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Abstract
We determine the list of automorphism groups for smooth plane septic curves over an algebraically closed field K
of characteristic 0, as well as their signatures. For each group, we also provide a geometrically complete family over
K, which consists of a generic defining polynomial equation describing each locus up to K-projective equivalence.
Notably, we present two distinct examples of what we refer to as final strata of smooth plane curves.

1. Introduction

The classification of isomorphism classes for smooth algebraic curves of a fixed genus g is a classic chal-
lenge in algebraic geometry, with significant implications for both algebraic and arithmetic geometry.
Achieving these classifications requires a solid understanding of the automorphism groups associated
with these curves. Below we recall some motivating examples and connections.

First, when examining smooth curves over algebraically closed fields K, one can determine whether a
curve C with certain properties is unique up to K-isomorphism. One such property of interest is having a
maximal automorphism group. For example, the Klein quartic K4:X3Y + Y3Z + Z3X = 0 has the largest
automorphism group for a curve with that genus, namely the Klein group PSL(2, 7) of order 168. This
remarkable curve is a central subject of study in number theory, physics, and beyond (see [10, 17, 18]).
For quintic curves of genus g = 6, the Fermat curve F5:X5 + Y5 + Z5 = 0 is notable for its maximal
symmetries, characterized by an automorphism group of order 150, (Z/5Z)2 � S3 (see [3]). In the realm
of sextic curves with genus g = 10, the Wiman curve

W6 : 7X6 + 9X(Y5 + Z5) − 135X4YZ − 45X2Y2Z2 + 10Y3Z3 = 0

is the one with maximal symmetries, having an automorphism group A6, the alternating group of
order 360, as first shown in [15] and confirmed in [6]. For g = 15 septic curves, we the Fermat sep-
tic curve F7:X7 + Y7 + Z7 = 0 exhibits the most symmetries, with an automorphism group of order 294,
(Z/7Z)2 � S3, as established in [ [30],Theorem 5].

Next, when considering non-algebraically closed fields k in the context of arithmetic geometry, under-
standing the automorphism group of C ⊗k ks can significantly streamline the realization of various
models (or twists) of C. The set of isomorphism classes of twists, Twist(C), is in one-to-one corre-
spondence with H1

(Gal(ks/k), Aut(C ⊗k ks)), where ks denotes a separable closure of k, and Gal(ks/k)
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is its Galois group (see [ [40], Chapitre III]). Additionally, the forms of automorphisms of C as projec-
tive transformations in the plane P2(ks) influence the defining equations of its twists, guiding the search
for solutions to Galois embedding problems associated with these twists. More details can be found in
[32, 33, 35].

Third, smooth plane curves of degree d ≥ 4 with non-trivial automorphism groups play a crucial
role in studying the algebraic geometry of the Cremona group Bir

(
P2(C)

)
, particularly in examining

the dynamics of its elements. The collection of birational classes of curves with a fixed genus is a
vital invariant, leading to the discovery of infinitely many conjugacy classes of elements of order 2n in
Bir

(
P2(C)

)
for any integer n (see [8, 9] for more information).

The main aim of the present work is to identify all possible automorphism groups for smooth plane
septic curves and to explore the relationships among them. This work builds on the efforts of the
first author and Bars as detailed in [3–6], where the cases of smooth plane quintics and sextics were
addressed. We hope that examining various cases in depth will unveil underlying patterns, ultimately
leading to general algorithms for determining automorphism groups and models once the degree d is
specified.

The organization of the sections is as follows. In section 2, we categorize smooth plane curves of
degree d ≥ 4, focusing on large automorphism orders m, by automorphism order and presents a the-
orem summarizing automorphism groups for specific values of m, along with cyclic subgroups and
equations for septic curves. Section 3 introduces key concepts, referencing H. Mitchell’s classification
[37] of finite subgroups of PGL3(K), and T. Harui’s classification [25] for smooth plane curves. In sec-
tion 4, we analyze the nonexistence of certain finite groups as automorphism groups for septic curves,
proving that Z/2Z×Z/2Z and Z/3Z×Z/3Z cannot be automorphism subgroups. In section 5, we
study the automorphism groups of descendants of Fermat and Klein septic curves. In sections 6 and 7,
we explore smooth plane curves with cyclic and noncyclic automorphism groups, showing that some
curve types have cyclic automorphisms, while others, like descendants of the Fermat curve, have larger
groups. In section 8, we study the signatures of the quotient curves of a smooth plane septic by its aut-
morphism group and connect that to the corresponding study of all genus 15 curves whose quotient by
their automorphism group is of genus zero, as catalogued in the L-functions and modular forms database
(LMFDB) [34]. This provides criteria that can be used to prove that certain of those genus 15 curves are
not smooth planar (cf. Table 5).

We shall state our main results below.

Theorem 1. Let K be an algebraically closed field K of characteristic zero. The listing of nontrivial
automorphism groups of smooth plane septic curves over K, accompanied by geometrically complete
defining polynomial equation F(X, Y , Z) = 0 over K for each stratum, is provided in Table 1.

We follow the standard indexing convention from the atlas for small finite groups [23]. In this context,
“SmallGroup(n, m)” refers to the finite group of order n that appears in the m-th position of that atlas. See
also GroupNames [16]. When two isomorphic but non-conjugate groups G serve as the automorphism
groups of smooth plane septic curves, we use the � prefix to differentiate between them.

Here Li,∗ denotes the generic homogeneous polynomial of degree i in the variables {X, Y , Z} − {∗},
ζm is a fixed primitive mth root of unity in K, and a projective linear transformation A = (ai,j) ∈ PGL3(K)
is written as

[a1,1X + a1,2Y + a1,3Z:a2,1X + a2,2Y + a2,3Z:a3,1X + a3,2Y + a3,3Z].
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Table 1. Automorphism groups and defining equations

GAP ID G Generators F(X, Y , Z)
(294, 7) (Z/7Z)2 � S3 [X:Z:Y], [Y:Z:X], X7 + Y7 + Z7

diag(1, ζ7, 1), diag(1, 1, ζ7)

(93, 1) Z/31Z�Z/3Z diag(1, ζ31, ζ
−5
31 ), [Y:Z:X] X6Y + Y6Z + Z6X

(70, 1) Z/7Z× D10 diag(1, ζ35, ζ−6
35 ), [X:Z:Y], X7 + Y6Z + YZ6

(42, 6) Z/42Z diag(1, ζ 6
42, ζ 7

42) X7 + Y7 + XZ6

(36, 2) Z/36Z diag(1, ζ36, ζ 30
36 ) X7 + Y6Z + XZ6

(21, 2) Z/21Z diag(1, ζ 3
21, ζ 7

21) X7 + Y7 + XZ6 + β3,0X4Z3

β3,0 �= 0

(21, 1) Z/7Z�Z/3Z diag(1, ζ7, ζ 3
7 ), [Y:Z:X] X7 + Y7 + Z7 + β5,4

(
X4YZ2 + X2Y4Z + XY2Z4

)
(18, 2) Z/18Z diag(1, ζ18, ζ−6

18 ) X7 + Y6Z + XZ6 + β3,0X4Z3

β3,0 �= 0

(14, 2) Z/14Z diag(1, ζ 2
14, −1) X7 + Y7 + XZ6 + β2,0X5Z2 + β4,0X3Z4

(14, 1) D14 diag(1, ζ7, ζ 2
7 ), [Z:Y:X] X7 + Y7 + Z7 + β4,1X3YZ3 + β5,3X2Y3Z2 +

β6,5XY5Z

(12, 2) Z/12Z diag(1, ζ12, −1) X7 + Y6Z + XZ6 + β2,0X5Z2 + β4,0X3Z4

β2,0β4,0 �= 0

(10, 1) D10 diag(1, ζ5, ζ
−1
5 ), [X:Z:Y] X7 + Y6Z + YZ6 + β2,1X5YZ + β4,2X3Y2Z2

+β6,3XY3Z3 + β5,0X2(Z5 + Y5)

(9, 1) Z/9Z diag(1, ζ9, ζ 3
9 ) X7 + Y6Z + XZ6 + β3,0X4Z3 + β5,3X2Y3Z2

(7,1) �1,3(Z/7Z) diag(1, ζ7, ζ 3
7 ) X7 + Y7 + Z7 + β3,1X4YZ2 + β5,4X2Y4Z +

β6,2XY2Z4

(7, 1) �0,1(Z/7Z) diag(1, 1, ζ7) Z7 + L7,Z

(6, 2) �1,2(Z/6Z) diag(1, ζ6, ζ 2
6 ) X7 + X(Y6 + Z6) + β3,0X4Z3 + β4,2X3Y2Z2

+β5,4X2Y4Z + β7,2Y2Z5

(6, 2) �2,3(Z/6Z) diag(1, ζ 2
6 , −1) X7 + X(Y6 + Z6) + β2,0X5Z2 + β3,3X4Y3

+β4,0X3Z4 + β5,3X2Y3Z2 + β7,3Y3Z4

(6, 2) �0,1(Z/6Z) diag(1, 1, ζ6) Z6Y + L7,Z

(6, 1) S3 diag(1, ζ3, ζ 2
3 ), X7 + X(Y6 + Z6 + β6,3Y3Z3) + β5,1X2YZ(Y3 +

Z3)

[X : Z : Y] +β4,2X3Y2Z2 + β3,0X4(Y3 + Z3) + β2,1X5YZ

+β7,2Y2Z2(Y3 + Z3)

(5, 1) Z/5Z diag(1, ζ5, ζ−1
5 ) X7 + Y6Z + YZ6 + β2,1X5YZ + β4,2X3Y2Z2

+β6,3XY3Z3 + X2
(
β5,0Z5 + β5,5Y5

)
(4, 1) Z/4Z diag(1, ζ4, ζ 2

4 ) X7 + Y6Z + XZ6 + β2,0X5Z2 + β3,2X4Y2Z

+β5,2X2Y2Z3 + β6,4XY4Z2 + β7,2Y2Z5

+X3
(
β4,0Z4 + β4,4Y4

)
(3, 1) �1,2(Z/3Z) diag(1, ζ3, ζ 2

3 ) X7 + X(Y6 + Z6) + β2,1X5YZ + β4,2X3Y2Z2

+β6,3XY3Z3 + β7,2Y2Z5 + β7,5Y5Z2 +
X4

(
β3,0Z3 + β3,3Y3

)
+X2YZ

(
β5,4Y3 + β5,1Z3

)
(3, 1) �0,1(Z/3Z) diag(1, 1, ζ3) Z6Y + Z3L4,Z + L7,Z

(2, 1) Z/2Z diag(1, 1, −1) Z6Y + Z4L3,Z + Z2L5,Z + L7,Z
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The following diagram illustrates the stratification of smooth plane septic curves by their automor-
phism groups.

D14�1,3(Z/7Z)

�1,2(Z/6Z)

S3

D10

Z/4Z

Z/2Z

�1,2(Z/3Z)

Z/14ZZ/12ZZ/9Z

Z/21Z Z/7 /3ZZ/18Z

(Z/7Z)2 S3Z/36Z Z/31Z Z /3ZZ/42Z Z/7Z×D10

�0,1(Z/6Z)

�2,3(Z/6Z) Z/5Z

�0,1(Z/7Z)

�0,1(Z/3Z)

Z Z

Let G be a finite subgroup of PGL3(K), and let M̃pl
d (G) represents the set of K-isomorphism classes

of smooth plane curves C of degree d over K for which Aut(C) is PGL3(K)-conjugate to G. We refer to
M̃pl

d (G) as a final stratum if it has nonzero dimension and is not properly contained in any other stratum.
The existence of a final stratum is considered a noteworthy phenomenon, as one might expect that

imposing additional restrictions on the parameters would lead to larger automorphism groups, ultimately
resulting in a zero-dimensional stratum. The first known example of final strata was identified for d = 5
and G =Z/4Z by Badr and García [7], who effectively illustrated this phenomenon using a family of
canonical models in Pg−1(K). They demonstrated that this situation typically arises when d = 1 mod 4.
In contrast, Badr ans Bars [6] showed that final strata do not exist for d = 6.

For d = 7, as a result of Theorem 1, we conclude that:

Corollary 1. The strata ˜Mpl
7 (�1,2(Z/6Z)) and ˜Mpl

7 (�2,3(Z/6Z)) are final strata.

2. Full automorphism groups of very large types m, (a, b)

Let C be a smooth plane curve of degree d ≥ 4. According to [ [4],Corollary 33], the automorphisms of C
have orders that divide d − 1, d, (d − 1)2, d(d − 2), d(d − 1) or d2 − 3d + 3. Moreover, we define C
to be of Type m, (a, b) if it possesses an automorphism of maximal order m, represented as diag(1, ζ a

m, ζ b
m)

acting on a fixed smooth plane model F(X, Y , Z) = 0 for C. Here a, b are integers with 0 ≤ a < b < m.
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Additionally, we categorize C as a very large type if m = d(d − 1), (d − 1)2, d(d − 2), d2 − 3d + 3 or
q(d − 1) with q ≥ 2.

For a fixed degree d ≥ 4, the findings in [4] provide a constructive approach to generate all possible
Types m, (a, b) for which there exists a smooth plane curve C of degree d having an automorphism of
order m, assigning a generic polynomial equation Fm, (a,b)(X, Y , Z) = 0 of degree d over K that describe
those plane curves of Type m, (a, b). Particularly relevant to the present work is the case d = 7 which
we now recall:

Proposition 1. Let C be a smooth plane septic curve over an algebraically closed field K of character-
istic 0. Then, C falls into one of the following types:

Proof. This is Table A.4 in [4], we refer the reader to that paper for the details.

The results in [4, 25] provide a detailed characterization of Aut(C) when C is classified as a very
large type. In particular, we have that

Theorem 2. Let C be a smooth plane degree d curve of Type m, (a, b).

1. If m = d(d − 1), then Aut(C) is cyclic of order d(d − 1). In this scenario, C is K-isomorphic to
C:Xd + Yd + XZd−1 = 0, where Aut(C) = 〈σ 〉 with σ = diag(1, ζ d−1

d(d−1), ζ
d
d(d−1)).

2. If m = (d − 1)2, then Aut(C) is cyclic of order (d − 1)2. In this scenario, C is K-isomorphic to
C:Xd + Yd−1Z + XZd−1 = 0, where Aut(C) = 〈σ 〉 with σ = diag(1, ζ(d−1)2 , ζ−(d−1)

(d−1)2 ).
3. If m = d(d − 2), then C is K-isomorphic to C:Xd + Yd−1Z + YZd−1 = 0. For d �= 4, 6, Aut(C) is

a central extension of the dihedral group D2(d−2) by Z/dZ. More precisely,

Aut(C) = 〈σ , τ | σ d(d−2) = τ 2 = 1, τστ = σ−(d−1), . . .〉,

with σ = diag(1, ζd(d−2), ζ
−(d−1)
d(d−2) ) and τ = [X:Z:Y]. Thus, it has order 2d(d − 2).

4. If m = d2 − 3d + 3, then C is K-isomorphic to the Klein curve defined by Kd:Xd−1Y + Yd−1Z +
Zd−1X = 0. Moreover, for d ≥ 5, we have

Aut(C) = 〈σ , τ |σ d2−3d+3 = τ 3 = 1, τ−1στ = σ−(d−1)〉,

with σ = diag(1, ζd2−3d+3, ζ−(d−2)
d2−3d+3) and τ = [Y:Z:X]. Consequently, Aut(C) has order 3(d2 −

3d + 3).
5. If m = q(d − 1) for some q ≥ 2, then we guarantee that Aut(C) is cyclic.

Substituting d = 7 in Theorem 2 yields:

Corollary 2. Suppose that C is a smooth plane septic curve over K that possesses an automorphism of
very large order m ∈ {42, 36, 35, 31, 18, 12}. Below, we outline the full automorphism groups and the
corresponding defining equations, up to K-isomorphism.

Proof. Everything is clear from Theorem 2, except possibly for the last two cases. When C is
of Type 12, (1, 6), the automorphism group is cyclic of order 12m with m = 1 or 3, as established in
Theorem 2-(5) and Proposition 1. If Aut(C) has order 36, then C is K-isomorphic to X7 + Y6Z + XZ6 = 0
via some φ ∈ PGL3(K). Moreover, we can choose φ in the normalizer of 〈diag(1, ζ12, −1)〉, since Z/12Z
forms a single conjugacy class within Z/36Z. Direct calculations reveal that φ = diag(1, a, b) for some
a, b ∈ K∗. This implies that a6b = b6 = 1 and β2,0 = β4,0 = 0.

A similar approach can be applied to the Type 18, (1, 12).
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3. Preliminaries about automorphism groups

Using purely geometric methods applied to the projective plane P2
K over the field K, H. Mitchell [37]

compiled a list of finite subgroups G ⊂ PGL3(K). Specifically, he demonstrated that G fixes either a
point, a line, or a triangle, unless it is primitive and conjugate to a group from a particular list.

We will employ the following notations throughout the paper.

3.1 Notation.

The exponent of a nonzero monomial cXi1 Yi2 Zi3 with c ∈ K∗ is defined as the maximum of i1, i2, i3. The
core of a homogeneous polynomial F(X, Y , Z) in K[X, Y , Z] refers to the sum of all terms in F(X, Y , Z)
that have the largest exponent.

A descendent of a smooth plane curve C0 : F(X, Y , Z) = 0 of degree d over K is a pair (C, G), where
C is a smooth plane curve of degree d that admits a smooth plane model F̃(X, Y , Z) = 0 over K whose
core matches F(X, Y , Z). This means that

F̃(X, Y , Z) = F(X, Y , Z) + lower order terms.

Moreover, G ≤ Aut(C) is PGL3(K)-conjugate to a subgroup of Aut(C0).
Let PBD(2, 1) be the set of all elements in PGL3(K) that have the form:⎛

⎝ 1 0 0
0 ∗ ∗
0 ∗ ∗

⎞
⎠

An element in PGL3(K) is called intransitive if it is conjugate to an element in PBD(2, 1). The natural
group homomorphism ⎛

⎝ 1 0 0
0 ∗ ∗
0 ∗ ∗

⎞
⎠ ∈ PBD(2, 1) �→

(∗ ∗
∗ ∗

)
∈ PGL2(K)

is denoted by �.
Now we present Theorem 3 below, attributed to T. Harui [ [25],Theorem 2.1]. This theorem is essen-

tial for our investigation of the automorphism groups of smooth plane curves when the degree is fixed.
It serves as a detailed extension of Mitchell’s classification applied to smooth plane curves.

Theorem 3. Let C be a smooth plane curve of degree d ≥ 4 defined over an algebraically closed field
K of characteristic 0. Then, one of the following scenarios applies

1. Aut(C) fixes a point on C, so it is cyclic.
2. Aut(C) fixes a point not lying on C. This situation can be understood through the following

commutative diagram, with exact rows and vertical injective morphisms:

1 K∗ PBD(2, 1)
Λ

PGL2(K) 1

1 N Aut(C) G′ 1

where N is a cyclic group such that |N| | d, and G′, a subgroup of PGL2(K), can be
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(i) A cyclic group Z/mZ of order m with m ≤ d − 1,
(ii) A Dihedral group D2m of order 2m such that |N| = 1 or m | (d − 2),
(iii) One of the alternating groups A4, A5, or the symmetry group S4.

In fact, N represents the component of Aut(C) that acts on the variable B ∈ {X, Y , Z} while
fixing the other two variables. In contrast, G′ is the component that acts on {X, Y , Z} \ {B} and
fixes B. For example, if B = Y , then every automorphism in N takes the form diag(1, ζn, 1) for
some nth root of unity ζn; moreover, any automorphism of C would have the form:⎛

⎝∗ 0 ∗
0 1 0
∗ 0 ∗

⎞
⎠ .

Thus, Aut(C) can be embedded into PBD(2, 1) as φAut(C), where φ = [Y:X:Z]. In this context,
we will use �(Aut(C)) to refer to the image of φAut(C) under �, by an abuse of notation.
Similarly, when B = Z.

3. Aut(C) is conjugate to a subgroup G of Aut(Fd), where Fd is the Fermat curve Xd + Yd + Zd =
0. Here, |G| divides |Aut(Fd)| = 6d2, and (C, G) is a descendant of Fd.

4. Aut(C) is conjugate to a subgroup G of Aut(Kd), where Kd is the Klein curve curve XYd−1 +
YZd−1 + ZXd−1. In this instance, |Aut(C)| divides |Aut(Kd)| = 3(d2 − 3d + 3), and (C, G) is a
descendant of Kd.

5. Aut(C) is conjugate to one of the finite primitive subgroup of PGL3(K) namely, the Klein group
PSL(2, 7), the icosahedral group A5, the alternating group A6, or to one of the Hessian groups
Hess∗ with ∗ ∈ {36, 72, 216}.

Following Mitchell [37], we classify finite-order automorphisms of the projective plane P2
K into two

categories: homologies and non-homologies. An homology of period n is defined as a projective linear
transformation in PGL3(K) that is conjugate to diag(1, 1, ζn). Such a transformation fixes point-wise a
line L (its axis) and a point P located off this line (its center). In its canonical form, this is represented
by L:Z = 0 and P = (0:0:1).

The existence of homologies can confer additional desirable geometric properties, as demonstrated
by the following fact due to H. Mitchell [37].

Theorem 4. Let G be a finite subgroup of PGL3(K). The following statements hold:

1. If G contains an homology of period n ≥ 4, then it fixes a point, a line or a triangle.
2. The Hessian group Hess216 is the unique finite subgroup of PGL3(K) that contains homologies

of period n = 3 but does not leave invariant a point, a line or a triangle.
3. Inside G, a transformation that leaves invariant the center of an homology must leave invariant

its axis and vice versa.

Furthermore, the existence of homologies is closely related to the concept of Galois points, first
introduced by H. Yoshihara in 1996 (to the best of our knowledge) and further explored by several
mathematicians, including [19–22, 27, 36, 43].

Definition 5. A Galois point for a plane curve C is a point P ∈ P2
K such that the natural projection πP

morphism from C to a line L with center P constitutes a Galois covering.
A Galois point P for C is termed inner if P ∈ C; otherwise, P is an outer Galois point.

As a consequence of [ [25],Lemma 3.8], we find that

Proposition 2. Let C be a smooth plane curve of degree d ≥ 5 over an algebraically closed field K of
characteristic 0, and let σ ∈ Aut(C) be an homology with center P. Then, the order of σ divides d − 1
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if P ∈ C, and it divides d when P /∈ C. Moreover, the order of σ equals d − 1 if and only if P is an inner
Galois point for C, and it equals d if and only if P is an outer Galois point for C.

4. Finite primitive groups never occur for smooth septic curves

For smooth plane septic curves C, we first show that Aut(C) is not one of the finite primitve subgroups;
PSL(2, 7), A5, A6, and Hess∗ for ∗ ∈ {36, 72, 216}.

Proposition 3. The group Z/2Z×Z/2Z is never an automorphism subgroup for a smooth plane septic
curve C. In particular, Aut(C) �= PSL(2, 7), A5 and A6.

Proof. Assume that σ and τ are involutions for C that commute. There is no loss of generality to take
σ = diag( − 1, 1, 1), up to PGL3(K)-equivalence. In particular,

τ =
⎛
⎝1 0 0

0 ∗ ∗
0 ∗ ∗

⎞
⎠ ∈ PBD(2, 1),

since στ = τσ . Another change of variables φ ∈ PBD(2, 1) would reduce τ to diag(1, −1, 1). This does
not change σ as PBD(2, 1) is the normalizer of 〈σ 〉 in PGL3(K). Second, to ensure smoothness, the
defining equation for C should have degree ≥ 6 in each variable, as indicated in [ [2],Lemma 2.1.1]. In
particular, since C is invariant under the action of σ and τ , it should have degree 7 in exactly one of the
variables and be defined by an equation of one of the following forms:

X7 +
2∑

i=0

αiX
2i+1L7−(2i+1),X = 0

or

X6L1,X +
2∑

i=0

αiX
2iL7−2i,X = 0

We discard the first form because it factors as X · G(X, Y , Z) = 0, making C reducible and singular.
Additionally, in the second form, the equation should have degree 7 in either Y or Z (but not both), as it
is invariant under τ and στ . Therefore, it also reduces to a reducible defining equation, divisible by Y
or Z, which contradicts the smoothness of C.

The rest is straightforward, as any of the groups PSL(2, 7), A5 and A6 has a subgroup isomorphic to
Z/2Z×Z/2Z.

Proposition 4. The group Z/3Z×Z/3Z is never an automorphism subgroup for a smooth plane septic
curve C. In particular, Aut(C) �= Hess∗ for ∗ = 36, 72, 216.

Proof. Assume that σ and τ are automorphisms of order 3 for C that commute. Up to PGL3(K)-
equivalence, σ is either diag(ζ3, 1, 1), an homology, or diag(1, ζ3, ζ−1

3 ), a non-homology.
- If σ = diag(ζ3, 1, 1), then relation σ τ = τ σ implies that

τ =
⎛
⎝1 0 0

0 ∗ ∗
0 ∗ ∗

⎞
⎠ ∈ PBD(2, 1).

Again, we can apply an extra change of variables φ ∈ PBD(2, 1) that reduces τ to τ = diag(1, ζ3, 1) or
τ = diag(1, ζ3, ζ

−1
3 ). Obviously, such φ does not change σ = diag(ζ3, 1, 1) as it belongs to PBD(2, 1) the

normalizer of 〈σ 〉 in PGL3(K). Therefore, C3 × C3 = 〈diag(ζ3, 1, 1), diag(1, ζ3, 1)〉.
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- If σ = diag(1, ζ3, ζ−1
3 ), then the relation σ τ = τ σ implies that

τ = diag(1, a, b), [Y:aZ:bX], or [Z:aX:bY].

for some a, b ∈ K∗. In the worst case, we may require a change of variables φ = diag(1, λ, ν), again
in the normalizer of 〈σ 〉 in PGL3(K), to reduce to one of the following situations: either C3 × C3 =
〈diag(1, ζ3, 1), diag(1, 1, ζ3)〉 or C3 × C3 = 〈diag(1, ζ3, ζ

−1
3 ), [Y:Z:X]〉.

Now, for τ = [Y:Z:X] to be an automorphism, the core of C should be X7 + Y7 + Z7, X6Y +
Y6Z + Z6X or X6Z + Z6Y + Y6X. However, none of these cores is preserved under the action of σ =
diag(1, ζ3, ζ

−1
3 ), a contradiction.

On the other hand, for σ = diag(ζ3, 1, 1) and τ = diag(1, ζ3, 1) to be automorphisms, the defining
equation of C must be F(X3, Y3, Z3) = 0, which is absurd because 3 does not divide d = 7.

The rest is straightforward, as any of the Hessian groups contains a subgroup isomorphic to Z/3Z×
Z/3Z.

5. On septic descendants of F7 and K7

In this section, we state and prove some observations about smooth plane septic curves C that are
descendants of either the Fermat curve F7 or the Klein curve K7.

Proposition 5. For the Fermat septic curve F7 : X7 + Y7 + Z7 = 0, we have that Aut(F7)=
SmallGroup(294,7). In particular, a Fermat’s septic descendant is one of the following types:
3, (1, 2), 7, (a, b), 14, (2, 7).

Proof. We know that Aut(F7) is of order 6d2 = 294, moreover, it is generated by the four
automorphisms

η1 = [X:Z:Y], η2 = [Y:Z:X], η3 = diag(1, ζ7, 1), η4 := diag(1, 1, ζ7).

We identify Aut(F7) with SmallGroup(294,7), since
(η1η2)

2 = 1, η1η3η1 = η4, η3η4 = η4η3, (η1η4)
2 = η3η4, η2η3η

−1
2 = (η3η4)

−1.

Corollary 3. If a smooth septic curve C is a descendant of the Fermat curve F7 such that Aut(C)
contains a Z/7Z×Z/7Z, then C is K-isomorphic to the Fermat curve F7 itself.

Proof. The subgroups of Aut(F7)=SmallGroup(294,7) that are isomorphic to Z/7Z×Z/7Z are
all Aut(F7)-conjugate to 〈diag(1, ζ7, 1), diag(1, 1, ζ7)〉. Hence, we deduce by [ [25],Lemma 6.5-(1)] that
C should be the Fermat curve as claimed.

Corollary 4. If a smooth plane septic curve C is a descendent of the Fermat curve F7 such that Aut(C)
contains a Z/7Z�Z/3Z as a subgroup, then C is K-isomorphic to

C
′
:X7 + Y7 + Z7 + α

(
X4YZ2 + X2Y4Z + XY2Z4

) = 0

for some α ∈ K. In particular, Aut(C) is either Z/7Z�Z/3Z or SmallGroup(294,7).

Proof. Any Z/7Z�Z/3Z inside Aut(F7)= SmallGroup(294,7) is Aut(F7)-conjugate to
G := 〈diag(1, ζ7, ζ

−4
7 ), [Y:Z:X]〉.

A plane curve C′:X7 + Y7 + Z7 + lower order terms in X, Y , Z is invariant under the action of G if and
only if

C′ : X7 + Y7 + Z7 +
∑

7 | 4j−i

αi,j

(
X7−i−jYiZj + XjY7−i−jZi + XiYjZ7−i−j

) = 0,
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So (i, j) = (1, 2), (2, 4) or (4, 1), which gives us the prescribed equation for C′.
Now, for all values α ∈ K∗, Aut(C′

) =Z/7Z�Z/3Z. Indeed, if Z/7Z�Z/3Z is a proper sub-
group of automorphisms, then Aut(C) = (Z/7Z)2 �Z/3Z or SmallGroup(294,7), see Group structure
of SmallGroup(294,7) [16]. In either way,Z/7Z×Z/7Zwould be a subgroup of automorphisms, which
means that C′ is the Fermat curve by Corollary 3. However, the defining equation for C′ is not invariant
under the action of η1 = [X:Z:Y].

Proposition 6. For the Klein septic curve K7 : X6Y + Y6Z + Z6X = 0, we have that Aut(K7)=
SmallGroup(93,1).

Proof. We know that Aut(K7) has order 3(d2 − 3d + 3) = 93 and is generated by the two
automorphisms

σ = diag(1, ζ31, ζ
−5
31 ), τ = [Y:Z:X].

We identify Aut(K7) with SmallGroup(93,1), since σ 31 = τ 3 = 1, τστ−1 = σ−6.

Corollary 5. Let C be a descendant of the Klein septic curve K7. Then, C is the Klein curve K7 or
Aut(C) =Z/3Z.

Proof. Since Aut(K7)= SmallGroup(93,1) by Proposition 5, then it is necessary for C to be a
descendant of K7 that C is of Type 31, (1, 26) or Type 3, (1, 2). If C is of Type 31, (1, 26), then it is K-
isomorphic to K7 and Aut(C) = SmallGroup(93, 1) by Proposition 1 and Corollary 2. On the other hand,
if C is of Type 3, (1, 2) then Aut(C) should be Z/3Z because Z/3Z is maximal in SmallGroup(93,1),
see Group structure of SmallGroup(93,1) [16].

6. More curves whose automorphism groups are cyclic

We aim here to show that any of the types 21, (3, 7), 9, (1, 3), 7, (0, 1), 6, (a, b), 4, (1, 2), 3, (0, 1), and
2, (0, 1) has cyclic automorphism group.

6.1. Type 21, (3, 7), type 9, (1, 3) and type 4, (1, 2)

A smooth septic curve C of Type 21, (3, 7) is given by an equation of the form

C:X7 + Y7 + XZ6 + β3,0X4Z3 = 0,

for some β3,0 ∈ K∗, where σ = diag(1, ζ 3
21, ζ 7

21) is an automorphism of maximal order 21. We claim to
show that Aut(C) = 〈σ 〉.

The results in sections 4 and 5 assure that Aut(C) = 〈σ 〉 as desired or that Aut(C) is a subgroup of
PBD(2, 1). The latter case is absurd, since

- if N acts on X (respectively Z), then N = 1 and �(σ ) = diag(ζ 3
21, ζ

7
21) (respectively diag(ζ−7

21 , ζ−4
21 ))

has order 21 > 6. This violates Theorem 3-(2).
- if N acts on Y , then N = 〈σ 3〉. Again �(σ ) = diag(ζ−3

21 , ζ 4
21) has order 21 > 6, which contradicts

Theorem 3-(2).
This proves our claim that Aut(C) is cyclic of order 21 for Type 21, (3, 7). On the other hand, the

same argument applies to Type 9, (1, 3) and Type 4, (1, 2). But two remarks are to be noted here.

• First, always N = 1 whenever Aut(C) is a subgroup of PBD(2, 1).
• Second, for Type 4, (1, 2), if Aut(C) ↪→ PBD(2, 1), then 〈diag(ζ4, ζ 2

4 )〉 is a Z/4Z subgroup of
�(Aut(C)). By applying Proposition 3 and then Theorem 3-(2), we deduce that �(Aut(C))
cannot exceed Z/4Z, as asserted.
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6.2. Type 7, (0, 1)

A smooth septic curve C of Type 7, (0, 1) is given by an equation of the form

C:Z7 + L7,Z = 0,

where σ := diag(1, 1, ζ7) is an automorphism of maximal order 7. We claim to show that Aut(C) = 〈σ 〉.
Since σ ∈ Aut(C) is an homology of period d = 7 with center P = (0:0:1) and axis L:Z = 0, then

Proposition 2 guarantees us that P is an outer Galois point for C. By Theorem [ [43],Theorem 4’], we
also can say that P = (0:0:1) is the unique outer Galois point for C because C is not K-equivalent to the
Fermat curve F7 from our assumption that automorphisms of C have orders 7 or less. Hence, Aut(C)
should leave invariant the point P = (0:0:1) and also the line L:Z = 0 are invariant under the action of
Aut(C) as a result of Theorem 4-(2). In particular, the automorphisms of C must be of the form⎛

⎝∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎠ .

The results in sections 4 and 5 tell us that we can think about Aut(C) as in Theorem 3, (1)–(3). We are
going to tackle each of these situations.

Assume first that C is a descendant of F7 with a bigger automorphism group than Z/7Z= 〈σ 〉. From
Group structure of SmallGroup294,7(294,7) we can verify that any Z/7Z generated by a homology
inside Aut(F7) is contained in a (Z/7Z)2 or a Z/14Z. We reject Z/14Z by the maximality of order σ

inside Aut(C). Therefore, Aut(C) should have (Z/7Z)2 as a subgroup. But then C would be the Fermat
curve F7 by applying Corollary 3, a contradiction. Thus Aut(C) = 〈σ 〉 in this situation.

Otherwise, we can suppose that Aut(C) satisfies a short exact sequence

1 → N = 〈σ 〉 → Aut(C) → �(Aut(C)) → 1,

where �(Aut(C)) equals Z/mZ for some m ≤ 6, D2m for some m ∈ {1, 5}, A4, A5 or S4. Unless
�(Aut(C)) = 1, C would have an automorphism τ of order m = 2, 3 or 5. So στ ∈ Aut(C) is an element
of order 7m > 7, a contradiction. Therefore, it must be the case that Aut(C) = 〈σ 〉.

This proves the claim.

6.3. Types 6, (a, b)

Suppose that C is a smooth plane septic curve of Type 6, (a, b) with (a, b) = (1, 2) or (2, 3) as in Table 2,
and let σ = diag(1, ζ a

6 , ζ b
6 ) be an automorphism of maximal order 6.

Clearly, C is not a descendant of the Fermat curve F7 or the Klein curve K6 since neither F7 nor K7

admits automorphisms of order 6. Moreover, Aut(C) cannot be one of the finite primitive subgroups in
PGL3(K), see section 4 for details. On the other hand, if Aut(C) satisfies Theorem 3-(2), then N = 1 and
�(σ ) would be an element of order 6 in PGL2(K). Consequently, �(Aut(C)) =Z/6Z, so Aut(C) = 〈σ 〉
as claimed.

6.4. Type 6, (0, 1)

A smooth septic curve C of Type 6, (0, 1) is given by an equation of the form

C:Z6Y + L7,Z = 0

where σ := diag(1, 1, ζ6) is an automorphism of maximal order 6. Again, we claim to show that
Aut(C) = 〈σ 〉.

In this case, Aut(C) contains a homology σ of period d − 1 = 6 with center P = (0:0:1). Then by
Proposition 2 we have that P = (0:0:1) is an inner Galois point for C. Moreover, by [ [43],Theorem 4,
Proposition 5], we ensure that P = (0:0:1) is the unique inner Galois point for C. Thus, it must be fixed
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Table 2. Cyclic subgroups and defining equations

Type: m, (a, b) Fm, (a,b)(X, Y , Z)
1 42, (6, 7) X7 + Y7 + XZ6

2 36, (1, 30) X7 + Y6Z + XZ6

3 35, (1, 29) X7 + Y6Z + YZ6

4 31, (1, 26) X6Y + Y6Z + XZ6

5 21, (3, 7) X7 + Y7 + XZ6 + β3,0X4Z3

6 18, (1, 12) X7 + Y6Z + XZ6 + β3,0X4Z3

7 14, (2, 7) X7 + Y7 + XZ6 + β2,0X5Z2 + β4,0X3Z4

8 12, (1, 6) X7 + Y6Z + XZ6 + β2,0X5Z2 + β4,0X3Z4

9 9, (1, 3) X7 + Y6Z + XZ6 + β3,0X4Z3 + β5,3X2Y3Z2

10 7, (1, 2) X7 + Y7 + Z7 + β4,1X3YZ3 + β5,3X2Y3Z2 + β6,5XY5Z

11 7, (1, 3) X7 + Y7 + Z7 + β3,1X4YZ2 + β5,4X2Y4Z + β6,2XY2Z4

12 7, (0, 1) Z7 + L7,Z

13 6, (1, 2) X7 + XZ6 + XY6 + β3,0X4Z3 + β4,2X3Y2Z2 + β5,4X2Y4Z

+β7,2Y2Z5 + β7,2Y2Z5

14 6, (2, 3) X7 + XZ6 + XY6 + β2,0X5Z2 + β3,3X4Y3 + β4,0X3Z4

+β5,3X2Y3Z2 + β7,3Y3Z4

15 6, (0, 1) Z6Y + L7,Z

16 5, (1, 4) X7 + Y6Z + YZ6 + β2,1X5YZ + β4,2X3Y2Z2 + β6,3XY3Z3

+X2
(
β5,0Z5 + β5,5Y5

)
17 4, (1, 2) X7 + Y6Z + XZ6 + β2,0X5Z2 + β3,2X4Y2Z + β5,2X2Y2Z3

+β6,4XY4Z2 + β7,2Y2Z5 + X3
(
β4,0Z4 + β4,4Y4

)
18 3, (1, 2) X7 + X(Z6 + Y6 + β6,3Y3Z3) + X2YZ

(
β5,1Z3 + β5,4Y3

)
+β4,2X3Y2Z2 + X4

(
β3,0Z3 + β3,3Y3

) + β2,1X5YZ

+Y2Z2
(
β7,2Z3+β7,5Y3

)
19 3, (0, 1) Z6Y + Z3L4,Z + L7,Z

20 2, (0, 1) Z6Y + Z4L3,Z + Z2L5,Z + L7,Z

by Aut(C), which in turn implies that Aut(C) is cyclic as it fixes a point on C. Finally, we deduce that
Aut(C) is generated by σ as desired as the order of σ is maximal.

6.5. Type 3, (0, 1)

Let C be a smooth plane septic curve of Type 3, (0, 1), that is, σ = diag(1, 1, ζ3) is a homology of maximal
order 3 in Aut(C).

Neither Aut(F7) nor Aut(K7) has homologies of period 3, hence C is never a descendant of F7 or K7.
On the other hand, if we think about Aut(C) as in Theorem 3-(2), we must have N = 1 and �(Aut(C)) =
Z/3Z. Otherwise, Aut(C) would contain a Z/2Z×Z/2Z, which contradicts Proposition 3, or it would
have elements of order > 3, which contradicts the maximality of order σ . Thus, we are left with Aut(C) =
〈σ 〉 as we wanted to show.
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Table 3. Aut(C) for very large types m, (a, b)

GAP ID Aut(C) Generators F(X, Y , Z)
(42, 6) Z/42Z diag(1, ζ 6

42, ζ 7
42) X7 + Y7 + XZ6

(36, 2) Z/36Z diag(1, ζ36, ζ 30
36 ) X7 + Y6Z + XZ6

(70, 1) Z/7Z× D5 diag(1, ζ35, ζ
−6
35 ), [X:Z:Y] X7 + Y6Z + YZ6

(93, 1) Z/31Z�Z/3Z diag(1, ζ31, ζ
−5
31 ), [Y:Z:X] X6Y + Y6Z + Z6X

(18, 2) Z/18Z diag(1, ζ18, ζ−6
18 ) X7 + Y6Z + XZ6 + β3,0X4Z3

β3,0 �= 0
(12, 2) Z/12Z diag(1, ζ12, −1) X7 + Y6Z + XZ6 + β2,0X5Z2 + β4,0X3Z4

β2,0 �= 0 or β4,0 �= 0

6.6. Type 2, (0, 1)

The automorphism group of any smooth plane septic curve C of Type 2, (0, 1) is always cyclic
of order 2. To see this, we first note that C is not a descendant of K7 as 2 � |Aut(K7)|. On
the other hand, if C is a descendant of F7 with bigger automorphism group than Z/2Z, then
the Group structure of SmallGroup(294,7) assures that Aut(C) would contain an element of
order 3 or 7, which contradicts the assumption that σ := diag(1, 1, −1) ∈ Aut(C) is of maxi-
mal order 2. Lastly, if Aut(C) is as Theorem 3-(2), then it should be the case that N = 1
and �(Aut(C)) =Z/2Z. For otherwise, Aut(C) would contain a Z/2Z×Z/2Z, which contradicts
Proposition 3, or it would have elements of order > 2, which contradicts the maximality of
order σ .

7. When Aut(C) is not necessarily cyclic

Throughout this section, the full description of the automorphism groups of smooth plane septic curves
of Type 14, (2, 7), 7, (1, 2), 7, (1, 3), 5, (1, 4), or 3, (1, 2) will be investigated.

7.1. Type 14, (2, 7)

A smooth plane septic curve C of Type 14, (2, 7) is given by an equation of the form

C:X7 + Y7 + XZ6 + β2,0X5Z2 + β4,0X3Z4 = 0,

for some β2,0, β4,0 ∈ K∗, where σ := diag(1, ζ 2
14, −1) is an automorphism of maximal order 14.

Clearly C cannot be a descendant of the Klein curveK7 as 14 � |Aut(K7)|. On the other hand, �(σ ) has
order ≥ 7, so Aut(C) does not appear as in Theorem 3-(2). From this, we can see that either Aut(C) = 〈σ 〉
or C is a descendant of the Fermat curve F7 with a bigger automorphism group than Z/14Z. Now, the
Group structure of SmallGroup(294,7) tells us that for C to be a descendant ofF7 such that 〈σ 〉 ⊂ Aut(C)
it is necessary that Aut(C) contains another homology σ ′ of order 7 that commutes with σ 2. In particular,
C is K-isomorphic to the Fermat curve itself as a result of Corollary 3.

Thus we conclude:

Proposition 7. If C is a smooth septic curve of Type 14, (2, 7), then Aut(C) equals Z/14Z or C is
K-isomorphic to the Fermat curve F7.

It then remains to specify the conditions on the parameters β2,0 and β4,0 so that φC becomes X7 + Y7 +
Z7 for some change of variables φ ∈ PGL3(K). Since anyZ/14Z inside Aut(F7) is Aut(F7)-conjugated to
〈[X:ζ7Z:Y]〉, then we can assume that φ−1σφ = [X:ζ s+1

7 Z:ζ s
7 Y] for some s ∈ {0, 1, 2, 4, 5, 6}. Using direct

https://doi.org/10.1017/S0017089525000126 Published online by Cambridge University Press

https://people.maths.bris.ac.uk/ matyd/GroupNames/289/C7%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}5E2sS3.html
https://people.maths.bris.ac.uk/ matyd/GroupNames/289/C7%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}5E2sS3.html
https://people.maths.bris.ac.uk/ matyd/GroupNames/289/C7%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}5E2sS3.html
https://people.maths.bris.ac.uk/ matyd/GroupNames/289/C7%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}5E2sS3.html
https://doi.org/10.1017/S0017089525000126


14 E. Badr et al.

calculations, we obtain that

φ =
⎛
⎝ 0 ζ 3

7 b b
1 0 0
0 −ζ 3

7 c c

⎞
⎠ and s = 2.

The transformed equation φC has the form:

X7 + A(Y7 + Z7) + BYZ(ζ7Y5 + Z5) + CY2Z2(Y3 + ζ 5
7 Z3) + DY3Z3(Y + ζ−3

7 Z) = 0,

where

A : = b
(
b6 + β20b4c2 + β40b2c4 + c6

)
,

B := bζ 3
7

(
7b6 + 3β20b4c2 − β40b2c4 − 5c6

)
,

C := bζ7

(
21b6 + β20b4c2 − 3β40b2c4 + 9c6

)
,

D := bζ 5
7

(
35b6 − 5β20b4c2 + 3β40b2c4 − 5c6

)
.

Eliminating a and b from the system of equations A = 1, B = C = D = 0, we get β20 = 3
25

β40 such that
β3

40 = 875.
Summing up, we can say that

Corollary 6. Let C be a smooth plane septic curve of Type 14, (2, 7) as above. Then, Aut(C) is always
cyclic of order 14, generated by σ = diag(1, ζ 2

14, −1), unless β20 = 3
25

β40 such that β3
40 = 875. In this

situation, C is K-isomorphic to the Fermat curve F7.

7.2. Type 7, (1, 2)

A smooth plane septic curve C of Type 7, (1, 2) is given by an equation of the form

C:X7 + Y7 + Z7 + β4,1X3YZ3 + β5,3X2Y3Z2 + β6,5XY5Z = 0,

where σ := diag(1, ζ7, ζ 2
7 ) is an automorphism of maximal order 7.

Obviously, Aut(C) always contains the dihedral group D14 generated by σ and τ := [Z:Y:X]. Thus,
Aut(C) is not cyclic, and C is never a descendant of the Klein curve K7. On the other hand, �(σ ) =
diag(ζ−1

7 , ζ7) and �(τ ) = [Z:X] generate D14 inside PGL2(K). So if Aut(C) is as in Theorem 3-(2), then
�(σ ) = D2m with m = 7 and N = 1, since none of the other options for �(Aut(C)) has D14 as a subgroup
and elements of orders ≤ 7.

Finally, assume that C is a descendant of the Fermat curve F7. This implies that Aut(C) is exactly D14.
For otherwise, Aut(C) would contain a Z/7Z×Z/7Z from the Group structure of SmallGroup(294,7),
which means by Corollary 3 that C is K-isomorphic to F7 contradicting the fact that automorphisms of
C have orders at most 7.

As a result, we deduce that

Corollary 7. For any smooth plane septic curve C of Type 7, (1, 2) as above, we have that Aut(C) =
〈diag(1, ζ7, ζ 2

7 ), [Z:Y:X]〉 = D14.

7.3. Type 5, (1, 4)

Now assume that C is a smooth septic curve of Type 5, (1, 4). Then, C is defined by an equation of the
form

C:X7 + Y6Z + YZ6 + β2,1X5YZ + β4,2X3Y2Z2 + β6,3XY3Z3 + X2
(
β5,0Z5 + β5,5Y5

) = 0,

where σ := diag(1, ζ5, ζ
−1
5 ) is an automorphism of maximal order 5.
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Since 5 does not divide |Aut(F7)| or |Aut(K7)|, C cannot be a descendant of F7 or K7. Thus,
it must be the case that Aut(C) is as Theorem 3-(2). More precisely, N = 1 by the maximality of
order σ , and �(Aut(C)) =Z/5Z, D10 or A5 as it contains the element �(σ ) = daig(ζ5, ζ

−1
5 ) of order

5. Equivalently, Aut(C) equals Z/5Z, D10 or A5. The latter case is absurd or Z/2Z×Z/2Z would
be a subgroup of automorphisms for C, which violates Proposition 3. For Aut(C) = D10, the curve
C should have an extra involution, say τ , such that τστ = σ−1. Solving this equation in PGL3(K)
leads to τ = [X:aZ:a−1Y], [aZ:Y:a−1X] or [aY:a−1X:Z] for some a ∈ K∗. The core of C only allows
τ = [X:aZ:a−1Y] to be an automorphism under the assumptions that a5 = 1 and β5,0 = β5,5.

As a result, we deduce that:

Corollary 8. For any smooth plane septic curve C of Type 5, (1, 4) as above, Aut(C) is always cyclic
generated by σ = diag(1, ζ5, ζ

−1
5 ) unless β5,0 = β5,5. In this case, it becomes the D10 generated by σ and

τ = [X:Z:Y].

7.4. Type 7, (1, 3)

A smooth plane septic curve C of Type 7, (1, 3) is given by an equation of the form

C:X7 + Y7 + Z7 + β3,1X4YZ2 + β5,4X2Y4Z + β6,2XY2Z4 = 0,

where σ := diag(1, ζ7, ζ 3
7 ) is an automorphism of maximal order 7.

If Aut(C) is cyclic, then it equals 〈σ 〉 by the maximality of order σ inside Aut(C). So from now on
we may assume that Aut(C) is not cyclic.

Again 7 does not divide Aut(K7) = 93, so C is not a descendant of K7. On the other hand, �(σ )
always has order 7 inside PGL2(K), which means that Aut(C) is D14 if it behaves as in Theorem 3-(2),
since N = 1 in this situation. Therefore, C must have an extra involution τ such that τστ = σ−1. One
can easily verify that the last equation is inconsistent in PGL3(K), from which we discard this scenario.

Finally, assume that C is a descendant of F7 with a noncyclic automorphism group. The assump-
tion on 7 being the maximal order of the elements of Aut(C) and the fact that Z/7Z×Z/7Z is never a
subgroup of automorphisms (Proposition 3) imply that Aut(C) equals D14 or Z/7Z�Z/3Z, see the
Group structure of SmallGroup(294,7). As before, D14 is absurd. To get Z/7Z�Z/3Z, we should
be able to find an automorphism σ ′ for C of order 3 such that σ ′σ (σ ′)−1 = σ 4. Direct calculations in

PGL3(K) assure that σ ′ =
⎛
⎝ 0 0 1

a 0 0
0 b 0

⎞
⎠ for some a, b ∈ K∗. Imposing σ ′ ∈ Aut(C) we obtain that a7 = b7 =

1, β3,1 = β5,4a4b, β6,2 = β5,4a5b3, in particular, the defining equation for C becomes K-isomorphic via
φ = diag(a2b2, a5b4, 1) to the curve

C
′
:X7 + Y7 + Z7 + a3b6β5,4

(
X4YZ2 + X2Y4Z + XY2Z4

)
with Aut(C′) = 〈σ , [Z:X:Y]〉 =Z/7Z�Z/3Z.

As a result, we deduce that

Corollary 9. For any smooth plane septic curve C of Type 7, (1, 3) as above, we classify Aut(C) as
follows.

(1) If β3,1 = β5,4a4b, β6,2 = β5,4a5b3 for some a, b, β5,4 ∈ K∗ such that a7 = b7 = 1, then C is K-
isomorphic to

C′:X7 + Y7 + Z7 + a3b6β5,4

(
X4YZ2 + X2Y4Z + XY2Z4

) = 0,

where Aut(C′) equals Z/7Z�Z/3Z, generated by diag(1, ζ7, ζ 3
7 ) and [Z:X:Y].

(2) Otherwise, Aut(C) equals Z/7Z generated by diag(1, ζ7, ζ 3
7 ).
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7.5. Type 3, (1, 2)

A smooth plane septic curve C of Type 3, (1, 2) is given by an equation of the form

C:X7 + XZ6 + XY6 + β2,1X5YZ + β4,2X3Y2Z2 + β6,3XY3Z3 + β7,2Y2Z5

+β7,5Y5Z2 + X4
(
β3,0Z3 + β3,3Y3

) + X2YZ
(
β5,1Z3 + β5,4Y3

) = 0,

where σ := diag(1, ζ3, ζ
−1
3 ) is an automorphism of maximal order 3.

Suppose first that C is a descendant of K7. Then, Aut(C) =Z/3Z generated by σ or C would be K-
isomorphic to the K7, see the Group structure of SmallGroup(93,1). We reject the latter case as σ is of
maximal order in Aut(C). Hence, Aut(C) = 〈σ 〉 in this case.

Second, assume that C is a descendant of F7. Then, Aut(C) =Z/3Z generated by σ or Aut(C) = S3,
see the Group structure of SmallGroup(294,7). For Aut(C) to be an S3, C should admit an extra involution
τ such that τστ = σ−1. Similarly as above (Type 5, (1, 4)), we can reduce to τ = [X:aZ:a−1Y] such that
a6 = 1 (hence, a3 = ±1), β7,5 = ±β7,2, β3,3 = ±β3,0, and β5,4 = ±β5,1.

Thus C is K-isomorphic, via φ = diag(1, a, 1), to

C′:X7 + XZ6 + XY6 + β2,1aX5YZ + β4,2a2X3Y2Z2 + β6,3a3XY3Z3 + β7,2a2Y2Z2(Y3 + Z3)

+β3,0X4(Y3 + Z3) + β5,1aX2YZ(Y3 + Z3) = 0,

with Aut(C′) = 〈σ , [X:Z:Y]〉 = S3.
Finally, assume that Aut(C) appears as in Theorem 3-(2). That is, N = 1 from the core of C and

�(Aut(C)) always contains �(σ ) as an element of order 3. Applying Proposition 3 would eliminate
A4, A5, and S4 from the list, in particular, Aut(C) equals Z/3Z or S3. We treat the case Aut(C) = S3 as
before.

As a result, we deduce that

Proposition 8. For any smooth plane septic curve C of Type 3, (1, 2) as above, we classify Aut(C) as
follows.

(1) If β7,5 = ±β7,2, β3,3 = ±β3,0 and β5,4 = ±β5,1, then C is K-isomorphic to

C′:X7 + XZ6 + XY6 + β2,1aX5YZ + β4,2a2X3Y2Z2 + β6,3a3XY3Z3 + β7,2a2Y2Z2(Y3 + Z3)

+β3,0X4(Y3 + Z3) + β5,1aX2YZ(Y3 + Z3) = 0,

for some a6 = 1. In that case, Aut(C′) = 〈diag(1, ζ3ζ
−1
3 ), [X:Z:Y]〉 = S3.

(2) Otherwise, Aut(C) equals Z/3Z generated by diag(1, ζ3, ζ
−1
3 ).

8. Determining the possible signatures of smooth plane septics

In this section, we explicitly evaluate the possible signatures of the smooth plane septic curves studied
above and connect them to the data available on the L-Functions and Modular Forms Database (LMFDB)
[34]. The LMFDB (https://www.lmfdb.org/) is an ever-expanding valuable resource for studying funda-
mental objects in number theory, algebraic geometry, and related fields. Of interest to us is the section
on higher genus curves, which currently contains all groups G acting as automorphisms of curves X
over C of genus 2 to 15 such that X/G has genus 0 (as well as genus 2 through 4 with quotient genus
greater than 0). Attached to each such curve is a signature (whose definition is recalled below) and by
computing all the possible signatures of plane septics, we obtain a criterion that can be used to exclude
whether a given genus 15 curve in the database can be realized as a smooth plane septic.
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We now recall the definition and basic properties of the signature of a curve (see [13] for additional
background and details). Consider C, a compact Riemann surface with genus g ≥ 2, and let G = Aut(C)
be its automorphism group. Define the natural mapping φ:C → Y = C/G, where Y is the orbit space of
C under the action of G. This map φ assigns each point x ∈ C to its orbit under G. Let g0 denote the
genus of the quotient curve Y . The map φ may branch at several points in Y , forming a set B ⊂ Y of size
r. If we denote the preimage of these points as φ−1(B) ⊂ C, then the map from C − φ−1(B) to Y − B is
a degree d covering for some positive integer d.

Choose a base point y0 ∈ Y − B. The preimage φ−1(y0) consists of d = |G| points in C − φ−1(B),
denoted φ−1(y0) = {x1, . . . , xd} ⊂ X. Consider a loop starting at y0 that winds once around a branch point
in B. For each xi in φ−1(y0), this loop uniquely lifts to a path in C that starts at xi and ends at some
xj ∈ φ−1(y0). This process defines a permutation on the d elements of φ−1(y0), mapping i to the index of
the endpoint xj of the lifted path starting at xi.

These r permutations induce a map ρ:π1(Y − B, y0) → Sd, where Sd is the symmetric group on d
elements and π1(Y − B, y0) denotes the fundamental group. Its standard generators are obtained by con-
sidering the homotopy classes of loops indexed by b ∈ B that begin at y0 and make a counterclockwise
loop around b without enclosing any other elements of B. The order of each permutation corresponding
to a loop around an element of B is denoted mi for 1 ≤ i ≤ r.

LetH= {z ∈C:Im(z) > 0} be the complex upper half-plane. It is well known that it has automorphism
group PSL(2, R), and that H is a universal cover for any compact Riemann surface of genus ≥ 2. A
Fuchsian group � is a discrete subgroup of PSL(2, R). Such a group is well known (see [ [13],Theorem
3.2] for instance) to have a presentation as

� = 〈α1, β1, · · · , αg0 , βg0 , γ1, · · · , γr:
g0∏

i=1

[αi, βi]
r∏

j=1

γj = 1, γ
mj

j = 1〉

(where [αi, βi] is the commutator of αi and βi). The signature of � is the tuple [g0;m1, m2, . . . , mn]. In
order to compute the signature of a smooth plane curve C of genus g ≥ 2 with automorphism group G,
we implement the following steps (see [ [13], Chapter 3] for more details):

1. Determine the points p ∈ C for which the stabilizer subgroup Gp is non-trivial and compute the
order of Gp. For such points, φ(p) is a branch point of the natural projection φ:C → C/G.

2. Compute the genus of the quotient curve C/G using the Riemann–Hurwitz formula:

2gC − 2 = |G| (2gC/G − 2
) +

∑
p∈C

(|Gp| − 1). (A)

3. By rewriting the Riemann–Hurwitz formula in the form:

2gC − 2 = |G| (2gC/G − 2
) + |G|

r∑
i=1

(
1 − 1

mi

)
(B)

(where r is the number of branch points), we obtain the signature [gC/G;m1, . . . , mr] of the
Fuchsian group � such that C/G ∼=H/�.

Performing those steps on all the curves from Table 1, we obtain the following result:

Proposition 9. The signature of every smooth plane septic curve is outlined in Table 4.

Example 1. In the following example, we apply the steps outlined before Proposition 9 to the curve of
type 5, (1, 4).

C:X7 + Y6Z + YZ6 + β2,1X5YZ + β4,2X3Y2Z2 + β6,3XY3Z3 + X2
(
β5,0Z5β5,5Y5

) = 0

The automorphism group of the curve C is Aut(C) is generated by the non-homology diag(1, ζ5, ζ
−1
5 ).

Thus, the fixed points are precisely the three reference points, namely (1:0:0), (0:1:0) and (0:0:1).
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Table 4. Automorphism groups and signature

GAP ID Aut(C) Genus of C/Aut(C) Signature
(294, 7) (Z/7Z)2 � S3 0 [0; 2, 3, 14]
(93, 1) Z/31Z�Z/3Z 0 [0; 3, 3, 31]
(70, 1) Z/7Z× D10 0 [0; 2, 14, 35]
(42, 6) Z/42Z 0 [0; 6, 7, 42]
(36, 2) Z/36Z 0 [0; 6, 36, 36]
(21, 2) Z/21Z 0 [0; 3, 7, 7, 21]
(21, 1) Z/7Z�Z/3Z 1 [1; 3, 3]
(18, 2) Z/18Z 0 [0; 6, 6, 18, 18]
(14, 2) Z/14Z 0 [0; 2, 7, 7, 7, 14]
(14, 1) D14 0 [0; 2, 2, 2, 2, 2, 2, 2, 2]
(12, 2) Z/12Z 0 [0; 6, 6, 6, 12, 12]
(10, 1) D10 0 [0; 2, 2, 2, 2, 2, 2, 2, 2, 5]
(9, 1) Z/9Z 1 [1; 3, 3, 9, 9]
(7, 1) �1,3(Z/7Z) 3 [3; 0]
(7, 1) �0,1(Z/7Z) 0 [0; 7, 7, 7, 7, 7, 7, 7]
(6, 2) �1,2(Z/6Z) 2 [2; 2, 2, 6, 6]
(6, 2) �2,3(Z/6Z) 1 [1; 2, 2, 3, 3, 3, 6, 6]
(6, 2) �0,1(Z/6Z) 0 [0; 6, 6, 6, 6, 6, 6, 6, 6]
(6, 1) S3 1 [1; 2, 2, 2, 2, 2, 2, 2, 2, 3]
(5, 1) Z/5Z 3 [3; 5, 5]
(4, 1) Z/4Z 3 [3; 2, 2, 2, 4, 4]
(3, 1) �1,2(Z/3Z) 5 [5; 3, 3]
(3, 1) �0,1(Z/3Z) 3 [3; 3, 3, 3, 3, 3, 3, 3, 3]
(2, 1) Z/2Z 6 [6; 2, 2, 2, 2, 2, 2, 2, 2]

However, only (0:1:0) and (0:0:1) lie on C. Substituting in (A) yields

2(15) − 2 = 5(2gC/G − 2) + 5 − 1 + 5 − 1,

hence gC/G = 3. Using (B), we get

2(g − 1) = 5(2gC/G − 2) + 5
2∑

i=1

(1 − 1

5
).

Consequently, the curve C has signature [3; 5, 5].

In the case where the genus of a curve C is g = 15, the LMFDB catalogs all the various curves
and their signatures. Utilizing the results above, we can deduce that those curves whose automorphism
group or signature do not appear in Table 4 are not smooth plane septics. For instance, if the automor-
phism group Aut(C) is isomorphic to Z/18Z, then the signature of C has to be one of the following:
[0; 6, 6, 18, 18], [0; 6, 9, 9, 18], and [0; 2, 2, 3, 18, 18]. By Proposition 9, we deduce that curves with
signatures [0; 6, 9, 9, 18] or [0; 2, 2, 3, 18, 18] are not smooth plane septic curves.

We conclude with Table 5, which identifies the subset of signatures of genus 0 quotients of smooth
plane septics in comparison to all the LMFDB signatures of genus 0 quotient curves of genus 15.
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Table 5. Automorphism groups and signatures of genus 15 curves with genus 0 quotients

Signature of the
GAP ID Aut(C) All signatures on LMFDP group action on C
(294, 7) (Z/7Z)2 � S3 [0; 2, 3, 14] [0; 2, 3, 14]
(93, 1) Z/31Z�Z/3Z [0; 3, 3, 31] [0; 3, 3, 31]
(70, 1) Z/7Z× D10 [0; 2, 14, 35] [0; 2, 14, 35]
(42, 6) Z/42Z [0; 6, 7, 42] [0; 6, 7, 42]
(36, 2) Z/36Z [0; 6, 36, 36] and [0; 9, 12, 36] [0; 6, 36, 36]
(21, 2) Z/21Z [0; 3, 7, 7, 21] [0; 3, 7, 7, 21]
(21, 1) Z/7Z�Z/3Z [0; 3, 3, 3, 3, 3] −
(18, 2) Z/18Z [0; 2, 2, 3, 18, 18], [0; 6, 6, 18, 18] and [0; 6, 9, 9, 18] [0; 6, 6, 18, 18]
(14, 2) Z/14Z [0; 2, 7, 7, 7, 14] [0; 2, 7, 7, 7, 14]
(14, 1) D14 [0; 2, 2, 2, 2, 2, 2, 2, 2] [0; 2, 2, 2, 2, 2, 2, 2, 2]
(12, 2) Z/12Z [0; 3, 12, 12, 12, 12], [0; 6, 6, 6, 12, 12], [0; 4, 6, 12, 12, 12], [0; 6, 6, 6, 12, 12]

[0; 3, 3, 4, 4, 4, 4], [0; 3, 3, 3, 4, 4, 6], [0; 3, 3, 3, 3, 4, 12],
[0; 2, 3, 4, 4, 6, 6], [0; 2, 3, 4, 4, 4, 12], [0; 2, 3, 3, 4, 6, 12]

[0; 2, 3, 3, 3, 12, 12], [0; 2, 2, 4, 4, 12, 12], [0; 2, 2, 4, 6, 6, 12],
[0; 2, 2, 2, 3, 3, 4, 4], [0; 2, 2, 2, 2, 3, 4, 12], [0; 2, 2, 3, 6, 12, 12],

[0; 2, 2, 2, 2, 2, 12, 12]
(10, 1) D10 [0; 2, 2, 2, 2, 2, 2, 2, 2, 5] [0; 2, 2, 2, 2, 2, 2, 2, 2, 5]
(9, 1) Z/9Z [0; 3, 9, 9, 9, 9, 9], [0; 3, 3, 3, 3, 3, 9, 9] −
(7, 1) �1,3(Z/7Z) [0; 7, 7, 7, 7, 7, 7, 7], −
(7, 1) �0,1(Z/7Z) [0; 7, 7, 7, 7, 7, 7, 7] [0; 7, 7, 7, 7, 7, 7, 7]
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Table 5. contiuned

Signature of the
GAP ID Aut(C) All signatures on LMFDP group action on C
(6, 2) Z/6Z [0; 6, 6, 6, 6, 6, 6, 6, 6], [0; 2, 2, 3, 6, 6, 6, 6, 6, 6], [0; 6, 6, 6, 6, 6, 6, 6, 6]

[0; 2, 3, 3, 3, 6, 6, 6, 6, 6], [0; 2, 2, 2, 2, 3, 3, 6, 6, 6, 6],
[0; 2, 2, 2, 3, 3, 3, 3, 6, 6, 6], [0; 2, 3, 3, 3, 3, 3, 3, 3, 3, 6],

[0; 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 6], [0; 2, 2, 2, 2, 2, 2, 3, 3, 3, 6, 6],
[0; 2, 2, 2, 2, 2, 2, 2, 3, 6, 6, 6], [0; 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3],

[0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6], [0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6],
[0; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3], [0; 3, 3, 3, 3, 3, 6, 6, 6, 6]
[0; 2, 2, 2, 2, 2, 6, 6, 6, 6, 6], [0; 2, 2, 3, 3, 3, 3, 3, 3, 6, 6]

[0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6],
(6,1) S3 [0; 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3], [0; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3] −

[0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3]
(5,1) Z/5Z − −
(4,1) Z/4Z [0; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [0; 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] −

[0; 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4],
[0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4]

[0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4]
[0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4]

(3,1) Z/3Z [0; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] −
(2,1) Z/2Z [0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] −
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