ν : G 0
k → N 0

k

is a smooth connected algebraic group over k. The snake lemma shows that (coker ν)(k) is a
finitely generated Abelian group. But because k is algebraically closed, (coker ν)(k) is n-divisible
for any natural number n invertible in k. This is only possible if coker ν = 0, so the map G 0

k → N 0
k

is surjective. Because the fibres of G 0 and N 0 are of the same dimension, the map G 0 → N 0

must be quasi-finite. Since it is also an isomorphism generically, Zariski’s main theorem shows
that it is an isomorphism.

Now let j : Spec k → SpecOK be the canonical closed immersion and denote by ΦN the
Abelian group N (OK)/N 0(OK) = Nk(k)/N 0

k (k). We can view ΦN and ΦG as group schemes
over k, and we have a diagram with exact rows

(the rows are even exact in the Zariski topology). We already know that the left vertical arrow
is an isomorphism. This implies that the right vertical arrow is also an isomorphism since
G (OK) → N (OK) is an isomorphism by assumption, and we have just seen that it carries
G 0(OK) isomorphically into N 0(OK). In particular, the central vertical arrow is an isomorphism
as well, which implies our claim. �
Corollary 3.12. Let C be a proper reduced curve over K and let ψ : C̃ → C be a strong
model pair of C such that C is semi-factorial. Moreover, assume that Pic0

C/K admits a Néron

lft-model over OK . Then P sep
C /OK

is the Néron lft-model of Pic0
C/K .

Proof. First note that P sep
C /K is representable by a smooth separated group scheme over OK ; the

proof works as in [BLR90, Chapter 9.5, proof of Proposition 3, 3rd case]. Moreover, by [BLR90,
Chapter 9.2, Corollary 14], the Abelian group

P sep
C /OK

(k)/P sep,0
C /OK

(k) = P sep
C /OK

(OK)/P sep,0
C /OK

(OK)

is finitely generated. Because k is algebraically closed, Br Γ(C,OC) = 0 (see [CS21,
Theorem 1.2.15]), so PicC/K(K) = Pic C. Because C is semi-factorial, the map PicC /OK

(OK) →
PicC/K(K) is surjective. This map induces a surjection PC /OK

(OK) → Pic0
C/K(K) as PC /OK

is
open and closed in PicC /OK

. Hence, Proposition 3.11 implies the claim. �

Corollary 3.13. Let C be a proper reduced curve over K such that Pic0
C/K admits a Néron

lft-model N over OK . Let ψ : C̃ → C be a strong model pair of C and suppose that C is
semi-factorial. Moreover, let Ñ be the Néron lft-model of Pic0

C̃/K
. Then there is a commutative

diagram

such that �OK
(kerλ) = �OK

(cokerλ) and �OK
(ker λ̃) = �OK

(coker λ̃).
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Proof. Commutativity of the diagram is clear. The claim on lengths follows from Theorem 3.5
together with Corollary 3.12 (for λ̃, this also follows from [LLR04, Theorem 3.1]). �

The requirement that Pic0
C/K be semiabelian has the following consequence.

Proposition 3.14. Let C be a reduced proper curve over K and assume that Pic0
C/K is semi-

abelian. Then C is seminormal. Moreover, the irreducible components of C̃ are either smooth
over K or of arithmetic genus zero. In particular, Pic0

C̃/K
is an Abelian variety.

Proof. We may suppose without loss of generality that C is connected. Assume that Pic0
C/K

is semiabelian. Let Csn be the seminormalisation of C, such that we have a factorisation C̃
ν→

Csn ς→ C. If ς is not an isomorphism, [Ove24, Theorem 2.24(i)] shows that we have a factorisation
Csn = C1 → · · · → Cn = C such that for each i = 1, . . . , n− 1, we have a closed point xi+1 of
Ci+1 and a closed immersion κ(xi+1)[ε]/〈ε2〉 → Ci such that the diagram

is co-Cartesian. Because C is connected, so are Ci, and Ci+1, and the K-algebras Γ(Ci,OCi) as
well as Γ(Ci+1,OCi+1) are fields contained in κ(xi+1). Consider the exact sequence

0 → ResΓ(Ci+1,OCi+1
)/K Gm → ResΓ(Ci,OCi

)/K Gm → Resκ(xi+1)/K Ga

→ Pic0
Ci/K → Pic0

Ci+1/K → 0

[Ove24, Proposition 2.30]. Counting dimensions and using that quotients of split unipotent groups
are split unipotent [CGP15, Theorem B.3.4], we see that Pic0

C/K has a non-trivial split unipotent
subquotient, which is impossible. In particular, C is seminormal. By [Ove24, Proposition 2.30],
we see that the map Pic0

C/K → Pic0
C̃/K

is surjective, so Pic0
C̃/K

is semiabelian. Hence the same is

true for Pic0
C′/K , where C ′ is an irreducible component of C̃. By Proposition 2.6 together with the

fact that δ(K) = 1 since k is perfect (Lemma 2.1), we conclude that C ′ is geometrically integral
over the field Γ(C ′,OC′). After replacing Γ(C ′,OC′) by a finite separable extension if necessary,
[BLR90, Chapter 9.2, Proposition 4] shows that Pic0

C′/Γ(C′,OC′ ) contains no algebraic torus. In
particular, Pic0

C′/K = ResΓ(C′,OC′ )/K Pic0
C′/Γ(C′,OC′ ) contains no torus and is therefore an Abelian

variety. Hence, Γ(C ′,OC′) must be separable over K or we must have Pic0
C′/Γ(C′,OC′ ) = 0 (see

[CGP15, Example A.5.6]), which proves the remaining claim. �

3.4 Proof of Chai’s conjecture for Jacobians
As before, we let OK be a complete discrete valuation ring with field of fractions K and alge-
braically closed residue field k. Let C be a proper reduced curve over K such that G := Pic0

C/K is
a semiabelian variety with toric part T and Abelian part E. Choose a finite separable extension
L of K such that G has semiabelian reduction over the integral closure OL of OK in L. Let T ,
N , and Ñ be the Néron lft-models of T, G and E, respectively, and let TL, NL and ÑL be the
Néron lft-models of the base changes to L. Following Chai [Cha00], we define the base change
conductor of G as

c(G) :=
1

[L : K]
�OL

(coker((Lie N ) ⊗OK
OL → Lie NL)),
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and make analogous definitions for T and E. The base change conductor does not depend upon
the choice of L. We have the following.

Theorem 3.15 (Chai’s conjecture for Jacobians). If G = Pic0
C/K , T and E are as above, then

c(G) = c(T ) + c(E).

The proof will occupy the remainder of this section. Recall that L is a finite separable
extension of K such that Pic0

C/K has semiabelian reduction over OL; in particular, the torus T
splits over L. We begin with the following.

Proposition 3.16. Let D be a proper reduced seminormal curve over K. Then D admits a
strong model pair ψ : D̃ → D such that D is semi-factorial.

Proof. The semi-factorial model D of D constructed in [Ove24, Theorem 4.3] is naturally
endowed with a morphism ψ : D̃ → D , which is a strong model pair by construction. �

In particular, Proposition 3.16 provides a co-cartesian diagram

where A and B are finite products of regular finite flat extensions of OK . We denote their generic
fibres by A and B, respectively. In particular, we have an exact sequence of coherent OD -modules

0 → OD → ψ∗OD̃
→ ι∗(A/B) → 0.

Taking cohomology, we obtain an exact sequence

0 → Γ(D ,OD) → Γ(D̃ ,O
D̃

) → A/B → H1(D ,OD) h→ H1(D̃ ,O
D̃

) → 0. (4)

Lemma 3.17. Let D be as in Proposition 3.16 and assume that Pic0
D/K is semiabelian. Let T

be the Néron lft-model of its toric part. Then there is a canonical map

� : kerh→ Lie T ,

which is generically an isomorphism and whose kernel and cokernel are of the same length.

Proof. The Néron lft-model of Gm will be denoted by Gm; the base ring will always be clear
from context. Define

R
D̃/D

:= Res
Γ(D̃ ,O

D̃
)/OK

Gm /ResΓ(D ,OD)/OK
Gm,

R
D̃/D

:= Res
Γ(D̃ ,O

D̃
)/OK

Gm /ResΓ(D ,OD)/OK
Gm,

RA/B := ResA/OK
Gm /ResB/OK

Gm,

and

RA/B := ResA/OK
Gm /ResB/OK

Gm .

Note that these group schemes are smooth and separated over OK .

Step 1: Since RA/B is smooth over OK , there is a canonical map RA/B → T , which induces a map
A/B → Lie T on Lie algebras. The composition Res

Γ(D̃ ,O
D̃

)/OK
Gm → T vanishes generically
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(and, hence, everywhere), so the induced map Γ(D̃ ,O
D̃

) → A/B → Lie T vanishes. This induces
the desired map �.

Step 2: We claim that the map RA/B → T is surjective on OK-points. Since both group schemes
are the Néron lft-models of their generic fibres, it suffices to show that the map is surjective on
K-points. But this follows from the fact that

H1(K,Res
Γ(D̃,O

D̃
)/K

Gm /ResΓ(D,OD)/K Gm)

= ker(Br(Γ(D,OD)) → Br(Γ(D̃,O
D̃

)))

= 0

[CS21, Theorem 1.2.15]. By [BLR90, Chapter 9.6, Lemma 2], the induced map

RA/B(OK) → T 0(OK)

is surjective as well.

Step 3: Let K be the kernel of the map RA/B → T . Now we claim that the induced map
ρ : R

D̃/D
→ K satisfies the universal property of the smoothening (see [BLR90, p. 174]). This

follows immediately from the fact that R
D̃/D

is the Néron lft-model of the generic fibre of K .
Put

R′
D̃/D

:= ρ−1(K ∩RA/B).

Then R′
D̃/D

is the group smoothening of K ∩RA/B; this is an immediate consequence of the
universal properties of the group smoothening and the Néron lft-model. Note that, moreover, we
have an exact sequence

0 → K ∩RA/B → RA/B → T 0

of group schemes of finite type over OK .

Step 4: Consider the commutative diagram

the top row being induced by the sequence (4) above. The remainder of the argument now
works as in [LLR04, p. 480]: The snake lemma shows that ker � = cokerα, we clearly have
coker � = cokeru, and [LLR04, Theorem 2.1(a)] shows that

�OK
(cokerα) = �OK

(cokeru). �

We choose a strong model pair ψ : C̃ → C of C such that C is semi-factorial; this is possible by
Propositions 3.14 and 3.16. In particular, we have closed immersions SpecA → C̃ and SpecB →
C such that A and B are regular. We have already chosen a finite separable extension L of K
such that G = Pic0

C/K acquires semiabelian reduction over OL (in particular, T splits over L).

Let TL, NL and ÑL be the Néron lft-models of TL, GL and EL, respectively. The argument
given in the proof of [CY01, Lemma 11.2] shows that the sequence

0 → TL → NL → ÑL → 0

is exact.
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We have now assembled all the tools needed to give the proof of Theorem 3.15. First note
that we have the following commutative diagram.

The snake lemma now tells us that

�OL
(kerφ) − �OL

(kerχ) + �OL
(ker χ̃) − �OL

(cokerφ) + �OL
(cokerχ) − �OL

(coker χ̃) = 0. (5)

Now note that the morphisms φ, χ and χ̃ factor as

and

respectively. Moreover, note that

ker(� ⊗OL) = (kerh)tors ⊗OK
OL = kerφ,

ker(λ⊗OL) = H1(C ,OC )tors ⊗OK
OL = kerχ,

and

ker(λ̃⊗OL) = H1(C̃ ,O
C̃
)tors ⊗OK

OL = ker χ̃.

Because OL is flat over OK , Corollary 3.13 and Lemma 3.17 imply that �OL
(ker(� ⊗

OL)) = �OL
(coker(� ⊗OL)), �OL

(ker(λ⊗OL)) = �OL
(coker(λ⊗OL)) and �OL

(ker(λ̃⊗OL)) =
�OL

(coker(λ̃⊗OL)). In particular, we have

�OL
(cokerφ) = �OL

(ker(� ⊗OL)) + �OL
(cokerω),

�OL
(cokerχ) = �OL

(ker(λ⊗OL)) + �OL
(coker ξ)

and

�OL
(coker χ̃) = �OL

(ker(λ̃⊗OL)) + �OL
(coker ξ̃).

Plugging this into (5) gives

−�OL
(cokerω) + �OL

(coker ξ) − �OL
(coker ξ̃) = 0,

which implies the claim. �

3.5 Exactness properties
Once more we let C be a proper reduced curve over K whose Jacobian is semiabelian. For the
sake of simplicity, we assume in this paragraph that C is geometrically integral. As above, we
let G := Pic0

C/K and consider the exact sequence 0 → T → G→ E → 0, where E := Pic0
C̃/K

is
an Abelian variety and T denotes the torus which comes from the singularities of C. Let T , N ,
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and Ñ be the Néron lft-models of T, G and E, respectively. As noted at the beginning of this
article, the sequence

0 → T → N → Ñ → 0

need not be exact. However, in our situation, we can at least measure the failure of exactness
to some extent as follows. Let ψ : C̃ → C be a strong model pair of C over OK such that C is
semi-factorial. Corollary 3.12 tells us that there is a morphism

H1(C ,OC ) → Lie N ,

which induces the obvious identification at the generic fibre. We regard this morphism as an
element of Db(OK) by declaring that H1(C ,OC ) sit in degree zero.

Definition 3.18. We shall denote the complex just constructed by L(C ).

This (perfect) complex turns out to contain much information about the exactness of the
induced sequence of Néron models.

Proposition 3.19.

(i) The morphism N → Ñ is surjective in the fppf-topology; in particular, it is faithfully flat.
(ii) Suppose that ψ : C̃ → C is a strong model pair of C with C semi-factorial. We obtain an

induced map ψ∗ : L(C ) → L(C̃ ) such that the following are equivalent:

(a) the map N → Ñ is smooth;

(b) the sequence 0 → T → N → Ñ → 0 is exact;
(c) the morphism ψ∗ is a quasi-isomorphism.

Moreover, we have H0(L(C )) = H1(C ,OC )tors (and similarly for C̃ ).

Proof. The surjectivity in part (i) follows from the fact that PC → P
C̃

is surjective
(Proposition 3.4) together with the fact that N and Ñ are quotients of PC and P

C̃
, respectively

(Corollary 3.12). This also implies that the map N → Ñ is fibre-wise flat, so it is faithfully flat
by the fibre-wise criterion of flatness.

(ii) (a)⇒(b): If N → Ñ is smooth, it is elementary to show that its kernel is smooth and
satisfies the Néron mapping property.

(b)⇒(c): If the sequence is exact, the map N → Ñ is smooth. Hence, the map Lie N →
Lie Ñ is surjective, which means that the map H1(L(C )) → H1(L(C̃ )) is surjective as well.
By Theorem 3.5, the two potentially non-trivial cohomology modules of L(C ) and L(C̃ ) have
the same lengths. Let t (respectively, t̃) be this common length of the cohomology modules
of L(C ) (respectively, L(C̃ )). We have just shown that t ≥ t̃. However, it is easy to see that
the map H0(L(C )) → H0(L(C̃ )) is injective, so that t ≤ t̃. Hence, t = t̃ and the injectivity and
surjectivity we have just seen proves that ψ∗ is a quasi-isomorphism.

(c)⇒(a): Let K be the kernel of the map N → Ñ and consider the following commutative
diagram.

We obtain the exact sequence

H1(L(C )) → H1(L(C̃ )) → coker(Lie N → Lie Ñ ) → 0.
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If ψ∗ is a quasi-isomorphism, the map Lie N → Lie Ñ must be surjective, so N → Ñ is smooth
(this can be reduced to the finite-type case, which follows from [LLR04, Proposition 1.1(e)]). �

This proposition can be used to explain a phenomenon already observed in [Ove19, Ove24].

Proposition 3.20. With the same notation as in the previous proposition, if C̃ is cohomolog-
ically flat in dimension zero, then the sequence 0 → T → N → Ñ → 0 is exact.

Proof. By the discussion following the proof of Proposition 3.16, C is cohomologically flat
in dimension zero as well. In particular, H0(L(C )) = H0(L(C̃ )) = 0. Hence, by Theorem 3.5,
H1(L(C )) = H1(L(C̃ )) = 0. This shows L(C ) ∼= 0 ∼= L(C̃ ). Therefore, the claim follows from
the previous proposition. �

Remark. While it is clear that L(C ) only depends on C, there does not seem to be a general
method to calculate the cohomology of this complex in terms of C. It would be very interesting
to have such a general procedure.

3.5.1 An example. We shall now construct an explicit example of a proper geometrically
integral curve X over K such that the induced sequence of Néron models is not exact. This will
answer the question posed in [Ove24, Remark after the proof of Theorem 3.10], negatively. In
fact, such examples exist in any positive residue characteristic. Let p > 0 be a prime number and
assume that OK has residue characteristic p. Let E be an elliptic curve over OK with ordinary
generic fibre and supersingular special fibre. Let X̃ be a torsor for EK such that the associated
class in H1(K,EK) has order p. Such torsors exist by [LLR04, Theorem 6.6 and Corollary 6.7].
Let X̃ → SpecOK be the minimal proper regular model of X̃. Then we know the following:

• the special fibre of X̃ → SpecOK has multiplicity p (see [LLR04, Theorem 6.6]);
• the map X̃ → SpecOK is not cohomologically flat in dimension zero [Ray70, Théorème

9.4.1(ii)];
• the group scheme E acts on X̃ (extending the torsor structure on the generic fibre), and

the reduced special fibre of X̃ → SpecOK is a (non-principal) homogeneous space for Ek; in
particular, it is an elliptic curve [Ray70, p. 72].

Let J ⊆ O
X̃

be the ideal which cuts out (X̃k)red. Let f ∈ Γ(X̃k,OX̃k
) be a non-constant

function. We identify O
X̃k

with O
X̃
/J p. After subtracting a constant function from f, we may

assume that f ∈ J /J p. Choose a regular function f̃ on some OK-dense open subset U ⊆ X̃

which restricts to f . Let i ∈ {1, . . . , p− 1} be maximal such that f̃ ∈ J i. By shrinking U if
necessary, we may assume that f̃ generates J i |U . Because X̃ is smooth over K, there exists a
closed point x on X̃ such that L := κ(x) is separable over K. Write [L : K] = pn for some n ∈ N.
Let c : SpecOL → X̃ be the induced map; its scheme-theoretic image x is the Zariski closure of
x in X̃ . Note that, in particular, we have 〈x, (X̃k)red〉 = n, where 〈−,−〉 denotes the intersection
product of divisors on X̃ . Now let y be the closed point on the special fibre of X̃ → SpecOK

which also lies on x. Because Ek acts transitively on (X̃k)red, there is a section σ ∈ E (OK) such
that σk · y ∈ Uk. In particular, we may assume that the map c : SpecOL → X̃ factors through
U . Hence, we know that c∗f̃ = επin

L for some ε ∈ O×
L . But because in < [L : K], this does not

restrict to a constant function in OL ⊗OK
k. Now we replace X̃ by the scheme obtained by

blowing up X̃ repeatedly in closed points on the special fibre until the map c : SpecOL → X̃
becomes a closed immersion and its image D intersects (X̃k)red transversely. Then we know that
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the map
ψ : X̃ → X := X̃ ∪SpecOL

SpecOK

is a strong model pair of the curve X := X̃ ∪Spec L SpecK and that X is semi-factorial.6 Taking
the cohomology of the exact sequence 0 → OX

·πK→ OX → OXk
→ 0 shows that

Γ(Xk,OXk
)/k = H1(X ,OX )[πK ];

the analogous statement holds for X̃ for the same reason. Since the push-out used to construct
X commutes with arbitrary base change, we see that the map Γ(Xk,OXk

) → Γ(X̃k,OX̃k
) is not

an isomorphism, which implies that H1(Xk,OXk
)tors → H1(X̃k,OX̃k

)tors is not an isomorphism

either. In particular, the map L(X ) → L(X̃ ) is not a quasi-isomorphism and the sequence of
Néron models induced by the exact sequence

0 → ResL/K Gm /Gm → Pic0
X/K → Pic0

X̃/K
→ 0

is not exact by Proposition 3.19.

4. Existence of Néron (lft-)models

4.1 The structure of Jacobians in degree of imperfection 1
Let κ be an arbitrary field of characteristic p > 0. Throughout this section, C will denote a proper
curve over κ; if C is reduced, we let C̃ be its normalisation. Let G := Pic0

C/K , let Rus,κ(G) denote
the maximal smooth connected split unipotent closed subgroup of G (cf. [CGP15, p. 63]), and
let uni(G) denote the maximal unirational subgroup of G over K (cf. [BLR90, p. 310]). We
shall begin by studying the structure of Pic0

C/κ. The results and their proofs are similar to the
corresponding ones in [Ove24], so we shall only indicate the necessary changes.

Proposition 4.1. Suppose that δ(κ) ≤ 1 and that C is reduced. Then uni(Pic0
C̃/κ

) = 0.

Proof. We have
Pic0

C̃/κ
= Res

Γ(C̃,O
C̃

)/κ
Pic0

C̃/Γ(C̃,O
C̃

)
.

Because C̃ is normal and δ(κ) ≤ 1, C̃ is geometrically reduced over Γ(C̃,O
C̃
) (Proposition 2.6).

Because the base change of a unirational algebraic group is unirational, the claim now follows
from [Ove24, Proposition 2.32]. �

Theorem 4.2. Suppose C is reduced and let C̃
ς̃→ Csn ς→ C be the canonical factorisation

[Ove24, Lemma 2.14 and Theorem 2.24(i)] of the normalisation map ν, where Csn is the
seminormalisation of C. Then we have a filtration

0 ⊆ ker ς∗ ⊆ ker ν∗ ⊆ Pic0
C/κ,

where ker ς∗ is split unipotent and ker ν∗ is unirational. If δ(κ) ≤ 1, ker ς∗ = Rus,κ(Pic0
C/κ) and

ker ν∗ = uni(Pic0
C/κ).

Proof. That ker ν∗ is unirational (respectively, equals uni(Pic0
C/κ) if δ(κ) ≤ 1) can be shown

as in the proof of [Ove24, Theorem 2.33]. For the first claim (respectively, equality), we may

6 The map is a strong model pair by construction. That X is semi-factorial follows as in [Ove24, Theorem 4.3].
Indeed, in order to guarantee that X is semi-factorial, all we must ensure is that each irreducible component of
(X̃k)red intersects at most one connected component of D. But this is trivial in our situation since D is connected.
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assume without loss of generality that κ is separably closed ([CGP15, Corollary B.3.5] together
with [Ove24, Lemma 2.25] and Lemma 2.4 above). The first claim follows as in the proof of
[Ove24, Theorem 2.33]. If δ(κ) ≤ 1, we can again argue as in [Ove24, Theorem 2.33] as soon
as we can show that ker ς̃∗ contains no closed subgroup isomorphic to Ga. By [Ove24, proof of
Theorem 2.24(ii)] and [Ove24, Proposition 2.30], we see that ker ς̃∗ is a repeated extension of
algebraic κ-groups of the form ResA/κ Gm /(ResB/κ Gm ·ResL/κ Gm), where A is either a field
or the product of a finite extension of κ with itself, and B and L are subalgebras of A. In
the first case, both B and L are fields. Since δ(κ) ≤ 1 and κ is separably closed, each finite
extension of κ is isomorphic to κ1/pn

for some n. Hence, either L ⊆ B or B ⊆ L in a canonical
way. Denoting the larger field by M, we see that the quotient above is, in fact, isomorphic to
ResA/κ Gm /ResM/κ Gm. In the second case, we write A = F × F for a field extension F ⊇ κ.
The argument from [Ove24] shows moreover that we can take B = F with the map B → A
being the diagonal map. Then L is either a field of the product of two field extensions L1 and
L2 of κ. In the first case, the quotient above is isomorphic to ResF/κ Gm; in the second case it
is isomorphic to ResF/κ Gm /ResM/κ Gm, where M is the larger one of L1 and L2. Clearly, we
have Homκ(Ga,ResF/κ Gm) = 0. Hence, all we need to show is that, if M ⊆ A are finite reduced
κ-algebras, we have

Homκ(Ga,ResA/κ Gm /ResM/κ Gm) = 0.

Any element τ of this group gives an element σ ∈ Ext1κ(Ga,ResM/κ Gm). However, since M is
finite over κ, the Grothendieck spectral sequence shows that

Ext1κ(Ga,ResM/κ Gm) = Ext1M (Ga,Gm) = 0

[DG70, Exposé XVII, Théorème 6.1.1 A) ii)]. Hence, σ = 0 and τ lifts to a map Ga → Gm over
A, which must vanish since A is a finite product of fields. �

Corollary 4.3. Suppose C is reduced. If uni(Pic0
C/κ) = 0, then the map Pic0

C/κ → Pic0
C̃/κ

is

an isomorphism. If Rus,κ(Pic0
C/κ) = 0, then C is seminormal. If δ(κ) ≤ 1, the converse of both

statements holds as well.

Proof. The first claim follows immediately from Theorem 4.2. Moreover, the proof of
Proposition 3.14 shows that, if C is not seminormal, then ker ς∗ is non-trivial. Hence, the second
claim also follows. �

4.2 Existence results
Now let S be an excellent Dedekind scheme of equal characteristic p > 0 with field of fractions
K and perfect residue fields. By Corollary 2.2, we have δ(K) = 1. As in [Ove24], we now have
the following.

Theorem 4.4 (Cf. [BLR90, Chapter 10.3, Conjecture II]). Let C be a proper curve over K such
that uni(Pic0

C/K) = 0. Then Pic0
C/K admits a Néron model over S.

Proof. We may assume without loss of generality that C is reduced. Indeed, our assump-
tion implies that the map Pic0

C/K → Pic0
Cred/K is an isomorphism (see [BLR90, Chapter 9.2,

Proposition 5] together with [Ove24, Lemma 2.3]). Then we know that the map Pic0
C/K → Pic0

C̃/K

is an isomorphism (Corollary 4.3). By Proposition 2.6, we know that C̃ is geometrically reduced
over Γ(C̃,O

C̃
). If S′ denotes the integral closure of S in Γ(C̃,O

C̃
), then [Ove24, Theorem 3.4]
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shows that Pic0
C̃/Γ(C̃,O

C̃
)

admits a Néron model Ñ ′ → S′. Therefore, the scheme

Ñ := ResS′/S Ñ ′

is a Néron model of Res
Γ(C̃,O

C̃
)/K

Pic0
C̃/Γ(C̃,O

C̃
)
= Pic0

C̃/K
= Pic0

C/K over S. �

The following lemma is surely well-known (cf. [Liu02, Chapter 8.3, Lemma 3.49] or [Sta18,
Tag 0BG6] for similar statements). We include a proof for the reader’s convenience.

Lemma 4.5. Let R be an excellent discrete valuation ring and let A be an integral regular flat
R-algebra of finite type. Let R̂ be the completion of R. Then A⊗R R̂ is regular.

Proof. Let p ⊆ A⊗R R̂ be a prime ideal. We must show that the localisation (A⊗R R̂)p is regular.
If p maps to the generic point of Spec R̂, this is clear because the extension FracR ⊆ Frac R̂ is
separable. Otherwise we put q := p ∩A and observe that the canonical map A/q → (A⊗R R̂)/p
is an isomorphism since R→ R̂ induces an isomorphism of residue fields. This shows that p =
q ⊗R R̂ and, hence, p/p2 = q/q2; moreover, we see that the map κ(q) → κ(p) on residue fields
is an isomorphism. Now choose a maximal chain p0 ⊂ · · · ⊂ pn = p of prime ideals such that
n = ht

A⊗RR̂
p. Clearly p0 is minimal, so (A⊗R R̂)/p0 is generically of the same dimension as

A⊗R FracR. Moreover, we see that

ht
(A⊗RR̂)/p0

p/p0 = ht
A⊗RR̂

p.

But R is universally catenary, so the dimension formula [Sta18, Tag 02IJ] shows that htA q =
ht

(A⊗RR̂)/p0
p/p0. From this, we deduce (replacing p and q with their respective localisations)

that

dim(A⊗R R̂)p = dimAq = dimκ(q) q/q2 = dimκ(p) p/p2. �

Finally, we have the following result.

Theorem 4.6 (Cf. [BLR90, Chapter 10.3, Conjecture I]). Let C be a proper curve over K such
that Rus,K(Pic0

C/K) = 0. Then Pic0
C/K admits a Néron lft-model over S.

Proof. We may once again assume that C is reduced. Our assumption implies that Pic0
C/K admits

Néron lft-models Np at all closed points p of S (see [BLR90, Chapter 10.2, Theorem 2(b’)]).
By [BLR90, Chapter 10.1, Proposition 9], we may replace S by a dense open subscheme (in
particular, we may suppose that S is affine). Moreover, [BLR90] also shows that it suffices to
find a finite locally free Γ(S,OS)-module L and an isomorphism L ⊗Γ(S,OS) K → Lie Pic0

C/K =
H1(C,OC) such that, for all closed points p ∈ S, the images of Lie Np and L ⊗Γ(S,OS) OS,p inside
L ⊗Γ(S,OS) K coincide. Using the method from [Ove24, Corollary 3.7], we construct proper and
flat (though a priori not necessarily cohomologically flat) models C → S and C̃ → S of C and
C̃, respectively, which fit into a co-cartesian diagram

where B ⊆ A are finite regular Γ(S,OS)-algebras, such that the vertical maps are closed immer-
sions. Replacing S by a dense open subscheme if necessary, we may suppose that H1(C ,OC ) is
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locally free over Γ(S,OS); we shall now show that

L := H1(C ,OC )

has the required properties. By Lemma 4.5, we see that the scheme C̃p is a proper, flat and

regular model of C̃ ×K Spec K̂sh over Spec Ôsh
S,p.

7 Using the method from the proofs of [Ove24,
Theorem 4.3 and Proposition 4.4], we construct a proper birational morphism C̃ ′

p → C̃p such that
the push-out

C ′
p := C̃ ′

p ∪SpecAp SpecBp

is a proper, flat and semi-factorial model of C ×K Spec K̂sh. Note that we have a canonical map
C ′

p → Cp. The lemma of five homomorphisms applied to the exact sequence (4) from § 3.4 shows
that the map H1(Cp,OCp ) → H1(C ′

p,OC ′
p
) is an isomorphism. Because the residue fields of S

are perfect and H1(C ,OC ) is torsion-free, Corollary 3.13 (together with [BLR90, Chapter 10.1,
Proposition 3]) shows that the map

H1(C ′
p,OC ′

p
) → (Lie Np) ⊗OS,p

Ôsh
S,p

is an isomorphism. Now observe that C ×S SpecOS,p is cohomologically flat in dimension zero
over OS,p for all closed points p ∈ S (see [Liu02, Chapter 5.3, Corollary 3.22 and Remark 3.30]),
so PicC×SSpecOS,p /OS,p

is a smooth algebraic space over OS,p ([BLR90, Chapter 8.3, Theorem 1]
and [Ray70, Corollaire 2.3.2]). It is easy to see that the Néron mapping property remains valid
for algebraic spaces, so there is a canonical map L ⊗Γ(S,OS) OS,p → Lie Np. Our claim follows
once we establish that this map is an isomorphism; however, this can be checked after applying
the functor −⊗OS,p

Ôsh
S,p. �

We are now able to state the following general result on Néron lft-models of Jacobians,
generalising Raynaud’s theory [Ray70].

Theorem 4.7. Let R be a discrete valuation ring with field of fractions K and residue field κ
(which we do not assume to be perfect). Let R̂ be the completion of R and denote by K̂ its
field of fractions. Let C be a proper reduced curve over K and assume that the normalisation C̃
admits a proper regular model C̃ → SpecR. Let SpecB be the singular locus of C endowed with
its reduced subscheme structure and let SpecA ⊆ C̃ be its scheme-theoretic preimage. Finally,
assume that one of the following conditions is satisfied:

• each irreducible component of C̃Ksh has a Ksh-point; or
• κ is perfect.

Then the following are equivalent:

(i) Pic0
C/K admits a Néron lft-model over R;

(ii) C
K̂

is seminormal; and

(iii) C is seminormal and A⊗K K̂ is reduced.

Moreover, if these conditions are satisfied, then after modifying C̃ if necessary, there exists
a finite morphism ψ : C̃ → C over R such that ψRsh : C̃Rsh → CRsh is a strong model pair
of CKsh and such that CRsh is semi-factorial. In particular, P sep

C /R is the Néron lft-model of

Pic0
C/K .

7 For a closed point p ∈ S and a morphism X → S, we put Xp := X ×S Spec Ôsh
S,p .
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Proof. Throughout the proof, we may assume without loss of generality that C is connected. We
begin by observing that C̃

K̂
is regular. Indeed, the argument from the proof of Lemma 4.5 shows

that C̃
R̂

is regular at all points on the special fibre. However, since C̃
R̂

is excellent, its singular
locus is closed. Because this scheme is proper over R̂, the singular locus would have to intersect
the special fibre if it were non-empty. Hence, C̃

R̂
is already regular (see also [Sta18, Tag 0BG6

(3)]). Since the morphism ψK : C̃ → C is scheme-theoretically dominant, so is ψK ×K Id
K̂

. In
particular, C

K̂
is reduced.

(i) ⇐⇒ (ii): By [BLR90, Chapter 10.2, Theorem 2], part (i) is equivalent to
R

us,K̂
(Pic0

C
K̂

/K̂
) = 0. Because we already know that C

K̂
is reduced, this is equivalent to part (ii)

by Corollary 4.3 (if κ is perfect; see Lemma 2.1) and [Ove24, Corollary 2.34] (note that the
existence of Ksh-points as in the theorem implies geometric reducedness).

(iii) ⇒ (ii): If part (iii) holds, then C arises as the push-out of SpecA→ C̃ along SpecA→
SpecB (see [Ove24, Theorem 2.24(ii)]). Hence, C

K̂
arises as the push-out of SpecA⊗K K̂ → C̃

K̂

along SpecA⊗K K̂ → SpecB ⊗K K̂. Therefore, our assumptions imply that C
K̂

is seminormal.
(i) ⇒ (iii): If Pic0

C/K admits a Néron lft-model, then Rus,K(Pic0
C/K) = 0. This follows

from [BLR90, Chapter 10.2, Theorem 2] together with the fact that Rus,K(Pic0
C/K)

K̂
⊆

R
us,K̂

(Pic0
C

K̂
/K̂

). However, Rus,K(Pic0
C/K) vanishes only if C is seminormal (Corollary 4.3).

In particular, C arises as the push-out of SpecA→ C̃ along SpecA→ SpecB (see [Ove24,
Theorem 2.24]). Hence, C

K̂
is the push-out of SpecA⊗K K̂ → C̃

K̂
along SpecA⊗K K̂ →

SpecB ⊗K K̂, so if A⊗K K̂ is non-reduced, then C
K̂

is not seminormal. Indeed, Lemma 4.8
shows that we can find a nilpotent element y ∈ A⊗K K̂ not contained in B ⊗K K̂. In particular,
there exists N0 ∈ N such that, for all n > N0, we have yn ∈ B ⊗K K̂. Choose N0 minimal with
this property. Then N0 ≥ 1 by assumption. Now replace y by yN0 . Then y �∈ B ⊗K K̂, but y2

and y3 both lie in B ⊗K K̂. If U is an open affine neighbourhood of SpecA⊗K K̂ in C̃
K̂
, then we

can find f ∈ Γ(U,OU ) whose image in A is y. The scheme U ′ := U ∪
Spec A⊗KK̂

(SpecB ⊗K K̂) is
an open subscheme of C

K̂
by construction. Moreover, f2 and f3 are global functions on U ′ but

f is not. Hence, U ′ (and therefore C
K̂

) is not seminormal. This contradicts (i) ⇐⇒ (ii), which
we have already proven.

We construct the morphism ψ : C̃ → C as in [Ove24, Theorem 4.3]. Moreover, we replace
the reference to the embedded resolution theorem as formulated in [Liu02, Chapter 9.2,
Theorem 2.26], by a reference to [Sta18, Tag 0BIC], in order to avoid the hypothesis on excellence
imposed in [Liu02]. Note that the conditions of [Sta18, Tag 0BIC] are satisfied since A⊗K K̂
(and, hence, B ⊗K K̂) are reduced, so the integral closures of R in A and B are finite over
R. Our hypotheses further imply that the map Pic CKsh → PicC

Ksh/Ksh(Ksh) is bijective. Since
we already know that Pic0

C/K admits a Néron lft-model N , the proofs of Proposition 3.11 and
Corollary 3.12 can be taken mutatis mutandis to show that P sep

C
Rsh/Rsh → NRsh is an isomorphism.

Indeed, if G is a smooth connected algebraic group over a separably closed field κ, it is still true
that G(κ) is n-divisible for all positive integers n invertible in κ, so if G(κ) is finitely generated
then G(κ) is finite. Hence, G = 0 since G is smooth. �

Lemma 4.8. With the notation from Theorem 4.7, let B ⊆ A be finite K-algebras such that
the inclusion is not an equality and such that B is a field. Moreover, assume that A⊗K K̂ is
non-reduced. Then there exists a nilpotent element y ∈ A⊗K K̂ not contained in B ⊗K K̂.
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Proof. Let NA and NB be the ideals of nilpotent elements in A⊗K K̂ and B ⊗K K̂, respectively.
Assume, for the sake of a contradiction, that the inclusion NB ⊆ NA is an equality. Then NB �= 0
by assumption. Now choose a B-basis 1, α1, . . . , αd of A for some d ∈ N. Let ν ∈ NB be any
non-zero element. Since 1 ⊗ 1, α1 ⊗ 1, . . . , αd ⊗ 1 is a B ⊗K K̂-basis of A⊗K K̂, the element
ν · α1 ⊗ 1 ∈ A⊗K K̂ is not contained in B ⊗K K̂. However, it is clearly nilpotent, contradicting
the assumption that NB = NA. �

In order to determine when Pic0
C/K admits a Néron model (i.e. when the Néron lft-model is of

finite type over R), we need to understand the dimension of the maximal split torus inside Pic0
C/K

(see [BLR90, Chapter 10.2, Theorem 2]). This invariant turns out to be purely combinatorial in
nature. We begin with the following.

Definition 4.9. Let κ be an arbitrary field and let C be a curve of finite type over κ. Let
X1, . . . , Xn be the irreducible components of C; we fix the ordering on this set once and for
all.

(i) A closed point x on C is a multibranch point if C is not unibranch at x, and an intersection
point if x is contained in at least two irreducible components of C.

(ii) We define the toric graph Γ = Γ(C) of C as follows.8

• The vertices of Γ are the irreducible components X1, . . . , Xn of C.
• For all intersection points x ∈ C, let Σ(x) be the set of all irreducible components con-

taining x. For i �= j, an edge connecting Xi and Xj is a pair ({Xi, Xj}, x), such that
{Xi, Xj} ⊆ Σ(x) and such that there is no element between Xi and Xj in Σ(x) with
respect to the induced ordering.

• For each i = 1, . . . , n, the number of loops centred at Xi is equal to∑
x∈ Xi multibranch in Xi

(nx − 1),

where nx is the number of branches of Xi at x (see [Sta18, Tag 0C38]).

If C and C ′ are curves of finite type over κ, then Γ(C � C ′) ∼= Γ(C) � Γ(C ′), and one shows
easily by induction on the number of irreducible components that if C is connected, then so is
Γ(C).

Lemma 4.10. Let C → C ′ be a finite morphism of proper curves over κ which is a homeo-
morphism (with compatible orderings on the sets of irreducible components of C and C ′) such
that the induced map C∼

red → C
′∼
red is an isomorphism. Then Γ(C) and Γ(C ′) are isomorphic.

Proof. This follows immediately from the definition together with [Sta18, Tag 0C1S (1)]. �
Remark. Because the definition of Γ involves choices, Γ(C) is not functorial in C. In particular,
there is no canonical isomorphism Γ(C) → Γ(C ′) in the situation of the lemma.

Lemma 4.11. Let 0 → G1 → G2 → · · · → Gd → 0 be an exact sequence of smooth connected
commutative algebraic groups over the field κ. For i = 1, . . . , d, let si be the dimension of the
maximal split torus inside Gi. Then we have

d∑
i=1

(−1)isi = 0.

8 We allow loops and multiple edges, hence some authors would call Γ(C) a multigraph or a pseudograph.
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Proof. First observe that the cases d = 1 and d = 2 are trivial. By splitting the sequence into
0 → G1 → G2 → G2/G1 → 0 and 0 → G2/G1 → G3 → · · · → Gd → 0, as well as using induction
on d, we reduce the claim to the case d = 3, which is proven in [HN16, Lemma 3.2.2.4]. �

We are now ready to prove the following.

Theorem 4.12. Let κ be an arbitrary field and let C be a proper curve over κ. Let s be the
dimension of the maximal split torus inside Pic0

C/κ. Then

s = dimQH1(Γ(C),Q) = E − V +N,

where E is the number of edges, V is the number of vertices and N is the number of connected
components of Γ(C).

Proof. Using [BLR90, Chapter 9.2, Proposition 5] and Lemma 4.10, we may assume that C
is reduced. Let C̃ and Csn be the normalisation and the seminormalisation of C, respectively.
Because the map Csn → C is a homeomorphism, Lemma 4.10 shows that Γ(C) and Γ(Csn)
are isomorphic. By Theorem 4.2 and Lemma 4.11, the dimension of the maximal split tori
inside Pic0

C/κ and Pic0
Csn/κ coincide. Hence, we may assume that C is seminormal. It follows

from the proof of [Ove24, Theorem 2.24(ii)] that the morphism C̃ → C = Csn can be factorised
as C̃ = C1 → C2 → · · · → Cn = C, such that, for each i = 1, . . . , n− 1, there is a closed point
xi+1 ∈ Ci+1, a reduced κ(xi+1)-algebra Ai, and a closed immersion SpecAi → Ci such that the
following diagram is co-Cartesian.

Moreover, we may assume that Ai is either isomorphic to κ(xi+1) × κ(xi+1) or a field extension
of κ(xi+1) (see [Ove24, Corollary 2.23]). We shall prove the theorem by induction on n.

If n = 0, then C is regular and Γ(C) contains no edges. In particular, H1(Γ(C),Q) = 0, so
we must show that Pic0

C/κ contains no split torus. We may replace κ by κ alg and C by (Cκ alg)red
(Lemma 4.11 and [BLR90, Chapter 9.2, Proposition 5]). But C is geometrically unibranch [Sta18,
Tag 0BQ3],9 so in the factorisation of the normalisation map (Cκ alg)∼red → (Cκ alg)red (as in
[Ove24, Theorem 2.24]), only push-outs along the map Specκ alg[ε]/〈ε2〉 → Specκ alg can appear.
Hence, the dimensions of the maximal split tori inside Pic0

(C
κ alg )red/κ alg and Pic0

(C
κ alg )∼red/κ alg

coincide. But the latter algebraic group contains no torus by [Ove24, Proposition 2.32].
Now let σj be the dimension of the maximal split torus inside Pic0

Cj/κ for each j = 1, . . . , n.
For the induction step, we must show that, for i = 1, . . . , n− 1, we have

σi+1 − σi = dimQH1(Γ(Ci+1),Q) − dimQH1(Γ(Ci),Q). (6)

Several cases must now be considered.

First case: The ring Ai is a field extension of κ(xi+1). In this case, the map Ci → Ci+1 is an
homeomorphism, so Γ(Ci) ∼= Γ(Ci+1) by Lemma 4.10. In particular, the quantity on the right

9 In particular, Cκ alg is unibranch. This is not immediate from the definition, but can be seen as follows. Let
x be a closed point of Cκ alg with image y in Cκ and image z in C. By assumption, the punctured spectrum
of Osh

C,z = Oh
Cκ,y is connected [Sta18, Tag 0BQ4]. However, since Oh

C
κ alg ,y = Oh

Cκ,y ⊗κκ alg, those two rings have
homeomorphic punctured spectra.
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vanishes. Now recall the exact sequence

0 → ResΓ(Ci+1,OCi+1
)/κ Gm → ResΓ(Ci,OCi

)/κ Gm → ResAi/κ Gm /Resκ(xi+1)/κ Gm

→ Pic0
Ci+1/κ → Pic0

Ci/κ → 0 (7)

from [Ove24, Proposition 2.30]. Let s1, . . . , s5 be the dimensions of the maximal split tori in
the algebraic groups appearing in the sequence (7) (without the trivial ones, and in the order
in which they appear in the sequence). Then s1 and s2 are equal to the numbers of connected
components of Ci+1 and Ci, respectively. This follows from the fact that, for any finite field
extension κ ⊆ �, the canonical map Gm → Res�/κ Gm identifies Gm with the maximal split torus
inside Res�/κ Gm. In particular, s1 = s2 in the case we are considering. Using that the map

Homκ(Gm,Resκ(xi+1)/κ Gm) → Homκ(Gm,ResAi/κ Gm)

is an isomorphism and that Ext1κ(Gm,Resκ(xi+1)/κ Gm) = Ext1κ(xi+1)(Gm,Gm) = 0, we see that
ResAi/κ Gm /Resκ(xi+1)/κ Gm contains no split torus, so s3 = 0. Hence, Lemma 4.11 implies that
the quantity on the left in (6) vanishes as well.

Second case: Now we consider the case where Ai
∼= κ(xi+1) × κ(xi+1). Then there is an

isomorphism

ResAi/κ Gm /Resκ(xi+1)/κ Gm
∼= Resκ(xi+1)/κ Gm,

so s3 = 1. We must once more distinguish three cases.

Case 2A: The two connected components of SpecAi map to distinct connected components of
Ci. Then we have s1 − s2 + s3 = 0, so Lemma 4.11 shows that the quantity on the left in (6)
vanishes. Observe that the number of edges which are not loops in Ci (respectively, Ci+1) is
given by the expression ∑

x

(#Σ(x) − 1),

where x runs through all intersection points of Ci (respectively, Ci+1). It is clear that the numbers
of loops in Γ(Ci) and Γ(Ci+1) are the same. Depending on whether the two points of SpecAi

map to intersection points or non-intersection points in Ci, we distinguish three cases, in each
of which we see that the graph Γ(Ci+1) has one edge more than Γ(Ci) and one fewer connected
component (but the same number of vertices). Therefore, the quantity on the right in (6) vanishes
as well.

Case 2B: The two connected components of SpecAi map to the same connected component of
Ci, but there is no irreducible component containing both of them. Then s1 − s2 + s3 = 1. The
same argument as in case 2A shows that the graph Γ(Ci+1) has one edge more than Γ(Ci), but
the same number of vertices and connected components. Hence, the quantities in (6) coincide
once again.

Case 2C: There exist irreducible components of Ci containing both connected components of
SpecAi. If at most one of the images of the two points of SpecAi is an intersection point, Γ(Ci+1)
arises from Γ(Ci) by adding an additional loop at precisely one vertex. Suppose, therefore, that
both images x and y of the points of SpecAi are intersection points, and denote their image in
Ci+1 by z. Then Σ(z) = Σ(x) ∪ Σ(y), so

#Σ(z) − 1 = (#Σ(x) − 1) + (#Σ(y) − 1) − #(Σ(x) ∩ Σ(y)) + 1.
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Moreover, Γ(Ci+1) contains an additional loop at each vertex contained in Σ(x) ∩ Σ(y), which
implies that Γ(Ci+1) has precisely one edge more than Γ(Ci), but the same number of vertices
and irreducible components. Hence, the two quantities in (6) coincide in every case and the proof
is complete. �

Remark. The theorem we just proved is valid without assuming that C is reduced, and without
any restrictions on δ(κ). Note, moreover, that the isomorphism type of Γ(C) depends upon the
ordering on the set of irreducible components of C, whereas the homotopy type of the associated
cell complex does not. This follows from the fact that dimQH1(Γ(C),Q) only depends upon C as
we have just seen, and this dimension classifies a finite connected (multi)graph up to homotopy.

Corollary 4.13. Keep the notation from Theorem 4.7 and assume, moreover, that the
equivalent conditions (i)–(iii) listed there are satisfied. Then the following are equivalent:

(a) Pic0
C/K admits a Néron model (i.e. a Néron lft-model of finite type) over R; and

(b) the graph Γ(C
K̂sh) is a forest.

If, moreover, R is excellent, these conditions are equivalent to

(b′) the graph Γ(CKsh) is a forest.

Proof. By [BLR90, Chapter 10.2, Theorem 1], part (a) is equivalent to s = 0, where s is the
dimension of the maximal split torus inside Pic0

C
K̂sh/K̂sh

. This is equivalent to part (b) by

Theorem 4.12 together with the fact that a finite (multi)graph Γ is a forest if and only if
H1(Γ,Q) = 0. The equivalence (a) ⇐⇒ (b′) if R is excellent follows in an entirely analogous
manner. �
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de dimension 1, Bull. Soc. Math. France, Mémoire 33 (1973), 5–79.
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tion of curves of genus one and the Brauer group of a surface, Invent. Math. 214 (2018),
593–604.

Ove19 O. Overkamp, Jumps and motivic invariants of semiabelian Jacobians, Int. Math. Res. Not.
2019 (2019), 6437–6479.

Ove24 O. Overkamp, On Jacobians of geometrically reduced curves and their Néron models, Trans.
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